
Toward Cloud Native
Digital Repositories

Yinlin Chen, Lee Hunter, Zhiwu Xie

{ylchen, whunter, zhiwuxie}@vt.edu

Research and Informatics
Virginia Tech Libraries

Agenda

• Virginia Tech Libraries direction and goals
• Monolithic and Cloud native application
• Cloud native approaches
• Architecture design strategies
• Challenges, design pattern and best practice
• Cloud platforms

VT Libraries Direction and Goals

• Improve development and deployment process
– Continuous Integration (CI) / Continuous Delivery (CD)
– Increase the frequency of new service/version release
– Local and cloud environment

• Cloud native applications for core repository
infrastructure
– Cloud native digital repositories

Monolithic Architecture

• Develop and deploy as a single unit
• Long-term commitment to a technology stack or

even version
• Hard to scale development
• Difficult to scale the application
• Lots of human intervention

Why Cloud Native

• Limited resource:
– Developers, Devops, Infrastructure, Time

• Facilitate the development and delivery process
• Provide better services: fault-tolerant, auto-

scale, update/rollback without downtime, etc
• Optimize resource usage
• Use services that can help delivering the project,

not build everything by ourselves

Toward Cloud Native

It is not just putting applications in the cloud

Toward Cloud Native

It is not just putting applications in the cloud

It is about applications in the cloud that utilize the
advantages provided by the cloud

AS MUCH AS POSSIBLE

Toward Cloud Native

It is not just putting applications in the cloud

It is about applications in the cloud that utilize the
advantages provided by the cloud

AS MUCH AS POSSIBLE

Do things that matters

Resource Usage Optimization and Automation

• Consume only the required resources for the applications
• Scale up and down automatically
• Services and functions oriented, not server oriented
• Utilize cloud services to help understanding your applications

(CloudWatch, Auto Scaling, Trusted Advisor, etc)

Example: Hydra-in-a-box

• Hyku using the configuration defined in AWS cloudformation
templates is roughly $800-$900 per month
(https://github.com/hybox/aws)

• $300/month setting

• Reserved instance
(50 - 75% off)
$75/month

https://github.com/hybox/aws

Cloud Native

• Cloud Native Computing Foundation (CNCF)
– An open source software foundation dedicated to

making cloud native computing universal and
sustainable.

• Microservices oriented
• Containerized
• Dynamically orchestrated

Microservices oriented

Microservice

• Small software piece
• Decentralized

– Autonomously developed
– Independently deployable
– Change independently of each service
– Scale individually by load

• Messaging enabled – communicate with messages
• Build and released with automated processes
• More complex architecture

Serverless

Do not mean ”There are no servers at all”

Do mean “Use fully managed services”

Focus on application development,
not server maintenance

Parallel Development and Deployment

Configure Repository

Repository

Stacks

A W S Elastic
B eanstalk

A W S
Lam bda

A m azon
A PI

G atew ay

Continuous Integration and Delivery (CI / CD)
A W S

C odePipeline

Source Stage Build Stage Test Stage Deploy Stage

A m azon S3

A W S C odeB uild

A m azon EC 2 A m azon EC 2

A W S Elastic
B eanstalk

A W S Elastic
B eanstalk

Example: Fedora 5 CI/CD

Containerized

EVERYTHING at Google runs in a container

2 Billion containers per week in 2014

4 Billion containers per week in 2018

Container as a Service (CaaS)

Fedora 4 Containerization
• Create a Fedora 4 Docker image
• Push to Amazon Elastic Container Registry (ECR)
• Run containerized application in Amazon Elastic

Container Service (ECS)
• Run containerized application in AWS Fargate

Amazon ECSAmazon ECR AWS Fargate

Example: Fedora 4 Docker in AWS Fargate

Dynamically orchestrated

Orchestration Platforms

• Apache Mesos
– http://mesos.apache.org/

• Docker Swarm
– https://docs.docker.com/engine/swarm/

• Kubernetes
– https://kubernetes.io/

• Nomad
– https://www.nomadproject.io/

• Rancher
– https://rancher.com/

http://mesos.apache.org/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://www.nomadproject.io/
https://rancher.com/

Kubernetes (a.k.a k8s)
• An open-source system for automating

deployment, scaling, and management
of containerized applications

• Manage containers at scale

Image credits: https://kubernetes.io/

https://kubernetes.io/

Kubernetes in the Cloud
• Kubernetes on AWS using CloudFormation

– Weaveworks
– Heptio

• Google Kubernetes Engine (GKE)
• Amazon Elastic Container Service for Kubernetes (EKS)
• Microsoft Azure Kubernetes Service (AKS)

GKE AKS

Cloud Native Digital Repository in AWS

AWS Fargate

A m azon
S3

A m azon
G lacier

A W S
Lam bda

A m azon
D ynam oD B

A m azon
E lastiC ache

A m azon
C loudFront

A m azon
R oute 53

A m azon
C loudW atch

A W S
C onfig

A W S
C loudTrail

A W S
C loudForm ation

A W S Trusted
A dvisor

IA M

A m azon A PI
G atew ay

A m azon
SQ S

A m azon
SN S

AWS CLI

Network & Content Delivery Compute & Database

Management

A W S
O rganizations

Messing Security & Identity Storage

A m azon E lastic
Transcoder

Services

Example: Multimedia Digital Repository

A m azon SN S

topic

A m azon S3

S3 B ucket

C loudW atch C loudTrail A W S C onfig

A W S
Lam bda

A W S
C loudForm ation

A m azon A PI
G atew ay

A m azon
C loudFront

A m azon
R oute 53

A m azon
C ognito

A m azon
D ynam oD B

A W S
Elasticsearch

Architecture Design Strategies

• Decouple digital repository into multiple services
• Chose the right tools (Service, Instance,

Storage, etc)
• Go Microservice and Serverless:

– Containerize the service
– Use managed service

• Develop orchestration

Challenges

• Service granularity
• More complex architecture
• More things need to learn
• Learning curve varies
• Practical cloud experience
• Cloud investment

Design Pattern and Best Practice

• The Twelve-Factor App (http://12factor.net)
• Applying the Twelve-Factor App Methodology to

Serverless Applications (https://goo.gl/TBLbhG)

Codebase Dependencies Config

Backing services Build, release, run Processes

Port binding Concurrency Disposability

Dev/prod parity Logs Admin processes

Other Cloud Platforms
• Cloud platforms

– Amazon Web Services (AWS)
– Google Cloud Platform (GCP)
– Microsoft Azure, and etc.

AWS GCP Azure
Elastic Compute Cloud Compute Engine Virtual Machines

Elastic Beanstalk Google App Engine Cloud Services

EC2 Container Service
Kubernetes (EKS)

Kubernetes Engine Container Service (AKS)

Lambda Cloud Functions Functions

Simple Storage Services Cloud Storage Storage

Virtual Private Cloud Virtual Private Cloud Virtual Network

Q & A
Supported by Virginia Tech Libraries –
Beyond Boundaries project and AWS
Cloud Credits for Research program

Yinlin Chen
ylchen@vt.edu

mailto:ylchen@vt.edu

