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(ABSTRACT)

Glued-laminated wood (Glulam) is a versatile material manufactured by gluing two or more
layers of wood together with the grain of all laminae running parallel to each other. Glulam beams
of many sizes, shapes, and thicknesses can be made. Innovative load-carrying structures such as

lattice domes, bridges, and towers can be built using glulam members.

But, since wood is a highly variable and anisotropic material it is often difficult to accurately
model the response of wood components in large structures to applied loads. Advanced computer
techniques such as finite element analysis are being developed to more accurately model structure

response.

The objective of this study was to evaluate the applicability of the isoparametric beam finite
element to model the elastic response of straight and curved glulam beams subjected to three load
conditions. Four straight and three curved southern pine glued-laminated beams were subjected
to bending about their major axis, bending about their minor axis, and combined bending and
compression. Strains were measured at various locations using clip-on electrical transducers; and,
deflections were measured at three locations along the length. Transverse isotropy and global
modulus of elasticity were assumed to determine experimentally beam material properties: longi-
tudinal modulus of elasticity and shear modulus. The analysis was performed by using the finite

element program ABAQUS.



The experimental and the analytical strain and deflection values of glulam beams in bending
about the major and the minor axes agreed well for most cases. Differences of less than 10% be-
tween experimental measurements and analytical predictions were found at all locations through the
depth of the beams except in the vicinity of the neutral axis. The differences between the measured
and the predicted strain and deflections for beams tested in combined bending and axial com-

pression ranged mostly between 0% and 40%.
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CHAPTER 1

1 INTRODUCTION

Wood is one of the oldest materials used to construct structures. It is a renewable resource;
ironically, the world today is faced with dwindling forests and a shortage of clear solid wood.
Therefore, research is being conducted worldwide to develop new wood composites, made of
smaller lower quality trees, to compete with other construction materials. Technological advances
have made wood a valuable engineering material. Many of the wood products used for con-
struction are highly engineered composites such as laminated wood, plywood, waferboard,

fiberboards, and particleboards. These composites are replacing sawn wood for structural use.

Glued-laminated timber, or ‘glulam’, is a composite used to construct large wood structures
and is manufactured by bonding lumber laminae with structural adhesives to produce straight or
curved members with large cross-sections. The grain of all laminations is oriented approximately
parallel to long axis of the member. Aesthetic beauty, good thermal and fire resistance properties,
excellent acoustical properties, and low construction costs are some of the attractive benefits of
glulam compared to steel or aluminum (75). Recently, curved glulam beams have been used to

construct large-span lattice domes and space frames.
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1.1 The Problem

Since wood is highly variable and anisotropic , it is difficult to predict its response to applied
loads. Presently there is no standard method of predicting the complete structural behavior, in-
cluding the ultimate load capacity, of glulam space frames and lattice domes (17,36). Advanced
techniques, such as finite element analysis, are being developed to accurately model the structural

behavior of wood. However, these analytical models must be verified experimentally.

This study is part of a project designed to formulate a finite element method of analysis to
predict the complete structural response of glulam space frames and lattice domes up to collapse
(17,36). A finite element model is being developed to predict the linear and nonlinear response of
straight and curved glulam space beams in three load conditions: bending, bending and com-
pression, and biaxial bending (19). Geometric nonlinearity due to large displacements and large
rotations should be considered in timber design since the ultimate load capacity of single-layer
timber space frames may be governed by elastic instability (18). Material nonlinearity is not being
considered because the constitutive matrix relating stresses and strains for nonlinear response is not
available. However, it could be included in the finite element model following the procedure de-
scribed by Conners (15,18). The model incorporates the effect of shear and torsional deformations.
When the effect of shearing deformation is negligible (i.e. length-to-depth ratio is usually greater
than (21), the deformed state of the element is characterized by axial deformation, flexural defor-
mations about the two principal axes, and torsional deformation. In non-circular cross sections,
torsional moments cause plane sections to deform out of their planes or warp (35). In linear small
displacement theory, if the cross sections are free to warp then the deformations are uncoupled (35).
However, in a space structure, such as a glulam lattice dome, the deformations are not independent.
The centroid of the cross section may not coincide with the shear center and the center of the twist
thus causing coupling of deformations (12,35). The significance of warping displacements on
torsional stiffness of glulam beams should be investigated and,if significant, should be included in

the finite element model.
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The variation in material properties along the length and throughout the cross-section of the
glulam beams complicates the formulation of the finite element model. Unlike solid sawn wood,
glulam beams do not exhibit material symmetry. Due to the random growth ring orientation, it

would be convinient to consider a glulam cross-section transversely isotropic in its plane (18,50).

1.2 Objectives

The objective of the study is to evaluate the applicability of the isoparametric beam finite el-
ement to model the elastic response of straight and curved glulam beams subjected to three load
conditions: bending about the major axis, bending about the minor axis, and combined bending

and compression.

To accomplish the objective, it was necessary to experimentally evaluate the constitutive ma-
trix to model a 3-D glulam beam. For solid sawn wood beams, the required parameters are the
longitudinal Young’'s modulus (£;) and transverse shear moduli (G, and G ; ). For simplicity, it
would be convinient to model glulam beams using a reduced constitutive matrix that incorporates
transverse isotropy. This study investigated the suitability of using a three-noded isoparametric el-
ement for modeling glulam beams with the above assumptions regarding material properties of the

beams.

1.3 Overview

This thesis contains six chapters. In Chapter 2, a literature review is presented on glulam beam
manufacturing standards, lumber grades, and design stresses. Also, included is a review on space
structures, orthotropic characterization of wood, the constitutive matrix of wood and glulam beams,
determination of material properties of glulam beams, stress analysis in glulam beams, and finite

element analysis of wood systems.
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Chapters 3,4,and S are written in journal format to simplify the presentation. Chapter 3 con-
tains details of the strain measuring device constructed for this study. It also discusses a small scale
investigation conducted to gain insight into the effect of bonded gage lengths on strain measure-
ments in southern pine. A laboratory built clip-on transducer developed to measure strains in wood

is presented with the details of its fabrication, calibration, validation, and applications.

In chapter 4, the procedures used to determine the required material properties are discussed.

Longitudinal modulus of elasticity and shear modulus were determined experimentally.

Chapter 5 contains details of the experimental materials and testing procedures, and the ex-
perimental and analytical results of glulam beams tested in bending about major and minor axes,
and combined compression and bending. The analytical and the experimental results are compared

and discussed. A discussion on sources of errors is also provided in Chapter 5.

Finally, in Chapter 6, a summary of results is presented along with the conclusions. In addi-

tion, recommendations for future work are provided.
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CHAPTER 2

2 Literature Review

2.1 Introduction

In this chapter, a brief background on manufacturing specifications of glulam beams is pre-
sented. Commercial dimensions of glulam beams, type of adhesives used, the effect of selective
placement of laminae, and advantages of glulam members over solid wood beams are also discussed
(sections 2.2 & 2.3). Structural analysis of space frames is briefly presented in section 2.4. Section
2.5 discusses the orthotropic elasticity of wood and the formulation of Hooke’s law for orthotropic
material. Then, determination of material properties of glulam beams (longitudinal Young's
modulus and shear modulus) is presented in section 2.6. Different methods of predicting lamina
longitudinal modulus of elasticity and shear modulus are presented. Stress analysis in glulam beams
is discussed briefly followed by a discussion on Finite Element Method (FEM) to model the re-
sponse of a structure or its elements. Finally, a summary of existing FE-models for glulam beams

and the FE-model in this study are provided.
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2.2 Manufacturing Specifications, Sizes,Species, and Grades

In the U.S.A. the manufacture of structural glued-laminated timber must be in accordance
with the ANSI/AITC A190.1 specification (2,3,23). It contains specifications for the production,
testing, and certification of structural glulam timber. Canadian Standards Association (CSA)
standard O 122 contains the requirements for the manufacture of structural glulam members in
Canada. American Institute of Timber Construction (AITC) 117-8¢ MANUFACTURING also
has the standard manufacturing specifications for structural glued-laminated timber of softwood
species. AITC 117--DESIGN gives the design specification for glued-laminated timber. The Na-
tional Design Specification for Wood Construction and Supplement also provides the glulam design
specifications (53). The design values for glued-laminated timber are established by following the
procedures given in Standard Method of Establishing Stresses for Structural Glued Laminated
Timber (Glulam), ASTM D 3737 (3).

Many of the glulam beams produced in the U.S. are for custom products. They are manu-
factured according to the specifications for a specific use. Lumber that qualifies for laminating
purposes is selected and planed so that the adhesive has intimate contact with the laminae.
Phenol-resorcinol and melamine adhesives are the most widely used wet-use adhesives in structural
glued-laminated members. Casein adhesives are the standard dry-use adhesives used to manufacture
glulam members (31). Today, however, wet-use adhesives are most common. A uniform appli-

cation of a predetermined amount of adhesive is achieved using special glue spreading equipment.

Adhesive is spread uniformly on one or both faces of each lamina. Then the laminae are
placed on a clamping form that has been set to the required shape of the finished member.
Clamping pressure is applied to bring the surfaces of the laminae into intimate contact, to pull the
member into shape, to force out excessive adhesive, and to hold the pieces firmly together until the
adhesive has developed sufficient bond strength. The clamps have to be uniformly spaced and
tightened to maintain a uniform pressure throughout the adhesive curing period. After the beams

are removed from the clamps, they are planed to the required sizes and cut to length. The finished
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members are usually wrapped in water-resistant paper for protection during transit, storage, and

erection (31,75).

Industry standards permit the use of several widths and depths of glulam members. Most
Southern Pine glulam beams have widths of 3”, 5,6 3/4”, 8 1/2”, or 10 1/2”. Nominal sizes of
glulam beams produced commercially are given in table form by AITC (2). Other sizes are readily
available for custom orders. The nominal thickness of each lamina may not exceed two inches

nominal for straight beams and one inch nominal for curved beams (2,23).

The arrangement of laminae by stiffness during the manufacturing process is advantageous
(43,44). It not only makes the beam stiffer, but also increases the strength of the beam. Stiffer and
stronger laminae are placed on the outer edges where maximum tension and compression stresses
occur. Moody (52) concluded in his studies that the stiffness of the outer laminae play an important
role in determining the strength of a beam. Koch and Bohannan (44) compared the strength of
beams with laminae arranged according to specific gravity, stiffness, appearance, and random se-
lection. The beams with laminae arranged by stiffness were stronger than other arrangements. It
was discovered that lay-up of beams by stiffness not only increased the average strength, but also

decreased the variability between beams.

Several softwood and hardwood species are used for glulam members. The most commonly
used species groups for glulam members in the United States are Douglas-fir-larch, southern pine,
and hem-fir (23,31). Many studies have been conducted to evaluate the strength properties of
glued-laminated beams composed of more than one species (21,27,52,60). All the studies found
that the ultimate strength in bending was influenced by the grade and strength of the face boards
because the maximum bending stresses are induced in the outer laminae. Lumber, used for glulam
beams, is either visually graded or “E-rated” as required for the laminating combinations. Visual
grading of lumber is performed on the basis of knots and slope of grain. Many non-destructive

testing methods are available to evaluate the stiffness (“E-rating”) of laminae (9,23,28,61,74).
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Clear-wood strength, knots, slope of grain, and other grade characteristics are the principal
determinants of bending strength of glulam beams (2). The number, size, and positién (with respect
to the neutral axis) of the knots affect the bending strength and stiffness of the beams (31). For
axially loaded beams, the total area of knots in the cross section affects strength and stiffness. So,
if knots are present in the critical regions, such as in the tension zone, the strength of the beam will
be reduced considerably. More information on the effect of knots on glulam strength and stiffness
properties is in the literature (5,23,31). Also, the slope of grain in the outer edges of the beam will
considerably reduce the stiffness and the strength of the beam. In addition, the size of the beam
cross section can also affect the strength of the beam because of Weibull’s weak link theory (49),
which states that there is higher probability of finding a critical flaw in the material with increased

volume.

2.3. Advantages of Using Glulam Members

Glulam is often preferred over solid wood because glulam members of any length,size, or
structural shape can be fabricated. Laminae can be end-joined, glued edge to edge, or bent to a
curved form during gluing. Also, lower quality lumber can be utilized with high grade lumber to
manufacture structural members of required standards. This allows for controlled dispersal of
lumber characteristics ,such as knots, to produce glulam members with the required structural
properties. Since knotty lumber has high shear strength it is often placed close to the neutral axis
of the beam where maximum horizontal shear stresses occur. In addition, the finished members
have a high degree of dimensional stability under dry-use conditions. Also, checking is minimized

since glulam is made from kiln dried lumber (23,70,75).

2.4 Structural Analysis of Space Structures

Structural analysis is used to predict the behavior or performance of a structure from math-

ematical models that approximate the behavior of the structure (35,48). Since a structure is an as-
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sembly of elements, the properties of the system are determined from the properties of the elements
and connections. The performance of the structure is then predicted from the way the elements
interact with each other (35,48). Therefore, to analyze the behavior of a structure, one has to
evaluate the internal characteristics of the elements including forces, strains, and stresses, and the

external characteristics of the elements which include the interactions at the element boundaries.

To formulate a mathematical model of a structure, an idealization model that defines the de-
formed configuration of the structure at any given point is necessary. The number of independent
parameters needed to define the configuration represents the degrees of freedom of the model
(35,48). In engineering analysis, the deformed configuration of a model is defined by the displace-

ments at each point from its initial state (3).

In a two dimensional analysis of a beam element each node has three degrees of freedom as
shown in Figure 2.1 (35). A space frame element is characterized by six degrees of freedom at each
node (Figure 2.2) (35). The deformed state of an element is characterized by axial deformation,

flexural deformations about the two principal axes, and torsional deformation.

2.5 Orthotropic Elasticity

Wood is a highly variable cellular material made up of various types of cells which vary in size,
cell wall thickness, and in the physical structure of the cell wall. It can be classified as an anisotropic
material. The evaluation of the mechanical behavior of wood i1s complex since the compliance
matrix for an anisotropic material in a generalized Hooke’s law has 21 independent constants
(10,40). However, on a pointwise basis in perfectly formed trees wood can be classified as an

orthotropic material with three mutually orthogonal planes of symmetry (10).

2.5.1 Orthotropic Characteristics of Wood
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Figure 2.1
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Figure 2.2

Degrees of freedom in a space frame or a 3-D
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Figure 2.3 shows the orthotropic material axes representing wood. The longitudinal axis, L, runs
parallel to the fiber length; the radial axis, R, is normal to the growth rings; and, the tangential axis,
T, runs tangent to the growth rings. It is convenient to neglect the curvature of growth rings and
assume that wood has three orthogonal planes of symmetry. Therefore, the constitutive equation

for wood takes the following form (10,40):

1 TVRL TVTL
YL EL ER ET 0 0 0 ar

ViR 1 VTR
YR E, Ex Er 0 0 0 op
YT T TYRT 1 0 0 0 or V

£, Ep Er
= [2.1]
var 0 0 0 G1 0 0 oRT
RT
YLT 0 0 0 0 ‘51‘—" 0 g1 T
LT :

ViR 0 0 0o 0 o G;LR 1R

where,
Y1, ¥R ¥ = normal strain in L, R, and T directions
Yir Yi» and ypr = shear strain in LR, LT, and RT planes
E,, Ez, and F; = Young’'s modulus in L, T, and R directions
v; = Poisson’s ratio for transverse strain in j-direction when stressed in the i-direction
Gir Gty and Ggy = shear moduli in the LR, LT, and RT planes
6., 0x, and o = normal stresses in the L, R, and T directions

6.8 OLmy and oy = shear stresses in LR, LT, and RT planes, respectively.

The 6 X 6 matnx in the equation is termed the compliance matrix. Twelve compliance coef-
ficients are required to specify the elastic character of an orthotropic material as indicated by the

compliance matrix. However, the compliance matrix can be simplified to characterize an

CHAPTER 2 12



Figure 2.3
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orthotropic material by introducing the concept of strain energy stored in the orthotropic body
when acted on by a simple system of stresses (38). Therefore, due to the orthotropy assumption

and symmetry of the matrix, the following relations hold (10,38,40):

VLR _ “RL
173 Egp
VLT _ Y7L
E, = E [2.2]
VRT _ VTR
Er  Er

Thus, only nine independent constants need to be evaluated to characterize stress-strain relationship

in wood (9,10,40):

E; Eg Er Gpr Gur, Grr, ViR, VLT, VRT

However, due to random orientation of growth rings across the cross section in glulam beams,
it is normally accepted to specify the elastic character of a glulam beam in terms of the beam’s ge-
ometric axes instead of symmetry axes. Geometric axes are the axes defining the physical shape
of the material; whereas, symmetry axes define the material properties. Figure 2.4 shows the ge-
ometric and symmetry axes of a glulam beam. The symmetry axes and the geometric axes are
generally not exactly coincident except for the L- and 1- axes. The compliance matrix components

in terms of the geometric axes of a glulam beam is written as (10,40):
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1 Tvar T3
5 T E 0 00
“vi2 1 V3
- oo 0 0 0
—Vi3 —V3 1
_— 0 0 0
E,  E B
[S;] = | [2.3]
0 0 0 — 0 0
Gy
0o o0 0 0 —— o
Gy
0 0 0 0 0 ——
Gy
i |

where,
E,, E,, F; = Young’s moduli in 1,2, and 3 directions
v, = Poisson’s ratio for transverse strain in j-direction when stressed in the i-direction

Gy, Gsyy Gy, = shear moduli in the 2-3, 3-1, and 1-2 planes, respectively.

Figure 2.5 shows the nine components of stress acting in a small rectangular parallelpiped. Note

that 6, = o, fori,) = 1,2,3. The stiffness matrix relating stresses to strains takes the form:

c= S'ly [24]

Knowing this relationship and the compliance matrix, the components of the stiffness matrix, C,

can be written as (10,40):

2
c S1S33 = (523" _ 1=vayva
1 |S] EE5|A|
2
c. = SuSun-=Gu) _ 1 —v3yvy3
2 = =

1S E\E5]A|
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2
S§11822 — (S12) 1 —vyyvyy

€ = S| = EL,Al [25]
Cr = C 821523 = S23 53 _ Yt vaavy
R S| EE|A|
Co = G o= S35 = S a1t vy
13 31 [S] EzE3|A!
Cor = Con = S1512= 508 _ vaa+ v
23 = Gy ST AR
Cu= —— = ¢
44 S44 23
Css= =— =G
55— Sss = Yi3
Cs= = =G
66 SG6 = Yn

where

2 2 2
IST = 811522833 + 2512523531 — 511(S23)" = $22(813)” — S33(S12)

1 — 2vy v3avy3 — vi3v3) — Vo3v3p — Vigvyy

A= E\EyE;

Therefore, to formulate the stiffness matrix, nine independent parameters are needed.

2.5.2 Basic Assumptions

The elementary bending theory (Bernoulli-Euler beam theory) makes the following assump-
tions (12,31,35,48,67):
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1. Small displacements.

2. Plane sections remain plane.

3. Direct stresses normal to the center-line of the element (stresses perpendicular to the grain)
are ignored.

4. Shear strains are ignored.

However, for wood shear strain may be important ,especially, when the length-to-depth ratio is less
than 20 (7,10,23,31,37). In short deep beams, shear stresses contribute significantly to the total
stress and deflection. The effect of span-depth ratio (1/d) for wood beams on the ratio of apparent
to true modulus of elasticity is shown in Figure 2.6 (10).

Therefore, in this study, the FE-model incorporated the Mindlin-Reissner beam theory
(Timoshenko beam-bending theory) to analyze the behavior of a beam subjected to combined
loading where axial, biaxial bending, torsion, and shearing deformations are possible (17,18,19).
This theory incorporates the effect of shear deformations. A plane section originally normal to the
midsurface does not necessarily remain normal to the midsurface in the deformed state (67,68).
The Mindlin-Reissner theory accomadates geometric nonlinearities by allowing large displacements

and rotations, but small strains. These features are common to space frame elements (18,19).

To carry out the analysis of glulam beams, the following additional assumptions were made:

1. Gluelines between laminae were of infinitesimal thickness with no interlaminar slippage.
This assumption is commonly made by many researchers (10,31).

2. The longitudinal axis of the laminae coincides with the longitudinal axis of the beam. Thus,
it was assumed that the longitudinal fibers were parallel to the axis of the beam.

3. The beam cross-section was transversely isotropic due to the random orientation of the
laminae growth rings. In this study, tests were conducted on small glulam samples to justify the

assumption of transverse isotropy for southern pine glulam beams.
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2.5.3 Reduction of the Constitutive Matrix

The principal stresses considered in this study are normal stresses (along l-axis) and shear
stresses in 1-2 and 1-3 planes. Therefore, it is assumed that three of the six stress components --

o,, 03, and o,; -- are zero. Thus, the constitutive matrix for an orthotropic beam can be reduced

Va1 Va1 TV —va ] d 1

' y o ’ y Ty all .
ET ETE K E 'L Gy

by eliminating the following components:

Moreover, under the Mindlin-Reisner theory, the cross section of the beam does not deform
in its plane, but undergoes a rigid body movement (that is, plane sections remain plane). Due to
this assumption, the remaining two Poisson’s coefficients, v,; and v,;, are very small and can be

considered to be zero.

2.5.4 Specialized Constitutive Matrix for Glulam Beams

The elastic constants required to model glulam beams, using the Mindlin-Reissner beam the-

ory, are the longitudinal elastic modulus E; , and the two shear moduli G,; and G,;. The

constitutive law can be expressed as follows (19):

0'11 El 0 O 811
J12 = 0 KG12 0 Y12 [26]
o3 0 0 KGgs | [rs

where K is the shear correction factor which is constant over the cross section (12,17,67). Ac-
cording to the Mindlin-Reisssner beam theory, the shear strain is constant across the section.
Therefore, assuming that E does not vary pointwise, the shear stress should also be constant across
the section (17,67). However, according to the elementary beam theory, shear stress varies
parabolically for a rectangular cross section. The shear stress can be expressed as an equivalent

constant stress by applying the shear correction factor, K, which can be evaluated using the prin-
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cipal of virtual work (17). For a rectangular cross section, K calculated by the elastic strain energy

method is 5/6 (17,67).
2.6 Determination of Material Properties of Glulam Beams

To apply equation [2.6], the material properties E, G,;, G,; , must be known or estimated.
This section discusses methods to measure those properties for glulam beams. The longitudinal
modulus of elasticity of a glulam beam can be estimated by applying a bending moment to the
beam and measuring the deﬂection at the center of the span (43,44,51,52,60). This method, how-
ever, yields deflection that is due to normal, as well as, shear stress. Consequently, the true modulus
of elasticity is underestimated yielding an apparent modulus of elasticity commonly referred to as
MOE (10). Errors become larger as the depth of the beams increases. Moreover, in a beam sub-
jected to bending, stress distribution in the cross section of the beam is not uniformly distributed.
Therefore, it is not necessarily true that the estimated elastic modulus reflects the influence of defects
located in slightly stressed areas. Jones (40) states that bending test is a structural element test and
not a material property test. To achieve a uniform stress distribution across the section, the
member must be subjected to axial loads which is a difficult task to perform on full-size samples
such as glulam beams. In addition, a sensitive strain measuring system is needed to record tensile

strains. Due to these difficulties, the bending method to determine modulus of elasticity is used.

Other researchers (25,26) have cut small bending and compression samples from glulam beams
to determine the longitudinal modulus of elasticity and Young’'s modulus perpendicular to grain.
Another alternative is to estimate the longitudinal modulus of elasticity of glulam beams from in-
dividual laminae properties using a suitable composite theory. However, to measure the shear
modulus, it is better to test smaller glulam samples than larger ones because smaller samples are
easier to handle and they are more homogeneous than the larger specimens. In this study, I was
interested in accurate material property estimates for each beam. These properties were measured

by conducting non-destructive tension tests on the lumber laminae to determine E, before beam
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manufacturing, and small torsion samples to to determine shear modulus, G. Small samples were

used because there were no means of testing large scale samples, such as beams, in torsion.
2.6.1 Determination of Longitudinal Young's Modulus, E,

There are many composite theories for calculating the laminate stiffness from the individual
laminae stiffnesses (40). Some theories work well for composites such as graphite- epoxy com-
posites (40). Generally, composite theories are effective only for plane stress analysis (40). In ad-
dition, the complexity of these theories increases for unsymmetric composite laminates (40). One
of the underlying assumptions of some composite theories is that the laminate is thin and its
thickness is small compared to its length or width (40). In glulam beams the nominal thickness of

the individual laminae is either one or two inches and the laminate (beam) is relatively thick or

deep.

Another alternative to estimate beam'’s longitudinal modulus of elasticity is to calculate the

effective modulus of elasticity, E, ., for beams based on the laminae stiffness (10). The effective

modulus is calculated from:

n

ELup = % ZEi[lé + 44dY] [2.7]

i=1

where
Ei = modulus of elasticity of the ith lamina in longitudinal direction
I' = moment of inertia of the ith lamina about the neutral plane of the beam
I = moment of inertia of the entire beam
n = one-half the total number of laminae
[i = moment of inertia of the ith lamina about its neutral plane

A' = cross-sectional area of the ith lamina
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d, = distance between the centroidal plane of the laminated beam and the ith lamina

In transformed section analysis method, the outside laminae contribute more toward the ef-
fective modulus of elasticity in bending than those close to the neutral plane (10). Therefore, E,
can be greater in bending than in uniaxial tension. Calculating the effective modulus of elasticity
is appropriate when beam is fabricated with laminae of high stiffness placed near the upper and
lower surfaces of the beam where bending stresses are maximum. Bodig and Jayne suggest using
E o only to calculate the deflection of a laminated beam. However, the transformed section
method neglects shear deformation in predicting stiffness (6). It was found that using the trans-
formed section method, the average error between predicted and actual values of modulus of

elasticity was 7 percent (41).

Foschi and Barrett (24) and Davalos (17) used the harmonic and the arithmetic means of
laminae stiffness to estimate the beam’s longitudinal Young’s modulus. These mean values were
assumed to be the global longitudinal modulus of elasticity, E, , of the glulam beams. Therefore,
the longitudinal modulus of elasticity of the lumber used to manufacture the beams must be
measured by a non-destructive method. Several methods for determining the elastic properties of

individual lamina are discussed next.

Stress-wave timing

This method measures the time required for an induced stress wave to travel between two
accelerometers placed on the specimen. The modulus of elasticity of lumber can be estimated from

the velocity of the stress wave. The dynamic modulus of elasticity is calculated (28,10) from:
EY = V% [2.8]
where:
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E = dynamic modulus of elasticity from longitudinal stress wave propagation (psi)

V = velocity of the stress wave (in/sec)
p = mass density of the material (Ib/in®), and

g = gravitational constant (386 in/sec,)

The dynamic modulus of elasticity computed from equation [2.8] is approximately 10 percent

greater than the static MOE. Also defects such as knots influence the wave velocity. Therefore this

method is most useful for developing rough estimates of the E.

Vibration method

In this method, a lumber specimen is supported at its ends as plank. A rapidly applied force
causes the piece to vibrate. The free vibration displacement-time curve is obtained and the dynamic
modulus of elasticity, E,, is calculated using the following formula (10,61):

£wL’
2.461g [29]

Es=

where
f = resonant frequency (cycle/sec)
W = weight of the beam (1b)
L = span (in)
I = moment of inertia (in%)

g = acceleration due to gravity (386 in/sec?)

Another resonance method used in wood testing is presented by by Sinclair and Farshad (61).
This method consists of subjecting a cantilever beam specimen to harmonic support excitation and

measuring the excitation frequency at which the beam specimen resonates. Then, using a theore-
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tical model the Young's modulus in the longitudinal direction is calculated. The authors used two
formulas derived from beam theory. One of the formula ignores shear deflection ; whereas, the
other considers shear deflection to calculate the Young’s modulus. Vibration methods were used

by some investigators to measure the longitudinal modulus of elasticity of lumber (11).

Static (flexure) test

This method is widely used by researchers to evaluate the modulus of elasticity of wood beams
(5,10,11,17,21,23,24,25,27,29,32,37,39,41,42,43,44,51,52). 'The test involves subjecting a simply
supported lumber specimen to a mid-span concentrated load and measuring the deflection at the

mid-point. Euler-Bernoulli beam theory is used to calculate E,:

_ PL
E = 252 [2.10]
where
P = applied load (Ibs)
L = test span (inches)

I = second moment of inertia (in?)

A = measured mid-span deflection (inches)

Static bending method ignores the effects of shear deformation and is often referred to as an effective
modulus of elasticity. If shear is taken into account, the mid-point deflection can be calculated

using

_ P 3 h 2 E
A= 48E1[1+ 10(1/2L) G] [2.11]

where, h is depth of the specimen and G is the shear modulus.
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The static bending test is an easy method of estimating the longitudinal modulus of elasticity
experimentally. However, the stress in the cross section of the beam is not uniformly distributed.
Therefore, the flaws in the material may not be highly stressed (40). Obtaining Young's modulus
using the static bending test is also complex because the total flexural deformation comprises def-

ormations caused by tension, compression, and shear (22).

Tension Young's modulus

The tensile test is a material property characterization test. Using the theory of deformable

bodies, the longitudinal Young’s modulus can be determined by:
E, = — [2.12]

where, o, is the longitudinal stress and e, is the strain in the l-direction. From Saint-Venant’s
theory, stress in the tensile specimen is uniformly distributed at a sufficient distance from the ends.
This gives a better approximation of the material property, £, than a bending test. In timber en-
gineering this method has not been used by many investigators because it is difficult to measure

strain, expensive to use bonded strain gages, and difficult to minimize the grip effects.

2.6.2 Determination of the Shear Modulus, G

The shear modulus is another material property required in equation [2.6] to analyze glulam
beams using the Mindlin-Reissner beam theory. However, shear modulus is difficult to measure
in wood materials because of the problems associated with producing and measuring pure shear
strain in a specimen. Wood has three principal shear moduli: G, 5, G, 1, and GR;. These correspond

to shearing strains in the three orthogonal planes: LR plane, LT plane, and RT plane. The shear
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modulus of a beam depends on the grain orientation and ring angles. If a beam is flat sawn and
stressed in bending, then shear modulus, G, ;, will be the governing elastic shear constant. Likewise,
if the beam is quarter sawn and stressed in bending, then shear modulus, G ¢, will be the governing

modulus.

However, glulam beams do not conform to orthotropic symmetry because the laminae are
randomly selected from quarter sawn and flat sawn stock. Thus, as an approximation, the com-
posite may be considered a transversely isotropic material (19,40,50,69), and an average shear
modulus for a glulam cross-section can be computed from the average of G,z and G or by using
an engineering torsion solution. In the following sections, a few methods of determining shear
modulii will be briefly discussed. In this study, torsion tests were conducted on small glulam
samples to compute an average shear modulus to be applied to southern pine glulam beams. The
experimental procedure is presented in Chapter 3. But, details on torsion theories are discussed in

the following section.
Flexure Method

The shear moduli, G|, and G,,, for glulam beams can be obtained by ASTM D 198 (3,6,17,67).
In this method, simply supported beam samples of different length to depth ratios (1/d) are centrally
loaded and the midspan deflections are measured. Then, the shear modulus is computed from
Timoshenko beam theory (which includes shear deflection) by solving simultaneous equations for
two 1/d ratios (3,6,17,67). But, the shear modulus computed by the shear-deflection mehtod is not
exact because the simplifying assumption of the beam-bending theory that shear strain is constant

across the section. Also, it is very sensitive to experimental errors.
Plate Tests
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Many researchers developed methods to determine the shear moduli of wood by testing square
flat plates of wood (9,10,30,66,72). The method was based on the theory of bending of thin plates
developed by Nadai and Timoshenko (6,67,68). The planes of the faces and edges of the plate are
cut parallel to the planes of symmetry in the wood. According to the theory, the deflection of the

plate at a point (x,y) has the form (66):

6M, .
b= —FrSpytartbytc (=459 [2.13]

where a, b, and c are constants, h is the plate thickness, M, is the twisting couple equal in magnitude

Gl . The constants are determined from the boundary conditions of the

xy

to P/2, and §, is equal to
test arrangement. According to van Wyk and Gerischer (73), the problem with plate tests is that
the stresses which occur in the specimen are not pure shear stresses. Also the sample preparation
is difficult. Bodig and Goodman (9,29) conducted plate tests to determine the shear modulus of
several commercially important hardwoods and softwoods in the United States. They estimated
an average value of 134,100 psi for G, and 121,860 psi for G, for southern yellow pine. Ebrahimi
and Sliker (20) state that it is difficult to determine the shear modulus using plate tests because of
the large plate size required at specified grain orientations. The plates must be prepared so that the
orthotropic and geometric axis coincide (9,20,29). Therefore, for glulam beam cross sections, this

test is not appropriate since the growth rings are randomly oriented.

Tension and Compression Tests

It is also possible to use tension test specimens to determine the shear modulus (20). Tension
tests were conducted on wood specimens in which the angle between the load axis and the fiber axis
varied between 15 degrees and 75 degrees. Strain gages were used to measure strain. Then using
engineering theory the shear modulus was calculated. However, the problem with this procedure

is the difficulty in preparing the test specimens with the desired fiber and grain angles.
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Radcliffe (56) described another method of determining the shear-modulus. He bonded elec-
trical resistance strain gages to a wood compression specimen with the orthotropic axis offset by
45° from the geometric axis. However, this method is very sensitive to the specimen alignment with

the loading head and the specimen manufacturing tolerance.

Torsion Test

The torsion test can be used to determine the shear modulus of isotropic materials, and had
been applied to wood since it is relatively simple to conduct (66). Torsional stiffness is the resist-

ance of a body to twisting about its longitudinal axis.

There are several torsion therories developed for circular and non-circular sections for isotropic
materials. Coulomb (1784) was the first person to develop an analytical expression for torsion (18).
Then in 1826, Navier published the first rigorous solution for torsion of an elastic circular shaft.
He also derived expressions for rectangular sections assuming that torsional stresses are proportional
to the distance from the axis of twist. However, his solution for rectangular sections overestimated
the torsional stiffness of the bar. The torsion problem for homogeneous, elastic, isotropic non-
circular cross sections was solved by Saint-Venant in a memoir to the French Academy in 1853
(16). His solution showed that when non-circular prismatic members are subjected to torsional
moments, the cross sections warp and distort out of their plane (16,18). Lekhnitskii applied
Saint-Venant’s solution to anisotropic materials and obtained solutions for circular and rectangular

orthotropic bars (47).

In a wooden bar subjected to torsional moment, two types of shearing strains are present (69).
One strain is due to the sliding of the elements of one cross section over those of an adjoining
section, and the other is due to the relative sliding of different longitudinal elements in the direction
of the length of the member (69). The shearing strains in the plane of the cross section are ex-
pressed in terms of the angle through which the plane of the section has been rotated. This angle

is assumed to be proportional to the distance from one end. The second type of strain produces
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displacement of the fibers of a section in the direction of the length of the member. This strain

causes the cross sections to deform out of their plane or warp (69,72).

Lekhnitskii (47) derived the solution for torsion of an orthotropic bar with a rectangular
cross-section. The solution relates the applied torque to the dimensions of the cross-section, the
two shear moduli, and the angle of twist. The following Hooke’s law shear relations for orthotropic

materials hold (47):

TLR LT
VIR = & - VLT = g [2.14]
R LT
where,

YLr» Yur = shear strains in LR and LT planes

7,8 Tur = shear stresses in LR and LT planes

Gz Gop = shear modulus in LR and LT planes

Consider a homogeneous rectilinear orthotropic bar of rectangular cross section with sides a,
b and length [ with the principal shear moduli G, and G, (Figure 2.7). One end of the bar is
restrained from rotation and the other is subjected to a moment with no other forces applied ex-
ternally. Warping deformations are not restrained in the bar. Let the T-axis be directed along the
shorter side and the R-axis parallel to the longer side. The L axis is oriented in the longitudinal
direction. According to the orthotropic theory developed by Lekhnitskii, the torsional stiffness in

L-T and L-R planes can be expressed as:

K1 =ab3GLT-—[E— K2=ab’G g~ [2.15]

where,

K1

torsional stiffness in L-T plane
K2 = torsional stiffness in L-R plane

a = width of the bar, inches
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Therefore, from torsion about the L axis, values of G, and G,y can be obtained by solving two
simultaneous equations. The torsional stiffness, K1 and K2, can be experimentally obtained by
testing rectangular bars that are quarter sawn and flat sawn. K1 and K2 are the slopes of the linear
portion of the Torque-rotation curve. For detailed explanations on torsion tests to determine the
principal shear moduli for wood and wood base composite materials see references 50, 58, 59, 66,

69, and 72.

Lekhnitskii’s orthotropic theory, however, applies only to orthotropic materials. In glulam
beams, there is a random tangential and radial growth ring angle orientation of the laminae. A
tensor transformation of the axes for each lamina is required to apply this theory. Consequently,
it is not a practical approach. Hypothetically, the cross section can be considered as transversely
isotropic and a single shear modulus could be measured to characterize the beams. Trayer and
March (69) have done studies on the difference between the radial modulus of rigidity (shear
modulus) and the tangential modulus of rigidity for Sitka spruce. They concluded that no great
error occurs if the mean modulus as obtained through the test of a circular section used in calcu-

lating the modulus of rigidity of Sitka spruce for application to beams.
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Bodig and Jayne (10) suggest a formula to calculate effective shear modulus by combining two
shear moduli:

_ 2G; Gy

[2.18]
Grr+ Gy

But, this requires that the orthotropic and geometric axes of the composite coincide. Therefore, it
is not applicable to glulam beams. However, some of the torsion theories for isotropic materials
could be applied to glulam beam to compute its shear modulus assuming that it is transversely

isotropic. Navier’s and Saint-Venant’s torsion solutions are discussed briefly next.
Navier's solution for elastic circular sections

The deformation of the differential bar shown in Figure 2.8, when subjected to a constant
torque, T, is described by two assumptions of compatibility:
1. The shape of the cross section remains unchanged after twisting, and
2. A plane section must remain plane after twisting (no warping).

8 is the angle of twist per unit length of the shaft and is represented as:

_ 49
g = — [2.19]

d.
where, —d) = the rate of twist. Then, the shear strain can be defined as:

dz

y=1r0 [2.20]

where, y is shear strain at an arbitrary radius, r., and

= RO [2.21]

Y max
where, R is the radius of cross section of the circular bar. Therefore, the shear stress will be

T = rGjo [2.22]
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Figure 2.8

Deformation of a differential element under a
constant torque, T
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and,
Tmax = RGO [2.23]

From conditions of equilibrium, it can be shown that:

T=f (rdA)r [2.24]
4

Where substituting equation [2.22] into equation [2.24] and rearranging terms:

T = GBJ r*dA [2.25]
A

where the integral term is the polar moment of inertia of a circular section:

4 d4
— _r — —
Ip—21r 3 =" 3 [2.26]

where d is the diameter of the cross section. Therefore, the shear stress can be rewritten as:

T= —’—I[:L [2.27]
14
and,
g = l[f [2.28]

Substituting equation [2.26] in [2.27] and rewritting equation [2.27] in terms of torsional moment

(9,18,23):

0 [2.29]
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where,

T

torque, in-lbs

G

shear modulus, psi
d = diameter of the circular section, inches
1 = length of the bar, inches

8 = angle of twist, radians
Equation {2.29] is the Navier’s equation for torsion of a homogeneous, isotropic circular section.
Saint-Venant's solution for elastic, isotropic non-circular sections

Navier derived the expressions for rectangular sections assuming that torsional stresses are
proportional to the distance from the axis of twist. The polar moment of inertia for a rectangular

section is (10,12,67):

2, 42
(a +b%)
I, = ab———— 2.30
A 5 [2.30]
However, extrapolation of Navier’s solution for torsion of circular section to square sections was
found to give values of shear modulus that were 20% less than that from circular sections. The
following assumptions are made to describe the displacement components for non-circular sections:
1. The shape of the cross-section remains unchanged after twisting.

2. Warping of the cross-section is identical throughout the length of the non-circular member.

Let u and v be the displacements in the x and y axes in the plane of the generalized non-
circular section (Figure 2.9). Let w be the deformation along the z-axis due to warping. Then, the

three displacement functions can be defined as (47,68,69):

u= —0zy v= +0zx w = 0¢(xy) [2.31]
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where ¢(x,) is the warping function. Using u,v, and w, the strain-displacement relations, and the

stress-strain relations, the equation for torsional moment is: written as:

T = GJ8 [2.32]
where,
8 17}
J = torsional constant = J-j(x2 +y2 +x o¢ -y 98 )dxdy [2.33]
dy Ox
R
where,
R = the cross-sectional area of the bar
T = torque (in-lbs)

f = angle of twist (radians)

T is proportional to the angle of twist per unit length.

The product of GJ provides a measure of the torsional stiffness of the bar. The torsional
constant, J, incorporates the out-of-plane deformation (i.e. warping). For a rectangular cross sec-
tion, the torsional moment can be expressed as (18,66,68):

3
T = ’“’% [2.34]

where,
a = length of the shorter side, inches
b = length of the longer side, inches
k = constant depending on the ratio b/a of the cross-section dimensions

{given in tabulated form by Timoshenko) (67,68)
L = length of the bar

For a circular cross-section Saint-Venant’s solution coincides with Navier’s solution.
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2.6.3 Young's Modulus Perpendicular to the Grain

Curved glued-laminated beams are used in frames, arches, and domes. For example, members
of a glulam lattice dome are all slightly curved. In curved beams, radial stresses are induced due to
the initial curvature introduced during beam manufacture. In a sharply curved beam, the flexural
stresses induced by applied moments vary significantly from those in a straight beam. When a
curved linearly elastic beam of rectangular section is subjected to bending moment, the strain and
stress reach their maximum values at the extreme fiber closest to the center of the curvature (31,27).
Therefore, the strain in the shortest fiber (one closest to the center of the curvature) will be the
greatest. If a sharply curved beam is bent so that its radius of curvature increases, tensile stresses
will be induced perpendicular to the grain (2,25,26). This is an important factor to consider when

designing curved glulam beams because wood is weak in tension perpendicular to grain.

The American Institute of Timber Construction (2) specifies that, for curved beams, the design

value in bending should be modified by multiplying it by the curvature factor.
C,=1- 2000(—1%)2 [2.35]

where,
C, = curvature factor
t = thickness of lamina (inches)

R = radius of curvature of beam (inches)

This curvature factor is applied only to the curved portion of the beam. The AITC also specifies

that t/R ratio should not exceed 1/100 for southern pine.

If an applied bending moment in a curved beam causes tensile stresses in the perpendicular to
grain direction, the design stress is limited to 1/3 the allowable stress in horizontal shear for southern

pine (2,3). The Young's modulus perpendicular to the grain is needed to compute the radial stresses
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in curved beams. Young’s modulus perpendicular to the grain is found from the measured strain
in samples loaded in compression or tension perpendicular to the grain and the corresponding cal-
culated stress (9,26). However, the effect of radial stresses in not so sharply curved glulam beams
has been found to be negligible (17,23). By definition (2), a sharply curved beam has a radius of
curvature of 9ft 4 inches. In this study, the radius of curvature of all curved beams was 50 ft.

Therefore, the radial stresses were considered to insignificant.
2.7 Stress Analysis in Glulam Beams

In this study, beams were subjected to bending and combined bending and axial loads. The

response of a glulam beam under these loads is briefly discussed in the following sections.
2.7.1 Axial Load

In theory, concentric axial load produces a uniform stress (13,23):
= [2.36]

where f] is axial stress, P is axial load, and A is cross-sectional area. This is valid for solid wood
columns that are classified as short columns. Short, rectangular columns are those whose length
is less than 11 times the least cross-sectional dimension of the column (53). Compression perpen-
dicular is the assumed common failure mode in short columns. Intermediate columns are columns

with //d ratio between 11 and K, where (53):

K = 0.671 \/—E— [2.37]
F,

where,
E = modulus of elasticity, psi

F, = design value in compression parallel to grain, psi
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The failure mode for intermediate columns is generally a combination of compression perpendicular
and buckling. When //d ratio is K or greater, the column is classified as a long column or Euler
column. Buckling is the assumed failure mode in long columns. The National Design Specification
(53) states that the slenderness ratio shall not exceed 50. The allowable compression stress for long

columns is computed from the following equation.

F. = 8?3)52 [2.38]

For intermediate columns, the allowable compression stress is:

lefd4

! 1
FC = Fc[l_T( K

)] [2.39]

Figure 2.10 shows compression stresses in the cross-section of a beam in compression.
2.7.2 Bending Load

For straight and curved beams with large radius of curvature, bending moments produce
maximum normal stresses at the extreme fibers of the beam. In a straight beam, the concave edge
of the beam is in compression and the convex edge is in tension (Figure 2.11). In a curved beam,
the concave edge is in tension and the convex edge is in compression. Bending stress at an arbitrary

point is given by:
S = — [2.40]

where
f; = bending stress (psi)
M = bending moment (in-1bs)
y = distance from the neutral axis (inches)

I = moment of inertia (inches*)
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Figure 2.10 Distribution of stresses in a cross-section of a
beam subjected to compression loads
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Figure 2.11 Bending stresses in a beam cross-section
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Since wood is weak in shear parallel to grain, it is important to evaluate the shearing stresses.
Shear is of special concern in beams with small length to depth ratios (10). Relatively short, deep
beams are subject to shear failures. The shear stress at any point in the cross section of a beam can

be computed by the formula

fo = == [2.41]

where,

f, = horizontal shear stress (psi)

A

Q

vertical shear force on cross section (Ibs)

the first area moment (inches®)
I = moment of inertia (inches?)

b = width of the beam (inches)

Figure 2.12 shows typical shear distributions in beams with rectangular cross-sections. Derivations

of the beam bending formulas can be found in any strength of materials book.

2.7.3 Biaxial Bending

Bending can occur about either of the principal axes of a glulam beam. Figure 2.13 shows the
notation used to refer to bending about the two principal axes of a glulam beam in this study. The
distribution of bending stresses under biaxial bending loads is shown in Figure 2.14. Superposition
of the bending stresses about both the axes is used to determine the total stress. This is possible
only if the strains induced are within the linear range. In Figure 2.14, the two compression bending

stresses at point A and the two tensile stresses at point C are additive. The stresses at points B and

D are combined algebraically (13).
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Shear stress distribution in a beam cross-
section
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Figure 2.13 Notation for bending about the two principal
axes of a glulam beam cross-section
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2.7.4 Combined Bending and Compression Load

The glulam members in a lattice dome are subjected simultaneously to axial and bending loads
(17,19,36). The interaction formula to handle the combination of these stresses is an expansion of
the basic straight-line interaction formula (13). Under combined bending and compression loading
a stress, called the P-A effect (13,2), is produced from the additional bending moment when axial
loads are applied to curved columns or eccentrically loaded beams. The axial force, P, causes an

additional bending moment of P x A (16,23).

The Wood Handbook (23) gives a formula to calculate the bending stresses under combined

bending and compression loads:

fo= —"%— [2.42]

where,
/5 = net bending stress from combined bending and axial load (psi)
£, = bending stress without axial load (psi) |
P = axial load (Ibs)

P, = buckling load of the beam under axial compressive load only

The total stress under combined bending and compression is calculated by superposition of the
stresses given by equations [2.41] and [2.42] (13). It should be noted, however, that superposition
of the stresses does not work when the initial bending deflection (A) is large. Figure 2.15 shows the

possible stress distributions in a beam under combined loading.

2.8 Finite Element Analysis
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The finite element method (FEM) is a general technique for approximating the behavior of a
physical continuous medium by an assemblage of discrete elements and localized interpolation
functions (4,35,57). Finite element methods have been widely applied to solve structural problems.
The finite element approach analyzes a structure in two parts: first, it looks at the behavior of each
individual member of the structure; and second it models the behavior of the complete structure
using the external relationships of individual elements of the structure (4,35,57). The material

properties and geometry of the elements and structure are input parameters to the FEM.

The finite elements are joined at the nodes to form a structure. At these nodes the conditions
of displacement, compatibility, and equilibrium are imposed. The properties of the individual ele-
ments are characterized by relationé between nodal loads and nodal displacements. External loads
are replaced by statically equivalent concentrated loads at the nodes (4,35,57). Finally, all the ele-
ment force-displacement equations are assembled, corresponding to the manner in which they are
interconnected, to form the stiffness equations for the entire assemblage of elements. These

equations are called the structural stiffness equations (4).

The stresses in glulam beams have been analyzed using the finite element technique
(17,18,24,32). Finite element analysis is especially useful when modelling a composite beam, such
as a glulam beam, or a space frame, such as a glulam lattice dome, that consists of hundreds of
members subjected to various kinds of loads. The finite element model verified in this study models
the 3-D response characteristics of a space structure. It is based on engineering theory, rather than

on continuum theory (19).

Foschi and Barrett (24) have developed a finite element simulation model that allows one to
evaluate several different lamina configurations of beams and to estimate the population statistics
for similar beams. They used a five-node finite element. Their model uses the data of the laminae
properties for computer simulations to estimate variability in beam strength and stiffness and the
corresponding statistics for design. The model was developed using data on Douglas-fir beams.

They hypothesized that the bending strength of glulam beams depends on the pattern in which the
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laminae are glued, the strength-reducing characteristics, the strength and location of end-joints, the
thickness of the laminae, and the size of the beam. Their simulated strength results compare well
with their experimental results. The coefficients of variation of the experimental bending test results
ranged from 14 to 25%. The coefficients of variation of the simulated results ranged from 18 to

26% (24).

Gutkowski, Dewey, and Goodman (32) did experimental tests on Douglas-fir and southern
pine glulam beams to evaluate stresses under bending and perpendicular-to-grain tensile loads.
They (32) evaluated the applicability of the finite element method for theoretical analysis. Analyt-
ical and experimental studies were performed on double-tapered glulam beams. The authors con-
clude that the FEM predictions reasonably confirm the measured response quantities. The FEM
model they have used incorporated an isoparametric, plane stress, quadrilateral element with

orthotropic material properties (24,32).

However, using continuum elements to analyze glulam systems is uneconomical and imprac-
tical in terms of computer memory (19). Continuum elements require a fine mesh. The finite el-
ement mesh used by Gutkowski, Dewey, and Goodman had 360 elements, which was found to be
necessary to produce sufficiently accurate results (32). Alternatively, in the following study, one
dimensional structural isoparametric beam elements based on engineering theory was used to
characterize the response of 3-D beams (19). The finite element was formulated with the following

characteristics (19):

1. Timoshenko beam theory incorporating shear deformations

2. Cross sections do not deform in their planes, but out of plane deformations due to
torsional warping is allowed.

3. Coordinate interpolations permit the representation of straight and curved elements
by the same formulation.

4. Accurate modeling of large displacements, large rotations, but small strains.

5. Complete generality in material properties at an integration point.
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2.9 Summary of Literature

In this chapter, some general characteristics of glulam beams were presented. The reduced
constitutive matrix for glulam beams used in this study was derived. Different methods of obtaining
the two essential material properties, modulus of elasticity and shear modulus, were discussed with
their corresponding advantages and disadvantages. Following that, a brief description on stress
analysis in glulam beams was presented with discussions on in-plane bending, biaxial bending, and
combined bending and compression. Finally, a brief background on FEM was presented along

with the characteristics of the finite element that was used for this study.

For this study, modulus of elasticity was determined using a nondestructive tension test of
laminae. The two principal shear modulii were replaced by a single shear modulus obtained by
conducting torsion tests on glulam specimens and applying Saint-Venant’s torsion solution for
homogeneous, isotropic material. And biaxial bending of glulam beams was checked by comparing
the experimental and the analytical results from bending about the principal axes of the cross-

section.
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CHAPTER 3

3. EXPERIMENTAL STRAIN MEASUREMENT IN

SOUTHERN PINE

3.1 Introduction

Investigation of the stress distribution in beams requires accurate strain measurements. Elec-
trical strain gages are widely used for strain measurements. However, testing of many specimens
requires taking multiple strain measurements and using many bonded strain gages. This is not an
economical and efficient method for timber engineering applications. It is possible to use dis-
placement measuring transducers, such as LVDT, to measure the displacements and convert them
to strains. But, these devices are large, heavy, and difficult to attach to the specimen. In addition,
their sensitivity may not be adequate to measure very small strains. Therefore, a reusable Clip-on

Electrical Transducer (CET) was developed to measure strain for this study.
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3.2 Objectives

The primary objective of this study was to develop a Clip-on Electrical Transducer (CET) to
measure strain in southern pine. To gain a better understanding of the performance and use char-
acteristics of clip-on electrical transducers, the following sub-objectives were necessary:

1. To determine a suitable gage length for strain measurements in southemn pine.
2. To compare the performance of the CET against the bonded strain gages on wood

specimens and verify the performance of the CET.

3.3 Background

Today there is a variety of electronic strain measuring devices. Electronic measuring systems
range from small to very large sizes, and their operation can be simple to very complex (1,54). A
single, small package can contain the sensing device as well as the display device. On the other
hand, a system might have a number of subsystems, including data storage, and display equipment
(1,54). An example of a measuring system would be an electrical resistance strain gage connected

to a strain gage indicator.

A device that converts energy from one form to another is known as a transducer. For ex-
ample, a transducer might convert a physical quantity, property, or condition into an electrical
signal that is proportional to the physical condition of a specimen. The choice of the transducer

for a particular application depends on the following considerations (1,54,55):

¢ The type quantity, property, or condition being measured or evaluated.
® The nature of the transducers operation
¢ Special features of the transducer that might be required

® The magnitude of the measurand quantity (reading high strains vs low strains)
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¢ The required accuracy
¢ The limitations of the transducer

* Amount of money available

An ideal strain gage has the following characteristics (17,55):
® Small size and insignificant mass
¢ Easy to install onto the member
¢ Characterized by an infinitesimal gage length
¢ High sensitivity to minute displacements
¢ Unaffected by temperature, ?ibration, humidity, etc.
® Capable of sensing both static and dynamic strains

¢ Inexpensive

Measuring strain in wood is not an easy task because wood is an inhomogeneous, hygroscopic,
anisotropic material. It is important to consider the variability in wood so that the strain meas-
urement reflects the actual deformation of a structural member, and not just a localized strain at a
particular point. Variations in specific gravity at small intervals through the length of a clear spec-
imen are significant (65); since specific gravity is correlated to the strength and stiffness of the ma-
terial, an improper consideration of this variability causes misleading strain measurements. Thus,
when measuring strain in wood, careful attention must be given to gage placement so that the dis-
tribution of springwood and summerwood, as well as the characteristics of defects, such as cross-

grain, pitch pockets, knots, and other growth characteristics are properly represented.

In addition to gage placement, it is also important to use the appropriate gage length to
measure strain in wood. In this study, to investigate the effect of the gage length on strain readings

in southern pine, the following experiment was conducted.
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3.4 Effect of Gage Length on Strain Readings

Bonded, electrical resistance strain gages are widely used to measure strain in isotropic, ho-
mogeneous materials (17,21,22,24,25,26,56,64). They have been also used on wood, but the
anisotropic nature of wood can cause localized strain in the specimen that is not representative of
the strain under the gage, particularly in coarse-grained species, such as souhtern pine, which has
large earlywood-latewood anatomical differences. For example, under uniform stress a strain gage
bonded to an earlywood zone may detect a different magnitude of strain than a gage bonded to an
adjacent latewood zone. To minimize the error due to material property variation and to measure
strain that is representative of the strain in the specimen, long gage lengths may be used. But, long,
bonded gages are expensive and are difficult to align with the specimen axes. Therefore an exper-
iment was conducted to determine a suitable gage length for measuring the average strain over a

region of the specimen. The objectives of this study were to:

1. Determine a suitable gage length for strain measurements in southern pine.
2. Compare the performance of the CET and the bonded strain gages on wood

specimens.

3.4.1 Procedure

The following tests were conducted on a 2” by 6” by 14ft (nominal) southern pine specimen.
The sample’s moisture content was 7.7% and its specific gravity was 0.60. Strain was measured
at four locations on the specimen. The locations were selected so that the strain gage was applied
to (a) a latewood zone, (b) an earlywood zone, and (c) and (d) combinations of latewood and

earlywood zones. Figure 3.1 gives a graphic description of each location.
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Figure 3.1 Graphic description of locations on southern pine
tension specimen where bonded strain gages were
placed
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Bonded foil gages (120 Ohms) were used to measure strain at the chosen locations on the
specimen. Gage lengths of the foil gages were carefully chosen to cover a wide range. Four different
gage lengths were tested in each location: 0.25 inch, 0.75 inch, 2.00 inches, and 4.00 inches. A
randomized block design was used to randomize the order in which the gages were placed at each
location. This was necessary to determine the influence of the gage application sequence at each
location since a finely tuned cabinet scraper was used to remove the gage, the adhesive, and a thin
layer of wood after each test. Care was taken to remove minimum amount of wood and to produce

a clean, fresh surface for bonding the next gage.

The test specimen was subjected to tension parallel to the grain and strain was read from the
gages using the HP-data acquisition system. The maximum applied load was 3000 lbs (48% of the
design load obtainded from NDS, 1986). After each test, the strain gage and adhesive at each lo-
cation was removed with the scraper. Then, the next randomly selected gage from each group was
bonded to each location and the specimen was retested. Thus, each gage length was tested in each
location resulting in four independent strain readings for each location. To minimize test-to-test
variations, care was taken to bond the gages at the same location everytime. Thus, the effect of gage
length was observed with minimal effect of property variation in the test specimen. After all the
bonded strain gages were tested, the CET was placed at each location on the test specimen to
measure strain. Strain readings were recorded at the same load levels as those used for the bonded

strain gages.

3.4.2 Results

The strain readings from all gages are plotted against the gage lengths in Figures 3.2, 3.3, 3.4,
and 3.5 for locations 1, 2, 3, and 4 respectively. Each point on the plot represents the average of
six replications for each gage.

At locations 1, 2, and 3, there was an upward trend in strain as the gage length was increased

from 0.25 to 2.18 inches (CET gage length). However, strain measured by the 4 inch gage was ei-
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ther very close to or less than the 2 inch gage readings. The Least Significant Difference (LSD) test
at an a-level of 0.05 was performed to compare the means at each location. At location 1, strain
recorded by the 2 inch gage and the CET were not significantly different. There was a significant
difference between the 2 inch gages and of other gages. At location 2, the average strain read by
the 0.75 inch, 2 inch, and 4 inch gages, and the CET were not significantly different. Strain recorded
by the 0.25 inch gage was significantly different from other means. At location 3, two inch and 0.75
inch gages recorded strains that were not significantly different. However, strain recorded by the
CET was significantly different from others. But, the CET reading was closer to the reading re-
corded by 2 inch gage. Gages \;vith 4 inch and 0.25 inch lengths read strains that were not statis-

tically different.

At all four locations the CET (2.18 inches) measured the largest strain followed by the 2 inch
strain gage. At three locations, 0.25 inch gage recorded the lowest strain. This was expected since
shorter gage lengths cover smaller areas, and thus fewer defects. At location 4, the average strain
recorded by all gage lengths were not statistically different. As shown in Figure 3.1, location 4 was
completely in a latewood zone. At this location, there was a slight decrease in strain readings as the
gage length increased. In the latewood zone, longer gage lengths cover more latewood area and

record lower strain.

3.4.3 Summary and Conclusions

From this study, it seems that 2 inch gage lengths are suitable for strain measurements in
southern pine. There was good agreement between the strain readings recorded by the 2 inch gage
and the CET. It is also preferable not to have too long a gage length because it would be harder
to mount the CET on the specimen and to align it with the axes of the specimen. A full field strain
measuring method, such as digital correlation or holography, would eliminate the gage length

problem. However, such a method was not available for this study.
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3.5 Clip-on Displacement Transducers

Laboratory-built clip-on electrical transducers are an attractive alternative for strain measure-
ments in wood. They can be manufactured to satisfy the requirements of an experiment because
they can be built to measure either large or small strains. They are reusable, light weight, and in-

expensive and can be used to measure strain in wet or dry specimens (17).

Many researchers have used variations of clip-on displacement transducers (9,17,29). A
Delta-Element Strain Transducer (46) and a portal-frame clip gage are a few examples of clip-on
transducers that have been used successfully in the past. However, the design and operation of
these transducers is complicated. The clip-on transducer used in this study is accurate and relatively

simple to build, calibrate, install, and use.

3.5.1 Fabrication, Operation, and Calibration

The clip-on electrical transducer (CET) was constructed using a thin, flexible, hardened
spring-steel obtained from a clock mainspring. The advantage of using spring-steel is that it is
flexible and resilient. It is capable of deforming and returning to its initial shape. The cross-section
of the transducer used in this study was 0.375 by 0.011 inches. The construction details, including
the dimensions and lengths, are shown in Figure 3.6 (17). For calibration and installation purposes,
the CET was built with two semicircular notches at the ends. The CET was clipped between two
nails located at a desired gage length, which is same as calibration gage length. When mounted on
the specimen, the CET was prestressed with a slight amount of additional curvature. This enables
the gage to elongate and contract, thus measuring both tensile and compressive strains. The pre-
stressing allows the gage to measure strain reversals when testing samples under combined or cyclic

loads (17).
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Four quarter inch resistance strain gages were bonded to the spring-steel as shown in Figure
3.6. The gages were wired in a full Wheatstone bridge circuit to a strain gage card in a 9000 series
HP-data acquisttion system. Shielded, braided lead wires were used to reduce the influence of
electrical noise. The bridge measured the change in voltage due to the change in electrical resistance
of the bonded gages. The differential voltage was then converted into strain induced in the CET

using the following equation:

-V,
Eg = _GF—'r [3.1]

Strain recorded by the CET

o
il

<
I

Differential voltage ratio

GF = Gage factor

The gage factor is the strain sensitivity of a strain gage. It is the ratio of the relative change of re-
AL
L H

factor is provided by the manufacturer of the bonded foil gages.

sistance, —%&, to the relative change in length, of the grid wires on the foil gages. The gage

3.5.2 Calibration

The clip-on transducer was calibrated using an INSTRON micrometer with a one inch range
and an accuracy of £0.00002 inch. The CET was calibrated at gage length of 2.180 inches. A
known displacement of the CET ends was induced, and the corresponding differential-voltage was
read using the data acquisition system. The CET was calibrated in both tension and compression
(£0.003inch). This range was chosen to cover the expected strain in the gage length in the glulam
beam specimens. Then, a calibration equation was fit to the displacement versus differential-voltage
relationship. Figure 3.7 shows a typical calibration curve for a CET. From the calibration curve

the differential-voltage is correlated to displacement in the specimen through the regression
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equation. The following relationship was used to calculate the relative displacement between the
two end points of the CET:
ACC
A, = tg 5, [3.2]

where,

A, = Relative displacement between the CET end points

A, = Displacement from calibration curve

¢, = Strain corresponding to A,, ¢, = Strain recorded by the clip gage

8

Then the strain in the specimen can be calculated using:

A,
SS b m [33]
Each CET had its own calibration curve. Therefore, for each CET, a calibration constant was de-

termined from its calibration curve at a A_, of 0.001 inch. To evaluate the strain in the test speci-

men, the output voltage was multiplied by its calibration constant.

3.5.3 Installation

The transducer must be firmly attached to the specimen. The CET in this study was clipped
onto specially built aluminum base plates or shoes. These shoes are attached to the specimen with
screws as shown in Figures 3.8 and 3.9. A metal template with predrilled holes at a specified gage
length was used to position the base plate screw holes to achieve the target gage length of 2.180
inches. The advantage of using base plates was two-fold: it allowed alignment of the gage with the
direction in which strain was being measured, and it allowed for adjusting the gage length to a de-

sired value by rotating and sliding the slotted upper plate (Figure 3.8). Moreover, the shoes help
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in stabilizing the CET and eliminate lateral movement. Care was taken not to overstrain the gages

during mounting and dismounting. A beam instrumented with CET is shown in Figure 3.10.

3.5.4 Verification

To verify the performance of the CET, two tests were carried out on aluminum specimens.
Aluminum was chosen because it is an isotropic and homogeneous material with low property
variation. Thus, the variations in strain readings were influenced by CET’s performance and not

the variability within the specimen. The two verification tests were as follows:

1. A T6061 aluminum block (E = 107psi) was loaded in compression, and the compressive
strains were read with CET and bonded gages. Strains were recorded at different load levels. Figure
3.11 shows very good agreement between the strain measurements of the CET and the bonded gage.
The measured strains also agree very well with the strength of materials theory.

2. A T6061 aluminum bar (E = 107psi) was loaded at different levels in tension, and the strains
were measured using the CET. Figure 3.12 shows excellent agreement between the strains read by

CET and the strain based on strength of materials theory.

3.6 Summary and Conclussions

From the above experiments, the following can be summarized and concluded:
1. Experiments conducted on the effect of strain gage size on strain measurements in southern
pine showed that two inch gage lenth was suitable to record strain. Therefore, all the CET’s used

in this study were constructed with approximately a two inch gage length (to be exact 2.18 inches).
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Figure 3.10 Glulam beam instrumented with CETs to measure
strain
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lip-on Electrical Transducer (CET) was fabricated, calibrated, and

agreement between the strains read by CET and the strain recorded

urate, and reliable strain measuring device for southern pine. In this
s were built. They were reused for strain readings at various lo-

1e and glulam beams subjected to various loading conditions. The

‘hanged throughout the testing period.
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CHAPTER 4

4. GLULAM MATERIAL PROPERTIES

4.1 Introduction

The longitudinal Young’'s modulus of the glulam beams were determined from individual
laminae properties of each beam. The shear modulus of the beams was determined using small
glulam torsion specimens. This chapter contains details of material property determination. It also
includes the torsion test procedures for measuring the two principal shear moduli (G,;, G;;) of
southern pine and the shear modulus of small glulam samples. The torsion test was conducted to
show that there was not a significant difference between the two principal shear moduli of southern

pine, and that the cross section of a glulam member could be considered to be transversely isotropic.
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4.2 Procedure

Clear select structural southern pine boards, that were used to manufacture the beams, were
tested to determine the material properties. The laminae were classified as No.l Dense (N1D) or
higher grade (Select Structural or SS) according to AITC 117-84 Design Standard Specifications (2).
The average moisture content of the laminae was 8.5%. The average specific gravity was 0.58.
All laminae were planed and tested nondestructively in tension to determine their modulus of
elasticity; and the corresponding E-Rated grade was determined using AITC 117-84 Design Stand-
ard Specifications (2). Over 50% of the laminae were categorized as 1/6-2.0E or higher and the

remaining were 1/6-1.8E.

4.2.1 Determination of Glulam Modulus of Elasticity

Prior to beam fabrication, each lamina was nondestructively tested to measure the longitudinal
elastic modulus. The laminate or beam modulus of elasticity in the longitudinal direction, E,, was
predicted from the longitudinal modulus of elasticity (E£;) of the individual laminae. E; of each
lamina was measured from the tensile tests. The test set-up is shown in Figures 4.1 and 4.2. Pinned
end conditions were used to allow for rotation. To avoid damage in the laminae, less than 50%
of the allowable stress specified by the National Design Specification was applied (53). Strains were
measured simultaneously at three locations using clip-on electrical transducers. The gages were
located in the center of three 30-inch segments along the length of each specimen (Figure 4.3).
Data was collected using the HP-data acquisition system. A 10,000 lbs Baldwin-Lima-Hamilton
load cell was used to read the applied load. It had an accuracy of +0.25% of the full-scale load.
The load cell was calibrated using a. TINIUS OLSEN universal testing machine. Voltage readings
were recorded at increasing load increments, and a calibration curve and its equation was obtained

statistically. During testing voltage was read directly by the HP-data acquisition system. The load
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cell calibration equations, incorporated into the computer code, automatically converted the

measured voltage into load.

Young's modulus was computed at each gage location. Then E, of each beam was computed
by taking an average of £; of each lamina used to fabricate the beam. An average of laminae lon-
gitudinal modulus of elasticity was taken instead of transformed section analysis because prelimi-
nary comparison of the experimental and the analytical strain readings of beams produced better
agreement with an estimate of E, for the beams derived from the average of laminae Young's

modulus.

4.2.2 Determination of Glulam Shear Modulus

The analysis of a beam composed of a homogeneous material with three clearly defined planes
of elastic symmetry requires two shear moduli (G, and G,;) to evaluate the longitudinal stress.
However, in a glulam beam each lamina has different ring angles, thus the material and geometric
axes do not coincide. In addition, it is not practical to apply tensor transformation since the ring
angle in each lamina must be known. Therefore, researchers often consider a glulam cross-section
to be transversely isotropic (i.e. having the same shear modulus in both tangential and radial di-
rections) (18,50). Using a single shear modulus for southern pine glulam beams would also be
justified if the two principal shear moduli of an orthotropic southern pine cross-section do not differ
significantly. Predicting the behavior of glulam beams with reasonable accuracy using fewer mate-
rial properties would be more economical and efficient. To show that the two principal shear
moduli of a southern pine cross-section do not vary much from each other, and to estimate an
appropriate value for a single representative shear modulus of a southern pine glulam cross-section,
an experiment was conducted using torsion tests to measure the shear modulus of small clear

orthotropic specimens and small glued-laminated specimens.

The objectives of the experiment were:
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1. To measure the two principal shear moduli, G, and G, 1, from torsion tests for orthotropic
southern pine specimens, and to determine if these moduli are approximately equal.
2. To estimate the average shear modulus for southern pine glulam beams from torsion tests

of glulam specimens.

The testing program was divided in two parts:

1. In the first part, the principal shear moduli, G, and G, of orthotropic southern pine
samples were measured by testing orthotropic rectangular southern pine specimens in torsion. For
each sample, a torsional stiffness was obtained from the slope of the applied torque vs. angle of twist
curve, and the two principal shear moduli were computed from Lekhnitskii’s (47) orthotropic sol-
ution (Chapter 2, equations [2.15], [2.16], and [2.17]). The values of G,z and G, were compared
to determine if they were significantly different. The principal shear moduli were computed from
12 inch long southern pine specimens of rectangular cross-sections that were carefully machined
with three planes of material symmetry and geometric symmetry coincident. A total of 18 rectan-
gular samples, divided in three shape-groups, were tested in torsion to determine G,, and G
(Table 4.1). Aspect ratio, in this case, indicates the depth-to-width (a/b) ratio of the specimens.
The three ratios were 2, 3, and 4. The corresponding cross-section sizes were 0.5” by 1.0”, 0.5” by
1.5”, and 0.5” by 2.0” respectively. This was carried out to determine the influence of shape ratio

on the value of elastic shear constant.

Six samples were used for each shape ratio. Three of the six samples had the growth rings
oriented parallel to the longer side (flatsawn), and the other three had the growth rings oriented
perpendicular to the longer side (quartersawn). Figure 4.4 shows growth ring orientation of a pair
of samples to determine the shear moduli. For each sample, a torsional stiffness was obtained from
the slope of the applied torque vs. angle of twist, and the two principal shear moduli were computed
from Lekhnitskii’s orthotropic solution (47). By combining the samples within each shape-group,
a total of nine sets of values of G, and G, were obtained. The torsional stiffnesses of all the

samples tested were calculated from the linear region of the torque vs. angle of twist curve.
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Table 4.1 Longitudinal modulus of elasticity of glulam beams

Calculated Minimum  Maximum
# of  Average E Lamina B Lamina B
Beam ID Laminae (10° psi)  COV(%) (10°® psi) (10° psi)

B1S 6 1.80 27 1.08 2.60
B25 4 1'.81 21 1.28 2.60
B3S 5 1.98 22 1.25 2.84
B45 10 1.85 24 1.06 2.1
BIC 9 1.87 22 1.05 2.66
B2C 4 2.22 20 1.56 2.83

B3C 11 2.11 23 1.09 2.98




| r—
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Figure 4.4 Torsion specimen cross section showing the growth
ring orientation of a pair of samples to
determine shear moduli
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In addition to the rectangular cross-sectional bars, six cylindrical torsion specimens with a di-
ameter of one inch and a length of 12 inches were also tested. Circular cross-sectional samples were
tested to confirm the orthotropic shear moduli of southern pine calculated using Lekhnitski’s sol-
ution. The average torsional stiffness of the circular specimens was compared to the analytical

torsional stiffness from Lekhnitski’s solution for the orthotropic round bars.

2. In the second part, southern pine glulam torsion specimens were tested, and their shear modulus
were computed from St. Venant’s torsion solution for homogeneous, isotropic bars (Chapter 2,
equation {2.34]). Glulam torsion values are then compared to the orthotropic southern pine shear
moduli to determine if the difference was significant. Rectangular glulam samples were tested in
torsion and their shear elastic constants were computed from St. Venant’s torsion solution for
homogeneous, isotropic bars (Chapter 2). Nine glulam specimens with rectangular cross-sections,
divided in three shape-groups were tested in torsion. The depth-to-width ratios of the glulam
samples were the same as those used for the orthotropic samples (i.e., 2, 3, and 4). The samples
were prepared with three to six laminae (lamina thickness = 0.35 inch). Since warping is present
in torsion samples with rectangular samples, six glulam samples with circular cross-sections were
prepared to test in torsion to confirm the shear modulus calculated using torsional stiffness values
of the rectangular glulam specimens. The diameter of the cylindrical specimens was one inch. All
glulam specimens were also 12 inches long. All the test specimens were cut from southern pine
boards obtained from a local lumber yard. Hence, the samples were probably not from the same

tree.

All the samples were tested in an INSTRON torsion machine with a load-range capacity of
10,000 in-Ibs. The load accuracy was =1 in-1b, and the angle of twist accuracy was + 0.005 degree.
Special grips were constructed to accomadate the rectangular cross section of the specimens. The
machine allowed free longitudinal displacement of the sample during testing (i.e., unrestrained
torsion). Thus, the specimen was free to warp and the requirement of the theory of elasticity that

the shear stress distribution be the same at any cross-section, including the end boundaries, was not
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violated. To minimize the influence of St. Venant’s effect and crushing of the sample ends, rotation
was measured away from the grips with two thin aluminum arms fixed to the specimen four inches
away from the end grips. The ends of the aluminum arms were attached to LVDT transducers that
were secured to the testing machine (Figure 4.5). The change in voltage of the LVDT’s was re-
corded continuously by a data acquisition system. The angle of twist was computed from the
LVDT's calibration equation and simple geometry. To eliminate the influence of creep in the re-
sponse, the specimens were tested at a rate of 3 degrees per minute determined using the guidelines

of ASTM standards (3). All tests were carried to an angle of twist of 10 degrees.

Appendix B has the FORTRAN code to iteratively solve the two nonlinear equations of
Lekhnitskii’s torsion theory for an orthotropic elastic body. Once the shear moduli, G, ; and G,
were computed, a two sample t-test was performed to test if there was a significant difference be-
tween G,, and G, values. Also, the effect of width-to-depth ratio (h/b ratio) was statistically
evaluated (using ANOVA procedure) to see if it was significant. Then, St. Venant’s isotropic
torsion solution (equation [2.34]) was applied to the orthotropic rectangular specimens to determine
a shear modulus that would serve as an effective average of G,z and G, for a southemn pine
cross-section. A two sample t-test was conducted to test if there was a significant difference between
the shear moduli calculated using St. Venant's isotropic torsion theory and G, , G, and the mean
of G,z and G, ;. For the second phase of the study, the average shear modulus of glulam specimens
was statistically compared to Gz, G1 , and the grand mean of G, and G,; . A T-test was per-
formed to check for any significant differences. Moisture content and specific gravity samples from

all the samples were cut about four inches from one end.

4.2.3 Moisture Content and Specific Gravity Measurements

Moisture content and specific gravity were measured according to the ASTM D 2016-74

specifications (3). The oven-drying method was used to calculate the moisture content:
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Figure 4.5 Torsion set-up to determine shear modulus
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weight with water — OD weight

OD weight x100 [4.1]

%MC =

The oven dry (OD) volume and the weight of the dry wood are necessary for determination of
specific gravity. The volume was obtained by an immersion or displacement method ,and the OD

weight was obtained by weighing the OD specimen. Then, dividing the OD weight by OD volume

gives the specific gravity of the specimen.

4.3 Results and Discussion

The longitudinal modulus of elasticity of four straight and three curved glulam beams tested
in this study was determined from the properties of individual laminae. Shear modulus of the

beams was determined by testing small glulam samples.

4.3.1 Longitudinal Modulus of Elasticity

The longitudinal modulus of elasticity, £, of the beams were estimated from the measured
Young’s modulus along the length of each lamina used in fabricating the beam. E, measured at
three locations along the length of each lamina was used in calculating the beam’s Young's
modulus. The average of all measured Young’s moduli from the laminae was used to estimate the
beam longitudinal modulus of elaticity. The coefficient of variation (COV) of Young’s modulus
among the beams was 23%. The COV of lengthwise modulus of elasticity among the laminae
ranged from 3% to 43% with an average coefficient of variation of 19%. Figures 4.6 to 4.12 show
the arrangement of laminae in each beam and their longitudinal modulus of elasticity at three

sections along the length.
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A B C

LAMINA #
2.488 1,481 1,231 1
1.224 1.376 2597 4

i 2.231 1,250 1.426 12
1.829 1,080 1,794 7
1917 2,098 2,200 5
1.604 2112 2.422 10

All E-values are 10E6 psi

Figure 4.6 Placement of laminae and their E-values at three
sections along the length of beam B1lS
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A B C Lamina #

1.914 1.416 1.618 13
1.884 1.436 1.772 14
1.285 1.707 2.379 8
2.031 1.627 2.996 6

Lamina E values are In 10E6 psi

Figure 4.7 Placement of laminae and their E-values at three
sections along the length of beam B2S
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All E-values are 10E6 ps!

A B C Lamina #
2,669 2.370 2.030 13
1.254 1.800 1.877 7

J 1563 1.916 1621 N 3
[ 1.445 1.935 2.835 2
1.809 2.099 2.426 1

Figure 4.8 Arrangement of laminae and their E-values at

three sections along the length of beam B3S
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A B C Lamina #
2512 2377 2.069 4
2123 1,796 1.602 15
1.603 2.012 1.966 14
1.232 1,310 1.315 8

/  1.823 1.541 1311 N 9
/ 1259 1.528 1.059 6
2.356 1,424 2125 10
2.058 2.011 1.753 12
1523 2,711 1.738 11
2.355 2.498 2.499 5

All E-values In 10E6 psi

Figure 4.9 Arrangement of laminae and their E-modulus at

three sections along the length of beam B4S
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1,736

1.726

2.013

1,779

1.491

1.434

1.486
2,905
1,982

All E-values are In 10E6 psi

Figure 4.10 Arrangement of laminae and their E-values at
three sections along the length of beam B1C
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A B C\__Lumina #
2.404 1.648 2.976
1.556 2.648 2276

|

|
2830 1872 | 2609
1665 | 2168 | 2431

wWwmn =

All E-values are In 10E6 psi

Figure 4.11 Arrangement of laminae and their E-modulus at

three sections along the length of beam B2C
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A B C
— 1898 1768 | 23372 —
1.906 2.316 2736
- 1.089 1.615 1.618 —
— 1.609 1707 | 1835 —
— 2.303 2921 | 2158 —
2.410 2.152 2157 —
— 2.069 2.786 2526
— 2.373 2.11p 1.703 —
— 1.378 1.244 1,756
— 2976 1.775 2.656
— 2.709 | 2.824 1574 —

e

All E-values are In 10E6 psl

Figure 4.12 Arrangement of laminae and their E-modulus at

three sections along the length of beam B3C
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Table 4.2 shows the estimated longitudinal modulus of elasticity and the coefficient of vari-
ation for each beam. The Young’s modulus was estimated by taking the arithmatic average of E’s
of all the laminae used in fabricating the beam. The table includes the number of laminae used to
manufacture each beam and the minimum and maximum values of the lamina modulus of elasticity

in each beam.

4.3.2 Shear Modulus

Two of the components of the reduced constitutive matrix for glulam beams (Chapter 2) are
G, g and G 1. If, however, the beam is assumed to be isotropic in the cross-sectional plane due to
the random laminae orientation, then the principal shear moduli G, and G can be replaced by
a single shear modulus G. The evident question is “what value of G should be used for southern
pine glulam beam?” In this section, the results of the experiments conducted to investigate the as-
sumption of transverse isotropy are presented. In addition, the shear modulus of rectangular glulam

samples are computed using Saint-Venant’s torsion theory for homogeneous, isotropic material.

Tables 4.3 - 4.5 present the results of the first phase of experiments carried out to compute the
shear modulus of glulam beams. The torsional stiffness for each sample was computed from the
slope of the torque vs. angle of twist curve obtained experimentally. Lekhnitskii’s orthotropic
solution (47) was used to compute G, and G;;. Table 4.3 contains the experimentally obtained
torsional stiffness values for all rectangular southern pine samples machined with the material
symmetry axes and the geometric axes coincident. The three aspect ratios (a/b) shown in the table
were tested to investigate the effect of cross-sectional shape on the shear modulus. To compute
Gz and :G sub ‘LT, Lekhnitski’s solution for orthotropic bars was solved using simultaneous
equations for two bars of the same aspect ratio but with different growth ring orientations (Figure
4.4). For example, in one sample, the growth rings were parallel to the wider side (commonly called

flat-sawn), and the other sample had growth rings oriented perpendicular to the longer side (called
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Table 4.2 Torsion test samples with three planes of
material symmetry.

SHAPE NUMBER OF SIZE (a x b x 1) GROWTH RING

CATEGORY SAMPLES {inches) ORIENTATION
SP1 3 1.0x 0.5 % 12 P
SN1 3 1.0x0.5% 12 N
Sp2 3 1.5%0.5x% 12 P
SN2 3 1.5%0.5% 12 N
SP3 3 2.0x0.,5x% 12 P
SN3 3 2.0 0.5x 12 N

NOTE : P = Parallel to longer cross-section dimension.
(Figure 4.4 (a))
N = Normal to longer cross-section dimension.
(Figure 4.4 (b))
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quarter-sawn). The computed G, and G, values for all the sample combinations are given in
Table 4.4. All samples were tested at an average moisture content of 11.12% (COV = 8.2%).

The average specific gravity was 0.63 with a COV of 12%.

Table 4.5 presents the mean values of G, and G, ; for each aspect ratio. There was approxi-
mately 8% difference between G, and G, under each size category. In all cases, the coefficient
of variation was less than 3%. The grand means of G, and G, which ignore the shape effect,

were 160,870 psi and 150,156 psi.

One-way analysis of variance was performed to determine if there was a significant difference
between G, and G, for the three aspect ratios tested in the study. At «-level of 0.0S, there was
no significant difference between the means of three aspect ratio categories. However, a two sample
t test indicated that there is a significant difference between G, and mean G,;, even though the
mean values of G, and G, 1 of southern pine are quite similar considering the natural variability
in wood properties. To determine if the orthotropic shear moduli calculated from Lekhnitski’s
solution are truly valid and representative of southern pine, samples with circular cross-sections
were tested in torston (Table 4.6). The average torsional stiffness of the circular samples was then
compared to the analytical torsional stiffness from Lekhnitski’s solution for the orthotropic round
bars. Average G, and Gy values obtained from the rectangular samples were used in Lekhnitski’s
solution to compute the analytical torsional stiffness value. At the 0.05 «-level, there was no sig-
nificant difference between the anlytical torsional stiffness from Lekhnitski’s solution and the
measured torsional stiffness of the cylindrical bars. Thus, the values obtained for G, and G, ; from

Lekhnitski’s solution for orthotropic bars with rectangular cross-section seem valid.

Tables 4.7 and 4.8 present the torsional stiffness values and shear modulus of glulam torsion
samples constructed with rectangular and circular cross-sections computed from Saint-Venant’s
solution for homogeneous, isotropic material. Glulam samples were tested to obtain a represen-

tative value for southern pine glulam beam cross-section shear modulus. Since warping defor-
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Table 4.3 Aspect ratio and measured torsional stiffness of
orthotropic southern pine torsion specimens

Sample ID Cross—-section Aspect Ratio Torsional Stiffness
size a X b (a/bd K (n—lbs/rad)

03" X W 2

-
~

AfdRREAAARRAITIREE
Cees
&

YT TR EITFTELRL.

a8 8 v e
L S NP S Y

‘RN Growth reags sorwel
‘o suls ‘e’ 40 o miw v

i
i
{
!
:

~agid  mepd

Quarter Sawn Flat Sawn
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Table 4.4 Combinations of orthotropic samples
within each aspect ratio group.

COMBINATION I.D

RN11-RP11
RNI1-PRI2
RN11-RP13
RN12-RP11
RN12-RP12
RN12-RP13
RN13-RP11
RN13-RP12
RN13-RP13

RN21-RP21
RN21-RP22
RN21-RP23
RN22-RP21
RN22-RP22
RN22-RP23
RN23-RP21
RN23-RP22
RN23-RP23

RN31-RP31
RN31-RP32
RN31-RP33
RN32-RP31
RN32-RP32
RN32-RP33
RN33-RP31
RN33-RP32
RN33-RB33

G W W W W w www [SS IS S S - IR S R )

[P T N Y G Y A

Aspect Ratio

159,049
160,066
159,598
160,400
161,361
160,955
162,179
163,061
162,742

159,544
162,324
159,684
162,401
163,817
161,153
162,323
163,738
161,051

160,720
158, 450
160,856
160,400
158,109
160,509
160,396
158,105
160,505

153,258
152,993
153,116
149,09
148,855
148,955
144,003
143,880
143,875

156,313
155, 907
156,294
147,365
147,182
147,528
147,803
147,621
147,986

149,252
148,457
148,300
152,277
152,496
152,267
152,310
152,531
152,301
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Table 4.5 Mean Values of orthotropic shear moduli for the three
cross-section sizes

Cross Section a/b No. of Avg. G.p COV  Avg. G, COV

Size Combinations  (psi) A (psi) %
0.5"x 1.0" 2 9 161,046 0.87 148,669 2.70
0.5"x 1.5" 3 9 161,782 0.96 150,444 2.86
0.5" x 2.0" 4 9 159,783 0.74 151,355 1.00
Grand Means - 27 160,870 0.98 150,156 2.36
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Table 4.6 Measured and computed torsional stiffness of the
orthotropic circular samples (diameter = 1™).

MEASURED K COMPUTED X SEECIFIC MOISTURE
SAMPLE  (in.-1bs./rad.)(in.-lbs./rad.)  GRAVITY  CONTENT %

Cl 1,302 1,296 0.56 9.4
c2 1,335 1,288 0.62 8.4
c3 1,254 1,288 0.54 9.3
C4 1,293 1,276 0.56 9.4
5 1,322 1,278 0.55 9.5
Cé 1,328 1,251 0.63 9.4
MEAN 1,306 1,280 0.58 9.2
VALUES (COV=2.3%) (Cov=1.2%) (COV=6.4%) (COV=4.5%)
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mations are present in bars with rectangluar cross-sections, torsion samples with circular
cross-sections were tested to confirm the shear modulus values obtained using the bars with rec-
tangular cross sections. Cylindrical bars do not undergo warping deformations under torsional

loads.

Table 4.9 presents the average shear modulus within each shape category, the overall mean for
glulam bars with rectangular cross-sections, and the mean shear modulus of the cylindrical glulam
bars. Analysis of variance sho;)ved that at a-level of 0.05, the means of the four size groups were
not significantly different. The grand average of shear modulus for all glulam bars with rectangular
cross sections was 162,051 psi. The average G of the cylindrical samples was 162,017 psi. No sig-
nificant difference between the glulam samples with rectangular and circular cross-sections were

detected at 0.05 a-level.

The G,z and G values from the orthotropic samples were statistically compared using two
sample t test to the shear modulus of the glulam samples. The results showed that G, and G were
not different statistically at 0.05 a-level. However, G ; and G of glulam samples were different
statistically at 0.05 a-level. However, the difference between G ; of orthotropic bars and G of
glulam samples was not more than 8 percent. From these results it seems that an average of G,
and G, yields a value very close to the average shear modulus of glulam samples obtained using
Saint-Venant’s solution for isotropic, homogeneous materials. Therefore, it appears that Saint-
Venant's solution gives a reasonable and a representative value for the shear modulus of a glulam
cross-section. Therefore, in this study, the average shear modulus (162,051 psi) of glulam samples
with rectangular cross-sections obtained using Saint-Venant’s solution of torsion bars was rounded
down to 160,000 psi for conservatism, and was used as material property for input to the finite el-

ement analysis of southern pine glulam beams.
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Table 4.7 Cross Secticn éize. measured torsional stiffness,and

Sample 1.D

computed shear modulus of Gluiam torsion bars

Cross Section size

1.0" x 1.0"

0.5" x 1.0"

0.5" x 1.5"

0.5" x 2.0"

a’b

645
658
651

976
982
920

G

162,471
162,047
160,061

161,964
161,551
160,926

161,532
163,476
162,282

162,875
163,464
161,960
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Table 4.8 Torsional stiffness and shear modulus of glulam

SAMPLE

bars with circular cross-section.

DIAMETER
1"
1"
ll‘v
1"

162,218
161,906
162,373
161,569

106



Table 4.9 Mean Values of G for the rectanqular and circular
glulam samples.

RECTANGULAR SAMPLES ===

Cross Section a/b No of Avg. G COV Avg Specific Avg Moisture

Size Samples (psi) %  Gravity Content 7%
1.0"x1.0" 1 3 161,526 0.80 0.61 10.69
1.0" x 0.5" 2 3 161,480 0.32 0.63 10.41
1.5" x0.5" 3 3 162,430 0.69 0.6l 10.73
2.0"x 05" 4 3 162,766 0.46  0.56 10.60
Grand Mean 12 162,051 0.61 0.61 10.60

= === CIRCULAR SAMPLES = == ==

Diameter = 1" 4 162,017 0.22 0.67 9.74
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4.4 Summary and Conclusions

1. The coefficient of variation (COV) of Young’s modulus among the beams was about 23%.
The COV of lengthwise modulus of elasticity among the laminae ranged from 3% to 43% with an
average COV of 19%. Calculated modulus of elasticity of beams ranged from 1,800,000 psi to
2,220,000 psi.

2. G,p and G ; of orthotropic southern pine specimens were 160,870 psi and 150,160 psi.
The two averages differed by less than 8%. There was no significant effect of the aspect ratio on
the values of the shear moduli.

3. Based on the torsion results, a southern pine glulam beam can be considered to be isotropic
in the cross-section.

4. Shear modulus of glulam specimens was 160,000 psi. The average shear moduli of the
glulam rectangular and the circular glulam samples using Saint-Venant’s torsion solution for ho-
mogeneous, isotropic materials were 162,051 psi and 162,017 psi. Glulam shear modulus differed
from orthotropic shear moduli by less than 8%. It differed from the average of G and G by less

than 4%.
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CHAPTER 5

5. GLULAM BEAM ANALYSIS

5.1 Introduction

For this study, three curved and four straight glued-laminated beams were manufactured in the
laboratory. Since the objective of this study was to verify the FE model, given the material prop-
erties of the beams, a large sample size was not used. The selected beam sizes covered a wide range
of span-to-depth ratios (i.e., 6 to 21) so that shear deflection effects would be considered in verifying
the finite element model. The straight beams were subjected to loads in bending about both the
prinicipal cross-sectional axes (2- and 3- axes), and in combined bending and axial compression.
The curved beams were subjected to bending about only the 2-axis and combined bending and
compression. Strains and deflections were measured at various locations. Prior to beam fabri-
cation, each lamina was nondestructively tested to measure the longitudinal elastic modulus. This

data was used to estimate the material properties of the beams.
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This chapter contains details of fabrication of beams, beam instrumentation for data collection,
and experimental apparatus for testing glulam beams in bending and combined bending and com-
pression. Next, the experimental results from the tests conducted on the beams are compared to
the results from the finite element analysis. A discussion of the observations and the significance
of the results is presented. Some remarks on possible sources of errors and other important con-

siderations are also included. Figure 5.1 shows the flow chart of the testing procedure.

5.2 Fabrication of Glulam Beams

Three curved and four straight glulam beams were manufactured for this study. Clear select
structural southern pine boards were used to manufacture the beams. The laminae were classified
as No.l Dense (N1D) or higher grade (Select Structural or SS) according to AITC 117-84 Design
Standard Specifications (2). Over 50% of the laminae were categorized as 1/6-2.0E or higher and
the remaining were 1/6-1.8E. The average moisture content and specific gravity of the laminae used
to fabricate the beams was 8.5% and 0.58. All straight beams and one curved beam were built using
2 inch thick (nominal) and either 4 or 6 inches wide (nominal) laminae. Two curved beams were
built using nominal one inch thick laminae. The finished dimensions of all glulam beams are given

in Table 5.1.

The beams were manufactured according to the specifications in AITC
117-84-MANUFACTURING (2). Under AITC regulations, structural glulam members should
not be fabricated using laminae exceeding a 2-in. net thickness; and, the laminate must include at
least four laminae if the bending load is applied to the wide face of the beam. AITC also specifies

that the moisture content of the laminae should not exceed 16 percent.

All the beams were manufactured with laminae glued with aliphatic resin adhesive which is

easy to apply, safe to handle, and cures at normal room temperature and humidity conditions;
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Figure 5.1 Flow chart of the experimental testing procedure
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Table 5.1 Geometry of Glulam Beams and their allowable
stresses.

BEAM WIDTH.b DEPTH, h RADIUS OF CURVATURE,R

(inches) (inches) (feet)
B1S 3.0 8.3125 -
B2S 3.013 5.602 -
B2S 4.865 6.492 -
B4S 4.8% 13.823 -
BIC 2.994 5.984 50
B2C 3.014 £.568 50
B3C 4.914 7.546 50

NOTE : S = Straight and C = Curved

ALLOWABLE STRESSES"

Fbx Fb-y Ft Fc Fc va Fvy
(psi) (psi) (psi)  (psi) (psi)  (psi) (psi)

2100 2400 1800 650 2400 200 175

For combination symbol 57 from Tabie 2 AITC 117 - 84
Design Standard Specifications for Structural Glued
Laminated Timber of Scftwood Species.
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however, all beams were kept clamped for at least 24 hours to allow the adhesive to fully cure. A
similar type of glue (room temperature setting PVA-type) was used by Bodig and Goodman (9) for
plate shear tests of wood. They found for short term tests this adhesive performed adequately.
However, for long term tests, significant creep deformations may occur when using aliphatic resin.
Since the present study involved tests of short duration it was assumed that glue-line creep would

not significantly influence the test results.

The laminae were arranged randomly within each beam. Since the curing time for the resin
is about 30 minutes, the process of spreading the glue, assembling the laminae, and the initial
clamping of the laminae was carried out within 30 minutes. Wooden caul boards were used to dis-
tribute clamping pressure to the laminae to avoid damaging the surface laminae. Clamping pressure
was applied along the length of the beam using two parallel rows of bar clamps, spaced six inches
apart. Clamping was carried from the center of the beam to both the ends. Initially, moderate
pressure was applied; once all the clamps were installed, they were tightened to apply maximum

pressure.

The curved beams were manufactured to a radius of curvature of 50 ft. The curvature was
obtained by using a specially constructed curved wooden form to which the laminae of the curved

beam were pressed and clamped.

The beamns were cured over night at a temperature of 20 degrees centigrade and 55 to 65 per-
cent relative humidity. Once the clamps were removed, the beams were left untouched and pro-
tected for at least two days. Before machining to finished sizes and lengths, the excess glue on the
faces of the beams was scrapped using a metal scraper to avoid nicking the planer knives. The
moisture content and the specific gravity samples were cut from each laminae before they were

glued into beams.

Since the beams were tested at service loads, it was important to determine the allowable

stresses specified by the code. Based on the laminae E-Rated grades, the design values for combi-
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nation number 57 from AITC 117-84 Design Standard Specifications were used to determine the

allowable stresses for the beams (Table 5.1).

5.3 Testing of Glulam Beams

The three curved beams were subjected to bending loads about their 2-axis and combined
bending (about 2-axis) and longitudinal compression. Three of the four straight beams were loaded
in bending (about 2 and 3 axes) and in combined bending (about 2 or 3 axes) and compression.
The deepest straight beam (SB 4) was not tested under combined bending and compression loads
because of the size limitations of the testing set-up. It was only tested in bending about its 2-axis.
All beam testings was carried out in the Mechanical Testing Laboratory at Brooks Forest Products
Center at Virginia Polytechnic Institute and State University. The temperature was maintained

around 20° centigrade and the relative humidity was between 55% and 65%.

A 20,000 Ibs. Baldwin-Lima-Hamilton (BLH) load cell (Model U3G2) was used to measure
the bending loads; and, a 10,000 Ibs. BLH load cell (Model U3G2B) was used to measure the axial
loads. Loads were read continuously during each test. The load cell calibration equations, incor-
porated into the computer code, automatically converted the measured voltage into load (Appendix
A). Three Celesco PT101 position (displacement) transducers were used to measure the glulam
beam deflections under bending and combined loads (Figure 5.2). The displacement transducers
had a measurement range of 10 inches and an accuracy of 0.1%. They were calibrated using an
Instron extensometer (Model A18-38). The range of the extensometer was 0 to 1 inch with an
accuracy of 0.00002 inch. Voltage readings were recorded at known displacements, and a cali-
bration equation was derived statistically. These equations were incorporated into the data acqui-
sition program (Appendix A). These transducers had 0.15% accuracy at full scale range (10 inches)

and a resolution of 0.002 inch (range dependent). They were arranged in a Wheatstone bridge cir-
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cuit to the data acquisition system. Laboratory developed Clip-on Electrical Transducers (CET)

were used to measure strain at the midsection of the beams.

5.3.1 In-Plane Bending

Figures 5.3 and 5.4 show the testing set-up used to test the beams in bending about their
principal axes (2 and 3 axes). All beams were loaded in “third point” bending on a 15,000 lbs ca-
pacity Iaboratory built universal testing machine. The tests were carried out according to ASTM
D 198-84 specifications except that the rate of loading was manually controlled. The maximum
loads that the beams were subjected to was achieved within 90 seconds. Loads were recorded using
a 20,000 Ib. load-cell that was installed within the bending test frame. Beams were instrumented
with CET gages at the mid-section of the beam test span to measure strains along the depth. Also,
three displacement transducers were installed under the beam along its length to record the de-
flections. Loads, strains, and deflections were recorded continuously using the 9000 series HP-data

acquisition system. The HP-basic code to measure and store the data is given in Appendix A.

Beams that were 8 ft long were tested with a span of 83 inches. Beams that were 10 ft long
were tested with spans of 83 inches and 114 inches. And 12 ft long beams were tested at 83, 114,
and 132 inches test spans. Table 5.2 gives details about the tests performed on each beam and the
effective spans for each test. The longer beams were tested at different spans to study the stress
distribution in beams with a variety of length-to-depth ratios and to compare the experimental and

the analytical results.

5.3.2 Combined Bending and Compression

Figures 5.5-5.7 show the set-up used to test the beams in combined bending and compression.

Small initial bending and compression loads (500 1bs and 500 1bs) were applied to remove any slack
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Figure 5.2 Displacement transducer used to measure beam
deflections
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Table 5.2 Details of tests performed on each beam and the

BEAM 1D

effective spans for each test.

EFFECTIVE SPAN
(inches)

TYPE OF LOADING

B1583
B1583
B1S114
B1S114
B2583
B2583
B2S114
B2Si14
B3S83
B3583
B3S114
B3S114
B3§132
B35132
B4583
B4S114
B45132
B1S108

B15108
B25108
B25108
B35130
B35130
B1C83
B2C83
B2C114
B3C83
B3C114
B3C132
B1C&3
B2C109

B3C130

83
114
114

114
114

114
114
132
132

114
132
108
108
108
108
130
130

&
114

83
114
132

81
109

130

BENDING ABOUT 3-3 AXIS
BENDING ABOUT 2-2 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 2-2 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 2-2 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 2-2 AXIS
BENDING ABQUT 3-3 AXIS
BENDING ABOUT 2-2 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 2-2 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 2-2 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 3-3 AXIS
BENDING & COMPRESSION

ABOUT 3-3 AXIS
BENDING & COMPRESSION

ABOUT 2-2 AXIS
BENDING & COMPRESSION

ABOUT 3-3 AXIS
BENDING & COMPRESSION

ABOUT 2-2 AXIS
BENDING & COMPRESSION

ABOUT 3-3 AXIS
BENDING & COMPRESSION

ABOUT 2-2 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 3-3 AXIS
PENDING ABOUT 3-3 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 3-3 AXIS
BENDING ABOUT 3-3 AXIS
BENDING & COMPRESSION

ABOUT 3-3 AXIS
BENDING & COMPRESSION

ABOUT 3-3 AXIS
BENDING & COMPRESSION

ABOUT 3-3 AXIS
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in the equipment. Deflection and strain readings taken at this point were subtracted from the
subsequent strain readings to get the induced strains. Once the initial strain reading was taken, only
bending loads were applied to a maximum of 1,500 lbs. Once the strains were read at maximum
bending loads, compression loads were applied in increments of about 1000 lbs until a maximum
compression load of around 6000 lbs was achieved. At every increment of load, strain and de-
flection values were recorded. Bending loads were recorded using a 20,000 1bs load cell, and com-

pression loads were read by a 10,000 Ibs load cell.

Moisture content and specific gravity were measured according to the ASTM D 2016-74
specifications (3). The oven-drying method was used to calculate the moisture contentn as men-

tioned in chapter 4.

5.4 Results and Discussion

The experimental results obtained from testing full size glulam beams were compared to the
analytical results obtained from the finite element analysis with ABAQUS (34). All beams were
tested only within their elastic range. Normal strain at the midspan and deflections at three lo-
cations along the length of the beams were recorded. Loads were applied symmetrically for all
simple bending tests. For one curved beam, asymmetrical bending loads were applied when the
beams were tested in combined bending and compression. Strain and deflection measured at several
locations on each beam were compared to the analytical results for four load conditions: 1) bending
about the major axis, 2) bending about the minor axis, 3) combined compression and bending
about the major axis, and 4) combined compression and bending about the minor axis. Curved
beams were subjected to only the first three load conditions. Since an experimental apparatus was
not available to perform a true biaxial bending test, beams were subjected to bending about both

the major and the minor axes. The superposition principal should be valid since the beams were
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stressed within their linear range. Therefore, all comparisons in this study were done for bending

about both the axes, and for simultaneous bending and axial compression.

Each beam was tested five times with each load condition and data was collected using load
cells, clip gages, and displacement transducers. At each measurement location strain and deflection
were plotted against load. For each load condition, regression lines were computed from the five
test replications to relate strain to load and deflection to load at each measured location. Then the

experimental and the analytical results were compared at a small and a large load at each location.

5.4.1 Simple Bending About the Major Axis

All beams were tested in simple bending about their major axis (3-axis) under two equal con-
centrated symmetric loads applied at third-points. Experimental and analytical results were com-
pared at the third-point locations at loads of 250 and 500 or 750 Ibs. The finite element mesh for
all the beams is shown in Figure 5.8. The mesh consisted of seven elements and 15 nodes. Pinned

and roller supports were used to model the experimental boundary conditions.

Tables 5.3 to 5.17 present the comparison between the measured and predicted strain for all
the beams. Experimental and analytical strain values were compared at five or seven different
points from the centroidal axis at each measurement location. The tables include the percent error

between the experimental and the analytical values.
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Table 5.3 Beam B1583:

DISTANCE FROM
LOAD  CENTROIDAL AXIS
(1bs.) (inches)

EXPERIMENTAL
STRAIN
(microstrain)

ANALYTICAL
STRAIN
(microstrain)

Comparison of the experimental and the
analytical strain in bending about the 3-axis.

% ERROR

P=250 3.438
2.031
0.594
-0.031
-0.781
-2.156
-3.578

P=500 3.438
2.031
0.594
-0.031
-0.781
-2.156
-3.578

-19
-54
-21

20
59
104

-232
-166
-63
-17
48
161
283

-92
-b4
-16

21
58
96

-276
-163
-48

63
173
287
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Table 5.4 Beam B1S114:

DISTANCE FROM
L,OAD CENTROIDAL AXIS
(1bs.) (inches)

EXPERIMENTAL
STRAIN
(microstrain}

Comparison of the experimental and
the analytical strain in bending about 3-axis.

ANALYTICAL
STRAIN
(microstrain)

% ERROR

P=250 3.438
2.031
0.59¢4

-0.031
-0.781
-2.156
-3.578

P=750 3.438
2.031
0.594
-0.031
-0.781
-2.156
-3.578

-116
-19
-28

24
68
134

-348
-223
-18
-18
64
196
365

-126
-75
=22

29
79
132

-319
-224
-65

86
228
394
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Table 5.5 Beam B2S83: Comparison of the experimental and the

analytical strain in bending about 3-axis.

DISTANCE FROM
LOAD CENTROIDAL. AXIS
(lbs.) (inches)

EXPERIMENTAL
STRAIN
(microstrain)

ANALYTICAL
STRAIN
(microstrain)

% ERROR

P=250 2.109
0.688
-0.063
-0.750
-2.141

P=750 2.109
0.688
-0.063
-0.750
-2.141

-168
-49
10
69
181

-456
-133
30
204
513

-183
-60

65
185

-548
-179
16
195
556

8.9
22.4
40.0

5.8

2.2

0.2
34.6
46.7
4.4
8.4
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Table 5.6 Beam B2S114: Comparison of the experimental and the

analytical strain in bending about 3-axis.

DISTANCE FROM
LOAD CENTROIDAL AXIS
(1bs.) (inches)

EXPERIMENTAL
STRAIN
(microstrain}

ANALYTICAL
STRAIN
(microstrain)

% ERROR

P=250 2.109
0.688
-0.063
-0.750
-2.141

P=750 2.109
"~ 0.688

-0.063

-0.750

-2.141

-243
-70
14
101
264

-626
-181
40
278
704

=752
-245
22
267
763

3.3
17.1
42.8
11.9

3.8

20.1
35.4
45.0
4.0
8.4
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Table 5.7 B3S83:

DISTANCE FROM
LOAD CENTROIDAL AXIS
(1bs.) (inches)

EXPERIMENTAL
STRAIN
(microstrain)

Comparison of the experimental and the
analytical strain in bending about 3-axis.

ANALYTICAL
STRAIN
(microstrain)

% ERROR

P=250 2.766
1.875
0.766
0.078
-0.719
-1.750
-2.688

P=750 2.766
1.875
0.766
0.078
-0.719
-1.750
-2.688

-68
-52
-13

29
56
%0

-192
-147
-36
10
78
149
242

-87
-59
-24

23
55
85

-261
=17
-72
-1
68
165
254

21.9
13.5
84.6
140.0
20.7
1.8
5.6

35.9
20.4
100.0
170.0
12.8
10.7
5.0
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Table 5.8 Beam B35132:

DISTANCE FROM
LOAD CENTROIDAL AXIS
(1bs.) (inches)

EXPERIMENTAL
STRAIN
(microstrain)

ANALYTICAL
STRAIN
(microstrain}

Comparison of the experimental and the
analytical strain in bending about 3-axis.

% ERROR

P=250 2.703
1.719
0.750
-0.078
-0.797
-1.859
-2.828

P=750 2.703
1.7119
0.750
-0.078
-0.797
-1.859
-2.828

-117
-80
-38

-9
23
63
130

-343
-229
-105
-20
75
176
358

-135
-86
-38

93
142

-406
-258
-113
12
120
279
425

15.4
7.5
0.0

144.4

13.9

47.6
9.2

18.4
12.7
1.6
160.0
60.0
58.5
18.7
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Table 5.9 Beam B4S83:

DISTANCE FROM
LOAD  CENTROIDAL AXIS
(1bs.) (inches)

EXPERIMENTAL
STRAIN
(microstrain)

ANALYTICAL
STRAIN
(microstraim)

Comparison of the experimental and the
analytical strain in bending about 3-axis.

% ERROR

P=250 5.844
3.938
1.969
0.141
-1.906
-3.906
-5.875

P=750 5.844
3.338
1.969
0.141
-1.906
-3.906
-5.875

-61
-45
-19

17
40
66

-61
-41
-20

20
41
61

13.0
16.7
40.0
50.0
12.5
16.7

5.0

0.0
8.9
5.3
0.0
17.6
2.5
7.6
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Table 5.10 Beam B4S114: Comparison of the experimental and the
analytical strain in bending about 3-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) {inches) (microstrain)  (microstrain) 7% ERROR

P=250 5.844 -26 -28 7.1
3.938 -19 -19 0.0
1.306 -10 -9 10.0
0.047 2 0 100.0
-1.906 9 9 0.0
-3.938 18 19 5.6
-5.922 30 28 6.7

P=750 5.844 -55 -56 1.8
3.938 -35 -37 5.7
1.906 -13 -18 38.5
0.047 3 0 100.0
-1.906 28 18 35.7
-3.938 43 37 14.0
-5.922 65 56 13.8
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Table 5.11 Beam B4S132: Comparison of the experimental and the
analytical strain in bending about 3-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR

P=250 5.844 -33 -32 3.0
3.938 -23 =22 4.3
1.906 -13 -10 23.1
0.047 0 0 0.0
-1.906 11 10 3.1
-3.938 20 22 10.0
-5.922 36 ) 33 8.3

P=750 5.844 -85 -97 14.1
3.938 -65 -65 0.0
1.906 -31 -32 3.2
0.047 0 -1 100.0
-1.906 38 32 15.8
-3.938 64 65 1.6
-5.922 109 98 10.1
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Table 5.12 Beam B1C83: Comparison of the experimental and the
analytical strain in bending about 3-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) {inches) (microstrain)  (microstrain) % ERROR

P=250 2.562 -174 -177 1.7
1.688 -120 -117 2.5
0.828 -62 -57 8.1
0.047 -3 -3 0.0
-0.859 64 59 7.8
-1.750 124 121 2.4
-2.594 201 180 10.4

P=750 2.562 -435 -532 22.3
1.688 -292 -350 19.9
0.828 -156 -172 10.2
0.047 -11 -10 9.1
-0.859 158 178 12.7
-1.750 304 363 19.4
-2.594 483 538 11.4
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Table 5.13 Beam B2C83:

DISTANCE FROM
LOAD  CENTROIDAL AXIS
(1bs.) (inches)

EXPERIMENTAL
STRAIN
(microstrain)

ANALYTICAL
STRAIN
(microstrain)

Comparison of the experimental and the
analytical strain in bending about 3-axis.

% ERROR

P=250 2.156
0.813
0.000
-0.672
-2.063

P=750 2.156
0.813
0.000
-0.672
-2.063

-202
-76

48
192

-580
-215
-20
133
5217

-155
-58

48
148

-465
-175

145
445

23.3
23.17
100.0
0.0
22.9

19.8
18.6
100.0
9.0
15.6
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Table 5.14 Beam B2C114: Comparison of the experimental and the
analytical strain in bending about 3-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR

P=250 2.156 -274 -213 22.3
0.813 -102 -80 21.6
0.000 -10 0 100.0
-0.672 63 66 4.8
-2.063 232 204 12.1

P=750 2.156 -797 -638 19.9
0.813 -291 -24] 17.2
0.000 -26 0 100.0
-0.672 186 199 7.0
-2.063 h68 611 8.5
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Table 5.15 Beam B3C83: Comparison of the experimental and the
analytical strain in bending about 3-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR

P=250 3.266 -55 -61 10.9
2.266 -48 -42 12.5
1.250 -18 -23 21.8
0.063 -3 -1 68.7
-1.188 20 22 10.0
-2.234 36 42 16.7
-3.203 69 60 13.0

P=750 3.266 -162 -182 12.3
2.266 -128 -127 1.0
1.250 -50 -70 4.0
0.063 -4 -4 0.0
-1.188 61 66 8.2
-2.234 104 125 20.2
-3.203 195 179 8.2
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Table 5.16 Beam B3C114: Comparison of the experimental and the
analytical strain in bending about 3-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain) (microstrain) 7% ERROR

P=250 3.297 =12 -84 16.7
2.312 -66 -59 10.6
1.312 -32 -34 6.2
0.078 -13 -2 84.6
-1.250 25 32 28.0
-2.250 48 58 20.8
-3.250 84 . 83 1.2

P=750 3.297 -220 -253 15.0
2.312 -193 -178 7.8
1.312 -94 -101 7.4
0.078 -33 -6 81.8
-1.250 75 96 28.0
-2.250 142 173 21.8
-3.250 242 250 3.3
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Table 5.17 Beam B3C132: Comparison of the experimental and the
analytical strain in bending about 3-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) {inches) (microstrain)  (microstrain) 7% ERROR

P=250 3.297 =17 -98 27.3
2.312 -75 -68 9.3
1.312 -38 -39 2.6
0.078 -18 : -2 88.9
-1.250 29 37 27.6
-2.250 62 67 8.1
-3.250 102 96 5.9

P=750 3.297 -253 -293 15.8
2.312 -221 -206 6.8
1.312 -111 -117 5.4
0.078 -46 -7 84.8
-1.250 79 111 40.5
-2.250 173 200 15.6
-3.250 282 289 2.5
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For all beams, the largest difference between the experimental and the analytical results
occured near the centroidal axis. The reason for this discrepancy was probably due to the small
magnitude of strain in the vicinity of the neutral axis. Accurately measuring such small strains is
beyond the capability of the clip-on transducers used in this study. However, the experimental and
the analytical results agree very well at most locations away from the neutral axis. Generally, as the
strain increased the error decreased (i.e. at points located further from the neutral axis). There were
a few locations where the error was between 15% and 35%. The strain distribution through the
depth of a beam is influenced by the properties of each lamina and the material inhomogeneity
within the lamina. In most cases, the absolute value of the analytical predictions were greater than
the experimentally measured strain. This was true especially in the lower half of the beams where
tensile stresses are present. When a glulam beam is loaded in bending below the proportional limit,
strain is assumed to vary linearly through the depth. Within the linear elastic region, stress is pro-
portional to strain throughout the cross sections of the beams. The modulus of elasticity is a ma-
terial property that relates these two quantities. Therefore, if the moduli of elasticity of two
adjacent laminae are not equal, there will be a stress discontinuity. Although the strains in two

adjacent laminae are equal at the interface, a greater stress develops in the stiffer lamina.

Figures 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 show the experimental and the analytical strain through
the depth in straight (Figures 5.9-5.11) and curved beams (Figures 5.12-5.14) at two magnitudes
of loads. Figures 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20 show the comparison between measured and

predicted deflections along the length of the beams.

Deflections were measured at three locations along the length of the beams. Deflection was
always measured at the mid-point of the beam span. Tables 5.18 to 5.32 present the deflection
measurements for all the beams tested in simple bending about the major axis. There was very
good agreement between the experimental and the analytical deflections. The majority of the ana-
lytical results differed from measured deflections by less than 10%. Generally, the analytical pred-
ictions were greater than the experimental measurements indicating that the model was

conservative.

CHAPTER 5§ 141



STXe-Z JO UOTI3IDRITP
8y} urt burpueq JIspun £g8STd Weaq UT UTeIls Teuiou
Teot3k1eue ayjz pue Tejuswuriadxs ayjz jo uosrtaedwo)

(377) NIvuis

oot oo€ 002 oo} 0 001- 002-
A e | T = !
~ “ , ,//
158
o .
. \
- \
N E
///

/, /,,// §
/ <
- . ]
(‘eq) 092) ‘dx3 ] \ S
(‘sql 092) 'dx3 . ./ L
jeopAjeuy \

U

6°G 9anbryg

00¢- oov-

S

("ul) SIXY TYQIOHLNID WOUH4 JONVLSIA

142



STXe-Z JO UOTI}IO3ITP ¥yl ur burpusq
Ispun HIISTH Weaq Ul urells [ewlou TedijAleue
9y3 pue tejuswriadxe ay3z 3Jo uostaedwo)d (QT'§ Lanbryg

(31 NIvdls
0o} 0 00l- 002- 00€- OO¥- 009-

1 I 1 /! | R 1 I | ﬂ y-

(‘sq1 092) "dx3 .
jsophjeuy .

('eq] 092) 'dx3 [

/_/. 42~
\
\
//r ,./,
N
.HJV%M e —o0
A\
U
t Jﬂ/
/
v /ﬁ@/ “1@

N = 4
("up) SIXY TYAIOHLNID WNOHL IONVLISIA

143



STXe-7Z JO UOTIJDSIIpP Iyl utr burpuaq
Iepun ZEISHH Weaq UT urexls [ewiou [eorjdhreue
ey3z pue Tejuswriadxs syl Fo uostaedwo)

or-
r

(3r/) NIVH1S
0ZL 00L 08 09 Oy ©O0Z O 02
| T 41!1.14/ | T I
1] /
\
/.,. //
.
RN 2
\
//
N \
[~ .
N
L _ > ——
o
.
\
. B!
/ :
(‘eq] 092) "dx3 [ /.
(‘eq] 092) ‘dx3 . \
[sopAleuy _ A

09~

!

I1°4q

08-

I

0ol -

sanbrg

-

(‘ul) 81XV TVAIOHLNIO WOH4 JONVLSI]

ocl-

l-

cr-

8¢~

-

)

i

8°'c

cr

L

144



SIxXe-g JO UOIJ}DSIIP ¥Yj ur burpuaq
1epun ¢£g8DTd Weaq UT UTelI3}s Tewiou Testikjeue
9y} pue Tejuswrtiadxe ayy Jo uostaedwo) z1°g 2anbrig

(‘eq] 092) "dx3
(‘eql 092) "dx3
jeopAjeuy

[]

(3r'NIVH1S

oSt

v

| |

0 osl- 00¢- 0S¥y~ 009-
| | e

4 Qe’c-

/, 1 9L~

\ Jazo-

/ | 922
" o

\ s
U, N m
(‘uf) SIXV TVAIOHLNID WOHd JONVLSIa

145



STXe-gZ JO UOT3D8ITP 9y} ur burpuaq

Iepun £g0Zd Weaq Ul uleils Jewrlou [eoTjATeue
ey} pue (ejuswrradxe 8yjl 3Fo uostredwod g[°§ sunbrg

(3PNIVULS
oov 00€¢ o9l 0 o9l- 006- 09¥- 009-
“ R | AU e R 1 1 |
,/,//, —
O ///
.
, ~. B
‘"

|
(‘eq] 092) dx3 [ ™~ |

("eq| 092) "dx3 . S
jeopjAjouy ] |

("ul) SIXY TYAIOHLNID NOUd FONVLSIA

ye-

o'l

re

146



STXe-zZ JO UOT4O3ITP 3yl utr bHuilpusq
1epun FITOIZH weadq UT uTelIls Tewrou Tedridreue

9y3 pue Tejuswrazadxad a8yl jyo uostredwo)d FHT'S °anbr g

QPNIVHLS
0 002~ oo¥- 009- 008~
[ L ’ T T T TN T | I B T

—

/ ///
A //ﬁy -
(ea1 092) .axuia /, - . ]
(‘sq1 092) "dx3 . \
jeophieuy . // . L]

("u1) 8IXY TVAIOHLN3ID WOH4 JONVLISIa

8’0

9l

e

147



STXe-Z 3JO UOT3D9ITP 92yl ur burpuaq
1epun £g8SId Wesq 103 SUOTIOI| I8P T[edr13hieue
ay3 pue Tejuswutaadxs ayiz 3jo uostaedwo)

(s*eyouj) SIXY | ®NOTV NOILLVOO1

08 04 09 09 oy oe oe
L, | D T 1T T |
=R
e B

(‘eqi 092) 'dx3 [
(‘eqi 092z) 'dx3 .
jeopdAjeuy

G1°§ @inbtg

ol 0

H

910°0-
+90°0-
|

920°0-

I

:z((auwwia

19200

——— e

B A-o.._o:,& NOI1031430

148



1417

SIXe-Z JO UOT309ITP 9yl ur burpusq
Iopun PTISTd Wedq I0J SUOTIDI[IOp TedT3hTeue
°yly pue Tejuswrtiadxs 8yl jyo uostaedwo) 9r°g oiInbry

9'col ¢’is
| 1

e e e e i e

(seyou)) gIXY I BNOTY NOILVIO1

8'6L ¥89 19 9'9¥ ¢Cve @ ru o

I

(‘'sql 092) dx3 .

(‘'eq] 092) "dx3 [ ,_
!
_

jeopjAjeuy _ . _

B

~91°0-

-90°0

JEp—

(#eyouy) NOILD3 1430

149



SIXe-7Z JO UOTIDIITP @aYyj ur burpusq
Iapun Zg1SHd Weaq I0J SUOTIDI[Iop [eos1ihTeue
ayy pue Tejuswriaedxe 8yl jJo uostaedwo) LT1°g @anbig

(seyouj) 8IXY I BNOTV NOILYDOT
¢t 88l 990 ¥»26 <6l 29 89 96t #+9Z <€l 0

— | | | ! | I | | | n
W ‘ - 960°0-
\WH\\!\\x a0 - xhﬁ/
\\ ,/,,
\\\\ ///, . _ *NO!O'
/7 T T AN |- z10°0-
: \\\\ ~ - R /////
A MO
| ('sq) 092) ‘dx3 [} |
‘8 ‘dx . m
| (‘eq) 092) "dx3 S

jeopyhjeuy

(®eyou|) NOILO3 1430

150



STXe-Z JO UOT3D9ITP 9Yy3z utr burpusq

1opun £gOTd Wesq I03F SUOTIOST[F8pP [edljzdreue

oy3 pue [ejuswriadxs dyjz jo uostiedwop QT g Lanbryg

(seyouj) 8IXVY I BNOTV NOILYOO1

08 oL 09 09 or 06 02 ol 0
[T [ N A T | I 1 T
1810~
\\aa
S zZio-
e
yd
S
\ 90°0-
S
NUM\» e ,O

(‘eq| 092) "dx3
(‘'eq) 092) "dx3 .,
jeopkjeuy

- 90°0

U O — N F .o
(seyou|) NOILD3 1430

151



STXe-Z JO UOTIJ}OI[P 8aYj utr buipuaq
aepun £807d Weaq I0F SUOT}Od[Fop T[edrzAieur
oy3 pue T1ejuswiredxs eyjz jo uostaedwo)d gr°§ SInbtg

(seyouj) 8IXY | BNOTY NOILYOO1
€8 L’'vlL %99 1'89 @86¥ 9y 26 6vYZ 99l e'e 0

e | S TR S Sk 1 ] ] — &0~
L
\\\ T
\\.\ // .g 91°0-
— e 11
ﬁM g ///
\\ .
\\ // - 170~
s .
Ve - //
\ ya T T N\ H900-
\\ - - T - “ .
/ .\\\\ o .
t S i . o } 310
(‘eqi 092) "dx3 [
(‘'eq) 092) "dx3 . 900
jeo|lAjsuy

(seyoup) NOILOI V430

152



STXe-7Z 3JO UOI3DaIIP 9yl ur burpusaq
Ispun HIIDZd wWesaq I0J SUOTIOSTIop TeoTjrhieuw
9y3 pue Jejuswrtaadxe ayz jFo uosrtredwo)

(eoyou|) gIXV I BNOTY NOILVOO1
] 173 09 09 1) 4 0o¢ oe

B B B B T | I 1

T
- o D /I‘/v

~——

(‘eql 092) "dx3 [
(‘*q| 092) 'dx3 .
jeojyhjeuy __

0Z°§ °oanbrg

ol 0

(seyduj) NOILO3IN43a

153



Table 5.18 Beam B1S83: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %
P=250 27.67 -0.021 -0.019 9.5
41.50 -0.025 -0.022 12.0
55.33 -0.022 -0.019 13.6
P=750 27.67 -0.055 -0.057 3.6
41,50 -0.066 -0.065 1.5
55.33 -0.058 -0.057 1.7
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Allvthe experimental strain results presented above were measured only on one side of the
beams. Strain measured on both the sides are presented for straight beam S2 and curved beam C3
tested over a span of 83 inches (Figures 5.21 and 5.22). Due to the varying modulus of elasticity
across the width of a beam, the strain values of the two faces differed slightly. However, the strain

distribution of both the faces show similar trends.

5.4.2 Simple Bending About the Minor Axis

Biaxial bending stresses can be simulated by testing a beam seperately under simple bending
about both its major and minor axes provided that the stresses are kept below the proportional
limit. In this study, in comparing the experimental and the analytical strain and deflection values,
the method of superposition was assumed to be valid. Therefore, simple bending about the two
principal axes of the cross-section was conducted and the results were compared instead of directly
performing biaxial bending tests. In this section, the experimental and the analytical values for
flatwise bending (bending about the minor axis) are presented. Only three straight beams were
subjected to flatwise bending. A finite element mesh similar to Figure 5.8 was used to anlyze a
beam subjected to edgewise bending. Pin and roller supports were used to model the experimental

boundary conditions.
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Table 5.19 Beam BI1S114: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %

P=250 38.00- -0.047 -0.047 0.0
57.00 -0.048 -0.054 12.5
76.00 -0.046 -0.047 2.2

P=750 38.00 -0.125 -0.141 12.8
57.00 -0.142 -0.161 13.4
76.00 -0.124 -0.141 13.7
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Table 5.20 Beam B2583: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL  ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) A
P=250 22.50 -0.050 -0.050 0.0
41.50 -0.061 -0.067 9.8
60.50 -0.049 -0.050 2.0
P=750 22.50 -0.138 -0.151 9.4
41.50 -0.177 -0.200 13.0
60.50 -0.13% -0.151 8.6
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Table 5.21 Beam B25114: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTRWISE DEFLECTION DEFLECTION ERROR

{1bs.) (inches) (inches) (inches) A
P=250 38.00 -0.146 -0.147 0.7
57.00 -0.165 -0.169 2.4
76.00 -0.145 -0.147 1.4
P=750 38.00 -0.391 -0.442 13.0
57.00 -0.432 -0.506 17.1
76.00 -0.386 -0.442 14.5
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Table 5.22 Beam B3583: Comparison of the experimental and the
analytical deflections in bending about 3-aris.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %
P=250 22.50 -0.017 -0.019 11.8
41.50 -0.023 -0.025 8.1
60,50 -0.020 -0.019 5.0
P=750 22.50 -0.049 -0.056 14.3
41.50 -0.064 -0.074 15.6
60.50 -0.052 -0.056 7.7
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Table 5.23 Beam B3S132: Comparison of the experimental and the
analytical deflections in bending abecut 3-axis.

LOCATION EXPERIMENTAL  ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %

P=250 47.00 -0.090 -0.086 4.4
66.00 -0.097 -0.095 2.1
85.00 -0.087 -0.086 1.1

P=750 47.00 -0.235 -0.259 10.2
66.00 -0.260 -0.286 10.0
85.00 -0.227 -0.259 14.1
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Table 5.24 Beam B4583:

LOAD
(1bs.)

P=750

LOCATION
LENGTHWISE
(inches)

22.50
41.50
60.50

22.50
41.50
60.50

EXPERIMENTAL
DEFLECTION
(inches)

-0.002
-0.004
-0.002

-0.009
-0.011
-0.010

ANALYTICAL
DEFLECTION
(inches)

-0.002
-0.003
-0.002

-0.008
-0.010
-0.008

Conparison of the experimental and the
analytical deflections in bending about 3-axis.

ERROR
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Table 5.25 Beam B4S114: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches? (inches) (inches) pA

P=250 38.00 -0.008 -0.007 12.5
57.00 -0.009 -0.008 11.1
76.00 -0.007 -0.007

P=750 38.00 -0.022 -0.020 9.1
57.00 -0.023 -0.023 0.0
76.00 -0.021 ' -0,020 4.8
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Table 5.26 Beam B4S132: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

[.OCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %
P=250 47.00 -0.011 -0.010 9.1
66.00 -0.012 -0.011 8.3
85.00 -0.011 -0.010 9.1
P=750 47.00 -0.032 -0.031 3.1
66.00 -0.033 -0.034 3.0
85.00 -0.032 -0.031 3.1
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Table 5.27 Beam B1C83: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) {inches) (inches) pA
P=250 27.67 -0.048 -0.047 2.1
41.50 -0.051 -0.054 5.9
55.33 -0.045 -0.047 4.4
P=750 27.617 -0.136 -0.141 3.7
41.50 -0.149 -0.161 8.1
55.33 -0.136 -0.141 3.7
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Table 5.28 Beam B2C83: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL  ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %
P=250 22.50 -0.048 -0.042
42.50 -0.063 -0.056
60.50 -0.048 -0.042
P=750 22.50 -0.138 -0.127 8.0
42.50 -0.169 -0.167 1.2
60.50 -0.133 -0.127 4.5
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Table 5.29 Beam B2C114: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL  ANALYTICAL
LOAD LENGTHWISE . DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %
P=250 22.50 -0.129 -0,123 4.6
41.50 -0.145 -0.141 2.8
60.50 -0.127 -0.123 3.1
P=750 22.50 -0.370 -0.369 0.3
41.50 -0.403 -0.422 4.7
60.50 -0.356 -0.369 3.7
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Table 5.30 Beam B3C83: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) pA
P=250 22.50 -0.013 -0.011 15.4
41.50 -0.017 -0.015 11.8
60.50 -0.010 -0.011 10.0
P=750 22.50 -0.037 -0.034 8.1
41.50 -0.048 -0.045 6.2
60.50 -0.037 4 -0.034 8.1
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Table 5.31 Beam B3C114: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHAWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) A
P=250 38.00 -0.031 -0.033 6.4
57.00 ~0.035 -0.037 5.7
76.00 -0.033 -0.033 0.0
P=750 38.00 -0.095 -0.098 3.2
57.00 -0.102 -0.112 9.8
76.00 -0.090 -0.098 8.9
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Table 5.32 Beam B3C132: Comparison of the experimental and the
analytical deflections in bending about 3-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LLENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %
P=250 47.00 -0.051 -0.052 2.0
66.00 -0.055 -0.057 3.6
85.00 -0.052 -0.052 0.0
P=750 47.00 -0.142 -0.156 9.8
66.00 -0.163 -0.172 5.5
85.00 -0.146 -0.156 6.8
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Tables 5.33 to 5.38 present the comparison of the experimental and the analytical strain results
at two magnitudes of third-point loads. Beams were subjected to two equal concentrated sym-
metric loads at third-points. Except for the locations adjacent to or directly on the centroidal axis,
the experimental and the analytical strain values showed good agreement. The percent error (dif-
ference between experimental and analytical strain) at most locations was less than 10%. Figure

5.23 shows a typical strain distribution in a straight beam subjected to flatwise bending.

Tables 5.39 to 5.44 compare the experimental and the analytical deflection readings of the
straight beams in flatwise bending. Except for beam BIS (span of 114 inches), there was good
agreement between the deflections at 250 lbs. However, at 750 lbs the experimental and the ana-
lytical deflections of beams B1S (span = 114 inches), B2S (span = 114 inches), and B3S (span
= 83 inches) differed by 12% to 25%. Figure 5.24 shows a typical comparison between the ex-
perimental and the analytical deflections at three locations along the length of a straight beam. The
principal of superposition was not used to combine the edgewise and the flatwise bending strain to
obtain biaxial bending strain because of the way the strains were measured experimentally. It was

not possible to measure strain at the same location in both edgewise and flatwise bending.

5.4.3 Combined Bending and Compression

Beams B1S, B2S, B3S, BIC, B2C, and B3C were subjected to combined stresses. Straight
beams were tested in bending about the major axis and compression, as well as, in bending about

the minor axis and compression. Whereas, curved beams were only tested in bending about the
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Table 5.33 Beam B1S83: Comparison of the experimental and the
analytical strain in bending about 2-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD CENTROIDAL AXIS STRAIN STRAIN

(1bs.) {inches) (microstrain)  (microstrain) 7% ERROR

P=250 1.031 -250 -212 15.2
0.031 -24 -6 75.0
-1.000 193 205 6.2

P=500 1.031 -464 -424 8.6
0,031 -51 -13 74.5
-1.000 363 411 13.2
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Table 5.34 Beam BIS114: Comparison of the experimental and the
analytical strain in bending about 2-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN
(1bs.) {inches) (microstrain)  (microstrain) % ERROR
P=250 0.969 -268 -273
-0.062 24 18 .
-1.078 271 304 12.2
P=500 0.969 -516 -547
-0.062 48 35
-1.078 534 608
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Table 5.35 Beam B2583: Comparison of the experimental and the
analytical strain in bending about 2-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR

P=250 1.063 -334 -318 4.8
0.031 -28 -9 67.9
-1.000 299 299 0.0

P=500 1.063 -620 -636 2.6
0.031 -50 -19 62.0
-1.000 555 599 7.9
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Table 5.36 Beam B2S114: Comparison of the experimental and the
analytical strain in bending about 2-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain) (microstrain) 7% ERROR

P=250 1.063 -428 -437 2.1
0.031 -14 -13 7.1
-1.000 382 -411 7.6

P=750 1.063 -831 -874 5.2
0.031 -31 -26 16.1
-1.000 739 -822 11.2
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Table 5.37 Beam B3583: Comparison of the experimental and the
analytical strain in bending about 2-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.? (inches) (microstrain)  (microstrain) 7% ERROR

P=250 1.906 -107 -107 0.0
0.922 -53 -52 1.9
0.031 -1 -2 100.0
-0.859 55 48 12.7
-1.906 132 107 18.9

P=750 1.906 -306 -321 4.9
0.922 -146 -155 6.2
0.031 -1 -5 400.0
-0.859 155 144 7.1
-1.906 364 321 11.8
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Table 5.38 Beam B3S132: Comparison of the experimental and the
analytical strain in bending about 2-axis.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain) {microstrain) % ERROR

P=250 1.906 -166 -170 2.4
0.922 -84 -82 2.4
0.031 2 -3 250.0
-0.859 86 77 10.5
-1.906 208 170 18.3

P=750 1.906 -482 -510 5.8
0.922 -231 -247 4.2
0.031 4 -8 200.0
-0.859 243 230 5.3
-1.906 576 510 11.5
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Table 5.39 Beam B1583: Comparison of the egperimental and the
analytical deflections in bending about 2-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

{1bs.) (inches) (inches) (inches) %
P=250 22.50 -0.120 -0.116 3.3
41.50 -0.151 -0.153 1.3
60.50 -0.122 -0.116 4.9
P=500 22.50 -0.214 -0.231 7.9
41.50 -0.276 -0.306 10.9
60.50 -0.217 -0.231 6.4
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Table 5.40 Beam B1S114: Comparison of the experimental and the
analytical deflections in bending about 2-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) {inches) (inches) (inches) %
P=250 38.00 -0.293 -0.342 16.7
57.00 -0.328 -0.393 19.8
76.00 -0.284 -0.342 20.4
P=500 38.00 -0.563 -0.685 21.7
57.00 -0.628 -0.787 25.3
76.00 -0.549 -(). 685 24.8
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Table 5,41 Beam B2583: Comparison of the experimental and the
analytical deflections in bending about 2-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTTON DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) A
P=250 22.50 -0.163 -0.168 3.1
41.50 -0.207 -0.223 7.7
60.50 -0.159 -0.168 5.7
P=500 22.50 -0.349 -0.336 3.7
41.50 -0,439 . -0.445 1.4
60.50 -0.338 -0.336 0.6
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Table 5.42 Beam B2S114: Comparison of the experimental and the
analytical deflections in bending about 2-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

{1bs.) (inches) (inches) (inches) A
P=250 38.00 -0.476 -0.499 4.8
57.00 -0.522 -0.573 9.8
76.00 -0.449 -0.499 1.1
P=750 38.00 -0.888 -0.998 12.4
57.00 -0.973 -1.146 17.8
76.00 -0.839 -0.998 19.0
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Table 5.43 Beam B3583: Comparison of the experimental and the
analytical deflections in bending about 2-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.} (inches) (inches) {inches) pA
P=250 22.50 -0.030 -0.032 6.7
41.50 -0.037 -0.043 16.2
60.50 -0.030 -0.032 6.7
P=750 22.50 -0.084 -0.097 15.5
41.50 -0.110 -0.128 16.4
60.50 -0.084 -0.097 15.5
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Table 5.44 Beam B3S132: Comparison of the experimental and the
analytical deflections in bending about 2-axis.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches} (inches) (inches) A
P=250 47.00 -0.150 -0.152 1.3
66.00 -0.174 -0.168 3.4
85.00 -0.151 -0.152 6.6
P=750 47.00 -0.384 -0.456 18.8
66.00 -0.448 -0.504 12.5
85.00 -0.388 -0.456 17.5
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major axis and compression loads. All tests were conducted within the elastic range of the beams.
Two equal and concentrated bending loads were applied in all cases. However, except for beam
B1S, loads were not applied symmetrically for all the beams. Figure 5.25 shows the finite element
mesh of each beam that was tested in combined bending and compression. The figure also presents,

in a table form, the locations where loads were applied.

To test the beams, bending loads were applied first; then, axial loads were applied to a desired
level while maintaining the applied bending load. To model the experimental set-up, straight and
curved beams were modelled in the finite element analysis with pin-pin and pin-roller boundary
conditions througout the analysis. But, for the curved beams, to accurately model the experimental
procedures after the bending load was applied, the nodes receiving the bending load were restrained
in the 2-direction to restrict vertical movement during the subsequent application of the com-
pression loads. If the nodes were not restrained, the beam would regain its original curvature due
to the compression load. In the experimental set-up, the load heads restricted the curved beams

from regaining their original curvature.

Tables 5.45 to 5.53 compare the experimental strain measurements to the analytical strain
predictions for all the straight and curved beams tested in combined bending and compression.
The results for straight beams show a better agreement between the experimental and the analytical
strain in the compression zone. The experimental and the analytical results, however, show a
similar trend in strain readings along the depth of the beams from top to bottom. There was a
greater error at the three loads on the compression side than on the tension side. In addition, there
was less error between the experimental and the analytical values along the depth of the beam when

the beams were subjected to flatwise bending (bending about the minor axis or 2-axis).
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® K6 O @@ ® & K6 O
L il .14|, |
g By B 5 @
O Element [J Node
Nodes where

Beam ID load (P> was apptied

B1S108 5 & 13

B23108 5 & 13

B3S130 11 & 13

BiC81 3&9

B2C109 S & 13

B3C130 11 & 13

Figure 5.25 Finite element mesh used to analyze beams in
combined bending and compression (table shows

where load, P, was applied)
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Table 5.45 Beam B1S108: Comparison of the experimental and the
analytical strain in combined bending about 3-axis
and compression.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN
(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR
P=750 3.469 -235 -309 31.5
=0 2.031 -188 -181 3.7
0.609 -59 -54 8.5
-0.125 -9 11 22.2
-0.812 46 72 56.5
-2.188 154 195 26.6
-3.562 296 317 7.1
P=750 3.469 -341 -356 4.4
0=2000 2.031 -268 =227 15.3
0.609 -113 -99 12.4
-0.125 -7 -33 53.5
-0.812 217 28 3.7
-2.188 151 152 . 0.7
-3.562 306 276 9.8
P=750 3.469 -494 -452 3.5
0~=6000 2.031 -384 -320 16.7
0.609 -7 -190 1.1
-0.125 -148 -122 17.6
-0.812 -47 -59 25.5
-2.188 115 67 41.7
-3.562 © 314 193 38.5
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Table 5.46 Beam B1S108: Comparison of the experimental and the
analytical strain in combined bending about Z-axis
and compression.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN
(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR
P=500 1.062 -410 -484 18.0
0=0 0.969 -345 -44]1 21.8
0.062 -39 -28 28.2
-0.969 377 441 17.0
-1.047 442 477 7.9
P=500 1.062 -532 -566 h.4
@=2000 0.969 -479 -520 8.6
0.062 -98 -75 23.5
-0.969 399 431 8.0
-1.047 478 469 1.9
P=500 1.062 -630 -656 4.1
0=6000 0.969 -595 -607 2.0
0.062 -147 -122 17.1
-0.969 429 428 0.2
-1.047 510 470 7.8
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Table 5.47 Beam B2S108: Comparison of the experimental and the
analytical strain in combined bending about 3-axis
and compression.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain) (microstrain) 7% ERROR

P=750 2.109 -429 -607

0=0 0.672 -175 -193
-0.094 -4 27 -
-0.766 159 220 38.4
-2.141 505 616 22.0

P=750 2.109 -540 -692 28.1

(0=2000 0.672 -287 -265 1.7
-0.094 -89 -38 57.3
-0.766 146 162 11.0
-2.141 528 570 8.0

P=750 2.109 -827 -868 5.0

0~=6000 0.672 -499 411 17.6
-0.094 =221 -167 26.4
-0.766 -7 47 -
-2.141 458 484 5.7
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Table 5.48 Beam B25108: Comparison of the experimental and the
analytical strain in combined bending about 2-axis
and compression.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN

(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR

P=500 1.078 -716 -716 0.0

0=0 0.047 -36 -31 13.9
-0.938 599 623 4.0

P=500 1.078 -866 -865 0.1

0=2000 0.047 -118 -101 14.4
-0.938 624 629 0.8
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Table 5.49 Beam B3S130: Compariscn of the experimental and the
analytical strain in combined pending about 3-axis
and compression.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LLOAD  CENTROIDAL AXIS STRAIN STRAIN
(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR
P=750 2.734 -280 -393 40.4
0=0 1.719 -234 -247 5.5
0.703 -75 -101 34.7
-0.047 -26 7 -
-0.812 63 117 85.7
-1.828 198 263 32.8
-2.860 372 411 10.5
P=750 2.734 -349 -431 23.5
0=2000 1.719 -293 -283 3.4
0.703 -121 -135 11.6
-0.047 -51 -25 51.0
-0.812 4] 817 -
-1.828 203 235 15.8
-2.860 405 386 4.7
P=750 2.734 -440 -509 15.7
0=6000 1.719 -386 -356 7.8
0.703 -198 -202 2.0
-0.047 -112 -89 20.5
-0.812 -12 27 -
-1.828 168 180 7.1
-2.860 386 336 13.0
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Table 5.50 Beam B3S130:

LOAD
(1bs.)

DISTANCE FROM
CENTRCIDAL AXIS
(inches)

Comparison of the experimental and the
analytical strain in combined bending about 2-axis
and compression.

EXPERIMENTAL
TRAIN
(microstrain)

ANALYTICAL
STRAIN
(microstrain)

% ERROR

P=750
0=2000

P=750
0-4000

-718
-359
-72
193
533

-606

-335
-51
173
448
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Table 5.51 Beam BIC81:

LOAD
(1bs.)

P=750
0=2000

P=750
0-6000

DISTANCE FROM

CENTROIDAL AXIS

(inches)

Comparison of the experimental and the
analytical strain in combined bending about 3-axis
and compression,

EXPERIMENTAL
STRAIN
(microstrain)

-592
-513
-300
-190
-64
101
274

ANALYTICAL
STRAIN
(microstrain)

% ERROR
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Table 5.52 Beam B2C109: Comparison of the experimental and the
analytical strain in combined bending about 3-axis
and compression.

DISTANCE FROM  EXPERIMENTAL ANALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN
(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR
P=750 2.141 : -555 -520 6.3
0=0 0.781 -230 -190 17.4
0.000 -44 0 100.0
-0.672 108 163 50.9
-2.094 450 509 13.1
P=750 2.141 -628 -572 8.9
=2000 0.781 -294 -243 17.3
0.000 -97 -54 443
-0.672 45 109 -
-2.094 391 453 15.9
P=750 2.141 -754 -677 10.2
0=6000 0.781 -421 -349 17.1
0.000 -204 -161 21.1
-0.672 -91 1 -
-2.094 242 344 42.1
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Table 5.53 Beam B3C130: Comparison of the experimental and the
analytical strain in combined bending about 3-axis
and compression.

DISTANCE FROM  EXPERIMENTAL AMALYTICAL

LOAD  CENTROIDAL AXIS STRAIN STRAIN
(1bs.) (inches) (microstrain)  (microstrain) 7% ERROR
P=750 3.344 -233 -284 21.9
0=0 2.359 -196 -201 2.6
1.344 -115 -114 0.9
0.109 -7 -9 28.6
-1.250 90 106 17.8
-2.219 192 189 1.6
-3.281 285 279 2.1
P=750 3.344 -255 -314 23.1
0=2000 2.359 -2723 -229 2.7
1.344 -143 -141 1.4
0.109 =34 -35 2.9
-1.250 59 82 18.9
-2.219 160 166 3.8
-3.28] 246 257 4.5
P=750 3,344 -251 -373 48.6
=6000 2.359 -224 -286 27.7
1.344 -1 -196 14.6
0.109 -78 -86 10.2
-1.250 -9 34 -
-2.219 73 120 64.4
-3.281 131 214 63.4
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Figures 5.26 to 5.29 show typical experimental and analytical strain distributions in two of the
straight beams under combined bending and axial loads. Analytical, as well as, experimental strain
readings at three loads converged on the side where the beam was under tension. The observations
seem to indicate that the outer laminae on the tension side of the beams were being subjected to
large tensile strains. Whereas the laminae on the compression side were undergoing further com-
pression. In all cases, the neutral axis shifted downwards. The neutral planes and the centroidal
planes of the beams do not coincide. The shift of the neutral plane was, however, very small rela-
tive to the depth of the beams. The shift in the neutral axis was due to increasing compressive

stresses.

Figure 5.30 shows the distribution of strain under combined bending and compression loads
in a curved beam. No convergence of strain distributions at three levels of loads was noticed. In
the majority of the beams, the analytical results were conservative and predicted higher strain than

the experimental strain values.

Tables 5.54 to 5.62 show the deflection readings for straight and curved beams tested under
combined loads. Except for deflection readings of beams B2C, B3C, and B2S in flatwise bending,
the experimental and the analytical results of the rest of the beams agree very well. The percent
difference between the experimental and the analytical results was less than 10%. For beams B2C,
B3C, and B2S the percent error was between 20-40%. In all cases, the analytical deflections were
larger than the experimental deflections. The measured deflections were lower than the predicted
ones because the displacement transducers were fixed, but the beams were being translated hor-
izontally due to the axial loads. Therefore, the displacement chord in the transducer was moving
horizontally, but not vertically down. Thus, the recorded deflections were smaller. Figures 5.31

and 5.32 show examples of deflection results in a straight and a curved beam.
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Table 5.54 Beam B1S108:

LOAD
(Ibs.)

Comparison of the experimental and the

analytical deflections in bending about 3-axis
and compression.

LOCATION
LENGTHWISE
(inches)

43.25
54.06
89.75

43.25
54.06
89.75

43.25
54.06
89.75

EXPERIMENTAL
DEFLECTION
(inches)

-0.092
-0.099
-0.062

-0:105
-0.116
-0.072

-0.116
-0.125
-0.078

ANALYTTCAL
DEFLECTION
(inches)

-0.112
-0.116
-0.063

-0.113
-0.118
-0.064

-0.115
-0.120
-0.065

ERROR
%

—_ o
— a3
[o NS RN |

— — =3
— -3 On

0.9
4.0
16.7
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Table 5.55 Beam B1S108: Comparison of the experimental and the
analytical deflections in bending about 2-axis
and compression.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) A
P=250 43.25 -0.499 -0.538 7.8
0=0 54.06 -0.521 -0.566 8.6
89.75 -0.293 -0.300 2.4
P=0 43.25 -0.524 -0.578 16.3
0=2000 54.06 -0.548 -0.608 10.9
89.75 -0.303 -0.322 6.3
P=0 43,25 -0.602 -0.627 4.2
(=6000 54.06 -0.624 -0.659 5.6
89.75 -0.346 -0.348 0.6
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Table 5.56 Beam B25108: Comparison of the experimental and the

0-2000

P=0
06000

analytical deflections inbending about 3-axis and

compression.

LOCATION
LENGTHWISE
(inches)

43.25
54.06
89.75

43.25
54.06
89.75

43.25
54.06
89.75

EXPERIMENTAL
DEFLECTION
(inches)

-0.276
-0.280
-0.161

-0.285
-0.291
-0.166

-0.3%0
-0.399
-0.213

ANALYTICAL
DEFLECTION
(inches)

-0.348
-0.365
-0.195

-0.359
-0.376
-0.201

-0.382
-0.401
-0.214

ERROR
%

26.1
30.4
21.1

26.0
29.2
21.1

2.0
0.5
0.5
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Table 5.57 Beam B2S108: Comparison of the experimental and the
analytical deflections in bending about 2-axis and
compression.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(1bs.) (inches) (inches) (inches) %
P=750 43,25 -0.754 -0.784 4.0
0=0 54.06 -0.782 -0.824 5.4
89.75 -0.434 -0.434 0.3
P=750 43.25 -0,861 -0.871 1.2
(0~2000 54.06 -0.898 -0.916 2.0
89.75 -0.491 -0.485 1.2
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Table 5.58 Beam B35130: Comparison of the experimental and the
analytical deflections inbending about 3-axis and
compression.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

{1bs.) (inches) (inches) (inches) A
P=750 65.00 -0.214 -0.253 18.2
0-0 74.25 -0.215 -0.254 18.1

102.20 -0.149 -0.173 16.1
P=0 65.00 -0.237 -0.257 8.4
0=2000 74.25 -0.239 -0.258 7.9

02.20 -0.165 -0.176 6.7
P=0 65.00 -0.242 -0.266 9.9
0=6000 74.25 -0.246 -0.267 8.5

02.20 -0.170 -0.181 6.5
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Table 5.59 Beam B3S130:

0=2000

P-0
0~4000

Comparison of the experimental and the

analytical deflections in bending about 2-axis and

compression.

LOCATION
LENGTHWISE
(inches)

65.00
74.25
102.20

65.00
74.25
102.20

65.00
74.25
102.20

EXPERIMENTAL
DEFLECTION
(inches)

-0.396
-0.402
-0.283

-0.438
-0.439
-0.310

-0.467
-0.467
-0.320

ANALYTICAL
DEFLECTION
(inches)

-0.445
-0.446
-0.303

-0.458
-0.459
-0.311

-0.471
-0.472
-0.319

ERROR
%

....,_.
RS
— O e

O e W
w o O
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Table 5.60 Beam BIC81:

0-2000

0=6000

Comparison of the experimental and the

analytical deflections in bending about 3-axis and

compression.

LOCATION
[LENGTHWISE
(inches)

27.00
40.50
54,00

27.00
40.50
54,00

27.00
40.50
54.00

EXPERIMENTAL
DEFLECTION
(inches)

-0.129
-0.136
-0.129

-0.132
-0.141
-0.133

-0.132
-0.141
-0.133

ANALYTICAL
DEFLECTION
(inches)

ERROR
A
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Table 5.61 Beam B2C109:

0=2000

0=6000

Comparison of the experimental and the

analytical deflections in bending about 3-axis and

compression.

LOCATION
LENGTHWISE
(inches)

43.62
54.69
90.37

43.62
54.69
90.37

43.62
54.69
90.37

EXPERIMENTAL
DEFLECTION
(inches)

-0.25]
-0.263
-0.152

-0.262
-0.275
-0.159

-0.218
-0.235
-0.136

ANALYTICAL
DEFLECTION
(inches)

-0.302
-0.317
-0.173

-0.302
-0.316
-0.173

-0.302
-0.315
-0.173

ERROR
%

20.3
20.5
13.8

38.5
34.0
21.2
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Table 5.62 Beam B3C130: Comparison of the experimental and the
analytical deflections inbending about 3-axis and
compression.

LOCATION EXPERIMENTAL ~ ANALYTICAL
LOAD LENGTHWISE DEFLECTION DEFLECTION ERROR

(lbs.) (inches) (inches) (inches) pA
P=750 65.00 -0.124 -0.152 22.6
0=0 74.25 -0.125 -0.153 22.4

102.20 -0.096 -0.104 8.3
P=0 65.00 -0.124 -0.151 21.8
@=2000 74.25 -0.125 -0.153 22.4

102.20 -0.093 -0.104 11.8
P=0 65.00 -0.062 -0.149 140.0
0=6000 74.25 -0.059 -0.153 159.0

102.20 -0.042 -0.104 148.0
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5.5 Sources of Error

There were many possible sources of error that gave rise to differences between the exper-

imental and the analytical results. Some of the possible experimental sources of error were:

1. The clip-on transducers were not sensitive to very small strain at the neutral axis of the
beams. A possible method of improving the sensitivity would be to bond more sensitive foil gages
to clip-on tranducers. Thus, smaller strain in the wood could be accurately measured.

2. The correct placement of CET on the specimen is crucial. If the base plates are not set
close to the calibration gage length, errors can be introduced in the strain measurement. Also,
alignment of the CET with the specimen geometric axes is important.

3. The rotary potentiometer used to measure deflections should be replaced by highly accu-
rate LVDT (Linear Variable Differential Transformer). The resolution of the potentiometers used
in this study was not sufficient to accurately read very small displacements.

4. While conducting beam tests, bending loads were applied continuously by the loading ram.
Therefore, the data acquisition system has to read all the channels very fast so that all channel
readings will correspond to the same load level. This was hard to achieve, and contributes to the
errors.

5. Large differences in the experimental and the analytical results for combined bending and
compression loads were primarily due to the experimental set-up. Ideally, it is desirable to have two
concentrated loads in the form of dead weights on the beam while applying the compression load.
Thus, as the locations on the beams where bending loads are applied are being translated horizon-
tally due to compression loads, the bending loads also would translate. In other words, the bending

loads should be able to translate horizontally, while the compression load is being applied.
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6. In addition, the boundary conditions probably were not accurately modelled in the finite
element analysis to simulate the combined bending and compression test. It was difficult to exactly
depict the boundary conditions of the experiment in the lab to model it accurately.

7. Lastly, errors in the results were inevitable because of the variations in stiffness properties

within the beams themselves due to the nature of wood.

5.6 Summary and Conclussions

Considering the possible sourees of errors mentioned in the previous section, over 80% of the
experimental and the analytical results were in very good agreement with each other (i.e. less than
10% error). The study on the beams indicates that southern pine glulam beams can be modelled
accurately using the finite element analysis with a stiffness matrix that contains only the longitudinal

modulus of elasticity of the beam and the shear modulus of the cross-section of the beam.

The experimental and the analytical strain and deflection measurements of glulam beams in
bending about the major and the minor axes agreed well for most cases. Differences of less than
10% between the experimental measurements and the analytical predictions were found for bending
about the major and the minor axes for all locations through the depth of the beams except in the
vicinity of the neutral axis. The difference between the measured and the predicted strain and de-
flection measurements for glulam beams tested in combined bending and compression ranged
mostly between 0% and 40%. This difference could be attributed to several causes including the
idealized modelling of the boundary conditions, the experimental set-up for combined loading, the
sensitivity of the CET to small strains around the neutral axis, and the low resolution of the dis-

placement transducers.

In conclusion, comparison of the experimental and the analytical results show that a three-

noded isoparametric beam element accurately predicts the behavior of glulam beams under flatwise
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and edgewise bending loads, as well as under combined bending and compression loads. The model

is based on simplified assumptions of transverse isotropy and global modulus of
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CHAPTER 6

6. SUMMARY, CONCLUSIONS, AND

RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Introduction

The preceeding chapters presented the experimental methods used to verify the analytical
model to predict the behavior of glulam space beams. They also contain the experimental and the
analytical results of the behavoir of glulam beams under in-plane bending about the major and the
minor axes, and combined compression and bending loads. The following chapter summerizes the

results and presents the conclusions drawn from this study.
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6.2 Summary and Conclusions

1. Southern pine glulam beams can be modelled accurately using the finite element analysis
with a stiffness matrix that contains only the longitudinal modulus of elasticity of the beam and the
shear modulus of the cross-section of the beam.

2. Torsion tests conducted on orthotropic southern pine specimens with rectangular cross-
sections revealed that the values of shear moduli, G, and G, were very close to each other. The
two averages differed by less than 8%. The average values of the principal shear moduli G, and
G.p of the orthotropic samples are: G,p= 160,870 psi and G, ;=150,156 psi. The test results
showed that there was no significant effect of the aspect ratio on the values of the shear moduli.

3. Shear modulus of glulam specimens was taken to be 160,000 psi. The average shear
moduli of the glulam rectangular and the circular glulam samples were 162,051 psi and 162,017 pst,
respectively. These values were obtained using Saint Venant’s torsion solution for homogeneous,
isotropic materials. Glulam shear modulus was not very much different from G, and G, of the
orthotropic southern pine specimens. Glulam shear modulus differed from orthotropic shear
moduli by less than 8%. It differed from the average of G, and G, (155,513 psi) by less than 4%.

4. Based on the torsion results, the shear modulus of a glulam beam cross-section can be
calculated using Saint Venant’s torsion solution for homogeneous, isotropic materials. This greatly
simplifies the formulation of a 3-D beam finite element model.

5. A simple and reusable clip-on electrical transducer (CET) was fabricated and used to
measure the strains in the glulam beams. The reproducibility and the accuracy of the results was
reasonably good and acceptable. CET was proven to be an economical, an accurate, and a reliable
strain measuring device for wood.

6. In addition, a study conducted on the effect of strain gage size on strain measurements
showed that 2 inch gage length was suitable to record strain in southern pine beams.

7. The experimental and the analytical strain and deflection measurements of glulam beams

in bending about the major and the minor axes agreed well for most cases. Differences of less than
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10% between the experimental measurements and analytical predictions were found for bending
about the major and the minor axes for all locations through the depth of the beams except in the
vicinity of the neutral axis. The differences between the measured and the predicted strain and de-
flection measurements for glulam beams tested in combined bending and compression ranged
mostly between 0% and 40%. This difference between the experimental and the analytical results
were attributed to several causes including the idealized modelling of the boundary conditions, the
experimental set-up for combined loading, the sensitivity of the CET to small strains around the

neutral axis, and the low resolution of the displacement transducers.

In conclusion, the results show that a three-noded isoparametric beam element accurately
predicts the response of the glulam beams tested in this study. Due to wood’s variability, the re-
duction of material properties in the constitutive matrix is an attractive feature compared to a
complex matrix used in a continuum element analysis. Particularly since we don’t really know the
material properties on a pointwise basis, which is necessary for a continuum analysis. This is es-

pecially true for commercial glulam beams where all we know are published design values.

6.3 Recommendations for Future Work

Work should be done to improve the measuring devices, such as deflection transducers and the
clip-on electrical transducers. CET should be improved to make it more sensitive to very small
strain such as those occuring closer to the neutral axis of beams subjected to bending loads. Sta-
bility of the CET should also be improved for better reproducibility. It is also important to find a

method of installing the CET shoes on the wooden specimens.

Research should be conducted to find a better way of estimating longitudinal modulus of
elasticity of glulam beams from laminae Young’s modulus. However, as it was done in this study,

tensile strain should be measured in the laminae to estimate the true Young’s modulus. The tensile
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strain used to estimate the longitudinal Young's modulus were measured only on one face of each
lamina in this study. The author recommends measuring strains on both faces in future exper-
iments, so that the elastic modulus could be computed from the average strain reading. It was
shown that the shear modulus can be estimated by testing small glulam specimens in torsion. The

method may be useful for measuring and studying the shear modulus of full-size beams.

Also, a better experimental test set-up should be developed to test glulam beams under com-
bined bending and compression loads. Also, the beams should be subjected to uniformly distrib-

uted bending loads to simulate the stresses in a glulam element that is part of a glulam lattice dome.
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!
1
1
! THE FOLLOWING PROGRAH ENABLES ONE TO CALIBRATE CLIP GRGES.

! UPTO 10 CLIP GAGES CAN BE COMNECTED TO THE STRRIN GAGE CARD.

| HOWEVER, THE FOLLOWING PROGRAM LETS YOU CALIBRRTE ONE CLIP GAGE
! AT A TIME. [T DOES NOT MATTER AS TO WHICH CHANMAL THE CLIP IS
| CONNECTED TO.

|

|

:

1

!

1

THE PROGRAH WILL ASK YOU FOR A RANGE OF DELTA THAT YOU WILL [NDUCE
USING THE EXTENSOMETER. IT CAN HANDLE UALUES IN TENSION RS WELL RS
IN COMPRESSION.

! NOTE: ALWAYS GO TN TENSION FIRST AND THEN IN COMPRESSION.
[}

OPTION BASE 1 !SPECIFIES THE DEFAULT LOGER BOUND OF ARRAYS

PRINTER IS CRT |ADDRESS OF THE TERMINAL
OUTPUT KBD;"&K*; {CLEARS THE SCREEN

DIH Com$(1001
1
! ASKING FOR THE NECESSARY INFORMATION
'
INPUT *ENTER THE DATE: *,Dates$
INPUT “ENTER CLIP GAGE ID: *,Id$
INPUT “GHAT CHANNAL [S THE GAGE COMNECTED T0 ? *¢€
INPUT “TIME BETWEEN RERDINGS IN SECONDS? *,S
INPUT "WHAT IS THE GRGE FACTOR? " ,GF
PRINT “ENTER THE RANGE FOR DELTA TO CALIBRATE THE CLIP GAGES:"
PRINT
INPUT “ENTER THE LOWER LINIT: *,Low
INPUT “ENTER THE UPPER LIMIT: * High
INPUT *WHAT INCREMENTS YOU WANT TO CRLIBRATE THE GRGE?",Inc
INPUT “ENTER ANY COMMENTS YOU WOULD LIKE TO?",Com$
N=(((High-Low)/Inc)#4)+1
OUTPUT KBD;"NK";
PRINT “YOU WILL BE TAKING",N,* READINGS, STARTING FROM,", Low,"AND"
PRINT “ENDING BITH * High
PRINT
PRINT *T0 BEGIN CALIBRATING THE GAGE, PRESS CONT KEY*
PAUSE
ALLOCATE Ch(N,2)
1
! CALCULATING THE DELTR UALUES TO PRINT LARTER
|
Nm=Lou
FOR Row=1 TO N

Ch{Row,1)=Num

IF (Rowr={(N-1)74)+1) AND (Row¢(N-INT(N/4})) THEN

Nam=Num-[nc
ELSE
Nam=Ngm+ [nc

END IF
NEXT Rou
QUTPUT KBD;"KK";
1
! TRKING THE EXCITATION UOLTAGE READING
] .
PRINT "1 A RERDY TG TAKE THE UOLTAGE READING IF YOU ARE. PRESS CONT KEY"
PRUSE
CLEAR 708
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950

960

976

980

930

1000
1010
1020
1030
1040
1058
1060
1070
1100
1110
1120
1130
1140
1130
1160
1179
1180
1190
1200
1210
1220
1230
1240

CLERR 722
OUTPUT 709;°SIAC30® 1INITIALIZING THE SYSTEM { CLOSING CHAMNAL 30
QUTPUT 722;"SOF1R4* ITELLING 3456 THAT IT IS DC VOLTAGE WITH 10 UOLT RANGE
ENTER 722,V {READING THE EXCITRTION UOLTAGE
OQTPUT 709;°AR" I|RESET THE CHANMALS OR OPENING ALL CLOSED ONES
!
! TAKING THE INITIAL UNSTRAINED RERDINGS AND THE LATER STRAIN RERDINGS
! FOR THE CHANNAL SPECIFIED
[}
SELECT C
1
! GAGE CONNECTED TO CHANNAL 0
[}
CASE =1
DISP “TAKING THE INITIAL UNSTRAINED READINGS NOW"
OUTPUT 709;"AC20°
OUTPUT -722;"SOF1R4FL1Z1" !FL1 TURNS FILTER ON, Z!1 TURNS AUTC ZERO ON
ENTER 722;R
Ur=SGN(A/V)+INT(ABS((R/UI %1 E+6)+.5)  !INITIAL UOLTAGE RATIO
QUTRUT 709;"AR*
OUTPUT K8D;"KK*;
FOR J=1 TO N
[F (J=1) THEN
PRINT *PRESS CONT KEY TO TAKE THE ZERO RERDINGS®
PRUSE
ELSE
PRINT “RDD STRRIN TO GAGES AND PRESS CONT KEY TO PROCEED"
PAUSE
END IF
@AIT S
QUTPUT 709;"RC20"
OUTPUT 722;°SOFLR4FL1Z1"
ENTER 722;8
T=SGN(B/U)XINT(RBS((B/U}#1 E+6)+.9) {STRAINED VOLTRGE RATIO
X=T-Ur
Ch(J,2)=-X/Gf {CALCULATING THE STRAIN
PRINT Ch(J,1);TAB(10),Ch(J,2)
PRINT
OUTPUT 709;"AR*
NEXT J
t
! GRGE CONNECTED TO CHANNAL 1
i
CASE =2
DISP “TRKING THE INITIRL UNSTRAINED READINGS NOW"
OUTPUT 709;"AC21"
OUTPUT 722;"SOF1R4FLIZ1"
ENTER 722;R -
Ur=SGN(A/VUIINT(ABS((A/U}%] (E+6)¢.5)
OUTPUT 703;"RR*
OUTPUT KBD;"#K*;
FOR J=1 TO N
IF (J=1) THEN
PRINT “PRESS CONT KEY TO TRKE THE ZERO READINGS"
PAUSE
ELSE
PRINT “ADD STRAIN TO GAGES AND PRESS CONT KEY TO PROCEED"
PAUSE
END IF
WAIT S

229



1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1558
1560
1570
1580
159¢
1500
1610
1620
1630
1640
1650
1660
1670
1680
16396
1700
1710
1740
1750
1760
1770
1780
1790
1800
1810
1828
1830
184¢
1850
1860
187¢
1880

OUTPUT 709;°RC21"
OUTPUT 722;°SOF1R4FLIZ1"
ENTER 722;8
T=SGN(B/VI4INT((ABS(B/U) %1 E+6)+.9)
XT-Ur
CheJ,2)=-X/Gf
PRINT Ch(J,1);TRB(10),Ch(J,2)
PRINT
OUTPUT 709;"AR*
NEXT J
{
! GAGE CONNECTED TO CHAMNMAL 2
]
CASE =3
DISP “TAKING THE INITIAL UNSTRAINED READINGS NOW*
QUTPUT 709;"AC22°
OUTPUT 722;*SOF1R4FLIZI"
ENTER 722;8
Ur=SGN(A/U) +INT(ABS{(A/V)*] .E+6)+.95)
OUTPOT 709;°AR"
OUTPUT XBD;"K*;
FOR J=1 TON
IF (J=1) THEN
PRINT “PRESS CONT XKEY TO TAKE THE ZERO RERDINGS*
PAOSE
ELSE
PRINT "ADD STRAIN TO GAGES AND PRESS CONT KEY TO PROCEED"
PAUSE
END IF
WAIT S
OUTPUT 709;°AC22*
QUTPUT 722,"SOF1R4FL1Z1"
ENTER 722;B
T=SGN(B/U)*[NT(RBS((B/VU}4| E+6)+.9)
X=T-Ur
ChtJ,2)=-X/GF
PRINT Ch(J,1);TRB(10},Ch(J,2)
PRINT
QUTPUT 709;°AR"
NEXT J
1
! GAGE CONNECTED TO CHANNAL 3
t
CASE =4
DISP "TRKING THE INITIAL UNSTRAINED READINGS NOU"
OUTPUT 709;“RC23"
OUTPUT 722;*SOF1R4FL1IZ1"
ENTER 722;R
Ur=SGN(A/UYINT(ABS((A/U)] .E+6)+.5)
OOTPUT 709;*AR"
OUTPUT KBD;"8K*;
FOR J=1 TON
IF (J=1) THEN
PRINT *PRESS CONT KEY TO TRKE THE ZERO READINGS®
PAUSE
ELSE
PRINT *ADD STRAIN TO GAGES AND PRESS CONT KEY TO PROCEED®
PAUSE
END IF
WAIT S
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189¢
1908
1910
1920
1930
1940
1950
1960
1370
1980
1990
2000
2010
2020
2050
2069
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2130
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2210
2320
2330
2340
2330
2380
2330
2400
2410
2420
2430
2440
2450
2460
2470
2480
2430
2500
2510
2520

OUTPUT 709;°AC23"
OUTPUT 722;°SOF1R4FLIZL"
ENTER 722;8
T=SEN(B/U)AINT(RBS((B/V)41 E+6)+.5)
XeT-Ur
Ch(J,2)=-X/GF
PRINT Ch(J,1);TAB(10),ChiJ,2)
PRINT
QUTPUT 709;°AR"

NEXT J

1

| GAGE CONNECTED TO CHANMAL 4
t

CASE =5

DISP “TRKING THE INITIAL UNSTRAINED READINGS NOW*
OUTPUT 709;*AC24"
QUTPUT 722;"SOF1R4FL1Z1"
ENTER 722;A
Ur=SGN(AR/U)*INT(RBS((A/U)#1 .E+6)+.5)
OUTPUT 709;°AR"
OUTPUT KBD;“&K*;
FOR J=1 TO N
IF (J=1) THEN
PRINT *PRESS CONT KEY TO TRKE THE ZERO READINGS®
PAUSE
ELSE
PRINT *ADD STRAIN TC GAGES AND PRESS CONT KEY TO PROCEED*
PRUSE
END IF
WAIT S
OUTPUT 709;"AC24"
OUTPUT 722;*SOF1R4FL1Z1"
ENTER 722;8
T=SGN(B/U)*INT(RBS((B/U) k] E+6)+.5)
X=T-Ur
Ch(J,2)=-X/GE
PRINT Ch(J,1};TAB(10) ,Ch(J,2)
PRINT
OUTPUT 709;*AR®
NEXT J
]

! GAGE CONNECTED TO CHANNAL S
'

CARSE =6

DISP *TAKING THE INITIAL UNSTRAINED READINGS NOU
QUTBUT 709;°AC25"
OUTPUT 722;*SOF1R4FLIZL®
ENTER 722;A
Ur=SGN(R/U) A INT(RBS( (R/U) 1 .E+6)+.5)
OUTPUT 709;"AR"
OUTPUT KBD;"KK*
FOR J=1 TO N
IF (J=1) THEN
PRINT *PRESS CONT KEY TO TAKE THE ZFRO READINGS®
PAUSE
ELSE
PRINT *ADD STRAIN TO GAGES AND PRESS CONT KEY TO PROCEED®
PAUSE
END IF
AIT S
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2530
2540
2558
2560
2570
25680
259¢
2600
2610
2620
2630
2640
2650
2660
2670
2700
2710
2720
2730
2740
2730
2760
2770
2780
2790
2800
2610
2820
2030
2840
28s0
2860
2870
2880
2890
2900
2910
2920
2930
2940
2930
2960
297¢
2930
2990
3020
3030
3040
3050
3069
3070
3080
3090
3100
3110
Kol
3130
3140
3150
3160

OUTPUT 709;°AC25*
OQUTPUT 722;°SOF1R4FLIZL"
ENTER 722;8
TSEN(B/V)+INT(RBS((BAU)*] .E+6)+.5)
X T-Ur
Chi(J,2)=-X/GF
PRINT Ch(J,1);TRB(10),Ch(J,2)
PRINT
QUTPUT 709;*AR*
NEXT J
[}
! GAGE CONNECTED TO CHANNAL 6
I
CASE =7
DISP “TAKING THE INITIAL UNSTRAINED READINGS NOW®
QUTPUT 709;*AC26*
QUTPUT 722;"SOF1R4FL1Z1"
ENTER 722;A
Ur=SGN(A/ U)X INT(RBS((R/U) %1 . E+6)+.5)
QUTPUT 709;°AR"
OUTPUT KBD;*%K*,
FOR J=1 TO N
IF (J=1) THEN
PRINT "PRESS CONT KEY TO TRKE THE ZERO READINGS®
PAUSE
ELSE
PRINT “ADD STRAIN TO GAGES AND PRESS CONT KEY TO PROCEED*
PARUSE
END IF
WAIT S
OUTPUT 709;*AC26"
OUTPUT 722;°SOF1R4FL1Z1"
ENTER 722;B
T=SGN(B/U) X INT(RBS((B/U) %1 E+€)+.5)
X=T-Ur
Ch(J,2)=-%X/6f
PRINT Ch{J,1);TRB(10),Ch(J,2}
PRINT
QUTPUT 709;"AR"
NEXT J
}
! GAGE CONNECTED TO CHANNAL 7
i
CASE =8
DISP “TAKING THE INITIAL UNSTRAINED RERDINGS NOW"
QUTPUT 709;"AC27*
QUTPUT 722;“SOF1R4FLIZL"
ENTER 722;R
Ur=SGN(R/U)Y*INT(RBS((A/U) 41 .E+6)+.5)
OUTPUT 709;*AR"
OUTPUT KBD;"#K";
FOR J=1 TON
IF (J=1) TREN
PRINT “PRESS CONT KEY TO TRKE THE ZERO RERDINGS"
PAUSE
ELSE
PRINT "ADD STRAIN TO GAGES AND PRESS CONT KEY TO PROCEED"
PRUSE
END IF
WAIT S
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3170
3180
3190
3200
3210
220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3430
3500
3510
3520
3530
3340
3356
3560
3570
3580
3580
3600
3610
3620
3830
3660
3678
3680
3690
3700
3710
3720
3730
3740
3750
3760
3778
3780
3730
3800

QUTPUT 709;“RC27*
OOTPUT 722;°SOF1R4FLIZ1"
ENTER 722;B
T=SEN(B/V)*INT(RBS((BAV)+1 .E+6)+.5)
X=T-Ur
ChiJ,2)e-X/GE
PRINT Ch(J,1);TRB(10),Ch(J,2)
PRINT
OQUTPUT 709;°AR"
NEXT J
1
! GAGE CONMECTED TO CHANNAL 8
i
CASE =9
DISP *TAKING THE INITIAL UNSTRAINED READINGS NOW"
OUTPUT 709;"AC28"
OUTPUT 722;°SOF1R4FL1Z1"
ENTER 722;R
Ur=SGN(A/UI*INT(ABS((A/U)*1 . E+6)+.5)
OUTPUT 709;“AR*
OUTPUT KBD;*&";
FOR J=1 TO N
[F (J=1) THEN
PRINT °*PRESS CONT KEY TO TRKE THE ZERQ READINGS®
PAOSE
ELSE
PRINT *ADD STRAIN TO GAGES AND PRESS CONT KEY TO PROCEED"
PAUSE
END [F
BRIT S
OUTPUT 709;°AC28"
OQUTPUT 722;°SOF1R4FLIZL"
ENTER 722;B
T=SGN(B/U)*INT(ABS((B/U)*1 . E+6)+.5)
X=T-Ur
Ch(J,2)=-X/Gf
PRINT Ch(J,1);TAB(10),Ch(J,2)
PRINT
QUTPUT 703;"AR*
NEXT J
]
! GAGE CONNECTED TO CHANMAL 9
t
CASE =10
DISP *TAKING THE INITIAL UNSTRRINED RERDINGS NOW®
OUTPUT 709;*AC29"*
QUTPUT 722;°SOF1R4FL1Z1*
ENTER 722;R
Ur=SGN(R/7VIXINT(ABS((R/U) %1 E+6)+.5)
OUTPUT 709;°AR*
OUTPUT KBD;"&K*;
FOR J=! TO N
IF (J=1) THEN
PRINT "PRESS CONT KEY TO TAKE THE ZERG READINGS®
PAUSE
ELSE
PRINT “ADD STRAIN TO GAGES AND PRESS CONT KEY TO PROCEED®
PAUSE
END IF
UAIT S
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3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3380
3990
4000
4010
4020
4030
4040
4050
4060
4070
4089
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4230
4300
4310
4320
4330
4340
4330

OUTPUT 709;°AC29*
OUTPUT 722;°SOF1R4FLIZL®
ENTER 722,;B
TSQN(B/UI#INT(ABS( (B £]1 E+6)+.5)
XeT-Ur
Ch(J,2)=-X/Gf
PRINT Ch(J,1);TRB(10),Ch(J,2)
PRINT
OUTPUT 709;"AR*
NEXT J
END SELECT
]
! STORING THE RERDINGS ON HARD DISK IF ASKED FOR
[}
INPUT *DO YOU YISH TO STORE THE DATR IN A FILE? *,Ans$
IF Ans$=*NO* THEN 4110
INPUT “FILE YOU WISH TO STORE DATA UNDER? * Mawe$
PRINT "INSERT DATA DISK IN RIGHT DRIVE AND PRESS (CONT) *
PAUSE
CRERTE BDAT Name$&*:,700,1% N
ASSIGN @File TO Nawes&®:,700,1°
FOR K=1 TO N
FOR L=1 T0C
OQTPUT @File,K;Chik,L)
NEXT L
NEXT X
ASSIGN @File TO #
]

! PRINTING THE HARD COPY IF ASKED FOR
1
INPUT *WOULD YOU LIKE A HARD COPY?* Ans$
IF Ans$="NO" THEN 4320
PRINTER TS 701
PRINT TRB(20),*STRAIN HEASUREHENTS®
PRINT
PRINT "DATE: * Dates
PRINT
PRINT *CLIP GAGE ID: °*,Ids
PRINT
PRINT *COMMENTS: *,Coms
PRINT
PRINT * DELTA (INCES) STRAIN (HICROSTRAING) *
3 .
PRINT
FOR J=1 TO N

FOR K=1 TO 2

PRINT USING *2X,DDDD.DODD, 15X, 4" :Ch(J K)

NEXT K

PRINT
NEXT J
PRINTER IS CRT .
OUTPUT 709;*E” | CLEARING THE SYSTEM
PRINT
PRINT *THE TEST HAS BEEN COMPLETED
END
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430

460
4651
473
4317

[W2R L R R B ) I €Y
Lrpd— OW
oo o o

o

vy
m
oo

S0
S80
Sal
S83

OPTION BRSE 1
PRINTER IS CRT

OUTPUT KBD:"®K" :

DIM Id$(1S1,Coms(80],Dates{15]1,D(S0,11) ,Faces(S],Rnums(S)

Gf=2.00

INPUT "ENTER TODRY'S DARTE: *“,Dates
INPUT “ENTER RUN NUMBER: " ,Rnum$

C=10

INPUT "ENTER TIME BETWEEN READINGS: " .S
Gl=2.180

INPUT "BEAM IDENTIFICATION: *  Ids

INPUT "ENTER THE BERM FACE BEING TESTED?" ,Faces
QUTPUT KBD:."8K";
INPUT "“HOW MANY OBSERUATIONS YOU WANT TO COLLECT? " ,N
OUTPUT KBD;"®K";
INPUT "ENTER ANY COMMENTS: “ Com$s
OUTPUT KBD,;"®K",
ALLOCATE Ch(N,10),L(N)
DIM AC10),B(10),TC(L103,X(10),Ur¢10),Caltlq)

|

! TRKING READINGS BEFORE PUTTING STRAIN

1
Cal(1)=28.633
Cal(2)=31.028
Cal(3)=24.852
Cal(4)=25.666
Cal(S)=24.567

1Cal(6)=31.992
Cal(6)=28.333
Cal(?)=30.086
PRINT "PRESS CONT KEY TO TRKE THE EXCITATION UOLTAGE RERDING."
PAUSE
CLEAR 709
CLERR 722
OUTPUT 708 ;"SIARC3Q"
CUTPUT 722 ."S0F1R4"
ENTER 2220
CUTPUT 709;"AR"
OQUTPUT KBD.,"EK";
PRINT "“PRESS CONT KEY TO TRKE ZERC RERDINGS."
PAUSE

ISP “TAKING THE ZERO EREADINGS NOW"
OUTPUT 722,;,"SO0F1R4201STI0.001STD"
QUTPUT 703;"waCL"
ENTER 722;:;Luint
GUTPUT 722;"'SNOF1DOT220S01R21STIO . 001STD"
CUTPUT 709 ;"REL1SDOAF20RL2IAE2ARC20"
FOR I=1 TO C

ENTER 722;R(I)

NEXT I
OQUTPUT 709 :."RAR"
OQUTPUT KBD;"®K";
PRINT "PRESS CONT KEY TO TARKE READINGS. WHEN YOU WRANT TO STOP THE TEST

RESS KO KEY."

S84
S9¢
600
610
629
621
DEF3"
622
630
640

PAUSE

OUTPUT KBD;"®&K";

¢

! TARKING READINGS AFTER INDUCING STRRIN

PRINT "“P(LBS) Gl G2 G3 G4 GS G6 DEF1 DEF2

7]
~d

PRINT
FOR J=1 TO N
WAIT S
!

., P
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560
670
680
590
700
710
72

730
740
730
751
760
761
770
780
730
800
81

820
830
840

847

1020
1030
1040
19540
1360
1070
10840
1080
1100
1110
1120
1130
1140
1150
11810
117

1171
i1380
11390
1200
1201

OUTPUT 209;"ACLl"
ENTER 722;Lvlat
OUTPUT 722;“SO0F1DOT220SO1R21STIO0.001STD"
CUTPUT 209;"ARE1SDORF20RL29AE2RC20"
FOR I=1 TO C
ENTER 722;B(I)
NEXT I
QUTPUT 709;"AR"
Lv=ABS(Lulat-Luvint)
D(J,1)=-14.5149+2002 .34974*Lv
PRINT USING "DDDDD,1X,8,";D(J,1)
FOR I=1 TO C
IF I<=7 THEN
Ur(D)=ACI) U
T(I)=B(I) U
XCI)=T(I)-Ur (D)
Ch(J,I)=-X(IY/GE
Delta=Ch(J,I)*Cal(I)
D(J,I+1)=(DeltasGlL)*10"6
PRINT USING "DDDDD,1X,%,";D(J,I+1)
ELSE
X(I)=ACI»-BC(I)
IF I=8 THEN
D(J,I+1)=X(I)/.00137
END IF
IF I=S THEN
D(J,I+1)=X(I),.00137
END IF
IF I=10 THEN
D(J,I+1)=x(I)/.0010S

END IF
PRINT USIMG “DD.DDDD,1X,#,";D(J,I+1)
END IF
NEXT I
PRINT
ON KEY 0 LABEL "ABORT TEST" GOTO 890
NEXT J
QUTPUT 2038 ;"=R"
MN=J

IMPUT "DO YOU WISH TO STORE THE DATA I A FILE? “,Pnss
IF Anss="NO" THEN 1100
INPUT “FILE YOU WISH TO STORE DATA UNDER? " ,Names$
FPRINT “INSERT DATA DISK IN RIGHT DRIVE AND PRESS (CONT)
PAUSE
CREATE BDAT Names$&":,700,1",S0
ASSIGN @File TO Name$&":,700,1"
'FOR K=1 TO N-1

'FOR Q=1 TO 11

OUTPUT @F1ile;D(*)

INEXT Q
{NEXT K
ASSIGN @File TO *
INPUT "MOULD YOU LIKE A HARD COPY?" ,Anss$
IF Ans$="NO" THEN 1300
PRINTER IS 701

PRINT TRB(30),"BEAM ID: ", Ids$
PRINT TARB(30),"-==c=eae-- "

PRINT

PRINT "DARTE: '";Dates

PRINT "“RUN #: " ;Rnum$

PRINT "BEAM FRACE TESTED: " ;Face$
PRINT "COMMENTS: “;Com$

PRINT

PRINT "ALL STRAIN READINGS IN MICROSTRARINS"
PRINT
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PRINT "LOAD(LBS) GRGE1l GAGE?2 GAGE3 GAGE4 GAGES GAGESs

PRINT
FOR J=1 TO N-1
FOR K=1 TO 8
PRINT USING *DDDDDD,3X,#,";D(J,K)
NEXT K
PRINT
NEXT J
PRINT
PRINT "DEFLECTION READINGS"
PRINT "DEF1(3BIN) DEF2(CL) DEF3(761IN) LOAD(LBS) "
PRINT
FOR J=1 TO N-1
FOR K=S TO 11
PRINT USING "DD.DDDD,SX,#,";D(J,K)
NEXT K
PRINT USING "DDDDDD.SX,#," ,D(J,1)
PRINT
MNEXT J
PRINTER IS ZRT
QUTPUT 709 “H"
PRINT
PRINT "THE TEST HARS EBEEN COMPLETED"
END

GRG
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Appendix B. Fortran Code To Solve Lekhnitski’s

Orthotropic Torsion Solution
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.REAL Al,Bl1,A2,82,L1,L2,K1,K2,GTOL,GT,GR, BETAL,BETA2

+GLT,GLR,C1,C2,D1,D2
GTOL = 100.0
GLT = 1.0
GLR = 1.0
GT = 0.0
GR = 0.0
Al = 1.989
A2 = 1.991
Bl = 0.490
B2 = 0.430
Kl = 1033.90
K2 = 778.00
L1 = 12.00
L2 = 12,00
Cl = (Al/Bl)¥(SQRT(GLR/GLT))
C2 = (A2/B2)X(SQRT(GLT/GLR))
Dl = (K1%L1)/(A1%(B1%x3.))
D2 = (K2X%L2)/(A2%(B2%%3.))

CALL BHETAl(Cl,BETAl)
CALL BHETA2(C2,BETA2)
CALL GCAL(BETAl,BETA2,D1,D2,GLR,GLT)
10 IFC((ABS(GLR-GR).GT.GTOL).0OR.(ABS(GLT-GT).GT.GTOL)) THEN

GR = GLR
GT = GLT
Cl = (Al/Bl)X(SQRT{(GLR/GLT)

()

C2 = (A2/B2)%(SQRT(GLT/GLR)
CALL BHETALl(Cl,BETAl)
CALL BHETA2(C2,BETA2)
CALL GCAL(BETAl,BETAZ2,D1,D2,GLR,GLT)
GOTO 10
ENDIF
WRITE(1,%) *RECTANGULAR SAMPLES RN21 & RP21°
WRITE(1,%) °'BETAl = ',BETAl,'BETAZ = *,BETA2
g;g;E(l,i) *GLR = ',GLR,'GLT = ',GLT

3636 2636 3 36 36 36 3E 3 €36 JE 36 3E 3 36 36 36 36 3E 36 3 3 36 36 36 36 36 3 26 26 3 3 3 36 366 36 36 3 26 IE I I IE 26 36 36 I 3€ 36 3 36 3 36 36 36 6 36 36 26 36 6 36 96 36 26 36
% BHETAl %
33636 3636 36 36 36 3 26 36 36 3 36 36 D6 36 36 36 JE 3 36 36 3636 3 36 26 26 36 36 36 36 26 2 36 36 36 26 36 36 3 6 36 36 36 3 36 J€ 26 € 36 3 36 26 2 2 36 36 26 36 36 3 36 26 ) 3 2 36 3¢

SUBROUTINE BHETA1(Cl,BETAl)

REAL BETA1,Cl1,SUM,PI

PI = 3.141592654

SuM = 9.0

po 10 K = 1,10,2

SUM = gll(leﬁ.))l(1-((2./(K!PI))XC1¥TANH(((KXPI)/Z.)l

$ 1.7C1)))) + SUM
10 CONTINUE
BETALl = (32./(PIXx6.))%(Clx%2,)XSUM
gETURN
36 36 3 3 36 36 36 36 36 36 36 3 3 36 JE 36 36 36 36 6 36 36 36 36 J€ 36 J€ 36 36 36 36 36 36 36 3 3 36 36 JE 36 JE 26 26 36 36 36 36 36 € 3 36 36 36 36 36 3 3 X 3 3 36 I 36 )6 I 36 3 6 % X%
% BHETAZ %

3636 36 3 36 3 36 36 36 06 26 3 36 36 JE 36 36 06 36 36 36 36 26 36 26 36 3 36 3 2 26 26 J6 36 36 36 3 36 36 36 36 36 26 26 26 2 J6 3 3 X 2 JE 36 26 26 36 6 3 X 2 26 I ) 2 36 X X X X
SUBROUTINE BHETAZ2(C2,BETA2)

REAL BETAZ,C2,5UM,PI
PI = 3.141592654
SUM = 0.0
DO 10 K = 1,190,2
SUM = (l/7(KX%X%G,))%(1-((2./(KXPI))XC2XTANH(((K*PI)/2.)x%

$ (1./C2)))) + SUM
10 CONTINUE
BETA2 = (32./(PIX%x4,))%(C2x%2.)%XSUM

362696 6 36 36 36 3E 6 36 JE 36 3 3 36 36 36 36 36 36 36 3 36 36 3E 36 3 3 26 26 3 JE 36 36 36 33 36 3 36 36 6 3 3 36 36 36 36 36 D 36 36 3 3 36 96 36 36 3 36 2 3 3 3 ) ) X X X
X X
3636 3636 336 26 36 36 36 26 36 36 36 3E 3E 636 36 26 36 36 36 7€ 26 3 3 6 26 36 JE 26 36 3 36 3 36 3 3 36 36 36 3 36 2 JE 3 36 26 JE 3 36 3 36 96 3 3 36 36 36 )6 2 X 3 ) ) 3 X %
SUBROUTINE GCAL(BETAL,BETA2,D1,D2,GLR,GLT)

REAL BETAl,BETA2,GLR,GLT,D1,D2

GLR = D2/BETA2
GLT = D1/BETAl
RETURN

END
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