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I. INTRODUCTION 

The linearized energy-dependent Boltzmann transport operator has 

been studied extensively in connection with various boundary value pro-

blems .1-3 In the absence of analytic solutions, except for specially 

idealized situations, diverse approximate schemes based on numerical 

techniques have been developed for solving the transport equation. More 

rigorous mathematical treatments are desirable, even if in simplified 

cases, to avoid the crude approximations and to obtain standards for 

determining the accuracy of the numerical solutions. The analysis con-

d~cted in this dissertation is intended to be categorized as a treatment 

of this kind. 

The physical idealizations and approximations necessary for the 

purposes of the present study are those pertinent to the separability 

of the spatial, angular and energy variables of the angular particle 

density.~ A multigroup approximation is employed to describe the 

energy dependence, and the accuracy can be improved in a trivial 

manner by increasing the number of energy groups. If the physical 

properties of the system are not spatially constant, the medium has to 

be divided into finite regions, in each of which the transport equation 

(at least approximately) possesses translational invariance. 

In cases where the above simplification can be made, one of the 

widely used approaches is the singular eigenfunction expansion method, 

whose applications to the monoenergetic theory have been comprehensively 

discussed in Reference 4. 

This method allows, in general, the eigensolutions to be distributions 

1 
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rather than ordinary functions, and it requires the proof of completeness 

of the eigensolutions. Several generalizations of this approach to 

multigroup theory have been made, more recently in Refs. 5-7, where the 

full-range completeness proofs are obtained for the pertinent kernels 

of isotropic transfer. With respect to semi-infinite medium problems, 

a complete discussion on a special case in photon transport is given 

by Siewert and Zweifel. 5 The limitations involved are, however, invalid 

in neutron trausport. For the neutron case, Yoshimura and Katsuragi6 

have considered infinite medium only, whereas Leonard and Ferziger7 

succeeded in proving a half-range completeness theorem except for some 

detail. 8 

The method of singular eigensolution expansions has also been 

applied to problems with anisotropic scattering, first by Mika9 in the 

one-speed theory. Siewert et a1 10 have analyzed a special separable 

and syunnetric two-group kernel in radiative transfer. Shultisll has 

examined a symmetric anisotropic multigroup kernel and reduced the 

proof of the full-range completeness theorem to the solution of a 

Fredholm equation. 

The invariant imbedding method 4 is particularly suitable for 

computational purposes in semi-infinite medium problems. In this 

approach, the emergent distribution is first calculated, while the 

interior distribution can be obtained in terms of the emergent one. 

The solution of the non-linear integral equation obtained is not, 

however, necessarily unique. Pahor and Zweifel 11 have related the 

appropriate integral equations for one group of neutrons to the 
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formalism of Case, 4 thus proving the uniqueness of the solution. The 

completeness proofs presented in this thesis can conceivably be used tc 

demonstrate uniqueness in the multigroup cases considered by Pahor and 

Shultis. 11 , 13 

~ahor and Shultis also obtained numerical solutions to some standard 

problems. Recently Clancy14 has reported some multigroup computational 

schemes based on invariant imbedding for penetration problems involving 

anisotropic scattering. On the other hand, Metcalf and Zweifel15 have 

carried out numerical calculations in two-group neutron transport by 

iterating the singular integral equations obtained from the eigensolution 

expansions. 

It has been shown by Leonard and Ferziger7 that the multigroup 

approximation is equivalent to a continuous energy scheme, where the 

energy dependence is expanded in terms of a finite sum of orthogonal 

functions. The treatments of Bednarz and Mikal6 and Casel7 indicate 

that maintaining the continuous energy dependence simultaneously with 

rigorous spatial and angular schemes allows only highly formalistic 

considerations. 

The present work is an extension of earlier papers18-2l on multi-

group transport theory in plane geometry with anisotropic scattering. 

The latest version21 considered the N-group problem in the constant 

cross section limit, the transfer matrix being compact. A degenerate 

approximation of the kernel was employed. It is emphasized that a 

compact (square integrable) kernel can be arbitrarily well approximated 

(in the norm) with a degenerate kernel.22 The assumption of constant 

cross section is relaxed and, while the rest of the treatment parallels 
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closely the work in Refs. 18-21, the formalism is generalized to be 

applicable to neutron transport theory. The terminology of neutron 

physics is used, although this approach is amenable to all situations 

where the Boltzmann operator is linearizable. No further studies have 

been made to dctennine the class of realistic scattering laws for which 

this method applies. The limitation to the stationary fonn of the trans-

port operator ls justified because time-dependent problems can be 

reduced to this form by an integral transform. 4 While analytic solutions 

to the infinite medium problems are available, the main concern in this 

thesis has been directed to an investigation of the spectral properties 

of the operator, to the direct and adjoint eigensolutions and their 

completeness. 

Chapter II reviews the derivation of the multigroup approximation. 

A general consequence of thennal equilibrium, viz. symmetric transfer, 

has been discussed. As it will be seen in later sections, the treatment 

of a symmetric kernel is spec:f.ally convenient. 

The structure of the eigenvalue spectrum and the associated eigen-

solutions are demonstrated in Chapter III. The degenerate continuum 

eigensol·Ations are chosen on a basis of convenience, whereas to obtain 

an explicit representation of the eigensolutions one prefers a different 

set. The dispersion matrix is obtained in a block matrix form. The 

pertinent features of the adjoint spectrum are also exhibited. In fact, 

it is knownl 8 that the direct and adjoint spectra are the same and the 

distributional parts of the corresponding eigensolutions are also iden-

tical. Possible degeneracy of the discrete eigenfunctions and embedding 
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of discrete eigenvalues in the continuous spectrum have been overlooked 

by referring to corresponding treatments of less complicated kernels in 

Refs. 4, 5 and 9. 

The objective in Chapter IV is to derive sufficient conditions for 

the e~istence of the completeness properties of the eigensolutions. 
I 

The proof is reduced to an inhomogeneous Hilbert problem. 23,21+ The 

existence and uniqueness of a proper fundamental system of solutions 

can be determined from the class·ical theory of Muskhelisvili 2 3 and 

Vekua24 in the case that the boundary value transformation is performed 

by a discontinuous mat ix and the conclusions can be mainly drawn from 

the sign of a parameter p. The sttingent Holder or Lipschitz conditions 

can be partially relaxed in the case where the transformation matrix is 

continuous. 10 , 25 The infinite and bounded medium problems are considered 

separately. The .full-range completeness can be obtained under rather 

general conditions; p = 0 and the expanded function satisfies the extended 

Holder condition. At the present stage of the theory the half-range com-

pleteness requires additionally that the dispersion matrix is symmetric 

(self-adjoint operator) and even, i.e., the elements are even functions, 

which corresponds closely to reflection symmetry. The case of a nonself-

adjoint kernel is also considered and, ex~ept for a certain detail, it is 

directly deducible that either the direct or adjoint eigensolutions form 

a complete set and the both sets are complete if the discrete spectrum 

contains fewer than a dertain number of points. The both sets can be 

argued to be complete under a heuristically justified assumption that the 

operator relating the direct and adjoint eigensolutions is invertible. 20, 26 
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As a corollary of the theorems proved it follows that half-range complete-

ness is a consequence of the full-range completeness, and conversely, in 

case the transfer kernel is symmetric and possesses reflection symmetry. 

In Chapter V the standard full-range orthogonality relation is ob-

tained and a brief discussion of the norm integrals is included. The 

continuous modes require a specific orthogonalization procedure. 10,l9 

The infinite medium Green's function is solved as an inunediate applica-

tion of the full-range completeness and orthogonality properties. 

The diagonalization of the Hilbert problem obtained in Chapter IV 

leads automatically to analytic solutions. An approach to a general 

procedure is demonstrated in Appendix A in the constant total cross 

section limit. In Appendix B Vekua's24 procedure for determining the 

parameter p is reporduced in general, while in certain cases19 cal-

culations can be simplified. In Appendix C the non-positivity of the 

component indices of the Hilbert problem concerned is demonstrated in 

order rigorously to allow the conclusions of completeness in Section IV. 

It might be mentioned that some earlier investigationsG, 7 , 11 have received 

severe polemic8 because of deficiencies in this respect. The criticism 

is summarized in Appendix D. Finally, a scalar singular integral equation 

involving a Fredholm term is obtained in Appendix E. This equation can 

be indirectly solved using the full-range orthogonality relation. 

To summarize, it is the purpose of this work to prove the complete-

ness of the normal modes pertinent to the transport operator with a 

degenerate transfer kernel and to discuss to which extent analytic 

solutions are available. 



II. MULTIGROUP APPROXIMATION 

A concise derivation of the multigroup equations is given in this 

chapter. While different techniques based on the variational approach27 

or orthogonal expansions? are available, the multigroup approximation is 

obtained in a standard manner by discretizing the energy variable and 

defining the effective group constants through integration over energy. 

Neutron regeneration is formally included although the 

could be treated separately.28 

fission modes 

The linear stationary homogeneous Boltzmann equation can be written 

in plane geometry in the form 

µ~xV(x,E,µ) + E(E)V(x,E,µ) • / 1dµ'/mdE'E(E',E;µ',µ)V(x,E',µ') (2.1) 
1 0 . 

with 

E(E' ,E;µ' ,µ) ~ E6 (E',E;µ',µ) + X(E)v(E')Ef(E'). (2 .2) 

The quantity ~(x,E,µ) is the energy-dependent angular flux, E(E) is the 

total cross section, E (E,E';µ,µ') denotes the differential scattering s 
cross section involving both elastic and inealstic scattering, Ef(E) is 

the fission cross section, X(E) is the fission spectrum and v(E) denotes 

the number of neutron produced per fission. 

Proceeding in a standard manner29 the energy variable is split into 

N regions denoted by 

n = 1, 2, • • •N. (2. 3) 

7 
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To make the removal cross sections independent of x and µ, it is 

assumed that the energy dependence of the angular flux is separable, 

i.e., 

~(x,E,µ) = F (E)~ (x,µ),E£6E • n n n (2.4) 

In fact, a more general degenerate expansion seems to be possible in 

the framework of the present formalism as will be proposed later in 

this section. 

Eq. (2.1) is next integrated over 6Ek,k=l,2,•••N, consecutively, 

to obtain 

where 

and 

N 1 

~k(x,µ) + sk~k(x,µ) = l I dµ'Ckn(µ,µ')~n(x,µ'), 
n=l -1 

k = 1,2,•••N, 

fdE JE(E',E;µ',µ)Fn(e')dE' 
6Ek 6E 

ckn(µ,µ') = ~~~......;_n~J~~~~~~~~---
Fk(E)dE 

6Ek 

(2. 5) 

(2.6) 

(2.7) 

Distance will be measured in units of the largest mean free path 

l/S i , where S ~ S for all n, the equality holding for some par-m n min n 
ticular n, and Eq. (2.5) is thus divided by S i • Defining m n 
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and 

(2.9) 

the system of N equations in Eq. (2.S)can be expressed in the matrix 

form 
1 

~ ~(x,µ) + ~~(x,µ) =I g(µ,µ')~(x,µ')dµ', 
-1 

(2.10) 

where ~(x,µ) is a N-component vector with component ~i(x,µ), ~is a 

diagonal matrix with elements si, and ~(µ,µ') is the transfer matrix 

having elements cij(µ,µ'). 

For convenience, the groups will be reordered by applying a 

permutation P defined as30 

where, denoting the elements of the diagonal matrix E by a1 , 

Eq. (2.10) is now written as 

where 

and 

1 

~ ~(x,µ) + E$(x,µ) =I ~(µ,µ')~(x,µ')dµ', 
-1 

$(x,µ) • ~!(x,µ), 

-1 
~(µ,µ') = ~~(µ,µ') ~ • 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

A similar multigroup system of equations can be derived by expanding 

the energy dependence of the angular flux in terms of a finite sum of 

orthogonal functions. 7,ll This method is particularly applicable in 

case the eigenfunctions of the scattering operator are known to be a 



10 

set of orthogonal polynomials, e.g., for the heavy gas or corresponding 

synthetic models.31 

The two schemes discussed above can be combined in a manner which 

makes it possible to relax the assumption on the trial functions in 

Eq. (2.4). Instead, a degenerate expansion 

N 
~(x,E,µ) = r F~n)(E)~~n)(x,µ), 

i=l 

Ee6E , n 

(2.16) 

could be used to generate a submultigroup system inside the selection 

of original groups. It is not clear, however, whether a similar 

improvement in accuracy could be achieved more conveniently by reducing 

the mesh spacings of energy variable, i.e., directly increasing the 

number of groups. 

Symmetric transfer, defined by 

(2.17) 

where superscript T denotes the transpose, would simplify 

some considerations in the later chapters and it is assumed in the 

half-range proof. The adjoint operator will be defined in such a 

manner that Eq. (2.17) implies self-adjointness. Symmetric kernels 

occur in the thermal neutron problem for a non-multiplying medium 

where the condition of detailed balance is obeyed,7,ll,13 and also in 

special astro-physical applications of radiative transport.S,IO Two-

group problems can be symmetrized in general.13 In fact, symmetric 

transfer has been assumed in all earlier investigations of anisotropic 
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transport. 10,ll 

Some other assumptions are imposed on the transfer kernel ~(µ,µ') 

to make the problem mathematically tractable. !(µ,µ') is assumed to 

be of a degenerate form, 

M 
~(µ,µ') = l ~i(µ)~i(µ'). 

i=l 
(2.18) 

A compact operator, ~EL2(-l,l), can be arbitrarily well approximated 

by a kernel of the degenerate form Eq. (2.18). 22 Furthermore, the 

kernel is assumed to be bounded (although certain parts of the treat-

ment are obviously valid for unbounded kernels.) Certain theorems 

will also employ a condition pertinent to time reversal invariancef9 

!(µ, µ') = ~(-· µ ',-µ). (2.19) 



III. EIGENSOLUTIONS 

In this chapter, the eigenvalue spectrum and the associated eigen-

functions are discussed. The spectral properties of the transport op-

erator are determined by the dispersion matrix which is obtained in the 

first section from the analysis of the discrete eigenfunctions. The 

structure of the continuum modes and the adjoint spectrum are demon-

strated in subsequent sections. 

In the previous chapter the N-group approximation was cast in the 

form 

a JI µax ~Cx,µ) + t~Cx,µ) = ~(µ,µ')~(x,µ')dµ', 
-I 

(3.1) 

where 
M 

~(µ,µ') = l ti(µ)~i(µ'). 
i=l . 

(3.2) 

The conventional ansatz, 4 

-x/v 
~(x,µ) = e ~(v,µ), (3.3) 

when inserted into Eq. (3.1), yields a general eigenvalue equation 

(~ - µ/v !)~(v,µ) =JI ~(µ,µ')!(v,µ')dµ'. 
-I 

(3.4) 

The analysis of the discrete and continuous spectra will be car-

ried out separately. Defining 

~(z,µ) = (~ - µ/z !)-I, (3.5) 

it is noticed from Eq. (2.12) that the elements Dii(z,µ) of the diagonal 

matrix ~(z,µ) 

Dii(z,µ) = a:-µ (3.6) 
i 

remain non-singular whenever Zf [- 1-__ , ! but are singular inside 
0 i i 

12 
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this real interval. That is why the interval (-1,1] is distinguished 

in spectral considerations despite the fact that discrete eigenvalues 

may lie inside the continuum. 

where 

Discrete Eigenfunctions 

Assuming v~(-1,1], Eq. (3.4) is rewritten as 

~i(z) =fl ~i(µ)~(z,µ)dµ. 
-1 

(3.7) 

(3.8) 

In order to determine the discrete eigenvalues one proceeds as in 

Ref. 18; Eq. (3.7) is multiplied by Mj(µ) and integrated overµ. This 

is done consecutively for j = 1,2 •.• M. Defining a dispersion matrix 

~(z) as a block matrix with [~(z)]ij as a block element, 

[~(z)]ij = oij! - fl ~i(µ)~~z,µ)~j(µ)dµ, 
-1 

the resulting system of equations can be expressed as 

M 
l [~(z)]ij~j(z) = Q 

j=l 

for i = 1,2 •.• M. 

(3.9) 

(3.10) 

Alternatively, using NM x NM matrices I and ~(z) and NM-component vec-

tors 0 and ~(z) with 

Q(z) = (<Q1(z))1,(Ql(z))2,•·•<Qk(z))i, ••• ,(~(z))N)T, (3.11) 

Eqs. (3.10) cun be cast in a new form of NM linear simultaneous equa-

tions, 
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~(z)n(z) = Q • (3.12) 

Denoting the dispersion function by O(z), 

O(z) = det ~(z), (3.13) 

the discrete eigenvalues vk are obtained from 

(3.14) 

For simplicity it will be assumed that all these eigenvalues are dis-

tinct. In case of multiple roots to Eq. (3.14), the original one-di-

mensional representation of the translation group in Eq. (3.3) does 

not suffice but higher order representations are required. This aspect 

is discussed thoroughly in Refs. 4 and 5. It has also been establis.hed9 

that discrete eigenvalues may occur in the continuum, i.e. Vk£[-l,l]. 

These cases will not be considered in this work, either. 

In view of Eqs. (3.13,14) the ratio of the components of ~(vk) is 

uniquely defined by Eq. (3.12). If the cofactor of (~(vk))ij is denoted 

by (~(vk))ij, one can choose30 
. ij 

(~(vk))j = (~(vk» , (3.15) 

where j = 1,2, ••• NM and i <NM is an arbitrary fixed index. 
+ For later convenience, the boundary values ~-(v), VE[-1,1], of 

the dispersion matrix ~(z) will be introduced. Because of the differ-

ent explicit forms in each interval [- ..!..._ ..!..._] the expressions will 
oi ' oi ' 

include a unit function hk(v) defined as 

h ( ) 1 VE[- ..!..._ l ] kV=' 0 'a' 
k k (3.16) 

"' 0 otherwise. 
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Consider the imth elements of the ijth block; from Eq. (3.9) 

+ 

N 

= <\joR.m - k~l 

The boundary values ~-(v), defined as 

r -1 

A±(v) =Limo A(v ± iE), vE(-1,1], 
- E-+ -

are obtained by applying the Plemelj formula to Eq. (3.16); 

+ N {fl v(tii (µ))ik(!-j (µ))km 
([~-(v)]ij)R.m = oijoR.m - k!l -1 okv - µ dµ 

+ i•v(~1 (akv))tk(~j(akv))kmhk(v)} 

(3.18) 

(3 .19) 

where hk(v) was defined in Eq. (3.16). The integral terms in Eq. 

(3.19) can be either regular or singular; in the latter case the nota-

tion includes the principal value operator. 

The notation can be simplified by introducing two transformations 
0 mapping an N x N matrix ~(v) to~ (v) and ~0 (v), respectively. The 

transformations are defined as 

and 

(~o(v))ij = (~(oiv))ijhi(v). 

Eq. (3.19) is now rewritten as 

= oijr - fl ~i(µ)~(v,µ)!-j(µ)dµ 
-1 

0 ± invMi(v)L. (v), VE(-1,1], - -30 

(3.20) 

(3.21) 

(3.22) 
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with a proper interpretation of the integral. The boundary values 
+ 

~-(v) considered here will be employed in later sections where complete-

ness is proved. Furthermore, it is useful to define matrices [±(v) by 

and 

+ -r+(v) = ~(~ (v) + ~ (v)) 

r __ (v) = - 1- (A_+(v) - A~(v)). 21TiV 

Continuum Modes 

(3.23) 

(3.24) 

The general solution to Eq. (3.4) with ve(-1,1] is considered in 

this section. Generalized functions are admitted as solutions. 4 Be-

cause of the singular form of matrix ~(v,µ) (cf. Eq. (3.6)) it is cus-

tomary to divide the interval (-1,1] into N subregions labelled (n) and 

defined as 

(n) == [ - ol , - _l_] U (-1- , : ] , 
n °n-l 0 n-l vn 

(3.25) 

with 

(1) == c- ! , L1. 
l 0 1 

(3.26) 

There is an N-n+l fold degeneracy in region (n), which prevents an 

explicit representation of the eigensolutions in the chosen form. 

While this particular form is preferable in later calculations, another 

choice of eigensolutions is displayed later in this section. This spe-

cial combination of linearly independent solutions makes it possible to 

derive explicit expressions forthe functions involved. 

Returning to Eq. (3.7), the solutions are sought to be distribu-

tions with support (-1,1].3 2 In particular, the general solution with 
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the eigenvalue v lying in region (n) is written as 

where 

~~n)(v) =fl ~i(µ)~(n)(v,µ)dµ 
-1 

(3. 27) 

(3.28) 

and the elements of the diagonal matrices ~(v,µ) and §(n)(v,µ) are de-

fined for appropriate test functions3 2 f(v) as 

and 

<(~(v,µ))ii'f(µ)> = Jl 
-1 

vf(µ) dµ 
a v-µ i 

= 0 otherwise, ~E(n). 

(3. 29) 

(3.30) 

It is again emphasized that the principle value operator occurs in Eq. 

(3.29) for i ~ n but it has been omitted by the earlier convention. The 

conventional form of (D(v,µ)).i is expressed in Eq. (3.6), whereas 
- 1 

(n) (§ (v,µ))ii is the usual "delta-function", i.e. 

(n) (§ (v,µ))ii = O(OiV - µ), VE(n). (3.31) 

To determine A(n)(v) Eq. (3.27) is multiplied by~(µ), k=l,2, ••• M 

and integrated over µ. Noticing the relation 

fl M. (µ)o(n) (v,µ)L. (µ)dµ = M0i(v)L. (v), 
-1 - -J - -Jo 

-1 
(3.32) 

where the a-operators are defined in Eqs. (3.20,21), one obtains a 

homogeneous system of simultaneous equations, 
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(3.33) 

where Eqs, (3.23,24) have been employed to introduce matrices r±(v) and 

~(n)(v) is defined in analogy with Eq. (3.11), i.e., 

(3.34) 

The arbitrary function A(n)(v) can now be determined from 

det (r+<v> - A(n)<v>r_<v>) = o, VE(n). (3.35) 

Because the rank of the matrix [+(v) + A(n)(v)[_(v) is NM, Eq. 

(3.35) yields, in principle, a characteristic polynomial of NMth order 

in A(n)(v) thus indicating occ11rance of degeneracy. The actual degree 

of degeneracy will be established by the following lemma. 

Lemma 3.1 The degree of degeneracy of the eigensolutions 

'(n)(v,µ), VE(n), is N - n + 1. 

Proof: One needs to verify that the degree of the characteristic 

polynomial in A(n)(v) is N - n + 1 in the nth region. It will be pro-

ceeded by decomposing the det~rminant 2 0 in Eq. (3.35) according to 

standard rules of matrix algebra.30 Immediately, this yields a secular 

equation 

with 

a (v) m = \ det r (v), l -mp 
p 

(3.36) 

(3.37) 
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where matrices r (v) are constructed including m arbitrary distinct -mp 
rows of r_Cv) the remaining rows being identical with the correspon-

ding rows of r+(v). The sum has been taken over all possible different 

combinations p. In particular, 

~(v) = det r (v) --
and 

It is required to show that 

a (v) = 0, if m > N - n + 1. m 

(3.38) 

(3.39) 

(3.40) 

Supposing that the p th row of r __ (v) is included in r (v), Eqs. q -mp 
(3.19-24) yield 

[rmp<v>)Pq•' = [~~(v)Loj<v>)kt 

where 

and 

= .!1l~i<o.v))ks[~j(osv))s1hs(v), 

p = (i-l)N + k, q 

(3.41) 

(3.42) 

r = (j-l)N + .e., (3.43) 

with i,j ~ M, k,.e. ~ N, q = 1,2 ••• m, and r = 1,2 ••• NM. In the calcula-

tion of det rmp(v) a decomposition, similar to one used before, is per-

formed on the p th row consecutively for all values of q. Defining ma-q 

trices rmpp'(v) by 
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(3.44) 

where Eqs. (3.42,43) are to be applied to relate the indices, the result 

can be expressed as 

det r (v) = ~ det r ,(v), 
-mp ~' -mpp 

(3.45) 

where the combinatorial sum is extended over all possible combinations 

p' obtained when the indices q ands vary simultaneously; q = 1,2, ••• m, 

s = 1,2, ••• N. Without loss of generality one can choose s = s, because q 

q denotes the particular row concerned only. 

In view of Eqs. (3,37,45), the desired result Eq. (3.40) is equiva-

lent to demonstrating that 

det r ,(v) = 0 -mpp 

if m > N - n + 1, In Eq. (3.44) 

h 8 (v) = 0 
q 

vdn), · (3 .46) 

(3 .47) 

if s < n, in which case the determinant vanishes because all elements q 

of a given row are zero. 

Because sq takes on values 1,2, ••• N, there are obviously N - n + 1 

rows where h8 I O. 
q 

In addition, in view of Eqs. (3.43,44) it follows 

that N - n + 1 is the maximum number of r_rows of rmpp'(v), which are 

not proporti~nal. Recalling that m is the total number of such rows, 

it follows that, if m > N - n + 1, there are at least two proportional 

rows included in r ,(v) and Eq. (3,46) results immediately. -mpp 
Once the degree of degeneracy is established the notation is modi-
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fied accordingly. The general expression of the eigenfunction 

(n) ( tj (",µ), "£ n), where j denotes the degeneracy, can now be written as 

(cf. Eq. (3.27)) 

(3.48) 

"£(n), n = 1,2,3, ••• N, j = 1,2, ••• N - n + 1, 
(n) (n) where ~(",µ), § (",µ) and ~ij (") are defined in Eqs. (3.28-30) and 

~1n)(") is a root obtained from Eq. (3.35). For the purposes of the 

rest of this work it is irrelevant to know explicitly the ~(n)(v)'s j 

j = 1,2, ••• N - n + 1. However, later in this section the calculation 

of the corresponding functions will be demonstrated for a particular 

combination of the eigensolutions. 

Again, Eq. (3.33) defines uniquely the ratio of the NM components 

of the vector ~~n)(v), k = 1,2, ••• N - n + 1. An explicit expression is 

obtained in analogy with Eq. (3.15); 

(3.49) 

j = 1,2, .•• NM and i ~NM, the upper index ij denoting a cofactor. 

For later reference, Eq. (3.33) is manipulated into a convenient 

form in terms of the individual blocks. Including the degeneracy, Eq. 

(3.33) can be written in the form of N - n + 1 equations 

(3.50) 
V£(n), k ~ M, j < N - n + 1. 
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Simultaneous consideration of all degrees of degeneracy suggests 

defining a diagonal N - n + 1 x N - n + 1 matrix A(n)(v) by 

(3.51) 

and a N - n + 1 x N matrix N!n)(v); 

(3.52) 
i ~ N - n + 1, j ~ N. 

Eq. (3.50) now has the form 

(3.53) 
VE(n), k = 1,2, ••• M. 

which will be employed in the following chapter. Some other pertinent 

consequences, viz. certain questions of reducibility in a special case 

are discussed in Appendix A. 

As has been mentioned earlier, one prefers a particular combina-

tion of the eigensolutions in order to obtain explicit form of A1n)(v). 

In terms of Eq. (3.48), this can be accomplished by changing §(n)(v,µ) 

to §1n)(v,µ), defined asl9-21 

( (n) ) §j (v,µ) ii = (3.54) 

where §(n)(v,µ) was defined in Eq. (3.31); A1n)(v) is then determined 

by the same procedure as discussed above. In particular, it can be 

shown2 0 that the A(n)(v) can be uniquely determined and, in fact, the i 

method of Ref. 20 is applicable to the derivation of the explicit form. 
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Adjoint Spectrum 

The adjoint operator and its eigensolutions corresponding to the 

direct eigensolutions displayed in Eqs. (3.7,48) will have a prominent 

role in the subsequent considerations. The completeness of the eigen-

functions and the useful full-range orthogonality are, in general, dem-

onstrated in terms of both direct and adjoint sets. For these purposes 

certain aspects of the adjoint problem are discussed in this section 

principally reproducing the results of Ref. 18. It appears unlikely at 

the present stage of the general theory of linear operators that the 

main results of this section could be easily derived from the estab-

lished theorems on linear spaces. 

Displaying the multigroup Boltzmann equation. (Eq. (2.13)) in an 

operator form 

B~(x,µ) = Q, (3.55) 

the formal adjoint operator Bt is defined by functional equality22 

(~,B~) 
t (B ~,~), (3.56) 

where 

(3.57) 

The explicit form Eq. (2.13) is substituted in the left hand side of Eq. 

(3.56) and the formal inner product is expressed as an integral. The 
a~ 

integration involving the streaming term µ ax is performed by parts 

noticing that ~~t vanishes at x = ±~. The removal term is trivial, and 

the manipulation in the scattering term consists of relabeling µ and 
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µ' • t Replacing t(x,µ) by the adjoint angular particle density~ (x,µ), 

the adjoint equation can be written as 

a t t Jl T t -µax~ (x,µ) + ~~ (x,µ) = ! (µ',µ)~ (x,µ')dµ'. 
-1 

(3.58) 

T In general~ would appear,but the diagonality of~ is utilized in 

the expression Eq. (3.58). If general theory were used in the subse-

quent analysis, it should also be demonstrated that the domain of B is 

dense. 33 This can be readily proven. 2 6 

Corresponding to Eq. (3.3) the variables are now separated by 

t x/v t 
~ (x,µ) = e ~ (x,µ), 

and the resulting eigenvalue equation has the form (cf. 3.4) 

1 
(~ .- µ/v IHt(v,µ) = J ~T(µ',µ)ft(v,µ')dµ'. 

-1 

The rest of the present treatment depends on the following lemma. 

(3.59) 

(3.60) 

Lemma 3.2 t Let ~ (z) denote the dispersion matrix of the adjoint 

operator defined in Eq. (3.60), then 

t T 
~ (z) = ~ (z), (3.61) 

and consequently 
nt (z) = n(z), (3.62) 

where ~(z) is defined in Eq. (3.9) and n(z) in Eq. (3.13). 

Proof: Comparing Eqs. (3.4) and (3.60) it follows from Eq. (3.2) 
t that an arbitrary matrix block of ~ (z) has the form 
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(3.63) 

Noticing that ~(z,~) is a diagonal matrix, see Def. (3.5,6), it can 

be innnediately concluded that 

t 
[~ (z)]ij = (3.64) 

which is equivalent to the claim in Eq. (3.61). Furthermore, taking 

the determinants in Eq. (3.61) one obtains Eq. (3.62). 

An important theorem can be now proven utilizing this lemma. The 

proof was first given in Ref. 18. 

Theorem 1. The eigenvalue spectra of the transport operator and 

its adjoint are identical. 

Proof: The discrete eigenvalue vi of the direct operator is ob-

tained from Eq. (3.14), i.e. 

(3.14) 

From the identity (3.64) it follows immediately that vi also belongs to 

the discrete spectrum of the adjoint operator. 

The identity of the continuous spectra follows also from Eq. (3.64); 

the argument being that the continuous spectrum is defined by the branch 
T cut of ~(z) which naturally coincides with that of~ (z). 

Although the occurance of a discrete eigenvalue imbedded in the 

continuous spectrum would need some special consideration, it is ob-

vious that this theorem is still valid. As it was mentioned earlier, 

any further discussion of the consequences in such a case will be omit-
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ted in this work, while a special case has been treated in detail in 

Ref. 9. 

The following lemma is confined to the distributional part of the 

eigensolutions. 

Lemma 3.3 Let ~;n)t(v,µ) be an eigensolution of the adjoint oper-

ator corresponding to an eigenvalue in the continuous spectrum, i.e. 

.i. (n)t( ) !j v, µ ( (n) t (n) ) ~ T . (n) t = Q (v, µ) + ).j (v) § (v, µ) l tti (µ)uij (v), (3. 65) 
i=l 

cf. Eq. (3.48)~ then 

,jn)t(v) ,(n)( ) 
I\ = "j \) • 

Proof: By Def. (3.35) ).~n)t(v) is a root of the equation 
J 

det (r!<v) - >. (n)t(v)r:cv>) = o, v£(n), 

(3.66) 

(3. 67) 

where the identity (3.61) is employed. Transposing the matrix in (3.67) 

one obtains 

(3.68) 

which yields the claim (3.66) when Eq. (3.35) is used. 



IV COMPLETENESS OF THE EIGENSOLUTIONS 

An inherent necessity in admitting eigensolutions of the forms ex-

hibited in the previous section is to prove the completeness property 

of this particular set of generalized functions. It is customary to 

formulate the problem in terms of demonstrating under which conditions 

an arbitrary function ~(µ) can be represented by a unique eigenfunction 

expansion. 20 The expansion is cast in a general form of an integral 

~(µ) = Ja(v)~(v,µ)dm(v), 
L 

(4.1) 

where the region of integration, L, depends on the particular boundary 

conditions imposed on the solution. The problem is then to determine 

the conditions on the function ~(µ) and on the operator which permit. 

the existence of·a unique function a(v) in a region L with appropriate 

boundary values on w(µ). Once this problem has been solved the general 

angular energy and space dependent solution of Eq. (2.13) can be ex-

pressed as an eigensolution expanqion. 

Interpreting the equivalent expression to Eq. (4.1) in more expli-

cit terms, the expansion has the form 

(4.2) 

where the different regions and the degeneracy have been taken into 

27 
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account. The discrete and continuous modes were defined in Eqs. (3.7, 

48); ai and a~n) are the expansion coefficients, °L the number of the 

discrete eigenfunctions involved in any particular case and (n)L de-

notes a portion of the region (n) (see Eq. (3.25)) specified by the 

problem concerned. 

Solving the problem amounts then to finding the expansion coeffi-

cients. This can be done analytically for the infinite medium problems 

whereas at the present time, semi-infinite and bounded medium problems 

necessitate numerical techniques. In that case completeness can be 

used to argue uniqueness of the numerical solution. 

The completeness proof is first reduced to the form of the Hilbert 

boundary value problem. The transformation across the cut L is rep-

resented by a matrix composed of the boundary values of the dispersion 

matrix. 

In case an infinite medium problem is examined, µEL= [-1,1], the 

eigensolutions possess the completeness p~operties under relatively 

weak restrictions. The partial range problems, where L is a proper 

subinterval of [-1,1], require special consideration. While the present 

method of deduction is applicable to an arbitrary partial range, only 

half-range completeness is discussed in detail. In fact, the half-

range case L = [O,l] or [-1,0] is the only application of this kind in-

troduced so far. 4 Furthermore, this particular instance involves per 

~some special simplifications. However, the proof cannot be made 

constructive in the sense that the expansion coefficients would be 

solved. 
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Reduction of the Proof to a Hilbert Problem 

The usual method of proof is to attempt an expansion of an arbi-

trary function ~(µ) satisfying the extended Holdur condition4 in terms 

of the continuous modes alone; 

N N-n+l 
~(µ) = l l 

n=l j=l 
I a1n)(v)!1n)(v,µ)dv 

(n)L 

where Lis one of the intervals (-1,1], [-1,0] or [O,l] and 

(n)L = (n)fiL, 

(4.3) 

(4.4) 

where the concept of the subinterval (n) was introduced in Eq. (3.25). 

Substituting in Eq. (4.3) the explicit expression of ~~n)(v,µ) from Eq. 

(3.48), one obtains after some algebra 

where 

N 
~(µ) = l 

n=l 
~ I {~(v,µ)~i(µ)~~n)(v)~(n)(v) 

i-1 (n)L 

+ §(n)(v,µ)~i(µ)~in)(v)~(n)(v)~(n)(v)}dv, 

(n) (n) (n) ( )
T 

~ (v) = a 1 (v), ••• aN-n+l(v) , 

(4.5) 

(4.6) 

and the matrices ~in)(v) and ~(n)(v) are defined in Eqs. (3.51,52). 

The o-function term in Eq. (4.5) would not cause any special diffi-

culty in subsequent calculations. The integral term involving a Cauchy 

type kernel Q(v,µ) contributes to the mathematical difficulties and 

differently from Ref. 11, the system of integral equations is trans-

formed to the form of a dominant system. 24 Consequently, the rationale 
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for the following manipulations is to transform Eq. (4,5) into a form 

where the matrices corresponding to ~(v,µ) and ~i(µ) commute. This is 

achieved by a change of the variable µ to µ/oi in the ith equation of 

the system. The different change in each equation is also urged by 

notational convenience,11,34 

In order to elaborate the change of the variable, an arbitrary N-

component vector ~(µ) is considered. Defining ~(µ) by 

~(µ) = f (~<v,µ)~(v,µ) + 2(n)(v,µ)y(v,µ~dv, 
(n)L 

µ£L (4.7) 

where ~(v,µ) and r<v,µ) are certain vectors, one obtains a general form 

of Eq. (4.5). Recalling Defs, (3.5,31) the ith component obeys the 

equation 

r~(µ)Ji =I { ai~-. (~cv.•>Ji + 6(aiv - µ)(y(v,µ))i}dv 
(n)L 

= J 0i~-µ (~<v,µ))idv i < n, µ£L. 
(n)L 

i ~ n 

(4.8) 

Performing the integration over the a-function and letting µ~µ/oi, Eq. 

(4.8) has the form 

where 

oi(~coiµ)Jihi(µ) =I v~µ r~cv,oiµ)Jihi(µ)dv 
(n)L 

= 0 otherwise 

(4.9) 

(4.10) 
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and h (µ) (see Def. (3.16)) is again introduced to retain the arguments 
n 

of angular dependent functions in the domain [-1,1). 

When the change of the variable is performed in Eq. (4.5) and all 

the stages in Eqs. (4,7-10) have been taken into account, it is con-

venient to define a N-component vector ~ (µ) by -a 

in order to express Eq. (4.5) in the form 

L~ (µ) = I r {I v~µ ~ai(µ)~i(n)(v)~(n)(v)dv 
--a n=l i=l 

(n)L 

+ L (µ)N(n)(µ)A (n)(µ)a(n)(µ)g (µ)} 
-ai -i - n ' 

(4.11) 

(4.12) 

where ~ai(µ) was defined in Eq. (3.21). ~01 (µ) can now be removed 

from under the integral sign and Eq. (4.12) has the form 

~p0 (µ) = I ~ai(µ){J v~µ I ~in)(v)~(n)(v)gn(v)dv 
i=l L n=l · 

+ I ~in)(µ)~(n)(µ)~(n)(µ)gn(µ)} • 
n=l 

(4.13) 

The integral terms appearing in the expression above consist of 

singular and regular parts. Despite the non-singular contribution,the 

system of equations Eq. (4.13) can be converted into a Hilbert problem 

and the solution can be obtained in principle by a familiar technique 

used in the theory of singular integral equations. 

In analogy with Ref, 21 a simplified method is amenable to the 
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conversion procedure. Eq. (4.13) is multiplied by~~(µ) (Def. (3.20)), 

i = 1,2, •.• M. Defining a N-component vector~.(µ) by 
-i 

(4.14) 

the resulting system of equations has the form 

~i(µ) = ¥ c~_(µ)]ij{I v~µ r ~;n)(v)~(n)(v)gn(v)dv 
j=l L n=l 

+ ¥ ~j(n)(µ)~(n)(µ)~(n)(µ)gn(µ)}, 
n=l 

(4.15) 

where r (µ) was defined in Eq. (3.24). Alternatively, noticing Eq •. 

(3.53), Eq. (4.15) can be written as 

fi(µ) = ¥ {C~_(µ)]ijJ v~µ ~j(v)dv 
j=l L 

(4.16) 

+ c~+<µ>Jijej<µ>}, 

where 

p (v)g (v) = N(n)(v)a(n)(v) 
-j n -j - (4.17) 

The transformation (4.17) indicates the N-component vector ~j(v) has 

only N-n+l independent components when v€(n). In a sense the transfor-

mation is unique if ~~n)(v) possesses a square non-singular submatrix 

of rank N-n+l. 

In order to remove ambiguity on this point, Eq. (4.13) is analyzed 

in more detail. Letting µ€(n)L in Eq. (4.13), it follows from Defs. 

(3.21), (4.11) that ~ (µ) has at most N-n+l non-zero components and 
-0 
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~Ji(µ) N-n+l non-zero rows. In view of Eq. (4.17) only the compon-

ents (p1 Cv>)k' k~n, appear in the term involving the integral. The 

second term of the right hand side of Eq. (4.13) formally contains all 

the components of e1<v) but the first n components can be eliminated 

because of the linear dependence. Including the n-1 first components 

of ej(v) in ~j(v) and the rest N-n+l components in ejCv), i.e., 

(4.18) 

(n) and similarly deleting the first n-1 rows of the matrix ~j (v),i.e., 

( (n). ) (~(n) ) . Nj (v) kt = - ?_ij (v) kt k < n , 
(4 .19) 

(-(n) ) 
~j (v) k-n+l,t k ~ n 

Equation (4.17) has the equivalent form 

- -(n) 
ej (v) .= l:ij (v)~(v)- ' 

p.(v) = N(n)(v)a(v). 
-J - - -

(4. 20) 

Therefore, the transformation is unique if the matrices ~jn)(v), 

n ~ N, j ~ M, are non-singular and any possible solution of the 

system of N equations in Eq. (4.13) yields only the last N-n+l 

components of ei(v) in a linearly independent manner. Furthermore, 

there are only N-n+l linearly independent equations in Eq. (4.16). 

A system of NM simultaneous equations is obtained when Eq. (4.16) 

is rewritten to include all values of i ~ M. For this purpose NM-
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component vectors ~(µ) and £(µ) are constructed from the auxiliary 

vectors ~i(µ) and £i(µ), respectively, by defining in general 

With these definitions Eq. (4.16) can be written 

~(µ) = :_(µ)fv~µ e<v)dv + r+(µ)e(µ), 
L 

+ 

(4; 21) 

(4. 22) 

Finally, introducing the boundary values ~-(µ) of a sectionally 

holomorphic vector ~(z), 23where 

1 f v Hz) = -2 i - p (v)dv, 
- 1T v-z - (4. 23) 

L 

one obtains the customary factorization of Eq. (4.22);. 

(4. 24) 

where Eqs. (3.23,34) are employed when substituting ~±{µ) for [+{µ). 

In terms of classical mathematical literature Eq. (4.24) is cast into 

a form of the Hilbert problem 

(4. 25) 

where the transformation matrix g(µ) is 

(4.26) 

and the inhomogeneous term f {µ) has the form 

( + )-1 !(µ) =µ ~ (µ) ~(µ). (4. 27) 
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-A±(JJ) It has been implicitly assumed above that n is a nonsingular matrix. 

The question of completeness was studied by demonstrating 

under which conditions an arbitrary function ~(µ) can be uniquely expan-

ded in terms of the continuous modes. The N-component ~(µ) is now in-

eluded in the NM-component !(µ) and the original expansion coefficients 
(n) ai (v) are transformed to the components of e(v), which can be obtained 

from the boundary values of ~(z) by 

"e <" > 
+ -= f (v) - 2 (v), veL. (4 .28) 

By the previous discussion it is observed that p(v) contains only N-n+l 

independent components whenever vE(n). The follows from Def (4.21) and 

the fact that Eq. (4.20) implies 

- -(n) (-(n) )-1- · ei(v) = ~i (v) ~j (v) ej(v); (4 .29) 

ve (n). 

In finding f (z) the intrinsic nature of the problem requires certain 

conditions of continuity on both the matrix g(µ) and the admissible 

function f(µ). Further restrictions arise because of the special 

analyticity requirements on ~(z), viz !(z) is analytic in the entire 

complex plane except the cut L and !(z) ~ l/z as lzl-+<io • These 

restrictions facilitate the determination of the discrete expansion 

coefficients or, in the half-range case, whether there exists a proper 

number of linearly independent discrete eigenfunctions. All these 

questions will be examined in a manner developed recentlyl9, 2 0 for 

special cases of this problem. Before any further restric-
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tions some general remarks will be made on the present status of the 

theory of Hilbert-problem 

In order for the conventional theory to applicable, the inhomo-

geneous term f(µ) in Eq. (4.25) has to belong to class H, i.e., it is 
£ 

required that £(µ) satisfies the Holder condition everywhere on L except 

possibly at a finite number of points µi where 

~!: lµ-µil£E(µi) = Q. 
i 

(4.30) 

The class of admissible functions has been extended4 to cover appro-

priate generalized functions, e.g., o-functions. Therefore Green's 

functions can be constructed, as will be illustrated in Chapter V. 

The essential problem is to establish the existence of a non-

singular fundamental matrix ~(z) whose boundary conditions obey the 

equation 

(4.31) 

If Eq. (4.31) were soluble, Eq. (4.25) could be solved inunediately, 

(4.32) 

where p(z) is an arbitrary vector whose components are polynomials. 

Regardless of the solubility of Eq. (4.31) sufficient conditions can 

be derived which imply that a matrix X(z) exists. The original theory 

of Muskhelisvili and Vekua assumes that the elements of the transforma-

tion matrix ~(µ) obey the Lipschitz condition everywhere on L with the 

exception of a finite number of points where they may have discontinui-
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ties of the first kind. This condition is necessitated since the 

theory of Fredholm equations has been utilized in deducing the exis-

tence of the canonical matrix. The conditions are again far too 

severe to permit practical application of the theory. However, in 

case the Hilbert problem has continuous coefficients, i.e., ~(µ) is 

continuous and obtains the same limit values at the endpoints of L, 

Mandzhavidze and Khvedelidze 2 5 have shown that the Lipschitz condition 

can be relaxed and mere continuity suffices to ensure the existence 

of the X-matrix. The method does not concern the classical theory 

but argues the proof using a certain sequence of matrices. It is at 

least conceivable that the stringent H-condition could be relaxed even 

in the cse of discontinuities, but no such work seems to be available. 

The cumbersome endpoint condition arises since the endpoints of L 

must be connected by a smooth curve to obtain a closed contour C, on 

which the boundary value problem is restated. The matrix g(µ) is 

continued to have a constant value on the appended portion of C. This 

constant matrix is chosen to be the identity matrix. In the full-range 

case the problem can be solved on the contour [-1,1]. 

The question of existence and uniqueness of a £olution is finally 

reduced to considerations on the total index k of the problem. While 

the total index appears only in a fictituous manner, it is decomposed 

into two integer-valued numbers t and m as 

k = t - m, (4.33) 

where t and m are related to the component indices or to the associate 

problem where the transformation is performed by (g(µ)T)- 1 • All the 
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details have been discussed in Ref. 20 and are reproduced in Appendix 

c. 

The numbers i and m are of essential importance in final conclusions, 

viz Eq. (4.25) will possess a solution t(z) with previously specified 

analytic properties if the vector !(µ) satisfies m conditions of the 

form 

J ~~ ! ( µ) d µ = o , 
L i = 1, 2, • • •m, (4. 34) 

where the vectors ~i(µ) are certain linearly independent quantities 

related to the X-matrix. The required degrees of freedom will be 

furnished by the subsidiary discrete expansion coefficients. In fact, 

the relations in Eq. (4.34) could be employed to determine the expan-

sion coefficients if the X-matrix were known and thus the analytic forms 

of ~i(µ)'s were available. The explicit expression are not required for 

the purposes of merely demonstrating that a unique set of expansion 

coefficients exists. Analytic solution can be obtained only in the 

full-range,and these aspects are discussed in the following section. 

The general solution will contain i arbitrary constants appearing in a 

linear manner. These are the polynomial coefficients in Eq. (4.32). 

Therefore it is required to prove that i = 0, otherwise the problem 

defies a unique solution. This particular proof turns out to be the 

ordeal that actually eliminates a comprehensive consideration of an 

arbitrary partial-range case using the present formalism.The proof 

for the full- and half-range cases is given in Appendix C and involves 

only weak restrictions. 
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The index k is given by 

(4. 35) 

where 

g(z) = ~(µ) if z = µeL 

= I otherwise. (4. 36) 

6c arg denotes the change of argument of the operand as the contour C 

is traversed in the positive direction, and z is a point inside C. 
0 

The number p is determined by the discontinuities of~(µ). The proce-

dure is given in detail by Vekua and only the main points are repeated 

in Appendix B. p enters the index equation when the discontinuous 

problem is reduced to one with continuous coefficients. A priori, 

p = 0 if the Hilbert problem has continuous coefficients. Although 

all precedent kernels entail this property, it cannot apparently be 

asserted in general. 

Referring to Eq. (4.35) and simultaneously observing the require-

ment t = 0 in Eq. (4.33), the number m can·be calculated from 

m = n + p (4. 37) 

where n is given by 

.n=- tL arg det ~(µ). (4.38) 

Def. (4.36) was employed in obtaining Eq. (4.38). For later convenience 

it is necessary to consider the Hilbert problem pertaining to the proof 

of completeness of the adjoint set. Pursuant to Lemma 3.2 the transpose 

of the direct dispersion matrix occurs throughout the adjoint problem. 

Consequently the transformation matrix of the adjoint completeness 
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proof denoted by ~(µ) obeys the equation 

. ( T+ )-1 T-h(µ)= ~ (µ) ~ (µ), (4. 39) 

which is the counterpart of Eq. (4.27). 

Since 

det g(µ) = det ~(µ), (4.40) 

the number n calculated from Eq. (4.38) remains unchanged if the 

direct expansion is substituted by the adjoint one. In case of an 

endpoint discontinuity the number p appearing in Eq. (4.37) remains 

also the same, because it depends only on the eigenvalues of g(µ) and 

~(µ), respectively. While there is no elementary matrix operation 

relating g(µ) and h(µ) it can be shown35 that these matrices have the - -
same eigenvalues. In fact, letting A and B be arbitrary non-singular - -

TT matrices,then the matrices AB and AB have the same eigenvalues (with 

identical multiplicity.) In particular this applies to~(µ) and~(µ). 

With this requisite the completeness of the eigensolutions will 

be considered on full- and half-ranges. For subsequent reference the 

overall assumptions are summarized, viz 
+ 1. A-(v) is nonsingular, i.e., 

+ n-(v) - det + A-(v) f: 0, ve:L, (4.41) 

2. det N(n)(v) f: 0 
-j 

ve:(n), n ~ N, j ~ M, (4.42) 

and 

3. ~(v) satisfies the extended Holder condition on ve:L. 

Reportedly24 condition 1 can be violated while the theory of 
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Muskhelisvili and Vekua is still valid. 

Assuming the conditions 1-3 above the conclusions will be drawn 

in terms of the number p appearing in the index relation Eq. (4.37), 

and the restrictions imposed are to be regarded sufficient rather 

than necessary in character. 

Full-Range Completeness 

For the sake of coherence the general formalism is first applied 

to derive the sufficient conditions. Subsequently in this section 

alternative conclusions are based on a preferable deviant procedure 

whose analogue is customarily employed in this occasion. 4 

The associated discrete modes are formally introd1;ced by the 

following Lemma which is virtually established in earlier studies. 4 

Lenuna 4.1. Letting L correspond to the full-range, i.e., L = [-1.1], 

in Eq. (4.38) then n is equal to the number of discrete eigenfunctions. 

Proof. Considering Eq. (4.38) in this special case 

n = - l_ 6 arg det g(µ), 
21T -1,1 (4.43) 

and observing Defs. (3.13) and (4.26) the defining equation has the 

form 
1 - + n = - 21T 6_1 , 1 arg (n (µ)/n (µ))_. (4. 44) 

The number of the discrete eigenfunctions is the number of the zeros 

of the dispersion function n(z). 

In order to employ the argument principle, the change of arg n(z) 

has to be calculated as z varies along the contour enclosing the plane. 
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As it has been noticed previously, n(z) is an analytic function in the 

entire complex plane cut from [-1,1) and, furthermore, Q(z) assumes a 

constant value at infinity. Therefore a non-zero contribution may 

only be obtained from the path surrounding the cut [-1,1]. 

Rewriting Eq. (4.36) as 

1 A +() 1 n-(µ), n = 2n -1.1 arg n µ + 2n 61,-1 arg (4.45) 

the desired proof is obtained instantaneously. 

In view of Eq. (4.37), where m represents the number of conditions 

to be satisfied (i=O by the proof in Appendix C), and according to the 

preceeding lemma n is the number of undetermined coefficients available, 

it is required p = 0 for the eigensolutions to be complete. In case 

p > 0 the set is incomplete and it is overcomplete if p > O. 

Since the formalism has not been exhaustively applied to deduce the 

conditions of completeness in a given instance, it is appropriate to 

recapitulate the results established on the eigensolutions in Eq. (3.48). 

Thevrem 2. Assum~ng that the conditions 1-3, Eqs. (4.41,42) are 

valid, then the eigensolution are complete on the full range 

µEL a (-1,1]; that is, a unique expansion of the form Eq. (4.1) 

exists if the elements of g(µ) are continuous functions and 

g(±l) = !' 

or if ~(µ) is piecewise Lipschitz-continuous and the number 

calculated from the discontinuities of g(µ) is zero. 

An alternative approach is based on Eq. (4.24). Observing that 

the branch cuts of ~(z) and ~(z) coincide onto [-1,1], one can define 
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!J(z) =. ~(z)~(z), (4 .47) 

and the equation has the form 

+ . D (µ) - n (µ) = µ~(µ), (4 .48) 

yielding a solution 

1 . 
n(z) =.....!_I H~(µ) dµ. 

2ni µ-z 
-1 

(4.49) 

The polynomial part corresponding to ~(z) in Eq. (4.32) can be argued 

to vanish by a trival application of the method displayed in Appendix 

C noticing that the transformation matrix has been reduced to the 

identity matrix. 

The transformation in Eq. (4.47) is not invertable if there exists 

at least one discrete eigenvalue in the complex plane, because ~(vi), 

i < n,is singular. Defining 

c it is required that ~ (z)n(z) also vanishes at vi' i ~ n. The 

discrete expansion coefficients could be determined from these 

conditions.'+,ll 

Since the present formalism is unnecessarily involved for this 

purpose the calculation is omitted here. However, in the following 

chapter the results are obtained conveniently from the orthogonality 

relations. This section is concluded by summarizing these particular 

results in a theorem of a preferable form to Theorem 2. 
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Theorem 3. If the conditions 1 and 2 (Eqs. (4.41,42)) are full-

filled, the set of eigensolutions is complete on the full-range in the 

sense that an arbitrary N-component vector~(µ), ~i(µ)~(µ) i ~ M 

satisfying the extended Holder condition, can be uniquely expanded in 

terms of the eigensolutions. 

Half-Range Completeness 

The completeness property of the set of the eigensolutions must be 

extablished also on the half-range, µ£L = (-1,0] or [O,l], in order to 

permit the use of the expansion Eq. (4.2) in connection with semi-

infinite or bounded medium transport problems. Physically meaningful 

situations always include boundaries. 

While the mathematical formalism displayed in Section 4.1 has no such 

implications, the discussion will be restricted to situations where 

physical arguments require completeness on both intervals (-1,0] and 

[O,l] simultaneously. In this case it can be shown19 that if p = 0 

for the full-range then the corresponding numbers p± equal to zero on 

the half-ranges provided that the kernel is bounded at the origin, i.e., 

(4. 51) 

for all i,j ~ M. The proof is briefly reviewed in Appendix B. In 

particular, Eq. (4.51) implies that if the full-range Hilbert problem 

has continuous coefficients (§C±l) = ;) then the half-range problems 

have continuous coefficients and conversely. 

As the most stringent limitation it will be assumed that the 

scattering operator is self-adjoint, i.e., ~(z) is a symmetric 
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matrix. However, an attempt to generalize the proof to cover non-

symmetric transfer has been made and the lacking fragment of the proof 

is discussed in Appendix C. 

In addition to symmetric transfer, it is required that ~(z) be an 

even function of z, 

~(z) = ~(-z). (4.53) 

The Eq. (4.53) is to be regarded a weak condition. In fact, it is 

valid for isotropic scattering and, in the anisotropic case, if the 

matrices ~i(µ) and ~j(µ) are simultaneously either even or odd 

matrices. This is almost equivalent to the kernel K(µ,µ') possessing 

reflection symmetry. Both these conditions are required to prove that 

the partial indices of the fundamental matrix X(z) are non-positive. 

Referring to Eq. (4.32), this means that the polynomial vanishes in 

the general solution and, simultaneously, there exists a correct 

number of discrete modes to fullfill the conditions Eq. (4.34). 

All earlier investigations considered kernels possessing the 

property (4.53). As it has been demonstrated in Ref. 19, the calcula-

tion of can be simplified for such a kernel. As a further consequence 

the discrete eigenvalues occur in pairs, i.e., if vk is a root of 

Eq. (3.14) then so is -vk. 

In accordance with the formalism developed in Section (4.1) the 

equations cvrresponding to Eq. (4.37) are written as 

m± = n± + t± + p± (4.54) 

where the ± labelling refers to the half-ranges L = (-1,0] and 

L+ = [O,l]. 
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The members n± are defined in analogy with the general defini-

tion Eq. (4.38) i.e., 

n = ± -'1, arg det g(µ). 
± 

Since the operator L\arg is additive and 

L UL = [-1 l] , + - , 

it follows from Eq. (4.43) that 

n = n+ + n_ 

and observing Eq. (4.53) one obtains 

(4.55) 

(4. 56) 

(4.57) 

(4 .58) 

As it is shown in Appendix B a similar relationship exists for the 

numbers p± and p. That is 

P+ + P_ = P (4 .59) 

in general, and applying the symmetry condition Eq. (4.53) 

(4. 60) 

Pursuant to the discussion in Sec. 4.1 it has to be shown that 

the numbers 1± vanish in Eq. (4.54). This is proven in Appendix C. 

The Eqs. (4.54) valid on L± are added to obtain 

m++m_=n+p. (4.61) 

where Eqs. (4.57,59) and the result 1± = 0 are observed. Recalling 

the meaning of the quantities in Eq. (4.61),viz m+ + m_ is the number 
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of conditions of the form Eq. (4.34) which have to be fullfilled in 

order to permit a unique expansion on both half-intervals simultaneously; 

and n is the number of linearly independent free constants available; 

the eigensolutions are complete on the half range if p = O. The p-

dependence of the conclusion is identical with that in the full-range 

case. 

The fragments of the proof of this section are now gathered 

together. Referring to Sec. 4.1 the conditions 1-3 (page 40) 

were assumed to be valid. In addition, in the half-range proof the 

following sufficient conditions have been imposed: 

4. The kernel is self-adjoint and ~(z) = ~(-z). 
Theorem 4. Assuming the conditions 1-4 are fullfilled, then the 

eigensolutions are complete on the half-range, if p = O. 

Corollary~ If condition 4 is valid and the transfer kernel is 

bounded in a neighborhood of the origin, then half-range 

completeness is a consequence of full-range completeness, and 

conversely. 

The corollary is obtained by comparing the conclusions in Theorems 

2 and 4 and the discussion of p in Appendix B. To reiterate, self-

adjointness in condition 4 can be rigorously relaxed as soon as the 

non-positivity of the partial indices in established. 



V. FULL-RANGE ORTHOGONALITY AND APPLICATIONS 

The results derived in the previous chapters are not directly 

applicable to solving any practical boundary value problems but permit 

the use of numerical techniques based on the normal modes. This is in 

part due to the intrinsic complexity of the problem but also because 

the formalism developed in terms of matrices of rank NM,while appro-

priate in the consideration of completeness, is unnecessarily complicated 

for solving for the expansion coefficients. This is emphatically ob-

vious for problems involving infinite medium boundary conditions. In 

this case the convenient orthogonality properties of the eigensolutions 

are easily established. 

In the general case the derivation of orthogonality relations, 

assuming such relations exist, consists of determining the weight 

function matrix ~(µ) possessing the property 

I (~t(v' ,µ))T!:'(µ)~(v,µ)dµ = .O(v-v'). 

L 

In fact the degeneracy of the continuous spectrum necessitates an 

orthogonalization procedure to be applied on the continuous eigen-

solutions. The weight function has been determined in a special 

multigroup case 5 whereas no general proof has been given so far. 

(5 .1) 

Fortunately, the full-range completeness relation can be obtained in 

a straight-forward manner directly from the eigenvalue equation. 4 To 

illustrate the utility of the formalism,the infinite medium Green's 

function is determined in a subsequent section. Finally, some remarks 

48 
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are made on the asymptotic behavior of the solution of the Milne pro-

blem. 

Orthogonality and Normalization 

Theorem 5. The eigenfunctions ~(v,µ) and ~t(v,µ) are orthogonal on 

the full range with respect to weight functionµ. As proof, consider 

the eigenvalue equation Eq. (3.4) 

(r - µ/v I)f(v,µ) = f 1~(µ,µ')~(v,µ')dµ' 
-1 

(5.2) 

and the transpose of the adjoint equation Eq. (3.60) associated with 

eigenvalue v', 

. T rl T 
(!t(v',µ)) (~-µ/v'I)= l (!t(v',µ')) ~(µ',µ)dµ' .• 

l 
(5. 3) 

Eq. (5.2) is pre-multiplied by (~t(v',µ))T and Eq. (5.3) post-multiplied 

by 2(v,µ). The resulting equations are integrated over µ from -1 to 1 

and subtracted to yield the desired result, 

f~ -~·lf 1·(~tcv',µ))T~(v,µ)dµ = o. 
1 

(5.4) 

The practical value of Eq. (5.4) is established by Theorem 1 

stating that the direct and adjoint spectra are identical and there-

fore eigenvalues v=v' exist. 

The normalization integral for a discrete eigenfunction ~(v',µ) 

(Eq. 3.7), denoted by N(vi)' where 

(5. 5) 
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is evaluated from 

(5. 6) 

The adjoint norm vectors ~t<vi) correspond to the vectors ~1 (vi) of 

the direct kernel. 

Noticing Def. (3.9) the preceeding equation is cast in the form 

(5. 7) 

t where ~(vi) was defined in Eq. (3.11) and again ~ (vi) is the corres-

ponding vector for the adjoint problem. Analogous expressions have 

been exhibited in one-speed theory~ and in earlier multigroup studies.36 

The use of the orthogonality relations to determine the continuous 

expansion coeff.icients involves normalization integrals N~;> (v) of the 

form 

(5 o 7 I) 

where a(v) is an expansion coefficient defined on vE(n). Using the 

explicit forms of the eigensolutions given in Eqs. (3.48,65) the above 

expression has the form 

l 
N~~)(v)a(v) = (~i<v>)TJ dµµ J dv'a(v')[~~)(v,v',µ)~j(v'), 

-1 (n) 

where the NM component vectors are obtained from Def (3.34) and an 

bi N N i bl k f h i r (n)( I ) i i b ar trary x matr x oc o t e matr x i" v,v ,µ s g ven y 
- J 

(5.8) 
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11ic(µ)(~(v,µ)+Ain)(v)§(n)(v,µ)) (~(v',µ)+Ajn)(v')§(n)(v',µ))~1 (µ). 
(5.9) 

More detailed expressions of N~;)(v) are not needed for the purposes 

of the rest of this work. From the point of view of performing the 

integrations in Eq. (5.8) it is observed, however, that Eqs. (3.22, 32) 

yield 

[~±(v)]kt = Iokt - J 1~(µ)(~(v,µ)+i~v~(n)(v,µ))~1 (µ)dµ, 
-1 

ve(n), 

which relates the matrices appearing in Eq. (5.9) to the boundary 

values of the dispersion matrix. 

(5.10) 

As has been indicated in Eq. (5.7),the orthogonality relation 

Eq. (5.4) does not provide a vanishing scalar product of the eigen-

solutions associated with the same eigenvalue but different functions 

Ain)(v), where i ~ N-n+l. Besides usinu a generalized Gram-Schmidt 

process 1 o,1 9 or some other feasible procedure, 11 an alternative scheme 

involves solution of a linear system. In order to explain the calcula-

tion, consider the expansion of a given admissible function ~(µ) 

(c.f., Eq. 4.1) 

~(µ) 
n N N-n+lJ (n) (n) = l ai(v)~(vi,µ) + l l ai (v)~i (v,µ)dv, 

i=l n=l i=l( n) 

(5.11) 

where the discrete coefficient ai is determined applying Eqs. (5.5,7). 

The coefficient a~n)(v) is determined by multiplying Eq. (5.11) by 
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µ(~i(n)t(v,µ))T d i i f 1 1 ~ an ntegrat ng over µ rom - to • Proceeding in this 

manner for all values of i ~ N-n+l consecutively, one obtains a system 

of N-n+l linear equations; 

(5.12) 

with 

(5.13) 

and 

(5.14) 

where Ni;)(v) was defined in Eq. (5.7) and ~(n)(v) has the components 
(n) ai (v) (c.f., Eq. (4.6)). Inversion of Eq. (5.12) yields the coef-

ficient provided that ~(n)(v) is non-singular. 

The Infinite-Medium Green's Function 

The full-range completeness and orthogonality properties of the 

eigenfunctions can be applied immediately to solve the infinite-medium 

Green's function. Consider a planar source at the origin emitting qi 

neutrons collimated at µi in the ith group. The particle density, 

conventionally called ~(x,µ), satisfies the Boltzmann equation 

~~(x,µ) (5.15) 

where 

(5.16) 

In order to specify ~(x,µ) uniquely some other appropriate con-

ditions are required. Supposing the system is subcritical the Green's 
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function vanishes at infinity, i.e., 

lim g(x,µ) = O. x-+oo - - (5 .17) 

While no further studies have been made it can be conjectured on the 

basis of earlier results 4 that subcriticality implies the discrete 

eigenvalues to be real. In any event, the condition (5.17) and reality 

of the spectrum are assumed in the subsequent discussion. Letting p 

eigenvalues in the discrete spectrum be positive, the relevant expan-

sions of the Green's function are 

~(x,µ) 

N N-n+lf + l l ai(n)(v)e-x/v~(n)(v,µ)dv, 
-i n=1 i=l 

(n)L 0 + x > ' 

(5 .18) 

(5.19) 

where Eq. (5.17) is now manifestly fullfilled. Applying the jump con-

dition, 4 

(5. 20) 

one obtains immediately Eq. (5.11) with 

(5.21) 
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Employing Eqs. (5.4,5) the discrete coefficients ai are obtained 

from 

(5.22) 

and pursuant to the discussion leading to Eq. (5.12) the continuous 

expansion coefficient are determined by 

where 
1 

= J (~r<n>cv,µ>)T~Cµ,µo)dµ. 
-1 

(5.23) 

(5.24) 

Once the Green's functions are known one could derive pertinent 

integral equations for any boundary value problem involving semi-

infinite or bounded media.17 

Application to the Milne Problem 

The infinite medium Green's function can be applied to certain 

problems involving finite media introducing fictitious sources. 25 As 

an example the Milne problem is considered in the following. 

The problem consis~s of determining the angular flux in a half-

space with the non-reentrant boundary and with a source at infinity. 

Choosing a properly normalized source the problem is to find a solution 

~(x,µ) of the transport equation with the boundary conditions 

lim -x/v x-+<x> ~(x,µ) = e ~(v,µ), v<O , (5.25) 
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and 

~(O,µ) = 0 ' µ>0, (5.26) - -
where v is some real eigenvalue belonging either to the point or 

continuous spectrum. 

For the purposes of the subsequent discussion it will be assumed 

that the emergent distribution ~(O,µ), µ<0, is known, and it is re-

garded as a negative source at x=O. The total angular flux is then 

given by 
0 

~(x,µ) = e-x/v~(v,µ) + f µ G(O,µ ;x,µ)~(O,µ )dµ , 
~ - o- 0 - 0 0 

-1 
(5.27) 

where G(x ,µ ;x,µ) is a matrix whose ith column is the Green's function 
- 0 0 

~i(x,µ) derived above corresponding to a source q with qk = o(µ-µ0 )oki. 

In order to consider the asymptotic contribution of the source at 

the surface, it is assumed that there exists a dominant real positive 

discrete eigenvalue v • This holds at least in known cases. The term 
0 

containing the Green's function will then have an asymptotically domi-
-x/v as nant behavior as e and the asymptotic expression ~ (x,µ) can be 

written as 

as ! (x,µ) -xiv -xiv = e ~(v,µ) +a e o~(v ,µ), 
0 - 0 

(5.28) 

where it is easy to verify that a is the full-range expansion coeffi-o 

cient of the emergent distribution ~(O,µ), i.e., 

0 
N(v )a = J µ (~t(v ,µ))T~ (O,µ)dµ. 

0 0 0 - 0 -
-1 

Introducing the corresponding asymptotic density pas(x) with 

(5.29) 
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ea•(x) = f'!as(x,µ)dµ, 
-1 

the extrapolation distance x is defined by 
0 

and in this particular case it is deduced from 

as x /v x /v p (-x ) = e 0 n_(v) +a e o 0 n(v ) = O_, 
- 0 0 - 0 

(5.30) 

(5.31) 

(5.32) 

that there exists in general a different extrapolation distance for 

each group. However, if ~(z) = ~(-z) holds and if the source at 

infinity is normalized to correspond to the eigenvalue v=-v0 , then 

n(-v ) = n(v ) and a single extrapolation distance is readily deter-
- 0 - 0 

mined to be 

(5.33) 

In case the emergent distribution is calculated using a 

technique based on the half-range completeness proof given in 

the present study, then the condition ~(z) = ~(-z) is concomitant. 

The general discussion in this chapter is not restricted by this 

condition. 



VI. CONCLUSION 

The multigroup transport equation has been studied in plane geo-

metry assuming the angular dependence of the transfer kernel could be 

represented in a degenerate form. The analysis was conducted employing 

the method of singular eigenfunctions. 

The dispersion matrix, whose determinant defines the eigenvalue 

spectrum, was found in a block matrix form. The associated eigenfunc-

tions can be derived explicitly for a certain combination of the set 

of eigensolutions chosen for the analysis. Since the full-range 

orthogonality properties of the eigenfunctions involve the adjoint 

eigenfunctions, the adjoint operator was considered in some detail. 

In particular, it was demonstrated that the direct and adjoint eigen-

value spectra are the same and that the distributional part of the 

singular eigensolutions is identical for the direct and adjoint 

Boltzmann operators studied. 

An indispensable part of this work was directed to establishing 

sufficient conditions under which the angular eigenfunctions form a 

complete set in the sense that an arbitrary vector satisfying the 

extended Holder condition can be uniquely expanded in terms of these 

normal modes. Attempting an expansion in terms of the continuous modes 

alone leads to a system of integral equations which is found to be 

equivalent to a matrix Hilbert problem on a given range. The Hilbert 

problem possesses a solution with appropriate analyticity requirements 

if a certain number of conditions is imposed on the inhomogeneous term. 

57 



58 

The main complication arises frvm the fact that the general solution 

includes a polynomial contribution which has to be proven to vanish 

in order for the set to be complete. 

In the full-range case it is shown that no arbitrary polynomial 

can occur in the solution and that the necessary analytic properties 

are achieved when the discrete expansion coefficients are introduced. 

In fact, the matrix Hilbert problem is reducible to a diagonal form 

and therefore the theory of the scalar Hilbert problem will suffice 

in the treatment. Thus, it was proven that the eigenfunctions are 

complete on the full-range, i.e., an arbitrary vector~(µ) is expand-

able, if any of the following conditions are fulfilled. 

1) If the vectors µ~i{µ)~{µ) satisfy the extended Holder 

condition. 

2) If a certain vector f constructed from µ~i{µ)2(µ) and from 

the boundary values of the dispersion matrix {see Eq. 4.27) satisfies 

the extended Holder condition, and 

a) the Hilbert problem has continuous coefficients, or 

b) if the Hilbert problem has piecewise Lipschitz continuous 

coefficients, and an index p (which must be calculated from the dis-

continuities for each particular kernel) vanishes. While the first 

case above can be used to assert completeness in all known problems, 

only the second alternative is readily transferable to the half-range 

problems. 

In the half-range completeness proof the main obstruction is 

caused by the difficulty in demonstrating that the solution cannot 
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include a polynomial. For this reason further restrictions have to be 

introduced on admissible kernels. The half-range completeness holds if 

condition 2 above is satisfied and, if in addition, the scattering opera-

tor is self-adjoint (a symmetric dispersion matrix) and the elements 

of the dispersion matrix are even functions. These conditions pertain 

to the thermal equilibrium of the system and to reflection symmetry of 

the scattering kernel, respectively. 

An approach to establish the half-range completeness for nonself-

adjoint kernels is also proposed but, unfortunately, the proof is in-

conclusive because of some detail. Once the nonpositivity of the 

partial indices has been established for an arbitrary case, complete-

ness would follow immediately. To date a rigorous proof is available 

for a two-group nonself-adjoint problem with isotropic scattering in 

which case the transfer kernel can be symmetrized. 

The condition on the index P is found to be equivalent in the 

full- and half-ranges provided that the elements of the transfer matrix 

are bounded in a neighborhood of the origin. 

As an application of the full-range completeness and orthogonality 

properties, the infinite medi~m Green's function is derived in a closed 

form. At the present time no analytic solution appears to be available 

for a general half-range problem. The half-range completeness proof 

can evidently be used to show the existence and uniqueness of a solution 

in numerous cases where numerical schemes have been developed, e.g., in 

invariant embedding or direct iteration. 

The question whether an analytic solution exists in the half-range 

case is tantamount to exploring whether an appropriate fundamental 
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matrix can be constructed. Besides the general considerations, it would 

be interesting to study the diagonalization of the transformation by a 

properly discontinuous matrix. A diagonal Hilbert problem would im-

mediately be amenable to analytic solution. A convenient similarity 

transformation has been found for separable kernels. This would require, 

however, the continuation of the transforming matrix into the entire 

complex plane, since the similarity transformation concerned is defined 

only on the branch cut. In any event, the eigenvalues of the trans-

formation matrix can be readily obtained for other purposes. 

In this connection it should be noted that certain representations 

in terms of matrices with rational elements have been used in the 

development of the basic mathematical theory. Even in this case the 

diagonalized treatment would be more feasible not to mention possible 

numerical approximation in this direction. 



~ndix A 

Characterization of the Hilbert Problems 

Since the solvability of various boundary value problems occurring 

in transport theory is determined by the attributes of the transforma-

tion matrix of the appropriate Hilbert problem, different possibilities 

are considered in the following. A new approach to these problems is 

also proposed. 

Consider the homogeneous Hilbert problem (cf., Eq. 4.25) 

where Lis a given subinterval of [-1,1]. The problems are divided 

into two cases.19 

I. g(µ) is a diagonal matrix or diagonalizable. In this connec-

tion, by ~(µ) being diagonalizable it is meant that there exists a 

non-singular matrix ~(z), discontinuous on L in general, such that 

the matrix ~+(µ)g(µ)(~-(µ))- 1 is diagonal. 

II. ~(µ) is not diagonalizable. 

In case I, the problems can be solved analytically on an open arc 

L. 23 In case II, one has to close the contour and no general method 

is reported to obtain the fundamental matrix in a closed form. However, 

general analysis can be conducted if either2~,25 

1) g(µ). is a continuous matrix whose value at both endpoints of L -
is the same, or 

2) g(µ) is a piecewise Lipschitz continuous matrix. 

Besides these general considerations it is interesting to examine the 
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diagonalization of ~(µ) by an ordinary similarity transformation in the 

particular case of transport theory. For simplicity, consider Eq. (3.53) 

for a separable kernel in the constant total cross section limit. The 

equation has the form 

(A-2) 

which is equivalent to 

~-l(µ)g(µ)~(µ) = (~(µ)+iTIµ~)-l(~(µ)-iTIµl). (A-3) 

Since ~(µ) is a diagonal matrix by definition, it is noticed that the 

normalization matrix ~(µ) diagonalizes the transformation. Further-

more, the diagonal elements, denoted byYi(µ), have the form 

(A-4) 

The problem is reduced to constructing a non-singular, analytic 

matrix ~(z) having the value ~(µ) on the cut. Even if such a matrix 

does not exist, it is noticed that in the standard treatments of this 

kind (c.f., Ref. 25) the occurance of poles is circumvented by intro-

ducing appropriate rational matrices. Because of these unresolved 

questions only a brief sketch is given on the procedure. Defining an 

auxiliary diagonal matrix X (z) conventionally by23 -o 

(~o (z)) ii = exp (2!if logy i (µ)~~z)' 
L 

the appropriate fundamental matrix ~(z) is obtained from 

X(z) = R(z)X (z), - - -o 

(A-5) 

(A-6) 

where ~(z) is a diagonal rational matrix explicitly determined by the 
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behavior of X (z). Incidentally, the partial indices are also explicitly -o 
determined by~ (z). Finally, the solution of the inhomogeneous equation 

0 

pertinent to Eq. (A-1) is obtained in the form 

1 f ( + )-1 dµ !(z) = 2ni ~(z)~(z) ~(µ)~ (µ) t(µ)µ-z 
N 

(A-7) 

where ~(µ) is the inhomogeneous term and p(z) is a vector of poly-

nomials, whose occurance is determined by the known partial indices. 



Appendix B 

Calculation of the Index p 

In the completeness proofs, the possibility for a discontinuous 

transformation in the Hilbert problem was allowed. In the general 

theory of Vekua24 the problem is reduced to another transformation, 

which has continuous coefficients, and a parameter p enters the index 

equation. While this case appears to be rather uninteresting because 

of the stringency of the Lipschitz condition required, it is plausible 

that the condition can be relaxed to piecewise continuity, which 

would be a reasonable limitation. Furthermore, the possibility of 

discontinuities on ~(µ) has not been ruled out, and especially the 

points µ=l/cr should be checked. For these reasons, the calculation 
1 

of p is briefly quoted 24 and the relation between the full- and half-

range cases is considered in this Appendix. 

Letting vk be an arbitrary point of discontinuity of g(µ), the 

eigenvalues of the matrix y(v), defined as 

(B-1) 

determine the number p in the following way. Since ~(µ) is nonsingular, 

the eigenvalues A~ can be represented as 

k -1 < Rep i < 1. (B-2) 

k k In fact, the numbers pi are chosen either with -1 < Repi < 0 or with 

0 ~ Rep~ < 1 based on some other consideratio11s. 24 Recalling that the 

rank of the matrix v is NM, p is obtained from 
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NM K k 
P = l l Pi, (B-3) 

i=l k=1 

where K is the number of discontinuities. There are two main simplifi-

cations which may have some practical importance. The symmetry 

~(z) = ~(-z) implies that y(vk) and r<-vk) have the same eigenvalues 

since r<-vk) reduces to 

lim -1 
y(-vk) = g(vk-e)g (vk+e). 
- £~0 -

(B-4) 

Therefore the contribution to p can be calculated from the half-range. 

Secondly, the calculation of the endpoint discontinuities is 

simplified by the fact that g=I on the appended contour. The eigen-

values can ·be immediately obtained from the similarity transformation 

(Eqs. A-3,A-4). In particula ·, since the adjoint transformation matrix 

has the same diagonal form, the number p is the same for the adjoint 

problem. It is noticed that this result is independent of the 

restriction to a separable kernel made in Eq. (A-3). 

Finally, it is convenient to notice that from Eqs.(3.22 and 4.27) it 

follows ~(o)=!• provided that the elements of the matrix ~i(µ)~j(µ) 

are bounded in a neighborhood of the origin. This implies that 

p + p = p, (B-5) + -

where p± are calculated from the half-ranges and p from the full-range. 



Appendix C 

Non-positivity of the Component Indices 

It has been noted in Chapter IV that in order to obtain a solution 

of the Hilbert problem (Eq. 4.25) one has to apply a certain number of 

independent conditions on the inhomogeneous term,and that a general solution 

will include a polynomial part depending on the behavior at infinity 

of the X-matrix. In particular, it was shown that the discrete ex-

pansion coefficients will furnish the proper number of degrees of 

freedom to satisfy these conditions on the full- and half-range cases 

provided that the component indices of the X-rnatrix are non-positive. 

Simultaneously the polynomial would vanish. In fact, it would be 

adequate to prove that the non-zero component indices have the same 

algebraic sign, since the sum of the indices (the total index) is 

known to be non-positive. 

In the full-range case the Hilbert problem can be treated in an 

alternative way. Nevertheless, the appropriate inspection of the 

number of the discrete modes needed would eventually require as much 

calculation as the brief proof presented below. Because more severe 

conditions must be imposed in the half-range than in the full-range, 

these cases are discussed separately. 

Full-range 

The fundamental matrix ~(z) satisfies the equation 

+ -
~ (µ) = g(µ)~ (µ) 

µE[-1,1], (C-1) 
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+ -1 -g = (A ) A , - - - (C-2) 

-1 The matrix A would formally satisfy Eq. (C-1), but since it does 

not exist in the entire complex plane, it is more convenient to con-

sider the associated problem24 to Eq. (C-1). The corresponding funda-

mental matrix Y(z) obeys 

+ ( T )-1 -y (µ) = g (µ) y (µ). - - - (C-3) 

It is readily observed that ~T(z) satisfies Eq. (C-3), and being 

analytic outside the branch cut [-1,1], it can be expressed as 24 

T ! (z) = !(z)~(z), 

where ~(z) is a matrix of polynomials. If z approaches the origin, 

where !(O)=!, Eq. (C-4) has the form 

Y(O)P(O) = I, - - - (C-5) 

where !(O) is non-singular24 and therefore at least one element of a 

given row of ~(z) has a term of order zero. 

Letting Ki' i ~NM, denote the component indices of ~(z), the 

Y(z) has the indices -K1 •24 Since Y(z) must be of normal form at 

infinity, 24 • 2 5 it follows that 

-·K 0 z l 

-K 
z 2 

lim Y(z) • (C-6) = I z-+eo • 

0 ~~ 
z 
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Finally, letting z approach infinity in Eq. (C-4) and noting that 

~(z) then approaches a constant value, it follows immediately by 

Eq. (C-6) and by the fact that some element of each row of P(z) is 

non-zero that all the component indices Ki are non-positive. 

Half-range 

In regard to the half-range no definitive index proof has been 

found under the relatively weak conditions applied to the rest of 

the analysis. In fact, while the ensuing discussion will be con-

ducted in rather general terms, the conclusive proof will be limited 

to the same class of scattering operaton;as is considered in Ref. 10, 

i.e., to symmetric transfer. 

The proof is commenced by introducing the relevant fundamental 

matrix of the half-range associate problem denoted by !(z). The 

boundary values of ! satisfy Eq. (C-3) on the half-range, where as 

Y is continuous on the opposite section of the branch cut. Further-

more, let ~(z) be the fundamental matrix of the Hilbert problem 

related to the adjoint kernel ~T(µ',µ). On the half-range ~(z) obeys 

the equation 

+ . -
~ (µ) = ~(µ)~ (µ), (C-7) 

where 

(C-8) 

Consider a subsidiary function V(z) defined as 

y(z) = ~T(z)~(-z). (C-9) 

Assuming that ~(z) = A(-z) it is readily verified that V(z) satisfies 
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Eq. (C-3) on the half-range, and is also analytic in the rest of the 

plane. Consequently, V(z) can be represented as 

yCz) = !(z)~(z) (C-10) 

Let ~i' i ~NM, now denote the component indices of ~(z). In view of 

Eqs. (C-9) and (C-10) it is seen immediately that assuming Ki > 0 

and ~i > 0 simultaneously leads to a contradiction in the limit as 

z ~ m provided that 

lim [ ) z~ ~(z) ii I 0. (C-11) 

In particular, if Eq. (C-11) were valid for i=l it could be concluded 

that the partial indices of either the ~-matrix or the ~-matrix are 

non-positive, i.e., either the direct or adjoint set is complete. 

This follows from the fact that the indices can be ordered. It would 

also follow innnediately21 that the both sets are complete if the total 

number of discrete eigenfunctions is less than 2NM or if the operator 

relating the direct and adjoint eigenfunctions is invertible. This 

could be verified in each case separately considering the spectral 

representation of the operator which can be constructed. 21 

Unfortunately, any attempt to establish Eq. (C-11) in general 

appears to lead to an impasse. Letting z appraoch the origin in 

Eqs. (C-9) and (C-10) leads to 

(C-12) 

For Eq. (C-11) to hold it is sufficient to have ~(O) = ~(Q), which of 

course is trivially true for a self-adjoint problem where ~(z) : ~(z). 



Appendix D 

Connnents on Some Previous Investigations 

One has to exercise certain care in applying the results of the 

established mathematical theory to the proofs of completeness. Some 

inaccuracies persistent in the literature were pointed out throughout 

this study. These are summarized in this Appendix along the lines of 

a forthcoming paper.37 

First, it was observed in Chapter IV that the proof of complete-

ness can be reduced to a Hilbert problem rather than to the solution 

of a system of Fredholm equations. 11 This is achieved by trans-

forming the appropriate system of singular integral equations into 

a dominant form2 ~ Eq. (4.13). Hence the occuring Fredholm term is 

eliminated. 

The rest of the remarks are confined to the half-range proof. 

In the full-range case the corresponding difficulties can be easily 

circumvented. 

The completeness proofs subject to criticism7 ,11,36,3B are based 

on Muskhelisvili's 2 3 or Vekua's 2 ~ analyses of the matrix Hilbert 

problem. Expressing the Hilbert problem as (c.f. Eq. 4.25) 

+ ~ (µ) = g(µ)~ (µ) + f(µ), µcL, (D-1) 

their formalism requires the transformation matrix g(µ) to be at 

least H~lder continuous on L. This condition is too stringent for 

the works referred above. Fortunately, the equivalent theory of 
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Mandzhavidze and Khvedelidze25 is applicable if ~(µ) is a continuous 

matrix. 

Most importantly, several papers are either incomplete36 or 

assumptious7,ll, 38 in regard to establishing the algebraic sign of 

the partial indices of the ~-matrix. The importance of these 

considerations is thereby dismissed. 

To clarify this point, consider the two-group case as an example. 

To solve Eq. (D-1), it is necessary to obtain a solution X(z) of the 

homogeneous equation (i.e., to perform the Wiener-Hopf factorization 

of the g-matrix.) This factorization is indeterminate to within a 

vector of entire functions, call it p(z). Then a solution to Eq. (D-1), 

if it exists, can be written in 

t<•l = 2~1 ~(z){f (~+(µ) t 1fC•\~~ + ~(z) }· (D-2) 

His known, from the original equation (4.33), that each component of 

!(z) must vanish at least like l/z as lzl-+<x>. Furthermore, at infinity 

J!(z) behaves as 

-K -K2 
az l+ . . . bz + ... 

J!(z) "' ' I z I ....... , (D-3) 
-q -K2 

CZ + . . . dz + ... 
whc:re K1 and K2 are the partial (or component) indices and K1 + K2 = n, 

where 2n is the number of discrete roots of the dispersion function. 

Suppose, for example, that K1 = +l. Then the first column of the 
-1 

~-matrix will vanish at infinity as z , and the first component of 

the solution is acceptable. But now K2 = -n-1, so that the second 
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column of X(z) will diverge at infinity as zn+l This requires n+l 

conditions a the integral in Eq. (2) to insure that the produce vanishes 

at l/z, but, in half-range, there are only n conditions available, 

corresponding to half the discrete eigenvalues; hence, no solution 

exists. It is clear that this type of behavior holds if either 

K1 orK 2 is positive. Thus, a solution to the Hilbert problem exists 

iff Ki~OVi. Although the above analysis is given for the two group 

case, the conclusion is valid for any number of groups. In cases where 

the number of conditions is not limited a priori, the positivity of 

the partial indices implies that th? polynomial contribution ~(z) is 

nonzero. 

No counter example is given above and, in fact, the eigensolutions 

in these particular cases may be complete. However, it might be 

mentioned that employing the continuous energy approach Nicolaenko 28 

constructed a counter-example where the normal modes are incomplete. 

This may be expected to occur when the scattering operator is noncompact. 

In fact, Nicolaenko's example was based on the existence of a residual 

spectrum which possibility has been ruled out by establishing the identiy 

of the direct and adjoint spectra in Theorem 1. 



Appendix E 

Elimination Procedure for a System of 
Singular Integral Equations 

Attempting to solve the system of integral equations in Eq. (4.12) 

in component form leads, in general, to a scalar singular integral 

equation involving a non-degenerate Fredholm term.15,19 While there 

exists no general method for solving such an equation, an analytic 

solution can be obtained in the full-range case from the orthogonality 

relations. For simplicity, Eq. (4.12) is considered in two-group case 

(E=I) with a separable kernel (JS=~). The subscripts indicating 

different regions and the degenerate sum of the kernel are omitted. 

In view of Eq. (4.12); 

(E-1) 

it would be more convenient to consider the expansion of a function 

(~(µ))- 1 ~(µ). However, L may fail to have an inverse at some point 

on [-1,l], e.g., as in Ref. 10, and hence it is appropriate to 

consider Eq. (E-1) as it has been expressed above. Defining 

(slightly differently than in Chapter IV) 

and 

-1 
v~(v) = ~(v)~(v)~(v)~ (v), 
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(E-2) 

(E-3) 
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Eq. (E-1) has the form 

~l(µ) = Lll(µ)PfLP~~~)dv+Ll2(µ)PfLP~~~)dv+All(µ)pl(µ)+Al2{µ)p2(µ), 
(E-4a) 

~2{µ) = L2l{µ)PfLP~~~)dv+L22{µ)PfLP~~~)dv+A2l{µ)pl(µ)+A22(µ)p2(µ). 
(E-4b) 

p2(µ) is eliminated from Eq. (E-4b) as a function of pfµ) and sub-

stituted in Eq. (E-4a). It will ;lppear that the resulting singular 

integral equation for p (µ) will, in general, involve a non-degenerate 
l 

Fredholm term. However, one can solve for the vector ~(v) from 

Eq. (5.23) by employing the full-range orthogonality of the eigen-

functions. The vector p(v) can then be solved from Eq. (E-2). 

In the following the singular integral equation with a Fredholm 

term is constructed. The procedure is commenced by defining 

and 

N (z) = ~l~J P2(v)d . 
2 2ni L v-z v 

+ Introducing the boundary functions N2-(µ); 

(E-5) 

(E-6) 

(E-7) 



75 

Eq. E-4b becomes 

Defining 

(E-9) 

the appropriate X-function is 

( ~ 2> [l J · a ( v) ) n exp - ~v , 
n L v-z 

(E-10) 

where 1 1 and 1 2 are the endpoints of the cut L. Eq. (E-6) now 

becomes 

(E-11) 

where 

+ -
) _ X (}1)-X (µ) 

y( µ - 2 niL ( µ) • 22 . 
(E-12) 

The solution of Eq. (E-11) can now be written23 as 

N ( ) = 1 I y(µ)l/JHµ)dµ (E-13) 
z 2 niX(z) L µ - z • 

N2(µ) is supposed to vanish as l/z at infinity. To make this possible, 

n 1 discrete eigenfunctions have to be introduced with 

n '-1 < n < n' - 1 ' (E-14) 

where 

n' = (E-15) 
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A new function N(z) is defined by letting 

in Eq. (E-13). 

n1 

11i;(µ)-+ Iii~(µ) - l aji~("ji'µ) 
i=l 

By an abbreviation 

tjJ"(µ) = 2 

the definition of N(z) is 

(E-16) 

(E-17) 

(E-18) 

The functions N(z) and N2(z) will have the same discontinuity across 

the cut L, and from Eq. (E-7) one has 

~-19) 

The substitution of Eq. (E-19), after using Eqs. (E-13) and (E-18), 

into Eq. (E-4a) leads to a rather lengthy calculation. The 

expression can be simplified by changing the order of integrations, 

using the Poincare-Bertrand formula2 3 when appropriate. 

Defining 

(E-20a) 

(E-20b) 

(E-20c) 
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(E-20d) 

k( ) a PJ y(n)L21(n) dn 
v.µ (n-v)(µ-n) ' L 

(E-20e) 

(E-20f) 

(E-20g) 

z(µ,v) = L12 (µ)PJ (b(n,v) - 6(n)K(v,n;) ~ v-n n-µ L 
(E-20h) 

- A12 (µ)6(µ)k(v,µ), 

and 

$1'(µ) a $1(µ) -A (µ)(6(µ)PJ y(v)(p2(v)-$~(v))dv 
12 L v - µ 

(E-20i) 

+E(µ)y(µ)(~2(µ)-$2(µ))' 
one finally obtains the integral equation 

= x(µ)p 1(µ) +Pf y(µ,v)PJ(v)dv + J z(µ,v)P1(v)dv, 
L v-µ L (E-21) 

involving both a singular term and, in a general case, a non-

degenerate Fredholm term. 
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ON MULTIGROUP TRANSPORT THEORY 

WITH A DEGENERATE TRANSFER KERNEL 

Pekka Silvennoinen 

Abstract 

The multigroup transport operator is studied in plane geometry 

assuming that the transfer kernel can be represented in a degenerate 

form. The eigenvalue spectrum is analyzed constructing the pertinent 

dispersion matrix in a block matrix form. The associated eigensolu-

tions are obtained in terms of generalized functions. The adjoint 

operator is also considered for the purpose of demonstrating the 

full-range orthogonality relations. In particular, it is proven 

that the direct and adjoint eigenvalue spectra are identical. The 

full-range completeness of the eigensolutions is established under 

rather general conditions. For the half-range completeness to hold 

it is additionally required that the scattering kernel is self-

adj oint and possesses reflection symmetry, i.e., the dispersion 

matrix is symmetric and even. Finally, the infinite medium Green's 

function is derived employing the orthogonality relations, and the 

extrapolation distance for the Milne problem is calculated in terms 

of the emergent distribution. 
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