
Chapter 6

Nonlinear Mixed Models

In our experience with profile monitoring, we have found it more likely that the profile is best

described by a nonlinear function than by a linear function. Nonetheless, the majority of

existing profile monitoring research deals with linear profile. Williams, Woodall, and Birch

(2003) give a broad treatment of nonlinear profile monitoring where separate nonlinear (NL)

regression models are fit to each profile. Williams et al. (2006a) gave an application of NL

profile monitoring to dose-response data. Thus an important extension of the work shown

in Chapters 4 and 5 is the use of a nonlinear mixed (NLM) model to account for profile data

that is nonlinear in nature and has the two levels of correlation discussed in Section 4.1.

We discuss here the NL and NLM model and show in Chapter 7 the results of simulation

studies that evaluated the effectiveness of a NLM model approach when compared to the NL

approach. We hypothesized that at a minimum, the superiority of the NLM model over the

NL model will occur for the same situations that the LMM is superior to the LS approach,

and found that the NLM model is clearly superior for all the scenarios that we investigated.
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6.1 NL Model Formulation

Just as we did for the LMM, we assume that we have m profiles of data, each of which has

ni measurements where i refers to the ith profile. We can then fit a separate NL model to

each profile. Let yij refer to the jth measurement for the ith profile. The model for each of

the separate nonlinear regressions is given by

yij = f(xij,θi) + ǫij for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (6.1)

where f(.) is some nonlinear function, xij is a regressor variable for the measurement, θi

is a px1 vector of parameters for each profile, and ǫij is the error associated with the jth

measurement of the ith profile. The errors are often assumed to be independent and normally

distributed, that is ǫij ∼ N(0, σ2

i ), implying that the measurements within a profile are

uncorrelated. We will assume throughout that the profiles have the same variability in the

error term, thus σ2

i = σ2 for i = 1, 2, . . . ,m.

If the responses for the ith profile are stacked to form a vector, yi, then we have the

alternative form of the model from (6.1) given by

yi = f(xi,θi) + ǫi for i = 1, 2, . . . ,m, (6.2)

where xi is a vector of the values of the predictor variable and ǫi is a vector of errors that

has a multivariate normal distribution, ǫi ∼ MN(0,Ri) with Ri being a n by n positive

definite variance-covariance matrix. If the errors are correlated, Ri is often assumed to be

a simple form such as compound symmetry (CS) or autoregressive (AR) in order to reduce

the number of covariance parameters that need to be estimated, just as we did in the LMM.

If the measurements within a profile are uncorrelated then ǫi ∼ MN(0, σ2

i I).

There are a wide variety of nonlinear functions that have been used for applications. A

97



number of books covering nonlinear models (Gallant, 1987; Ratkowsky, 1990; Schabenberger

and Pierce, 2002; Seber and Wild, 2003) covered many of the different types of functions

that have been utilized. For example, consider the 4-parameter logistic model, which has

been used frequently for dose-response studies. This model is given by

yij = Ai +
Di − Ai

1 +
(

xij

Ci

)Bi
+ ǫij for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (6.3)

where Ai is the upper asymptote, Di is the lower asymptote, Ci is the point where the curve

reaches halfway between Ai and Di, and Bi is a parameter representing the rate of increase

or decrease from Di to Ai. The larger the value of Bi, the steeper will be the slope of the

curve. See Figure 6.1 for an example of the 4-parameter logistic curve where Ai = 1, Bi = 8,

Ci = .6, and Di = 0.

Figure 6.1: Example of a 4-parameter logistic curve where Ai = 1, Bi = 8, Ci = .6, and
Di = 0.

When the parameters in (6.2) are all fixed, then the only variability in the responses
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will be due to the ǫi term. To illustrate the impact of the variability of the errors on

profiles, consider Figure 6.2, which shows randomly generated 4-parameter logistic curves

with uncorrelated errors with different values of σ2 for all generated profiles. Here m = 30,

n = 10, and the values of Ai, Bi, Ci, and Di are the same as those in Figure 6.1. We see

that the larger the variability of the errors the greater the differences between the profiles.

Figure 6.2: Illustration of the difference in the generated profiles due to differences in the
variability of the errors. For these profiles, m = 30, n = 10, and the values of Ai, Bi, Ci,
and Di are the same as those in Figure 6.1.
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6.2 NL Model Estimation

For the NL model in (6.1) and (6.2), the maximum likelihood estimator (MLE)) of θi, θ̂i, is

that estimator that minimizes the residual sum of squares given by

SS(θi) =

ni∑

j=1

[yij − f(xij,θi)]
2 for i = 1, 2, . . . ,m

= [yi − f(xi,θi)]
′ [yi − f(xi,θi)] for i = 1, 2, . . . ,m. (6.4)

Because of the nonlinearity introduced in (6.4) by f(.) there is not a closed form expression

for the estimator that minimizes SS(θi). There are two major iterative algorithms used for

obtaining the parameter estimates for this NL model.

The first, the Gauss-Newton (GN) algorithm, replaces f(xi,θi) in (6.4) with a Taylor

series approximation about θi so that the minimization can then proceed in an iterative

fashion. We denote θ̂i

0

as the vector of initial starting values for the iterative algorithm,

and denoting the matrix of derivatives of the NL function evaluated at the initial starting

values as

F̂i =
∂ f(xi,θi)

∂θi

|
θi=θ̂i

0 . (6.5)

With the GN algorithm one computes

θ̂i

1

= θ̂i

0

+
(
F̂i

′

F̂i

−1
)

F̂i

′
[
yi − f(xi, θ̂i

0

)
]
. (6.6)

After each iteration θ̂i

0

is replaced by θ̂i

1

until θ̂i

0

≈ θ̂i

1

. Thus the algorithm stops when the

change in estimated parameters from one iterate to the next is sufficiently small. In this case

the algorithm has converged and θ̂i = θ̂i

1

. Adjustments to this basic algorithm are often

implemented in practice to avoid numerical issues and ensure convergence (Schabenberger

and Pierce, 2002, Chapter 5; Seber and Wild, 2003, Chapter 14).
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The second, the Newton-Raphson (NR) algorithm, replaces the entire function in (6.4)

by a Taylor series approximation and similar to the GN method, iteratively solves for the

parameter estimates. For simple NL models, there will often not be much difference in the

estimates obtained by either of the two algorithms. Thus the default method in SASr, the

GN algorithm, will be our choice for what follows.

With the normality assumption in the NL model, we can state the distributional properties

of the vector of obtained parameter estimators, θ̂i. In contrast to the standard linear model,

normality of the parameter estimator will only hold asymptotically, that is,

θ̂i

A
∼ MN

[
θi, σ

2

i (F
′

iFi)
−1

]
for i = 1, 2, . . . ,m. (6.7)

The result in (6.7) holds whether or not the errors are uncorrelated (Seber and Wild, 2003,

Section 12.2).

6.3 NLM Model Formulation

In the NLM model we extend the NL model in (6.2) to allow for random effects. In vector

form it is given by

yi = f(xi,θ,bi) + ǫi for i = 1, 2, . . . ,m, (6.8)

where θ is a vector of fixed effects common to all profiles, bi is the r by 1 vector of random

effects with bi ∼ MN(0,D). The matrix D is assumed to be a diagonal matrix with the

diagonal elements referred to as the variance components. A good introduction and review

of the literature on the NLM model can be found in Davidian and Giltinan (2003) or books

by Pinheiro and Bates (2000), Schabenberger and Pierce (2002), and Demidenko (2004).

Demidenko (2004, Section 6.1) proposed a restriction of (6.8) by forcing the random effects
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to enter the model linearly so that we can rewrite (6.8) as

yi = f(xi,θ) + Zibi + ǫi for i = 1, 2, . . . ,m. (6.9)

where Zi is a ni by r matrix of values corresponding to the random effects. While this may

simplify the computational effort required to obtain estimates, we will not pursue it here

because it is less flexible.

Just as the LMM, the model in (6.8) allows for two levels of correlation for the mea-

surements within a profile. The first results from the random effects which cause all the

measurements within a profile to be correlated to each other. The second results from the

within-profile variance-covariance matrix of the errors, Ri. A NLM model that uses neither

of the two levels of correlation is simply the NL model in (6.2) with uncorrelated errors

because Zi = 0 and ǫi ∼ MN(0, σ2

i I). See Davidian and Giltinan (2003, pp. 395-400) for

more discussion of the within profile correlation and its interpretation in the NLM model.

In contrast with the LMM where often all the fixed effects will have a corresponding

random effect without resulting computational difficulties, the NLM model poses a more

formidable computational challenge when including multiple random effects. Thus it is

recommended that the model builder begin with a smaller number of random effects and

add additional effects only if needed at the cost of increased computing effort. Demidenko

(2004, Section 8.17) goes even further by stating that only a single random effect should be

added at a time and that a good initial model would be one with no random effects. Subject

matter expertise and knowledge of the data collection process can also help determine the

appropriateness of adding random effects to a NL model. In Chapter 7 we will show how

use of the NL model can be used to determine which random effects should be added.
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6.4 NLM Model Estimation

As noted by Schabenberger and Pierce (2002), given the random effects in the NLM model,

one can write the marginal density of yi as

g(yi) =

∫
g(yi|bi) g(bi)dbi. (6.10)

where g(.) is the assumed probability density function. The evaluation of this integral is

required for inference but the distribution g(yi) is not known even when the errors and

random effects have multivariate normal distributions. As a result, numerical methods are

needed. The most common methods are the linearization and the integral approximation

methods.

Earlier work on estimation of NLM models focused on the linearization approach which

is an approximation of the nonlinear function in (6.8) by some linear function. This re-

placement results in a multivariate normal density function for which an estimator can be

obtained. On the other hand, the integral approximation approach has increased in pop-

ularity in recent years due to advances in computing power and existence of Monte Carlo

(MC) based methods for directly evaluating the integral in (6.10). The nlmixed procedure

of SASr uses the integral approximation approach with adaptive MC procedures that are

more computationally efficient than standard MC procedures. Thus our analysis of the NLM

model will be based on the integral approximation method.

6.5 Diagnostics and Robust Estimation in NL and NLM

Models

Davidian and Giltinan (1995, p. 328) noted that diagnostic methods for NL and NLM mod-

els are underdeveloped and nearly non-existent, but would be very useful. While there are
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computational difficulties in dealing with the nonlinearity of the models, they recommended

more research in the area of diagnostics and noted that new research will increase the uti-

lization of NL and NLM models. We review in this section some of the methods that have

appeared, but believe the area to still be underdeveloped.

Pinheiro and Bates (2000) proposed to check assumptions of the NLM model by using

the classical regression diagnostic plots such as the normal probability plot of errors and

a scatter plot of residuals versus the fitted values. They do not give justification for why

such plots would work other than that they have been used for classical regression problems.

Demidenko (2004, Section 9.5) discussed some methods to determine the influence of unusual

data points on NL regression models. Lee and Xu (2004) considered diagnostic methods for

the NLM model based on the case deletion and local influence approach. However, they had

to use MC methods in order to compute the diagnostics and this would seem to limit their

applicability.

An alternative to diagnostic methods are robust estimation methods that minimize the

impact of outliers and other departures from model assumptions. This area of research also

appears to be underdeveloped but we give some pertinent references here.

Hartford and Davidian (2000) performed a simulation study to study the robustness

of the estimators of fixed effects to the misspecification of the distribution of the random

effects. They found that if the underlying distribution of random effects is unimodal and

not drastically different from a normal distribution that the estimation of the fixed effects is

not severely impacted. However, their study compared two different linearization methods

and did not consider an integral based method so it is unclear if their results would have

changed under a more complete comparison. In addition, their focus was the impact of

misspecification of the random effects distribution on the fixed effects. Thus it remains to
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be seen how the misspecification of the distribution of errors can impact the estimation of

the fixed effects.

Yeap and Davidian (2001) proposed a two-stage robust procedure for estimation for non-

linear models with random effects. In the first stage, estimation of the profile specific effects

and its covariance parameters is performed by solving a simultaneous set of weighted func-

tions of the residuals. In the second stage, the robust estimates of profile specific effects

are used to obtain an overall effect and the covariance parameters of the random effects.

Here the weights in the robust estimation procedure are based on a robust version of the

Mahalanobis distance. Yeap and Davidian (2001) recommended using the weights of the first

stage to determine outlying observations within a profile and the weights of the second stage

to determine outlying profiles but these weights appear to be more of an ad hoc diagnostic

tool. They acknowledged that the weights will only detect a small number of outliers that

are not severely different from the main portion of the data.

Our approach, which combines the separate NL regressions with a NLM model, differs

from these previous approaches appearing in the literature. It will be detailed in Section

7.6. Prior to explaining the approach, we compare approaches based on the NL and NLM

models in Chapter 7.
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