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(ABSTRACT)

A reliability model to study the behavior of an electronic component subject to several failure
mechanisms Is developed. The mechanisms considered for the analysis are of degradation
type where the number of defects for a mechanism increases with time, eventually causing the

failure of the component. The failure pattern of the component subject to a single mechanism

- with given Initial and final number of defects is modelled as a pure birth process. Failure time

for this mechanism is expressed as the first passage time of the birth process to state k from
initial state i. First passage time distribution is derived for different forms of transition rates.
When the initial and final states of the process are considered as random, the failure time is
expressed as the mixture distribution obtained from the conditional first passage time dis-
tributions. The mixture distributions are well represented by a Weibull distribution. A com-
puter proéram is developed to compute the parameters of the Weibull distribution iteratively

by the method of matching moments. The approximation results are statistically validated.

The results for a single mechanism are extended to the case of multiple mechanisms.
Extreme-value theory and competing risk theory are applied to analyze the simultaneous ef-
fects of multiple mechanisms. It is shown that the aggregate failure time distribution has a

Weibull form for both the theories.



The model explains the influence of physical and chemical properties of the component and
the operating conditions on the failure times. It can be used for accelerated testing and for

incorporating reliability at product design stage.
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CHAPTER 1

Introduction and Background

1.1 Introduction

The popular method in estimating the reliability of a device is a data analysis method
in which the data on failure times is collected and analyzed statistically. While this
method is often reasonably accurate, it is a black-box approach. It fails to explain the
reliablility in terms of physical and chemical properties of the materials used in the
device. Any changes in the materials or in the design require collection of lifetime
data again to estimate the reliability function. Even for the same device, a change in
a single operating condition such as temperature may require that the process of

estimating the reliability from accumulated lifetime data be repeated.

An improvement on the above method is a model that can explain the reliability in

terms of the properties of the materials used in the component and the operating
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conditions. The model should capfure the dependence of failures upon changes in
the chemical and physical states of the component during operation. One possible
approach to constructing such a model is to study the reliabitity behavior in terms of
the failure mechanisms operating within the device. These mechanisms reflect the
impact of chemical and physical properties of the device, the operating conditions
and the duration of the operation on the failure times. A model that is intended to
represent the causal relationship between the failure behavior of a component and

the failure mechanisms active in the component is developed here.

A component, while in operation, is subject to many forces that may induce failure
by causing certain changes in the structure of the component. These changes are
called failure mechanisms. Some examples of the failure mechanisms are creep,
crack growth and fatigue. In general the mechanisms of interest may be physical or
chemical in nature. Once the mechanisms are classified, it may be possible to for-
mulate probability based mathematical models for each of the classes. The modeis
should reflect the influence of environmental variables and the constituents of the
components upon the mechanisms. Then, in each class, individual mechanisms that
are most prevalent should be examined. It may then be possible to study the be-
havior of the component failure with respect to the aggregate effect of many such in-

dividual failure mechanisms.

One class of failure mechanisms is the degradation process. As the name implies
the process is a gradual one. There is a gradual change of the physical or chemical
structure of the component that siowly reduces the strength or the resistance to fail-

ure of the component, ultimately resulting in failure.
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The present study deals with degradation processes in which changes occur in dis-
crete units. Conceptually, this process can be thought of as a chemical degradation
process, in which reactant A Is converted into reaction product B. As the reaction
continues, there is an accumulation of the product B that is assumed to inhibit the
function of the component. Completion of the reaction may not be required for a
failure. Instead, failure is defined as the accumulation of a sufficient mass of reaction

product to degrade performance to an unacceptabie level.

Failures of the chemical degradation type are common in many types of components,
particularly in electronic components. An example is oxidation of copper “lands” in
integrated circuits. This is a chemical process. Another example is electromigration
in integrated circuits. The momentum of electrons is transmitted to the metal atoms
resulting in a movement of these metal atoms to different parts of the component.
This eventually results in failure due to an open circuit. This is a physical mech-

anism.

For a given type of a component, there are many random variables that influence the
failure behavior of the component. At the aggregate level, the time to failure depends
upon the various failure mechanisms acting on the component simuitaneously. The
proposed model considers only those failure mechanisms that possess a common
behavior, namely, degradation type. For each individual mechanism of this type,
there are certain variables that are random. Some examples of the random variables
are the initial and final number of molecules of the reaction product B and the time

taken for the amount of reaction product B to increase by one molecule.

To capture the randomness of the degradation, the accumulation of the reaction

product B is modelled as a stochastic process. In particular, the accumulation is
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modelled as Markov process. The assumption is that the future course of reaction is
independent of the past history of the reaction, provided the present extent of the

reaction is known.

The model is constructed under the assumption that the reaction is an irreversible
reaction. That is, the degradation Is non-decreasing with time. In practical applica-
tions, there may be some reaction in the reverse direction but it is considered to be

negligible for the present analysis.

1.2 Description of the Approach

Let X(t) represent the state variable at any time t so that X(t) = | represents the
number of molecules of reaction product B present at time t. It is reasonable to as-
sume that initially there is a certain mass of the reaction product B. Thus, there ex-
ists an initial state, X(0) = i. The state variable X(t) changes only in unit steps. As
already stated, tﬁe reverse reaction rate is assumed to be zero. Since the process
is a Markov process and because of the additional assumption that the reverse re-
action does not occur, the random process Is a pure birth process. Failure occurs
when a sufficlent mass of the product B is accumulated (i.e., arrival of the process to
a particular state k). For the pure birth process, the failure time is the first passage
time of the process from the initial state i to the final state k. In general, the initial
state may be a random variable. This may be due to the variability in the component
caused by the manufacturing process. For the present study it is indeed considered
as a random variable with known probability distribution function. The assumptions

about its probability distribution should be reinforced by results from defect models
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and available defect data.. It is also conceivable that the failure threshold for a de-
gradation reaction is a random variable. This might be a consequence of the geom-
etry of the component or of the random dispersion of the reaction product within the
material. If either the initial state or the final state or both are random variables, then
the first passage time distribution for a failure mechanism is a mixture distribution.
For a given failure mechanism, the mixture distribution can be obtained from its

conditional distributions, each conditioned on given initial and final states.

For the chemical degradation process, the reaction rate is the fraction of product B
produced per unit time. This reaction rate represents the transition rate for the birth
process. The transition rate, A(f) , of the birth process is the rate of change of the
transition probability, when the system is in state j at time t. The transition rate may
depend on the state X(t) and time t. For the current model, the transition rate is as-
sumed to be a function of time t, state X(t) and the environment. This will not only
capture the essentials of the factors that control the reaction but also will reflect the

effects of certain changes in the operating conditions on the reaction rate.

Once a single failure mechanism Is studied, the results can be extended to multiple
mechanisms. A component may be subject to several failure mechanisms simul-
taneously. It is assumed that all the mechanisms display similar behavior. The
component may fail due to any of the mechanisms. Each of the mechanisms would
individually result in a particular lifetime value for the component. In the aggregate,
the lifetime of the component is the minimum of all the individual lifetimes. To obtain
the distribution of the minimum of the lifetimes, extreme-value theory or competing
risk theory may be appiied. Extreme-value theory assumes that all the individual

lifetimes are identically distributed and that the number of mechanisms acting on the
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component is quite large. In competing risk theory both these assumptions can be
relaxed. That is, the individual lifetimes may be different in their probability distrib-

utions and the number of mechanisms considered may be finite.

1.3 Problem Analysis

The objective of the present dissertation is to develop a methodology to study the
failure behavior of a component in terms of the failure mechanisms acting on the
-component. Analysis of the failure time of a single mechanism constitutes the initial
step in the study. A stochastic process model for the mechanism is constructed and
the first passage time distribution for the process to visit a specific final state is ob-
tained to describe this failure time. Results obtained for a single mechanism are
expanded to include the presence of multiple mechanisms using extreme-value and

competing risk theories.

Parts of the model have been used before to study reliability, but not in such a com-
prehensive and sequential manner. The transition rate function used in the model is
a general one and takes into account the concentration of the reaction product, time,
and the operating conditions. Almost all of the first passage problems have been
considered for a given initial and final states only. For the present analysis, these two
states are assumed as random variables. Reliability models for electronic compo-
nents usually deal with a single failure mechanism, the one that dominates the failure
of the component. The current model considers the presence of muitiple mech-

anisms and analyzes the aggregate effect of these mechanisms.
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In this dissertation, six different forms of transition rates are considered for failuré
mechanisms. These forms represent patterns that may correspond to the various
mechanisms common to electronic components. The first passage time distributions
for all the six cases are shown to be Generalized Gamma distributions. These dis-
tributions are used to obtain the numerical approximations for mixture distributions
when the initial and final states of the mechanisms are assumed to be random. Re-

suits show that the mixtures are well represented by a Weibull distribution.

Based on the resuits of single failure mechanism, the failure time of the component
subject to multiple mechanisms Is analyzed. It is shown that in both the cases of
extreme-value theory and competing risk theory, the aggregate failure time of the
component has a Weibull distribution. Weibull distribution is the most frequently as-
sumed distribution for the lifetimes of electronic components. The resuits of the

current model support this assumption.

Reliability is an important factor in the present day competitive, cost conscious world
of manufacturing. Electronic component reliability is all the more important because
of the ubiquity of electronic devices. A continuous effort is being made to develop
models that can predict the reliability of electronic components with higher and
higher degrees of precision. It is hoped that this model will contribute to that en-

deavor.
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CHAPTER2

Literature Review

Estimation of the reliability of el‘ectronic components has become very important be-
cause of the extensive use of electronic equipment in modern times. The estimation
is generally based on either empirical procedures or stochastic modelling proce-
dures. In an empirical procedure, the reliability or the failure rate of the component
is estimated using observed failure times of copies of the component.
MIL-HDBK-217, the most important reference manual for reliability of electronic
components, lists the failure rates for various components. These rates are based
on either laboratory data or fleld data. Using suitable conversion factors, failures at
different operating conditions may be obtained from the failure rates at standard
conditions. In a stochastic modelling approach, a mathematical model for a compo-
nent failure is developed that will yield a probability distribution function for the fail-
ure times. Some of the parameters of the functions have to be obtained from the

physical properties of the the components and the operating conditions.
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The most extensively used formula in failure rate models is an Arrhenius relationship

(O’Connor (1983)):

£,
an = wrgess| [ - +]] X

where,
A(T) failure rate at temperature T
T Temperature
T  reference temperature
E, Activation energy for the particular failure mechanism
K  Boltzmann’s constant.
Once a fallure rate is empirically estimated at a reference temperature, failure rate

at any desired temperature can be calculated using the above formula.

Frost and Poole (1987) develop a stochastic mode! for estimating the reliability of an
integrated circuit subject to electromigration. An integrated circuit is regarded as a
linear array of very small elements. Failure of any element causes the failure of the
component as a whole. For each element, the electromigration failure time distrib-

ution is assumed to be lognormal with density function of the form:

1 Int — In t55 \,
P = = Yot exp[ —1/2( = )] 2.2)

where,
& = median time to failure

o = standard deviation of the logarithm of time.

2 Literature Review L



The median of the distribution, &, is calculated by correlating it to the properties of
the element. Using the median values, the failure rate is calcuiated for each element.
The component failure rate is then obtained by summing up the failure rates of all the

elements. Only one failure mechanism is considered for the analysis.

In a degradation model, it is assumed that one of the physical entities (or a state
variable) of the component is gradually decreasing, and as a result, the component
is becoming more susceptible to failure. The state variable may be random de-
pendent or random-independent (Kapur (1974)). For a random-dependent case, the
initial value of the variable is random but once a certain value is realized, it changes
over time in a deterministic way. Much of the mechanical reliability literature reflects
thls approach (Bratt, Reethof and Weber (1964), Shooman (1968)). A state variable is
assumed random-independent if at any time t, only its probability distribution may be
known. In this case, the process can be modelled as a stochastic process. Failure
occurs when the process reaches a certain level for the first time. Analyses of this
type address the “level crossing” problem. Only simple cases have been solved in
this area. Folks and Chhikara (1978) analyze the problem with the state variable be-
ing a Brownian motion and failure occurring when the process reaches a fixed level.
Basu and Ebrahimi (1983) consider the case when both the state variable and the

threshold level are Brownian motions.

For a discrete-space continuous-time Markov process, the first passage time can be
obtained by solving the Chapman-Kolmogorov forward differential equations. This
may invoilve direct solution techniques or transform techniques such as Laplace
transform techniques. Several papers and text books deal with the pure birth proc-

esses and absorption probabilities for different forms of birth rates. Karlin (1975),
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Bartlett (1966) and Cox (1965) are some of the textbooks that are particularly helpful.
Srinivasan (1978) gives the solution for transition probabilities of a pure birth process
with a general form for for the transition rate, A(f). The Laplace transform technique
is used to solve for the transition probabilities. The Laplace transform function is
then resolved into its partial fractions from which the inverse is obtained to yield the

transition probabilities.

When the parameters in a probability distribution function are random variables, one
can obtain the unconditional distribution by the weighted sum of all the distribution
functions using the probabilities on the random parameters as the weights. This is
called a mixture. In the present dissertation, the initial and final states of the
stochastic process pertaining to a single failure mechanism are assumed to be ran-
dom. The failure time distrlbuiion for the mechanism is then expressed as the mix-
ture of first passage time distributions conditioned on initial and final states. Mixtures
of distributions are first investigated by Lundburg (1909) in connection with insurance
and risk theory. These are some of the first studies in the area of stochastic proc-
esses and they parallel the development of the models of Brownian Motion and re-
lated processes. The model addresses insurance claims where the accumulated
claim value is a stochastic process dependent on number of claims and the number
of claims is Poisson distributed. The additional assumption is that the claim amounts
are independent and identically distributed.This is a part of a theory called the col-
lective risk theory. A major portion of research in mixtures is still carried out by risk
analysts developing different types of models and better approximation methods

(Buhimann (1970)).
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When the mixing distribution is Poisson, the mixing process is called Poisson mixing.
The distribution that is being mixed can be either a discrete or a continuous distrib-
ution provided it has a single parameter. Haight (1968) gives a brief review of
Poisson mixing. In almost every work on Poisson mixing, the parameter being mixed
is the number of convolutions of a distribution with itself. This is called a compound
Poisson process. Feller (1943) and Guriand (1958) deal with different types of mixture
distributions assuming various probability distributions for the parameter that is be-
ing mixed. The reliability model that is developed here involves Poisson mixing of
Generalized Gamma distributions which has not been solved in closed form. Neuts
(1981) describes some of the properties of this mixture and presents the computa-

tional techniques to obtain its probabilities.

Tran (1987) studies the unimolecular degradation process. It is assumed that the
transition rates are independent of both time and state. The mixture of the first pas-
sage time is analyzed under the assumption that both the initial and final states are
random variables with Poisson probability distributions. Only numerical methods are
used for the mixture and the numerical approximations fit a three parameter Weibull

distribution well.

When a component is subject to multiple failure mechanisms, extreme value theory
or competing risk theory may be used for modelling. Extreme value theory analysis
is based upon the assumption that the component is subject to a large number of
failure mechanisms, all having a common distribution. The system can be viewed
as a chain with n links each of which represents a failure mechanism. The system
fails when the weakest link in the system fails. This is also called a series structure.

The distribution of the lifetime of the chain is equal to the distribution of the lifetime
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of the weakest link. [f there is no specific link that is the weakest link, the lifetime
of the chain has the same distribution as the minimum of lifetimes of all the links.
For a large n, Gumbel (1958) shows that the minimum displays a limiting distrib-
ution. This is the minimum value or the extreme value approach. éumbel further
shows that there are only three types of extreme value distributions. The extreme
value distribution occurs in many practical situations. As an example, the strength
of a material may have a Weibull distribution which is an extreme value distribution.
This happens because the strength is a result of several forces in the material. The
extreme value distribution has been investigated by Fisher and Tippet (1928),
Gnedenko (1943) and others. Gumbel (1958) contains a bibliography and discussion

of applications.

Competing risk analysis models may be used to evaluate the effect of several failure
mechanisms acting simultaneously on the component with each of them generating
a distinct lifetime distribution of. The number of mechanisms may be small. The re-
sulting lifetime distribution is the minimum of these distributions. Assuming that all
mechanisms are independent and their number is small, Chiang (1964) explores the
problem in terms of disease processes. The hazard rates of individual failure mech-
anisms are said to be proportional if the ratio of hazard rates of any two mechanisms
is constant over time. Elandt-Johnson (1976) considers the case when there are

proportional hazard rates and the independence assumption is relaxed.

In summary, many relevant results have been developed in different areas. A subset
of these results is used here. Other needed results, particularly in the area of mixture
distributions and multiple mechanisms, do not exist. They will be developed in this

dissertation.
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CHAPTER 3

Development of a Component Failure Model

3.1 Introduction

In this chapter, the structure of a general model for a component reliability is devel-
oped. The model represents the failure behavior of a component in terms of its fail-
ure mechanisms. Each mechanism can be represented as a chemical degradation
process in which the molecules of reactant A are continuously changing into reaction
product B. The actual process may be a chemical or a physical process depending
on the nature of its degradation. An example is the oxidation of gallium arsenide in
liquid crystal displays (Kooi (1968)). While the LCD is in operation, oxygen may react
with the gallium arsenide present in the crystal thereby reducing the amount of
arsenide and resulting in a loss of brilliance of the crystal. This is a chemical proc-

ess. Another example is electromigration in integrated circuits which is a physical
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process. Here the continuous impact of electrons on the metal grains causes the
grains to move in the direction of the electron flow. This transfer of metal atoms oc-
curs when there are defective metalization layers caused by flaws in the pattern mask

or errors in the manufacturing process (Amarasekhara (1988)).

Every component is subject to certain mechanisms that induce failure in the compo-
nent. Failure is the inability of the component to perform according to a set standard.
In the case of degradation mechanisms, completion of the reaction is not aiways
necessary for failure. The component fails if there is sufficient amount of reaction

product B to reduce the performance of the component to an unacceptable level.

In the model, the behavior of a single failure mechanism Is studied first. The results
are then used to analyze the effect of several mechanisms of the same class acting

on the component simuitaneously.

3.2 Assumptions on Component Failure

For the model, the following assumptions are made concerning component failure.

1. The component is subject to multiple failure mechanisms. These mechanisms

are acting on the component simultaneously.

2. All failure mechanisms portray similar behavior.
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3. Each failure mechanism exerts a lifetime distribution on the component. It is
assumed that the lifetime distributions generated by individual failure mech-
anisms are ihdependent of each other. Each mechanism exerts the same lifetime
distribution whether it is acting alone or in the presence of other failure mech-

anisms.

3.3 Assumptions on the failure mechanisms

The main assumptions about individual mechanisms are the following.

1. Each failure mechanism is of degradation type. The state changes in unit steps.
The failure mechanism involves changes in the physical or chemical structure of
the component which ultimately result in the failure of the component. This
physical or chemical structure is defined as the state of the process. For the
degradation process, the state changes gradually. There is no instantaneous
change of large magnitude in the value of the state. It is also assumed that when

there is any change in the state, it occurs only in discrete unit steps.

2. The degradation process is irreversible.
The change in the state of the failure process Is unidirectional. In real-life situ-
ations, there may be changes in the reverse direction but for all practical pur-

poses, they are considered to be negligible. In the terminology of the chemical

degradation process, the reaction is irreversible.
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3. The future state of the process depends only upon the present state and not upon
the entire past history of the process.
This assumption does not imply that the past course of history has no bearing on
the future. It states that given the present state, the future is independent of the

‘past.

4. Reaction rate A(t) may depend upon the state of the process, time and operating
conditions. The effect of the state and time are independent of each other.
The reaction rate, 1(¢), is the rate at which the process changes its state from ]
to j+1 at time t. In a chemical degradation, it is the rate at which an additional
molecule of B is formed per unit time given that j molecules of B have already

been created.

Depending upon the degradation process, the reaction rate may be a function of
either one or both of the current state and time. Any changes in the physical or
chemical structure of the component or in the environment should be reflected
in the reaction rate function of the model and hence in the equation for failure

times of the component.

The effects of the state and time on the reaction rate are assumed to be inde-
pendent of each other. The reaction rate A(f) can be expressed as a product of
two separate functions, one each of state and time. That is, 1) = g(j) « h(0),
where g and h are functions of state j and time t, respectively. Note that h(t) also

includes the pertinent equations for the kinetics of the reaction.

5. The process has an initial state i and a final state k. A component fails when the

process reaches the final state k.
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It is a reasonable assumption that the component has a certain number of defects
(molecules of reaction product B) at the beginning of operation. Consider this
number to be the initial state, I. As the operation continues, there is an increase
in the number of molecules of reaction product. Accumulation of these defects
impedes the proper functioning of the component. Eventually, at a particular
level of defects, the component fails. This failure state is the final state k. For

any process, { and k may have fixed or random values.

3.4 Randomness in the Failure Process

The reliability model captures much of the essence of a real life situation. Most of the
characteristics and parameters of the model are considered to be random rather than
deterministic. The randomness of the failure process is described in three levels.
At the bottom level, a single failure mechanism which has fixed and known initial and
final states is considered. In this situation, the failure time of the component or the
required time for the process to reach the final state from the initial state is random
because the reaction rate or the time the process spends in a particular state is ran-
dom. At the next level, this randomness is compounded by considering the ran-
domness in the initial and final states of the process. At the third level, the overall
failure process of the component is studied. This failure process is a resuit of multi-
ple failure mechanisms, each behaving randomly. To capture all this randomness in

a mathematical model, a stochastic model is constructed.
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3.5 Mathematical Model

Assume that the initial and final states are fixed and are known. By assumption, the
future course of the process Is independent of the past, provided that the the present
state is known. For the representative chemical degradation process, X(t) represents
the number of molecules of product B present at time t. The initial state X(0) = i is
the initial number of product B molecules present at the start of operation. Failure
occurs when the process reaches state k. Here, k is the absorbing state for the pure

birth process. The corresponding transition diagram is shown in Figure 1.

To study the dynamic behavior of the process, one needs the transition rates of the
process. These transition rates are derived from the reaction rates of the degradation
process. For the degradation process, the reaction rate A(t) is defined as the frac-

tional change in product B per unit time at time t. So,

3o = 48 - (3.9)

Rearranging terms,

%- = A(f).At 3.2)

But, AT? is the probability of change in the state during At. So the transition rates

of the pure birth process are the same as the reaction rates of the degradation proc-
ess. For a given initial state i and final state k, all the transition rates can thus be

obtained.
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The general state transition for a Markov process is defined as the soiution to the

Chapman-Kolmogorov forward differential equations:

P' = PA. (3.3)

Here P is the matrix of transition probabilities and P’ the derivative of P with respect
to time (Cinlar (1975)). Any entry (i,j) of the matrix P is defined as P(i,j,t), the proba-
bility of the process being in state | at time t when the initial state is i. A is the matrix
of transition rates. It is also called the generator matrix of the process. The entries

of A are given by,

Ay = =1

and 0 eisewhere. The matrix A is shown in Figure 2.

The matrix A has a special structure as it represents a pure birth process. The
process may only go from state j to state j+ 1 at any Instant. Thus, the entries on the
right super-diagonal are positive. Once the process enters the failure state k, it can-
not go to any other state. This makes k an absorbing state and the entries of A cor-
responding to row k are equal to zero. All the states other than k are transient. The
probability of the process remaining in a transient state decreases as time increases.
Thus, the transition rates or the entries on the diagonal are negative. The rest of the

elements are all equal to zero since no other transition can take place.

In the general case, the non-zero components of the generator matrix A depend upon
the state, time and operating conditions. Specific assumptions concerning the re-

action rate functions lead to different modeis and correspondingly different results.
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Lifetimes as First Passage Times

The lifetime of a component is equal to the time at which the process reaches the
failure state k. Since the process is a pure birth process, the failure time is the first
passage time from state i to state k. The probability distribution of first passage time,
p(i.k,t), thus gives the lifetime distribution. This is the conditiona!l distribution for

given Initial and final states and is denoted by F(t|i.k).

One or both of the extreme states may be random in a given mechanism. The ran-
domness in these two states is incorporated by considering them as random vari-
ables and assuming suitable probability distribution functions for these two random
variables. For the initial state i, the possible distributions have to be discrete dis-
tributions. The choice may depend upon the actual physical entity the state repres-
ents. An obvious choice is the Poisson distribution. Extensive experience with
counting processes has shown that individual, convoluted and compound counting
processes usually follow or converge to a Poisson distribution (Bortkewitsch (1898)).
Another choice is the negative binomial distribution. This distribution can occur in
the case of mixing a Poisson distribution whose mean is gamma distributed (Nachlas,
Ricapito, and Wiesel (1983)). The binomial distribution may be used if the state of the
process represents the number of defects in the component and each particle in the
component has the same probability of being defective. Similarly, the probability
distribution for the final state k depends on the physical nature of the device. To ac-
count for the randomness in the two extreme states for a failure mechanism, mixture
distributions are computed using the conditional first passage time distributions and

the probability distributions of the two states. If P(i) and P(k) are the probability
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density functions for | and K, then the unconditional or the marginal distribution F(t)

is given by,

FO) = D Y F(tlik) POPE. , (3.5)
k |

Sometimes it may be possible to assume a specific form of a probability distribution

on the difference j between the initial and final states. In this case F(t) is given by,

FO) = D F(tl) PO). (3.6)
1

Once a single mechanism is analyzed, the results can be extended to multiple
mechanisms. It is assumed that the mechanisms are of similar behavior and that
they are independent of each other. If n mechanisms are active in a component, then
they generate n random failure times. For any given failure, only one of these failure
times manifests itself and this is the actual observed failure time of the component.
The probability distribution of the failure time of the component is given by the dis-
tribution of the minimum of the n individual failure times. A specific procedure to
compute the distribution of the minimum depends on additional assumptions. Two
procedures are applied for the present system; one is extreme-value theory and the

other is competing risk theory.

3.6 Variations of the model

Variations of the model can be constructed on the basis of the nature of the transition
rate, A(t), and the nature of the randomness in the initial and final number of defects.

The present analysis considers the variations in the transition rate only.
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It is assumed that the transition rate is a separable function of the state occupied‘and
the time. The combined function will also reflect the operating conditions. The rate
A(?) is expressed in the form A(f) = g(NA(f) .

Six realizations of the above equation might be considered. They are, in decreasing

order of complexity:

1. 9() = ; and h(t) = mat!
29()) =, and h(t) = a
3. 9() = j and h(t) = mat!
4., g() = j and Kt) = a
5.9() = 1 and h(f) = mat™!
6.9) = 1 and h(f) = a

The different forms of transition rates characterize various failure mechanisms com-
mon to electronic components. The choice of a particular form depends on the
kinetics or the dynamics of the mechanism and on the results available from histor-
ical data. If the mechanism is of chemical nature, then the transition rate may be
obtained from factors that influence the kinetics of the process such as the reaction
energy, change in enthalpy, the concentration of the products and temperature. In
the case of a physical mechanism, the rate may depend on the grain size, the mo-
mentum of electrons, temperature, or bond energy. In either case, the transition rate

may further be influenced by the geometry of the component.

Failure mechanisms suitable for the present model are to be identified first. There
are several candidate degradation mechanisms for the current model. Examples are

oxidation, electromigration, and threshold-voltage shifting effects in MOS (Metal
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Oxide Semiconductor) devices. It is possible to derive transition rates for some of
these mechanisms from existing reliability models. In these models, a probability
distribution function is assumed for the failure times of a mechanism. The corre-
sponding variables of the function such as parameters and failure rates are ex-
pressed in terms of physiochemical properties of the component and operating
conditions. Examination of these variables may indicate the rate of progress of the
degradation process and possible forms of the transition rate. A few of the relevant

works are discussed below.

Often, failure rate is modeled by an Arrhenius relationship (equation 2.1). Here, the
failure rate is independent of time and the extent of degradation. This indicates that
perhaps the transition rate for that failure mechanism also is time and state inde-

pendent.

in the model developed by Frost and Poole (1987), the failure time of a component
due to electromigration follows a lognormal distribution (equation 2.2). The median
time to failure & is expressed as a function of current density, temperature, and

conductor width:

e = AWM exp(E/kT),

where, J is the current density and A(W) is a material constant that is function of
width of the component. The above form suggests that the transition rate may de-
pend on the state of the process. The transition rate functions for cases 2 and 4 are

worth considering for electromigration.
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The six transition rate functions are constructed to account for the dependency of the
transition rate on the state of the process and time. With a proper choice of con-
stants, they can be applied to many of the degradation processes. Once the transi-
tion rate is selected, defect distributions for the initial and final states are to be
identified. A transition rate function together with the defect distributions describe a
failure process due to a single mechanism completely. Solution of the model in

presence of several such mechanisms gives the reliability of a given component.

In the next chapter, a general solution procedure is presented to compute the reli-
ability of the component for all the six variations of the transition rate function. Spe-
cific distributions are assumed to describe the randomness in the initial and final
values of the degradation process. The failure time distribution is approximated
when it is not feasible to obtain a closed form function. The solution procedures are

illustrated with numerical examples.
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CHAPTER 4

Solution Procedure

4.1 Introduction

Solution of the model defined above gives the overall failurc behavior of a compo-
nent. As in the model development, the solution procedure follows in three stages.
Analysis of a single stochastic process with fixed initial and final states forms the first
stage. The failure time for this process is given by the first passage time for the
process from the initial state i to the final state k. The second stage deais with a
process where the initial and final states are random. The failure time probability of
the process is constructed as a mixture of the first passage time distributions ob-
tained in the first stage. The mixture distribution represents.a singe failure mech-
anism. Finally, the results of the second stage are expanded to cover the aggregate

effect of several mechanisms simultaneously active in the component.
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For a failure mechanism, an appropriate transition rate function must be selected.
Once a particular form of transition rate is chosen, the first passage time distribution
for the corresponding pure birth process is derived. This is carried out by solving the
set of Chapman-Koimogorov differential equations. Any of the standard techniques
to solve ordinary differential equations can be used to obtain the distribution. In the
present work, the solution is obtained by Laplace transform method. As an example,
the solution procedure for one of the six cases is shown in detail in the current

chapter.

The procedure to derive the mixture distribution depends on the form of the transition
rate and the probability distributions of the initial and final states of the process. The
conditional first passage time distribution used in the mixtures can be either a prob-
ability distribution function or its Laplace transform. The choice depends on the ease
of algebraic manipulation of the mixture distribution. When it is not possible to obtain
the mixtdre distribution in a closed form, the distribution is numerically approximated
to a probability function of a known form. The selection of the approximating function
is decided by the physical model or the norms set by the reliability practitioners. The

approximation must be validated by appropriate statistical methods.

For multiple mechanisms, the failure time of the component can be expressed as the
minimum of the individual failure times. To derive the distribution of the minimum,
failure time functions of single mechanisms or their transforms are used. For some
individual functions, finding the dllstribution of the minimum is a difficult task because
the form of the function may not be simple. In that case, various approaches must
be employed to obtain a solution. If all the mechanisms generate identical failure

time distributions and the number of mechanisms in a component is large, then
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extreme-value theory may be applied. Here, the minimum distribution is expressed
as a limiting distribution. A detailed description of the procedure of the extreme-
value theory is given In this chapter. If finding the distribution of the minimum is not
possible and if the individual failure times are not identical, then an approximate

solution must be derived to express the minimum distribution.

4.2 First Passage Time of a Birth Process

The first passage time distribution function is derived here for a single failure process
with known transition rates and given initial and final states. This is carried out by
solving the system of equations given by (3.3). These are the Chapman-Kolmogorov

forward differential equations and they are:

Pif) = —ALOP.L0 (4.1)
PG = A yOPGJ—1.0 — AOPULY, for i+1<j<k—1 (4.2)
Prikf) = A y(OP(k — 1,0). (4.3)

The initial and final states are represented by i and k respectively.

When the transition rates of a process are independent of time, the process is time
homogeneous and it is easy to follow the Laplace transform method to soive the
Chapman-Kolmogorov equations. If the transition rates depend on time, then the

process is time non-homogeneous and the set of equations will not be linear with
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respect to time. Hence Laplace transform methods cannot be used directly. In this
case, the process is converted to a time homogeneous process by time scale trans-
formation (Cinlar (1975)) and the equations can be solved by transform methods. The
solution procedure using the transform method is shown below:
Taking the Laplace transform of both sides, equation (4.1) yields

8.P(i,i,s) — P(i,i,0) = = AP(i,is),

where P(,i,0) = 1.0 from the initial condition.

Solving for P(i,i,s),

P(i,i,s) = (4.9)

1
(s + A40)
For j=1, equation (4.2) is

P'(ii+ 1,8 + A,,(OP3i+ 1,0 = A{OP(,ib)

Taking Laplace Transformations on both sides,

8.P(ii +1,8) = P(ii +1,0) + A (PG +1,5) = A{OP(i.i.s)

P(l,i+1,0) = 0. So,

A(0)

PUI+18) = w2y

P(i,i,s)

1
= T 06+ 10

Solving iteratively, we find
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1

PULS) = 40 MOy

Using Laplace Transforms on both sides of equation (4.3),

1
sPUks) =0 = i) - MO Gy G D)

from which,

,
Plks) = Lt O G T0) - G+ 240)

GEAD) for i<j<k.

(4.5)

(4.6)

The inverse Laplace transform of the above equation is obtained by first resolving it

into its partial fractions. This can be written as,

k=1

Ao A

P(i.ks) = —— - (s + A[1)
Jumi

The coefficients A, and A/s are given by

A =1
k—1

A = A 20040] Jako - 1)
=i

re
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These values are substituted into equation (4.7) and the inverse of the Laplace

transform is constructed term by term.

The explicit solution Is shown below for case 2, where A(t) = af
The first term of P(i,k,s) is 1/s and the inverse transform is 1.

The second term is

1

{a(k —1p.. ai"/ai".ﬁ(ar" - ai")} e

il

The inverse transform is {a(k -1y.. ai"/ar’.ﬁ(ar" - ai")} exp( — ai"f)

o

- {(k -1y.. i"/i".ﬁ(r" - I")} exp( — ai"t)

rél

Similarly the other terms are evaluated and P(i,k,t) is given by

k=1 k=1

P(ik,t) = 1 —(“j)z{exp[—ut]/r n{, -r"} (4.9)

Jr

Solutions to all the other cases are the following:

Case (1). gl) =, and h() = matm
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k—1 k=1 k-1

P(lLkt) = 1 — (l—lj")Z{ exp[ — ar"t"]}/r" H{j" -r"}
| fmi 7 vt Jmi
Jor

Case (3). g) = j and h{f) = mat~?

k-1

k=1 k=1
P(ikt) = 1 — (HJ)Z{ exp[ — art™]}/r l—[{l -r}
A~ i
Jr
Case (4). gf) = j and h({) = «a
k=1 \ k=1 k=1
P(Lkt) = 1 — (l_IJ>Z{ exp[ — art]}/r l—[{i -r}
Jui /i J=i
Jhr

Case (5). g() = 1 and h() = mat~

K==if—1

Pkl = 1 — z [(«t™)". exp — {at™}]/r!
reQ

Case (6). gl) =1 and h() = «a
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k—=i—1

Pkt = 1 — 2 [(«t). exp — {at}]/rt (4.14)
r=0

Cases 2, 4 and 6 are special cases of 1, 3, and 5 respectively. All are realizations of

the Generalized Gamma distributions (Stacy (1962)).

The term P(i,k,t) gives the probability of being in state k at time t when the initial state
is I. Since the process is a pure birth process and k is the absorbing state, P(i,k.t) is
equivalent to the distribution function for the first passage time to k from i. This is
F(t|i,k), the failure time distribution for the single mechanism with initial state i and

final state k.

4.3 Mixture Distributions

If the initial and final states are random variables, then the first passage time for the
process is given by a mixture distribution. For example, if i and j are random and

their probability distributions are given by P(i) and P(k) respectively, then

F(t) = ; );;F(tll.k) P(i)P(k)

Suppose the distance j between i and k is considered as random and the probability

distribution on j is given by P(j). Then

F) = ;F(tll) P@)
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The density function, f(t), is used instead of the cumulative distribution function, F(t),
whenever f(t) has a more manageable form. Since the expressions and the solution

procedures depend on the form of i/(¢), the solutions are treated separately.

4.3.1 Case 6.

This is the simplest of all the cases. The transition rate A(f) is independent of both

state and time. The first passage time for specific i and k is given by equation (4.14),
F(tlj) = 1 —g[(at)'. exp — (a)]/n ,

where j is the distance between i and k. The probability density function is given by

,
ftl) = ae"‘-((-g)—:),— (4.15)

If j has a Poisson distribution with mean g,

-1
) = _,,) Z =t (“:)’m j‘: (4.16)

In the model, instantaneous failures at time zero are not allowed. The value 0 is ex-
cluded from the range of values of the Poisson variable j. So the term 1/(1 — ™)

appears in the above expression as the normalizing factor.

Computing the failure probabilities using the above expression is complicated.
Moreover, if further analysis is needed where several failure mechanisms are in-
volved, then a more manageable form of the density function is desired. Therefore,

the function is approximated to a probability density function of a known form. Plots
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of similar types of functions suggest that the model exhibits Weibull distribution be-
havior (Tran (1987)). Because the Weibull distribution is an extreme value distrib-

ution, it is well suited for the present model.

Since instantaneous failures at time zero are not allowed and the initial state | is as-
sumed to be strictly less than the final value k, the approximating Weibull distribution
is taken to be a function of shape and scale parameter only. The location parameter

Is set at zero.

The approximation Is carried out by the method of matching moments. The moments
of the original distribution and the approximating distribution should be equal. The
parameters of the Weibull distribution are to be chosen in such a way that the first
and second moments of the distribution are equal to the first and second moments
of the mixture distribution respectively. Since the moments of the mixture distrib-
ution are functions of the physical characteristics of the failure model, this procedure
of approximating will preserve the information about the physical properties of the

model.

The procedure of approximation is carried out in the following steps.

(1) Compute the first and second moments of the mixture distribution for specific
numerical values of its parameters. '

(2) Estimate the parameters of the Weibull distribution by matching its first two mo-
ments with those of the mixture distribution.

(3) Check the goodness of the approximation by comparing the third and fourth mo-
ments of the mixture distribution with those of the Weibull distribution.

(4) Perform a goodness-of-fit test to validate the approximation.
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The moments of the mixture distribution are derived from the Laplace transforms.

"
The n th moment is given by u, = (- 1)" f(s)

!

where f(s) is the Laplace transform of the failure density distribution.

The Laplace transform of the mixture distribution (equation (4.16)) is given by

fis) = (1—19-). Z;( ais )19
A —e") —e-l) z(t:z+s e"— —e™

g Mslets _ -k
- —e? (4.17)

The first four moments are now computed using f(s).

First moment yu,:

df(s) 1 [d( pus

ds -~ (1 —e") T (x+s9) )]e—mm

e-lt/l#l

~—e [ ot o

df(s) u
i == o (&) T Goew (T

So,
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By = (—1_—16:75'(%) (4.18)

Second moment pu,:

d fs) d —atjats
ds = ds (1—e-‘) (a+s)= ]" '

f(s) 1 2o —_— —ou —ap .
Tds' T (1—e") {[ (@ + sp ]e et (a +s) (¢:z+s)’e I }

1 B o-ssfess 2B
(1 -6 (a+s)’e ’ [2+ (a+s)]

e = nm i [ ]

- u1-:-,-(2+u) (4.19)

Third moment uy

PAs) 1 d apu (G2
dss § —e--){ [2 (x+s) + (x+s) ]e I

+ [ 2&“ + (au)’ ] & (9"""")}

(x+s) (x+s)
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1 { __6aw  4aw) g HSlats
(1 -6 (x+s)* (x +s)°

Y I 77 i T |
(e +s)3 (« + s)‘ (x+ s)2

1 _ G 4w  2ew)® @) | _sjess
(1 -7 @+98)* (x+s)° (x+5° (x+9)°

: [sau 6w’ _(anf’ ]e.,.,,m

T (- | @+ @@+’  (a+9)]
LA C N [Gau CN (au)“]
ds® 0 (1-e"] ¢ & o®
From which,
o -.m%[6+6u+u2] (4.20)

Fourth moment g, :

d*A(s) I d Bau + 6(ap)® + (ap)® o Hslats
US| @+ (@+s)P® (a+9)°

Gou 6(“#)2 (au)3 d —usfa+s }
+[(a+s)‘+(a+s)5+(a+s)°]ds L]
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1 24ap 30(ap)’ | 6(aw)® —usats
(1 —e™) {[ @tsr @ @+sf @ty ]e

+| Seu —+ (6au)2s + (au)‘"’a au — gHslats
(x+5) (@ +s) (x+s) (@ +5s)

- 1 24au 30(ap)’ + 6(ap)’
(1 -6 | @+s)® (e+5)° (a+9)

LS Saw) | (ew) }e.,‘,,m
@+s)’  @+s) (x+9)°

_— dap  3B(w) | 12w (aw)*
(1= ] (@+s)° (e+9)° (e+s) (ax+59)°

'

s) | -
ast 0 (1-e7"

4 4 + 4

24y 362 1228 4
1 ( # | 3u #+u_‘)
a [ ] [+ 2 [+ 3

£ 24+ 36u+ 1242 + 4%
a

So,

Mo = py—- (24 + 36 + 1247 + 1Y) (4.21)
a
Step 2: Estimation of Weibull parameters:
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The first and second moments of the Weibull distribution are set equal to those of the
mixture distribution. The scale parameter 6 and the shape parameter 8 are estimated
by the method of matching moments(Lloyd and Lipow (1977)). Since the moments
of the Weibull distribution dovnot have closed form expressions in terms of the scale

and shape parameters, the parameters are computed by using an iterative procedure.

The Welbull distribution that is used in the analysis is of the form
) = 6p¢- exp(— o). 6,>0, t>0

0 is called the scale parameter and f, the shape parameter. |
The first moment u, is given by

By = f:' t 0t~ exp( — 0¥)dt.
Let T = 6¢.

Then t = (T/8)¥*, and 6f¢-'dt = dT.

Therefore,

u = (1/6)"* f T exp(-T) = (1/0)""r(%+1). (4.22)
0

where I'(x) is the Gamma Function defined as
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Ix) = .[ T exp(-T)dT.
0

Similarly, the second moment g4, is given by

ny = (168 J TP exp(~T)dT = (1/0)’”’1‘(—’%—“)
0

From equation (4.22),
AL ]
o = [riten]

And, from equation (4.23), 6% = -ul;r(_?._,_ 1)

B

from which,

B = (2log8)[—logu, + Iogl‘(%+1)]

(4.23)

(4.24)

(4.25)

Using the values of x, and u, of the mixture distribution obtained in equations (4.18)

and (4.19), 0 and B are calculated from equations (4.24) and (4.25). A computer pro-

gram is written in FORTRAN to solve for the parameters iteratively. The program is

provided with a starting solution and at each iteration, the values of the parameters

are updated until they converge to specific values to simultaneously yield the first
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and second moments (Lloyd and Lipow (1974, pp. 186-189)). In the program, the
Gamma function I'(x) is computed by polynomial approximation (Abromowitz and

Stegun (1970, pp.257)).

Step 3. Comparison of higher moments for validation:

The third and fourth moments of the Weibull distribution are given by,

fhy = (1/9)3/’1'(% +1) (4.26)

and,

ty - (1/0)""1‘(—;7 + 1). (4.27)

The third and fourth moments of the approximating Weibull distribution are compared
with the corresponding moments of the mixture distribution given by equations (4.20)
and (4.21). These c'omparisons indicate the accuracy of the approximation. The fi'rst
two moments of the Weibull distribution are computed from the estimated parameters

to check the convergence of the iterative procedure.
Step 4. Kolmogorov-Smirnov Test for Goodness of Fit:

The Kolmogorov-Smirnov test for goodness of fit(Kraft and Van Eeden (1968)) is ap-
plied to see how well the Weibull distribution approximates the mixture distribution.
This is to confirm the conclusions reached from the comparison of higher moments
in the previous step. Although the K-S test of goodness of fit is used to check the

match of a distribution to random samples, it can be used to test the goodness of the
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approximation with slight modifications (Sculli and Wong (1985)). For the present
context, the values of the actual cumulative function are treated as random values
from an undetermined distribution. Then the K-S one sample test can be applied. In

the test, the approximation is checked by measuring the error D, , given by
D, = max.|Fly) — Ey)l, i = 1,..n (4.28)

where,
F( ) is the approximating Weibull distribution
E( ) is the mixture distribution

n is the number of classes in the interval.

From the value of D,, the K-S test statistic is calculated. The K-S test statistic is given
by

K = nxD, (4.29)

The critical values of K for acceptance or rejection of the approximation are obtained
from tables (Kraft and Van Eeden (1968)). For a level of significance of 0.04, the crit-

ical value is 3.0.

The number of intervals, n, is usually taken between 30 and 40. The K-S test statistic

is computed by a FORTRAN program which is included in Appendix B.
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4.3.2 Case 5.

The mixture distribution is analyzed for the case where the transition function is de-
pendent upon time t, l.e., for 4(f) = mat™', where m is a constant. The conditional

density function for first passage time is given by

(at™ )"1

ftl) = mat™" TEL

exp( —at™), (4.30)

where ] is the difference between the final and initial states. If j is assumed to be
Poisson distributed with mean u, then the mixture distribution gives the failure dis-
tribution for a mechanism. As in the previous case, the mixture distribution does not
yield a closed form expression. The distribution is again approximated as a Weibull
distribution. The procedure follows the same four steps enumerated for the previous

case.

As the first step, the first two moments of the mixture and the Weibull are matched.
Since it is not possible to construct the Laplace transform of the mixture distribution,
a moment for the distribution is calculated by obtaining the conditional moment and

then finding the mixture of the conditional moment.

From equation (4.30), the conditional mean for a given j is

(at™"

TEDL exp( — at™ ) dt

=t mat™!
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LetT = afm. Then, mat™' dt = dT and t = (- )us

So,

gt I T) oT
Byyy = (/a) (1_1)|exP(_ )
0

A P P Tt
= (1x)"m 0+ m — D J (7) exp(-T)dT
o

G-1)1 J+=—1)!

Since the integrand is a gamma probability density function, the value of the integral

is equal to 1. Thus,

1
(J +57—1)!
uyy = (a)™m (JT1)I (4.31)

Similarly, it can be shown that the conditional second moment is

2
(j +2-1)1
-2/m m
oy = (a)7? TN (4.32)

From equations (4.31) and (4.32), the moments for the mixture distribution are given
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J +——1 !
Hq = -n) Z( )—1/m ( ) 9.”#!' (4.33)

(J-11 A
and
1 N\ e U =
e G YO T e 434
=

The moments of the mixture distribution are estimated numerically and matched with
the moments of the Weibull distribution. The estimation of Weibull parameters and
the validation of the approximation follow exactly the same procedure as in the pre-

vious case.

The approximation is carried out for two values of m; m = 2and m = 0.5. Since case
6 corresponds to having a value of m equal to one, the inclusion of the above two m

values will better describe the effect of time dependency upon the failure process.

The results of the approximation for case 6 and case 5 are presented in Tables 1, 2,
and 3. In these tables, a is the constant in the transition rate, and u is the mean of
distance between the initial and final states of the birth process. The estimated
shape and scale parameters are given by ' and @' respectively. The first four mo-
ments of the mixture and Weibull distributions are also presented along with the ra-

tios of corresponding third and fourth moments of the Weibull and the mixture
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distributions. From the tables, it can be seen that the higher moments of the Weibull
distribution are quite close to those of the exact mixture distribution. This shows that
Weibull distribution serves well as an approximating function for this case. The K

values of the K-S test confirm this conclusion.

The Weibull distribution is taken as a valid representation of the mixture distributions.
Once the parameters of the Weibull distribution are estimated, the distribution func-
tion can be used for computing the failure probabilities for a mechanism or for further

analysis to include muitiple mechanisms.

4.4 Multiple Mechanisms

The results of the analysis of a single failure mechanism are now expanded to muiti-
ple mechanisms. The mechanisms are assumed to be active in the component si-
multaneously and are independent of each other. The component behavior can be
studied using either the extreme value theory or the competing risk theory. In either
case, the distribution of the aggregate failure time is given by the distribution of the

minimum of individual failure times.

Extreme value theory is applied if the individual failure distributions are independent
and identically distributed and their number is large (Cramer (1946)). The procedure
for obtaining the aggregate failure distribution function is shown below. It is assumed

that each individual distribution is a Weibull function.

Let X be the minimum of n random variables X, X, . X, Let F be the distribution

function for X and G be the distribution function for X, j=1 to n. Then
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Fif) = P(X<f) = 1 — P(X>1)
=1 = {P(Xy> ) P(X; > 8) ..P(x, > 1)}
=1 - (1-6(9)"

Define a random variable 7%, as
Nn = nG(X)
LetI,() = P(m,<f), 0<t<n
So, I,() =P[X < G-(t/n)] = F[G-(t/n)]

=1—[1-=G(G(t/n)}
=1—=(1 = t/ny

Let

N = lim T = lim [1 (1 - tn)'] = 1-e"" (4.35)

So, the sequence of random variables 15, converges to a random variable, say 1.

If G(t) is a Weibull! distribution,
M, = nG(X) = n(1 — &)

Or,

[ To Moy o (Teyy . ]
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Ignoring all the terms with powers greater than 1,
X0 = = (nin)

Or,
X = (n/n6y"

The distribution of X is now calculated. By extreme value theory (equation (4.35)),
P[n <st] = fte¥dX =1- ¢

Now,

PX<t) = P([nnelr<i
= P(n < nbt? ) = 1—g

Hence X has a Weibull function with 8 as the shape parameter and n@ as the scale
parameter. So if all the individual failure mechanisms have identical Weibull distrib-
utions for failure with shape parameter f and scale parameter 8, then the overall
failure distribution is again a Weibull distribution with the shape parameter equal to
that of the individual distributions and the scale parameter equal to the sum of their

scale parameters.

In competing risk theory, it is assumed that the component is subject to multiple
failure mechanisms and the number of mechanisms, n, is finite. All the lifetimes
generated by individual failure mechanisms have Weibull form of distribution. The
distribution of the component lifetime is given by the distribution of the minimum of
individual distributions. Three situations are considered for the individual distrib-
utions: (1) all the distributions are identical, (2) the shape parameter § is the same
for all the distributions, and (3) the shape and scale parameters are different for each

distribution. The three situations are analyzed below.

4 Solution Procedure 51



(1) Let X, X,....., X, be the n random variables representing the lifetimes corre-
sponding to the n individual failure mechanisms. All n variables are identically dis-
tributed, each having a Weibull distribution with @ and # as the parameters.

Let X = min.{X,, Xy.e0o, X, }.

The distribution of X is given by

P(X<t)=1=P(X >0

= 1=P(Xy > t) P(Xy > t) ccoeee, P(X, > t)
=1 — [ exp( -Otp)][ exp( ‘elﬁ)]""[ exp( _OM)]
=1— exp( -0t —0f .....— 6¢)

=1 - exp( —nOtﬁ)

So the minimum is also a Weibull distribution with shape parameter # and scale pa-

rameter né.

(2) This Is a situation in which the individual distributions have a common shape pa-
rameter f. Their scale parameters are different from each other. Let the scale pa-
rameters be 4,, 6, ... , 0,, respectively. The probability distribution of X = min.
{X, Xs....o X,} is given by

PX<t) = 1— exp[—(6, + 6, +...... +6,)t],
which is again a Weibuil distribution with scale parameter (8, + 6, + ....+ 8,) and

shape parameter §.

(3) Here, the n random variables have different scale parameters ( 6,68, __6,) and dif-

ferent shape parameters (8, §,....., 8,). In this case,
PX<t) = 1—exp[ = (8,%" + 0t +..... +6,¢™]
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This expression does not conform to any known probability distribution. However, it

can be directly used to compute the lifetime distribution of the component.

The above distribution may have a Weibull type of extreme-value form since it is the
distribution of the minimum of muiltiple random variables. To test the validity of this
assumption, the distribution of the minimum of two Weibull random variables is ap-
proximated as a Weibull distribution. The goodness of the approximation is checked
by the comparison of the corresponding higher moments and the K-S test. The pro-

cedure is described below.

Welbull approximation to the minimum of two Weibull distributions:

Let X, / = 1,2 be a random variable with Weibull distribution and 8, and f, as scale
and shape parameters respectively. It is assumed that the minimﬁm of two Weibull
random variables is also a Weibull. The first two moments of the original distribution

are computed first.

let X = min.{X,, X3}
The distribution of X is given by

P(X<t)=1-P(X >0
= 1=P(Xy > t) P(X; > t)
=1 - [exp( -8, tp‘)][ exp( — 68, tp’)]
=1~ axp( — 0,5 —0,t)

(4.36)

The density function of X is given by
ft) - (B,6, 8- + B, 06, ¢2-") exp( — 0,t8, — 0,t%)
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The first moment p, = I;' t(B,0,th~ 4+ B,0,t:-") exp(— 0, 1 — 8, th1)dt,
and the second moment yu, = I:'l'(ﬂ, 0,1 + B, 0, ") exp( — 0, — 0, t*)dt.

The two moments are numerically estimated. The first two moments of the approxi-
mating Weibull distribution are matched with these two values and the parameters
6’ and g’ of the approximating distribution are estimated. The procedure is similar
to the one described in section 4.3. Using the estimated parameters, the third and
fourth moments are calculated and compared with the corresponding moments of the
original distribution (equation 4.36)). K-S Test is performed for further validation. The

results are presented in Table 4 for different combinations of parameter values.

The results show that the third and fourth moments of the approximating distribution
are very close to those of the original distribution. This indicates that the Weibull
assumption for the minimum is a valid assumption. The values of the K-S test sta-

tistic further support this assumption.

If the minimum of two Weibull distributions is approximately a Weibull distribution,
then by recursive argument, the minimum of n Weibull distributions is again another
Weibull. Therefore, even for the situation in which the individual failure distributions
are different from each other both in their scale and shape parameters, the aggregate

distribution is still a Weibull distribution.
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Table 1. Resuits for Weibull Approximation
A = a
moment# mixture(m) | Weibull(W) Ratio(W/m)
a= 20 1 30.00 29.99 1.00
u = 60.0 2 930.00 929.77 1.00
@ = 0.22E-9 3 297.45E1 296.22E1 0.96
B = 6.40 4 980.19E3 960.08E3 0.98
K-S = 0.18
a = 20 1 40.00 40.00 1.00
u = 800 2 164.00 164.00 1.00
0 = 67E—-12 3 688.60E2 686.80E2 0.99
B = 7.47 4 295.86E4 292.95E7 0.99
K-S = 0.23
a =20 1 45.00 44.99 1.00
u = 90.0 2 207.00E1 207.00E1 1.00
0’ = 437E - 13 3 972.68E2 970.38E2 0.99
B = 7.96 4 466.57E4 462.54E4 0.99
K-S = 0.87
a = 5.0 1 12.00 12.00 1.00
u = 60.0 2 148.80 148.80 1.00
0 = 78E -7 3 190.40E1 189.70E1 0.99
B = 6.4 4 250.93E2 247.40E28 0.98
K-S = 0.65
a = 5.0 1 16.00 16.00 1.00
u = 80.0 2 262.40 262.40 1.00
@ = 0.63E—-9 3 440.70E1 439.50E1 0.97
B = 7.47 4 757.38E2 749.90 0.99
K-S = 0.71
a = 50 1 18.00 17.99 1.00
u = 90.00 2 331.20 331.30 1.00
0’ = 0.64E— 10 3 622.50E1 620.90E1 0.99
B = 7.96 4 119.40E3 118.30E3 0.99
K-S = 0.94
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Table 1. (continued)

moment# mixture(m) | Weibull(W) Ratio(W/m)
a = 80 1 7.50 7.50 1.00
u = 60.0 2 58.12 68.12 1.00
9’ = 0.16E—5 3 464.80 463.00 0.99
B = 6.40 4 382.90E1 377.80E1 0.98
K-S = 0.09
a = 80 1 10.00 10.00 1.00
u = 80.0 2 102.50 102.50 1.00
0 = 021E-7 3 107.60E1 | 107.30E1 0.99
B = 747 4 116.57€E2 114.44E2 0.99
K-S = 0.12
a = 8.0 1 11.25 11.25 1.00
u = 90.0 2 129.40 129.40 1.00
0 = 0.27E—-8 3 151.98E1 151.65E1 0.99
B = 7.95 4 182.26E2 180.72E2 0.99
K-S = 0.46
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Table 2. Resuits for Weibull Approximation

Aff) = mat™"
m = 2.0
moment# mixture(m) | Weibull(W) Ratio(W/m)
a =20 1 5.45 5.45 1.00
u = 60.0 2 30.00 30.00 1.00
9 = 0.97E—10 3 166.37 166.27 0.99
B = 13.28 4 930.00 928.03 0.99
K-S = 0.23
a =20 1 6.30 6.30 1.00
u = 80.0 2 40.30 40.00 1.00
0’ = 0.25€ - 12 3 255.36 255.30 0.99
B = 15.48 4 164.0E1 163.8E1 0.99
K-S = 0.11
a = 20 1 6.69 6.69 1.00
u = 90.0 2 45.00 45.03 1.00
0 = 0.15€ — 13 3 304.4 304.6 1.00
B = 15.49 4 207.0E1 207.0E1 1.00
K-S = 0.07
a = 5.0 1 3.45 3.45 1.00
u = 60.0 2 12.00 12.00 1.00
0 = 0.43E—-7 3 42.09 42.06 1.00
B = 13.28 4 148.8 148.4 1.00
K-S = 0.07
a =50 1 3.99 3.99 1.00
u = 80.0 2 16.00 15.99 1.00
0’ = 0.34E -9 3 64.60 64.57 1.00
B = 15.38 4 262.40 262.0 1.00
K-S = 0.10
a =50 1 4.23 4.23 1.00
u = 90.0 2 18.00 18.00 1.00
0’ = 0.29€ - 10 3 77.00 76.97 0.99
B = 16.46 4 331.20 330.75 0.99
K-S = 0.09
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Table 2. (continued)

moment# mixture(m) | Weibull(W) Ratio(W/m)
a = 8.0 1 2.72 2.72 1.00
u = 60.0 2 7.50 7.50 1.00
0 = 097E—-6 3 20.79 20.78 1.00
B = 13.28 4 58.12 58.00 0.99
K-S = 0.45
a = 8.0 1 3.16 3.12 1.00
u = 80.0 2 10.00 10.00 1.00
0 = 0.11E-7 3 31.92 31.90 1.00
B = 15.47 4 102.50 102.30 1.00
K-S = 0.07
a = 8.0 1 3.35 3.36 1.00
u = 90.0 2 11.25 11.26 1.00
0 = 0.36E—-8 3 38.05 38.16 1.00
B = 15.65 4 129.37 129.90 1.00
K-S = 0.09
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Table 3. Results for Weibull Approximation

A(t) = mat™"

m = 0.5
moment# mixture(m) | Weibull(W) Ratio(W/m)
a = 20 1 930.00 930.00 1.00
u = 60.0 2 980.19E3 980.19E3 1.00
0’ = 0.99E -9 3 115.84E6 113.20E6 0.97
B = 2.98 4 152.16E10 140.80E10 0.92
K-S = 1.7
a = 2.0 1 164.00E1 164.00E1 1.00
u = 80.0 2 292.85E4 292.85E4 1.00
0’ = 0.37€E - 11 3 583.38E7 573.67E7 0.98
B = 3.50 4 125.06E11 117.88E11 0.94
K-S = 0.98
a =20 1 207.00E1 206.98 1.00
u = 90.0 2 466.57E4 466.49E24 1.00
0’ = 0.27E - 12 3 113.93E8 112.22€8 0.98
B = 3.74 4 300.06E11 284.64E11 0.94
K-S = 25
a = 5.0 1 148.80 148.80 1.00
u = 60.0 2 250.93E2 250.93E2 1.00
0’ = 0.23E -6 3 474.48E4 464.03E4 0.98
B = 298 4 997.20E6 922.78E6 0.93
K-S = 2.12
a = 5.0 1 262.40 262.41 1.00
u = 80.0 2 757.38E2 757.44€2 1.00
0’ = 0.23E—-8 3 238.95E5 235.00E5 0.98
g =35 4 819.56E7 772.70E7 0.94
K-S = 1.81
a = 50 1 331.20 331.20 1.00
u = 90.0 2 119.44E3 119.44E3 1.00
0 = 0.25e -9 3 466.66ES 459.76E5 0.98
B = 3.74 4 196.60E8 186.60E8 0.94
K-S = 1.45
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Table 3. (continued)

moment# mixture(m) | Weibull(W) Ratio(W/m)
a = 8.0 1 58.12 58.12 1.00
u = 60.0 2 382.8E1 382.8E1 1.00
¢ = 039E-5 3 282.80E3 276.50E3 0.97
B = 2.98 4 232.18E5 214.85E5 0.92
K-S = 0.54
a = 8.0 1 102.50 102.50 1.00
u = 80.0 2 115.57E2 115.57E2 1.00
0’ = 0.62E -7 3 142.40E4 140.00E4 0.98
B = 3.50 4 190.82E6 179.88E6 0.94
K-S = 0.12
a = 8.0 1 129.37 120.37 1.00
u = 90.0 2 182.26E2 182.26E2 1.00
0’ = 0.85E -8 3 278.15E4 274.04E4 0.98
B = 3.74 4 457.85E6 434.47E6 0.94
K-S = 1.4
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Table 4. Weibull Approximation for the min. of two variables.

moment# {minimum(m) | Weibull(W) Ratio(W/m)
0, = 0.22E -9 1 26.99 26.98 1.00
B, = 6.40 2 753.00 753.0 1.00
0, = 0.22E -9 3 215.80E2 215.70E2 1.00
B, = 6.40 4 633.30E6 632.90E6 0.99
@' = 0.43E — 09 K-S = 1.27
B = 6.40
0, = 0.219€ - 0 1 29.55 29.55 1.00
B, = 6.40 2 90.18 90.18 1.00
0, = 0.67E — 12 3 282.50E2 282.50€2 1.00
B. = 7.47 4 905.90E3 905.80E3 0.99
0 = 0.17E-9 K-S = 0.87
B = 6.51
0, = 0.44€ —- 13 1 12.02 12.02 1.00
B, = 7.96 2 149.3 149.3 1.00
0, = 0.77E -7 3 190.60E1 190.60E1 1.00
B. = 6.40 4 249.10E2 249.10E2 1.00
¢’ = 077E ~7 K-S = 0.72
B = 6.4
0, = 0.62E -7 1 93.45 93.45 1.00
B, = 3.50 2 957.90E1 957.90E1 1.00
0, = 0.856 -9 3 105.00E4 105.00E4 1.00
B. = 3.74 4 122.53E6 122.52E6 1.00
0’ = 0.63E -7 K-S = 1.04
B = 3.57
0, = 0.44E - 13 1 7.51 7.51 1.00
= 7.96 2 58.33 58.33 1.00
0, = 0.16E—-5 3 465.50 465.50 1.00
B, = 6.40 4 380.32E1 380.32E1 1.00
6’ = 0.16E -5 K-S = 0.61
B = 6.40
0, = 0.99E —-09 1 14.96 14.96 1.00
B, =298 ' 2 254.00E2 254.00E2 1.00
0, = 0.234E—-6 3 472.80E4 472.80E4 1.00
B, = 2.98 4 946.50E6 946.60E6 0.99
6’ = 0.24E -6 K-S = 0.90
B = 297
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Table 4. (continued)

moment# [minimum(m) | Weibull(W) Ratio(W/m)
0, = 0.22E -9 1 30.00 30.09 1.00
B, = 6.40 2 932.00 932.00 1.00
0, = 0.23E -6 3 297.40E2 297.50E2 1.00
B, = 2.98 4 972.00E3 972.30E3 1.00
0’ = 0.26E—-9 K-S = 1.17
B = 6.35
0, = 0.22E-9 1 5.53 5.53 1.00
B, = 6.40 2 30.82 30.82 1.00
0, = 0.97€ - 10 3 173.20 172.70 0.99
B. = 13.30 4 982.70 973.70 0.99
0 = 0.526 - 11 K-S = 1.83
B = 14.89
0, = 0.25E - 12 1 5.28 5.28 1.00
B, = 15.50 2 29.12 29.12 1.00
0, = 0.97E- 10 3 162.20 166.20 1.02
B = 13.30 4 911.30 917.60 0.98
0’ = 0.65E—-4 K-S = 2.44
B = 5.53
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CHAPTERS

Conclusions and Discussion

5.1 Conclusions

A reliability model which captures the dynamic behavior of failure of a component in
terms of the properties of the material and operating conditions is developed. The
model analyzes the effect of degradation mechanisms on component failure time. A
component subject to a single mechanism is assumed to have an initial number i, and
a final number k of defects. During operation, the component fails when the number
of defects equals the final number. For the case of a single mechanism with fixed i
and k, the component failure distribution is given as the first passage time distribution
of the representative pure birth process to the final state. First passage time distrib-
utions can be derived using direct methods or Laplace transform methods for various

forms of transition rates. All these distributions have the form of generalized Gamma
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distribution. For the simplest case, where the transition rate is independent of state

and temperature, the first passage time distribution is a Gamma distribution.

When the initial and final states of a mechanisms are random, the failure time of the
component is given by mixture distribution derived from the conditional first passage
time distributions. The mixture distribution is analyzed for two types of transition
rates. In both the cases, the mixture distribution does not have a closed form when
the distance between the final and initial states is taken to be Poisson distributed
with mean u. From the results of approximation, it can be concluded that the mixture
follows a Weibull form of distribution. The mean time to failure is directly proportional
to the mean of the difference between the initial and final number of defects. This is
because the time to failure is greater if the process has to traverse a larger distance
from the initial to the final state. As the transition rate increases, the process
changes states faster and hence componenf fails earlier. The mean failure time is
inversely proportional to a , the constant in the transition rate. Since « includes the
reaction kinetics, it dictates the reaction rate and hence the failure rate and the mean
failure time. The shape parameter # of the Weibull distribution remains almost the
same for a fixed value of u. The shape parameter is quite insensitive to the changes
in the transition rates. The variable m, the factor describing the effect of time on the
transition rate function, has a great impact on the failure times. As the value of m

increases, the mean of the failure time decreases exponentially.

Multiple mechanisms are incorporated into the model by using either the extreme-
value theory or the competing risk theory. In both the cases, the overall distribution
is a Weibull distribution. The results conform with the general practice of assuming

a Weibull distribution for the failure time of electronic components.
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5.2 Extensions

The model by its very structure creates an exhaustive range of possibilities for future

research. It has a two dimensional expansion potential, practical and analytical.

Experimental work needs to be done to identify the forms of the transition rate for
failure mechanisms. Another major area of research that is needed is in the study
of defect distributions. Although considerable work has been carried out in the area
of defect distributions, much is needed to identify the distributions of the defects at

which failures occur.

On the theoretical front, analysis of the model is interesting if some of the present
assumptions are relaxed. For example the degradation process may be allowed to
have a reaction in the reverse direction . The process will then no longer be a pure
birth process and the first passage time distributions will be quite complicated to
obtain. One advantage of this analysis would be that more failure mechanisms couid
be analyzed. Trapping of hot electrons is an example. Once the reaction is allowed
to be reversible, the model may be used with some modifications to analyze me-

chanical systems as well.

In summary, a component failure model that explains the causal relationship between
the failure of a component and factors like the properties of the material of the com-
ponent and the operating conditions is developed. This relationship can be used for
estimating the reliability of a component at different operating conditions without re-
sorting to the accelerated testing methodology. Another advantage is that reliability

can be built into a component from the design stage itself using this model.
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Appendix A.

Program to Compute Weibull Parameters

C GIVEN THE FIRST AND SECOND MOMENTS, THIS PROGRAM
C COMPUTES ALPHA AND BETA OF WEIBULL DIST. BY AN ITERATIVE

C PROCEDURE.

DOUBLE PRECISION A(2,2), B(2,2), X0(2), X1(2), XNEW(2), DEN
DOUBLE PRECISION RMU1, RMU2 , RMU3, RMU4, ALPHA , RMU
COMMON RMU1, RMU2,RMU3 , RMU4
READ(5,10) ALPHA, RMU
C ALPHA IS THE PARAMETER FOR EXPO. DIST. OF THE BIRTH PROCESS
C RMU IS THE MEAN OF POISSON DIST. OF THE DISTANCE
10 FORMAT(D10.5,2X,D10.5)

WRITE(6,20)ALPHA, RMU
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20 FORMAT(2X,’ALPHA = ‘, D10.5," MU = ’, D10.2)
COMPUTE THE FIRST MOMENT RMU1 AND THE SECOND MOMENT RMU2

DEN = 1.D00
IF(RMU.LT.20.D0) DEN = 1.DO-(DEXP(-RMU))

RMU1 = (RMU / ALPHA)*(1.DO/DEN)

RMU2 = RMU1 *((RMU/ALPHA) +(2.D0/ALPHA))
RMU3=RMU1*(8.00+6.D0°'RMU + (RMU"*2))*(1.DO/ALPHA"*2)
RMU4 = RMU1°(24.D00 + 36.D0*RMU + 12.D0*(RMU**2) + (RMU**3))*

1 (1.D0/(ALPHA**3))
WRITE(8,35)RMU1,RMU2 ,DEN
35 FORMAT(2X,'RMU1=",D12.5, 3X, ‘RMU2=",D012.5,5X,'DEN’,D12.5)
CALL SR1
sTOP
END
C  SUBROUTINE TO ITERATIVELY FIND ALPHA AND BETA OF THE
C WEIBULL DISTRIBUTION.
Cc

SUBROUTINE SR1

DOUBLE PRECISION RJ(2,2), R1J(2,2), B(2,2), A(2,2)

DOUBLE PRECISION ALPHAQ, BETAO, ALPHA1, BETA1,ALPHANU, BETANU
DOUBLE PRECISION RMU1, RMU2,FUNC1,FUNC2,RMEAN,DET,RMEAN2,RMEANS,
1 RMEAN4 ,RMU3, RMU4

COMMON RMU1, RMU2 , RMU3, RMU4

C INITIALIZE ALPHA AND BETA AND THE COUNTER
K=1
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READ(5,10)BETAO
10 FORMAT(D10.5)
ALPHAQ = FU‘NC1 (BETAOQ) +0.005
100 WRITE(6,15) ALPHAO, BETAO
15 FORMAT(2X, 'ALPHAO= ’, D12.5,3X,'BETA0 =", D12.5)
ALPHA1 = FUNC1(BETAO)
BETA1 = FUNC2(ALPHAO, BETAO)
WRITE(8,55)ALPHA1, BETA1
55 FORMAT(2X, ‘ALPHA1’, D12.5, ° BETA1’, D12.5)
c COMPUTE APPROXIMATE VALUES OF PARTIAL DIFFERENTIAL FUNCTIONS

RJ(1,1) = 0.00
RJ(1,2) = (FUNC1(BETA1)-ALPHA1)/ (BETA1 - BETAQ)
RJ(2,1) = (FUNC2(ALPHA1,BETAOQ) - BETA1) / (ALPHA1 -ALPHAO0)
RJ(2,2) = (FUNC2(ALPHAO, BETA1) - BETA1) / (BETA1 - BETAQ)
C CALCULATE THE I-J MATRIX
RiJ(1,1) = 1.D0 - RJ(1,1)
RIJ(1,2) = -RJ(1.2)
RIJ(2,1) = -RJ(2,1)
RIJ(2,2) = 1.D0 -RJ(2,2)

FIND B, THE INVERSE OF I-J.

DET = RIJ(1,1)"RIJ(2,2) - RIJ(1,2)*RIJ(2,1)
B(1,1) = RIJ(2,2)/DET
B(1.2) = -R1J(1,2)/DET
B(2,1) = -RIJ(2,1) / DET
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B(2,2) = RIJ(1,1)/DET
COMPUTE A = I-B

A(1,9) = 1.DO-B(1.1)
A(1,2) = -B(1,2)
A(2,1) = -B(2,1)
A(2,2) = 1.D0 - B(2,2)
C CALCULATE THE NEXT SET OF VALUES
C
ALPHANU = A(1,1)"ALPHAO + A(1,2)*BETAC + B(1,1)"ALPHA1 +
1 B(1,2)"BETA1
BETANU = A(2,1)°ALPHAO + A(2,2)*'BETAO0 + B(2,1)"ALPHA1 +
1 B(2,2)"BETA1
Cc
C CHECK FOR CONVERGENCE
IF((DABS(ALPHANU-ALPHAQ)).LE.1.D-14.0R.K.GT.6)GOTO 40
ALPHAQ = ALPHANU
BETAO = BETANU
K=K+1
GOTO 100
40 WRITE(6,50)ALPHANU, BETANU,K
S50 FORMAT(2X, ‘ALPHANU’, D15.08, 2X, ‘BETANU’, 3X, D12.6,4X,15)
RMEAN = ((1.D0/ALPHANU)**(1.D0/BETANU)) * GAMMA1(1.D0/BETANU)
RMEAN2 = ((1.DO/ALPHANU)**(2.D0/BETANU))* GAMMA1(2.D0/BETANU)
RMEAN3 = ((1.D0/ALPHANU)**(3.D0/BETANU))* GAMMA1(3.D0/BETANU)
RMEAN4 = ((1.D0/ALPHANU)"*(4.00/BETANU))* GAMMA1(4.D0/BETANU)
WRITE(8,30)RMU1, RMU2, RMU3, RMU4
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30 FORMAT(2X,/RMU1= ‘, D12.5, 2X, ‘RMU2= ‘, D12.5/RMU3 = ",D12.5,
1 '‘RMU4 = *,D12.5)
WRITE(6,44)RMEAN, RMEAN2, RMEAN3,RMEAN4
44 FORMAT(2X, ‘RMEAN = *, D12.5,3X, D12.5,2X,/RMEAN3 = *,D12.5,
1 'RMEAN4 = *,D12.5) "

RETURN
END

FUNCTION FOR THE ALPHA VALUE

FUNCTION FUNC1( BETA)
DOUBLE PRECISION ALPHA, BETA, A, VALUE, GAMMA1, FUNC1
DOUBLE PRECISION RMU1, RMU2

COMMON RMU1, RMU2, RMU3,RMU4
A = 1.D0/BETA
WRITE(68,30)BETA

30 FORMAT(2X, ‘BETA IN FUNCY’, D15.7)
VALUE = GAMMA1(A)
FUNC1 = (VALUE/RMU1)*"BETA
RETURN
END

C  FUNCTION FOR THE BETA VALUE
FUNCTION FUNC2(ALPHA, BETA)
DOUBLE PRECISION ALPHA, BETA, A, VALUE, GAMMA1, FUNC2
DOUBLE PRECISION RMU1, RMU2
COMMON RMU1, RMU2 , RMU3,RMU4
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A =2.D0/BETA
VALUE = GAMMAA1(A)
FUNC2 = (2.D0*DLOG(ALPHA)) / DLOG(VALUE/RMU2)
WRITE(8,66)FUNC2, ALPHA, VALUE
66 FORMAT(2X,’FUNC2 ALPHA VALUFE’, 4X,3D12.7)

RETURN
END

Cc

C NUMERICAL APPROXIMATION FOR GAMMA FUNCTION

c THIS FUNCTION CALCULATES GAMMA FUNCTION BY APPROXIMATION
FUNCTION GAMMA1(A)
DOUBLE PRECISION GAMMA1, A, B, PROD,VALUE
REAL"8 A1, A2, A3, A4, AS
DATA A1,A2,A3,A4,A5/-5748.646D-4,9512.363D-4,-6998.588D-4,
1 4245.549D-4,-1010.678D-4/
B=A
PROD = 1.D00
30 IF(A.LE.1.D0) GO TO 40
PROD = PROD°A
A = A-1.D0
GO TO 30
40 VALUE = 1.D0+A1°A + A2°(A*"2) + A3"(A*"3) + A4*(A**4) +A5"(A*"5)
GAMMA1 = PROD°VALUE
WRITE(8,20)GAMMA1,B
20 FORMAT(2X, 'GAMMA’, 5X, D10.5, ' FOR ARG.’, 2X,D12.5)
RETURN
END
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Appendix B.

Computation of K-S Test Statistic

C THIS PROGRAM COMPUTES THE K-S TEST STATISTIC BY
COMPARING THE CDF OF THEORETICAL AND

C  FITTED WEIBULL.
DIMENSION F(20),THEO(20), YBUL(20)
INTEGER T, T1,T2
DOUBLE PRECISION ALPHA, RMU,RM,F,THEO, YBUL, FT
DOUBLE PRECISION ALPHANU, BETANU
DOUBLE PRECISION DMAX, DIFF, FMIX, PDF
COMMON ALPHA, RMU, RM
DO 100IC = 1,9

C READ TRANSITION RATE, MEAN OF POISSON DISTANCE AND POWER IN LAMBDA
READ(5,10)ALPHA, RMU ,RM

10 FORMAT(D15.3,015.3,D15.3)

READ(5,15)ALPHANU,BETANU
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15 FORMAT(D15.3, D15.3)
WRITE(6,")ALPHANU, BETANU
C FREQUENCIES ARE TABULATED FORT =1TO T =20
=1
T2=2
THEO(1) = FMIX(1.D0)/1.00

C  CALCULATE THE CDF FOR WEIBULL DISTRIBUTION
YBUL(1) = 1.D0 - DEXP(-ALPHANU*(FT**BETANU))
C DMAX IS THE MAXIMUM ABSOLUTE DIFFERENCE
DMAX = DABS(THEO(1)-YBUL(1))
DO4OT =T1+1, T2
FT = DFLOAT(T)/1.000
YBUL(T) = 1.D0 - DEXP(-ALPHANU*(FT**"BETANU))
PDF = FMIX(FT)/1.000
THEO(T) = THEO(T-1) + PDF
DIFF = DABS(THEO(T) - YBUL(T))
IF(DMAX.LT.DIFF) DMAX = DIFF
WRITE(8,35)DIFF,PDF, THEO(T), YBUL(T), T
35 FORMAT(2X,'DIFF,PDF,THEO.CDF, YBUL CDF =, 4(D14.5, 2X), 15)
40 CONTINUE
WRITE(68,50)DMAX
50 FORMAT(//2X,’ DMAX = ’, D14.5)
C100 CONTINUE
| STOP
END

FUNCTION FMIX(FT)
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DOUBLE PRECISION ALPHA,RMU,RM,FT,FJ, SUM,POW
DOUBLE PRECISION TERM(200) , FMIX

COMMON ALPHA, RMU, RM

SUM = 0.00

WRITE(6,35)ALPHA, RMU, RM, FT
35 FORMAT(2X,4(D14.3, 2X))
POW = ALPHA * (FT ** RM)
TERM(1) = (DEXP(- POW/2.D0))*ALPHA * RM *(DEXP(- POW/2.D0))*
1 (FT ** (RM-1.D0)) * (DEXP(-RMU)) *“RMU
o WRITE(6,40) TERM(1)
DO 20 J = 2,100
FJ = DFLOAT(J)
TERM(J) = (TERM(J-1) * POW * RMU)/((FJ-1.D0)*FJ)

STOP IF TERM VALUE IS TOO LOW
IF(FJ.GT.RMU.AND.TERM(J).LE.1.D-20) GOTO 30
WRITE(6,40)TERM(J)
40 FORMAT(2X, TERM = ’, D15.6)
SUM = SUM + TERM(J)
20 CONTINUE
30 FMIX = SUM
RETURN
END
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Appendix C.

Approximation for Minimum of Two Weibull Random Variables

C WEIBULL APPROXIMATION FOR MINIMUM OF TWO WEIBULL DIST.

GIVEN THE FIRST AND SECOND MOMENTS, THIS PROGRAM
COMPUTES ALPHA AND BETA OF WEIBULL DIST. BY AN ITERATIVE
PROCEDURE.

0O 0O 0 0

DOUBLE PRECISION THETA1, THETA2, BETA1, BETA2
DOUBLE PRECISION RMU1, RMU2 , RMU3, RMU4
DOUBLE PRECISION DT, DF(4), SUM(4), PROD1
INTEGER T,TT
COMMON RMU1, RMU2,RMU3 , RMU4
READ(5,5)TT
5 FORMAT(IS)
CC DO 200 KK=1,7
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READ(5,10) THETA1, BETA1, THETA2, BETA2
WRITE(6,")THETA1, BETA1, THETA2, BETA2
C THETA iS THE SCALE PARAMETER ABD BETA IS THE SHAPE PARAMETER
10 FORMAT(4D15.3)
C SUM IS THE SUMMATION OF MIN.DENSITY VALUES. SUM = MOMENT
DO 201=14
20 SUM(l) = 0.D0
DO100T =1,TT

PROD1 = DENSITY FUN. OF MIN. WITHOUT THE EXP. TERMS
OF = VARIABLE TO EXPRESS THE LOG. OF THE DENSITY
DT = DFLOAT(T)
PROD1 = (BETA1 * THETA1 * (DT ** (BETA1 - 1.D0)))
1 + (BETA2 * THETA2 * (DT ** (BETA2 - 1.D0)))
DO8OK =14
DF(K) = DFLOAT(K) * DLOG(DT) + DLOG(PROD1) -
1 (THETA1 * (DT ** (BETA1)) + THETA2 * (DT ** ( BETA2)) )
SUM(K) = SUM(K) + DEXP(DF(K))
80 CONTINUE
100 CONTINUE
RMU1 = SUM(1)
RMU2 = SUM(2)
RMU3 = SUM(3)
RMU4 = SUM(4)
WRITE(6,35)RMU1,RMU2 ,RMU3,RMU4
35 FORMAT(2X,'RMU1=",D12.5, 3X, 'RMU2=",D12.5,5X,"RMU3=",D12.5,
1 5X, 'RMU4 = ‘, D12.5)
CALL SR1
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CONTINUE
STOP
END

SUBROUTINE TO ITERATIVELY FIND ALPHA AND BETA OF THE
WEIBULL DISTRIBUTION.

SUBROUTINE SR1

DOUBLE PRECISION RJ(2,2), RIJ(2,2), B(2,2), A(2,2)

DOUBLE PRECISION ALPHAQ, BETAQ, ALPHA1, BETA1,ALPHANU, BETANU
DOUBLE PRECISION RMU1, RMU2,FUNC1,FUNC2,RMEAN,DET,RMEAN2,RMEANS3,
1 RMEAN4 ,RMU3, RMU4

COMMON RMU1, RMU2 , RMU3, RMU4

C  INUTIALIZE ALPHA AND BETA AND THE COUNTER

K=1
READ(5,10)BETAO

10 FORMAT(D10.5)
ALPHAO = FUNC1(BETAOQ) +5.D-03

100 WRITE(6,15) ALPHAO, BETAOQ

15 FORMAT(2X, ‘ALPHAO= ’, D12.5,3X,"BETA0=", D12.5)
ALPHA1 = FUNC1(BETAO)
BETA1 = FUNC2(ALPHAQ, BETAO)

RJ(1,1) = 0.00
RJ(1,2) = (FUNC1(BETA1)-ALPHA1)/ (BETA1 - BETAQ)
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RJ(2,1) = (FUNC2(ALPHA1,BETAQ) - BETA1) / (ALPHA1 -ALPHAOQ)
RJ(2,2) = (FUNC2(ALPHAQ, BETA1) - BETA1) / (BETA1 - BETAQ)
CALCULATE THE I-J MATRIX

RlJ(1,1) = 1.D0 - RJ(1,1)

RI(1,2) = -RJ(1,2)

RW(2,1) = -RJ(2,1)

RIJ(2,2) = 1.D0 -RJ(2,2)

FIND B, THE INVERSE OF I-J.

DET = RIJ(1,1)"R1J(2,2) - RIJ(1,2)*R1J(2,1)
B(1.1) = RIJ(2,2)/DET
B(1,2) = -RI1J(1,2)/DET
B(2,1) = -RI1J(2,1) / DET
B(2,2) = RIJ(1,1)/DET

COMPUTE A = |-B

A(1,1) = 1.D00-B(1,1)

A(1,2) = -B(1.2)

A(2,1) = -B(2,1)

A(2,2) = 1.D0 - B(2,2)

CALCULATE THE NEXT SET OF VALUES

ALPHANU = A(1,1)"ALPHAO + A(1,2)"BETAO + B(1,1)"ALPHA1 +
1 B(1,2)"BETA1

BETANU = A(2,1)"ALPHAO + A(2,2)*'BETAO + B(2,1)*ALPHA1 +

Appendix C.



1 B(2,2)"BETA1
Cc
C CHECK FOR CONVERGENCE
IF((DABS(ALPHANU-ALPHAO0)).LE.1.D-14.0R.K.GT.7)GOTO 40
ALPHAO = ALPHANU
BETAO = BETANU
K=K+1
GOTO 100
40 WRITE(8,50)ALPHANU, BETANU,K
50 FORMAT(2X, "ALPHANU’, D15.08, 2X, ‘BETANU’, 3X, D12.8,4X,15)
RMEAN = ((1.D0/ALPHANU)**(1.DO/BETANU)) * GAMMA1(1.D0/BETANU)
RMEAN2 = ((1.D0/ALPHANU)**(2.DO/BETANU))* GAMMA1(2.D0/BETANU)
RMEAN3 = ((1.D0/ALPHANU)**(3.D0/BETANU))* GAMMA1(3.D0/BETANU)
RMEAN4 = ((1.D0/ALPHANU)**(4.D00/BETANU))* GAMMA1(4.D0/BETANU)
WRITE(6,30)RMU1, RMU2, RMU3, RMU4-
30 FORMAT(2X,'RMU1= ’, D12.5, 2X, 'RMU2= ‘, D12.5'RMU3 = ’,D12.5,
1 ‘RMU4 = ’D12.5)
WRITE(6,44)RMEAN, RMEAN2, RMEAN3,RMEAN4
44 FORMAT(2X, 'RMEAN = ‘, D12.5,3X, D12.5,2X,'RMEAN3 = *,D12.5,
1 ‘RMEAN4 = ’,D12.5)

RETURN
END

C  FUNCTION FOR THE ALPHA VALUE

FUNCTION FUNC1( BETA)
DOUBLE PRECISION ALPHA, BETA, A, VALUE, GAMMA1, FUNC1
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DOUBLE PRECISION RMU1, RMU2

COMMON RMU1, RMU2, RMU3,RMU4
A = 1.D0/BETA
WRITE(68,30)BETA

30 FORMAT(2X, ‘BETA IN FUNC1’, D15.7)
VALUE = GAMMAA1(A)
FUNC1 = (VALUE/RMU1)**BETA
RETURN
END

FUNCTION FOR THE BETA VALUE
FUNCTION FUNC2(ALPHA, BETA)
DOUBLE PRECISION ALPHA, BETA, A, VALUE, GAMMA1, FUNC2
DOUBLE PRECISION RMU1, RMU2
COMMON RMU1, RMU2 , RMU3,RMU4
A =2.D0/BETA
VALUE = GAMMA1(A)
FUNC2 = (2.D0"DLOG(ALPHA)) / DLOG(VALUE/RMU2)
CC  WRITE(6,66)FUNC2, ALPHA, VALUE
CC66 FORMAT(2X,"FUNC2 ALPHA VALUE’, 4X,3D12.7)
RETURN
END
c
C NUMERICAL APPROXIMATION FOR GAMMA FUNCTION

Cc THIS FUNCTION CALCULATES GAMMA FUNCTION BY APPROXIMATION
FUNCTION GAMMA1(A)
DOUBLE PRECISION GAMMA1, A, B, PROD,VALUE
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REAL"8 A1, A2, A3, A4, A5 A
DATA A1,A2,A3,A4,A5/-5748.646D-4,9512.363D-4,-6998.588D-4,
1 4245.549D-4,-1010.678D-4/
B=A
PROD = 1.DO
30 |IF(B.LE.1.D0) GO TO 40
PROD = PROD"B
8 = B-1.00
GO TO 30
40 VALUE = 1.D0+A1"B + A2°(B**2) + A3°(B**3) + A4*(B*"4) +A5°(B"*S5)
GAMMA1 = PROD*VALUE
WRITE(6,200GAMMA1,B
20 FORMAT(2X, ‘'GAMMA’, 5X, D10.5, ' FOR ARG.’, 2X,D12.5)
RETURN
END
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