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A reliablllty model to study the behavior of an electronic component subject to several failure

mechanisms ls developed. The mechanisms considered for the analysis are of degradation

type where the number of defects for a mechanism increases with time, eventually causing the

failure of the component. The failure pattern of the component subject to a single mechanism

· with given lnltial and final number of defects is modelled as a pure birth process. Failure time

for this mechanism is expressed as the first passage time of the birth process to state k from

initial state l. First passage time distribution is derived for different forms of transition rates.

When the initial and final states of the process are considered as random, the failure time is

expressed as the mixture distribution obtained from the conditional first passage time dis-

trlbutions. The mixture distributions are well represented by a Weibull distribution. A com-

puter program ls developed to compute the parameters of the Weibull distribution iteratively

by the method of matching moments. The approximatlon results are statistically validated. _

The results for a single mechanism are extended to the case of multiple mechanisms.

Extreme·value theory and competlng risk theory are applied to analyze the simultaneous ef-

fects of multiple mechanisms. lt is shown that the aggregate failure time distribution has a

Weibull form for both the theories.



The model explains the influence of physical and chemical properties of the component and

the operating conditlons on the failure times. It can be used for accelerated testing and for

lncorporatlng reliabillty at product design stage.
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Introduction and Background

1.1 Introduction

The popular method ln estlmatlng the reliablllty of a device ls a data analysis method

ln which the data on failure times ls collected and analyzed statistically. While this

method is often reasonably accurate, it ls a black-box approach. lt falls to explain the

reliablllty ln terms of physical and chemical properties of the materials used ln the

device. Any changes in the materials or ln the design require collection of lifetlme

data again to estimate the reliability function. Even for the same device, a change in

a single operating condition such as temperature may require that the process of

estlmatlng the reliability from accumulated lifetime data be repeated.

An Improvement on the above method is a model that can explain the reliability in

terms of the properties of the materials used in the component and the operating
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condltlons. The model should capture the dependence of failures upon changes ln

the chemlcal and physical states of the component during operation. One possible

approach to constructlng such a model ls to study the rellabllity behavior ln terms of

the failure mechanisms operating within the device. These mechanisms reflect the

impact of chemlcal and physical properties of the device, the operating conditions

and the duratlon of the operation on the failure times. A model that ls intended to

represent the causal relationship between the failure behavior of a component and

the failure mechanisms active in the component is developed here.

A component, while in operation, is subject to many forces that may lnduce failure

by causlng certain changes ln the structure of the component. These changes are

called failure mechanisms. Some examples of the failure mechanisms are creep,

crack growth and fatlgue. In general the mechanisms of Interest may be physical or

chemlcal ln nature. Once the mechanisms are classified, lt may be possible to for-

mulate probabillty based mathematlcal models for each of the classes. The models

should reflect the influence of environmental variables and the constituents of the

components upon the mechanisms. Then, ln each class, individual mechanisms that

are most prevalent should be examlned. lt may then be possible to study the be-

havior of the component failure with respect to the aggregate effect of many such ln-

dlvldual failure mechanisms.
A

One class of failure mechanisms ls the degradatlon process. As the name implies

the process is a gradual one. There ls a gradual change of the physical or chemical

structure of the component that slowly reduces the strength or the resistance to fail-

ure of the component, ultimately resulting in failure.

1 introduction
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The present study deals with degradatlon processes in which changes occur in dis-

crete units. Conceptually, this process can be thought of as a chemical degradatlon

process, in which reactant A ls converted into reaction product B. As the reaction

contlnues, there is an accumulatlon of the product B that ls assumed to lnhibit the

function of the component. Completion of the reaction may not be required for a

failure. lnstead, failure is defined as the accumulatlon of a sufficient mass of reaction

product to degrade performance to an unacceptable level.

Fallures of the chemical degradatlon type are common in many types of components,

partlcularly ln electronic components. An example is oxidatlon of copper "lands" ln

integrated clrcults. This ls a chemical process. Another example ls electromigration

ln integrated clrcults. The momentum of electrons ls transmltted to the metal atoms

resultlng ln a movement of these metal atoms to different parts of the component.

This eventually results in failure due to an open circuit. This is a physical mech-

anlsm.

For a given type of a component, there are many random variables that influence the

failure behavior of the component. At the aggregate level, the time to failure depends

upon the various failure mechanlsms acting on the component simultaneously. The

proposed model conslders only those failure mechanlsms that possess a common

behavior, namely, degradatlon type. For each individual mechanism of this type,

there are certain variables that are random. Some examples of the random variables

are the Initial and final number of molecules of the reaction product B and the time

taken for the amount of reaction product B to increase by one molecule.

To capture the randomness of the degradatlon, the accumulatlon of the reaction

product B ls modelled as a stochastlc process. ln particular, the accumulatlon is

1 Introduction 3



modelled as Markov process. The assu mption ls that the future course of reactlon is

independent of the past history of the reactlon, provided the present extent of the

reactlon ls known.

The model is constructed under the assumptlon that the reactlon Is anirreversible

reactlon. That ls, the degradatlon ls non-decreaslng with tlme. In practical applica-

tlons, there may be some reactlon In the reverse direction but it is considered to be

negllgible for the present analysis.

1.2 Description of the Approach

Let X(t) represent the state variable at any tlme t so that X(t) =- ] represents the

number of molecules of reactlon product B present at tlme t. lt Is reasonable to as-

sume that lnitlally there ls a certain mass of the reactlon product B. Thus, there ex-

ists an initial state, X(0) =- I. The state variable X(t) changes only in unit steps. As

already stated, the reverse reactlon rate ls assumed to be zero. Since the process

Is a Markov process and because of the additional assumptlon that the reverse re-

action does not occur, the random process ls a pure birth process. Failure occurs

when a sufficlent mass of the product B Is accumulated (I.e., arrival of the process to

a particular state k). For the pure birth process, the failure tlme is the first passage

time of the process from the initial state I to the final state k. ln general, the Initial

state may be a random variable. This may be due to the variability In the component

caused by the manufacturlng process. For the present study it Is indeed considered

as a random variable with known probability distribution function. The assumptions

about its probability distribution should be reinforced by results from defect models

1 Introduction 4



and available defect data. lt ls also concelvable that the failure threshold for a de-

gradation reaction ls a random variable. This might be a consequence of the geom-

etry of the component or of the random dlsperslon of the reaction product within the

material. lf either the inltlal state or the final state or both are random variables, then

the first passage time distribution for a failure mechanism ls a mixture distribution.

For a given failure mechanism, the mixture distribution can be obtained from its

condltlonal dlstrlbutlons, each conditioned on given initial and final states.
l

For the ohemlcal degradatlon process, the reaction rate ls the fraction of product B

produced per unit time. This reaction rate represents the transitlon rate for the birth

process. The transitlon rate, .1,(t) , of the birth process is the rate of change of the

transitlon probability, when the system is ln state] at time t. The transition rate may
n

depend on the state X(t) and time t. For the current model, the transitlon rate ls as- '
sumed to be a function of time t, state X(t) and the environment. This will not only

capture the essentlals of the factors that control the reaction but also will reflect the

effects of certain changes in the operating conditions on the reaction rate.

Once a slngle failure mechanism ls studled, the results can be extended to multiple

mechanisms. A component may be subject to several failure mechanisms simul-

taneously. lt ls assumed that all the mechanisms display similar behavior. The

component may fall due to any of the mechanisms. Each of the mechanisms would

lndlvidually result ln a particular llfetlme value for the component. In the aggregate,

the llfetlme of the component is the minimum of all the individual lifetimes, To obtain

the distribution of the minimum of the lifetimes, extreme-value theory or competlng

risk theory may be applied. Extreme-value theory assumes that all the individual

Ilfetlmes are identlcally distributed and that the number of mechanisms acting on the

1 Introduction 5



component ls quite large. ln competlng risk theory both these assumptlons can be

relaxed. That is, the Indlvidual lifetimes may be different in their probability distrib-

utlons and the number of mechanisms considered may be finite.

1.3 Problem Analysis

The objectlve of the present dissertation is to develop a methodology to study the

failure behavior of a component in terms of the failure mechanisms acting on the

·component. Analysis of the failure time of a single mechanism constitutes the Initial

step in the study. A stochatlc process model for the mechanism is constructed and

the flrst passage tlme distribution for the process to visit a specific final state is ob-

talned to describe thls failure time. Results obtalned for a single mechanism are

expanded to include the presence of multiple mechanisms using extreme-value and

competlng risk theories.

Parts of the model have been used before to study reliablllty, but not in such a com-

prehensive and sequentlal manner. The transltion rate function used in the model is

a general one and takes into account the concentratlon of the reaction product, time,

and the operating conditions. Almost all of the first passage problems have been

considered for a given initial and final states only. For the present analysis, these two

states are assumed as random variables. Rellability models for electronic compo-

nents usually deal with a single failure mechanism, the one that dominates the failure

of the component. The current model considers the presence of multiple mech-

anisms and analyzes the aggregate effect of these mechanisms.

1 Introduction 6



ln this dissertation, six different forms of transition rates are considered for failure

mechanisms. These forms represent patterns that may correspond to the various

mechanisms common to electronic components. The first passage time dlstributions

for all the six cases are shown to be Generallzed Gamma dlstributions. These dis-

trlbutlons are used to obtaln the numerlcal approxlmatlons for mixture dlstributions

when the lnltlal and final states of the mechanisms are assumed to be random. Re-

sults show that the mlxtures are well represented by a Weibull distribution.

Based on the results of single fallure mechanism, the failure time of the component

subject to multlple mechanisms ls analyzed. It is shown that in both the cases of

extreme·value theory and competlng risk theory, the aggregate failure time of the

component has a Weibull distribution. Weibull distribution ls the most frequently as-

sumed distribution for the llfetimes of electronic components. The results of the

current model support thls assumptlon.

Rellabllity ls an important factor in the present day competitlve, cost conscious world

of manufacturlng. Electronic component rellabllity ls all the more Important because

of the ublqulty of electronic devices. A contlnuous effort ls being made to develop

models that can predict the rellabllity of electronic components with higher and

higher degrees of precision. It ls hoped that this model will contribute to that en-

deavor.

1 Introduction 7



C H A P T E R 2

Literature Review

Estlmatlon of the reliability of electronic components has become very important be-

cause of the extensive use of electronic equipment in modern times. The estimatlon

is generally based on either empirical procedures or stochastic modelling proce- ·

dures. In an empirical procedure, the reliability or the failure rate of the component

ls estlmated using observed failure times of copies of the component.

MIL-HDBK—217, the most Important reference manual for reliability of electronic

components, Ilsts the failure rates for various components. These rates are based

on either Iaboratory data or field data. Using suitable conversion factors, failures at

different operating conditions may be obtained from the failure rates at standard
”

conditions. In a stochastlc modelling approach, a mathematical model for a compo-

nent failure ls developed that will yield a probability distribution function for the fail-

ure times. Some of the parameters of the functions have to be obtained from the

physical properties of the the components and the operating conditions.

2 ¤.11•mur• n•v••w a



The most extenslvely used formula in fallure rate models ls an Arrhenlus relationship

(O’Connor (1983)):

Ea 1 1JU') ··
JU'R) ¢><l>|:7· [7; + 7]] (2-))

where,

,1(T) fallure rate at temperature T

T Temperature

T, reference temperature

E, Actlvatlon energy for the partlcular fallure mechanlsm

K Boltzmann's constant.

Once a fallure rate ls emplrlcally estimated at a reference temperature, failure rate

at any deslred temperature can be calculated using the above formula.

Frost and Poole (1987) develop a stochastic model for estimatlng the rellabillty of an

integrated clrcult subject to electromlgratlon. An integrated clrcuit ls regarded as a

linear array of very small elements. Fallure of any element causes the failure of the

component as a whole. For each element, the electromigratlon failure time distrib-

utlon ls assumed to be Iognormal with density function of the form:

I t - l tPE(t) -
—l——¤xp|i -1/2(-L%‘—£)2:| (2.2)
6,/21B t

where,

t„ = medlan time to fallure

6 = standard deviatlon of the logarithm of time.
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The medlan of the distribution, q,,, is calculated by correlating it to the properties of

the element. Using the medlan values, the failure rate is calculated for each element.

The component fallure rate ls then obtained by summing up the failure rates of all the

elements. Only one failure mechanlsm ls considered for the analysis.

In a degradatlon model, it ls assumed that one of the physical entltles (or a state

variable) of the component ls gradually decreasing, and as a result, the component

ls becoming more susceptlble to failure. The state variable may be random de-

pendent or random·lndependent (Kapur (1974)). For a random·dependent case, the

initial value of the variable ls random but once a certain value is realized, it changes

over time in a determlnlstic way. Much of the mechanical rellabllity literature reflects

this approach (Bratt, Reethof and Weber (1964), Shooman (1968)). A state variable is

assumed random·lndependent lf at any tlme t, only its probability distribution may be

known. In this case, the process can be modelled as a stochastic process. Failure

occurs when the process reaches a certain level for the first time. Analyses of this

type address the 'level crosslng" problem. Only simple cases have been solved in

thls area. Folks and Chhikara (1978) analyze the problem with the state variable be-

lng a Brownian motion and failure occurrlng when the process reaches a fixed level.

Basu and Ebrahimi (1983) consider the case when both the state variable and the

threshold level are Brownian motions.

7
For a dlscrete-space contlnuous-time Markov process, the first passage time can be

obtained by solving the Chapman-Kolmogorov forward dlfferential equatlons. This

may involve dlrect solution techniques or transform techniques such as Laplace

transform techniques. Several papers and text books deal with the pure birth proc-

esses and absorptlon probabllities for different forms of birth rates. Karlin (1975),

2 Llt•r•tur• R•vl•w
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Bartlett (1966) and Cox (1965) are some of the textbooks that are particularly helpful.

Srinivasan (1978) gives the solution for transition probabllities of a pure birth process

with a general form for for the transltlon rate, .l,(t). The Laplace transform technique

Is used to solve for the transltlon probabllities. The Laplace transform functlon is

then resolved into its partlal fractlons from which the lnverse is obtained to yield the

transition probabllities.

When the parameters ln a probablllty distribution function are random variables, one

can obtain the unconditional dlstrlbutlon by the weighted sum of all the distribution

functions using the probabllities on the random parameters as the weights. This ls

called a mixture. In the present dissertation, the Initial and final states of the

stochastic process pertalning to a single failure mechanism are assumed to be ran-

dom. The failure time distribution for the mechanism ls then expressed as the mlx·

ture of first passage time dlstributlons condltioned on initial and final states. Mixtures

of dlstributions are first lnvestlgated by Lundburg (1909) in connection with insurance

and risk theory. These are some of the first studies in the area of stochastic proc-

esses and they parallel the development of the models of Brownian Motion and re-

lated processes. The model addresses Insurance claims where the accumulated

claim value is a stochastic process dependent on number of claims and the number

of claims ls Polsson distributed. The additional assumption is that the claim amounts

are independent and ldentlcally dlstributed.This is a part of a theory called the col-

Iectlve risk theory. A major portlon of research in mixtures is still carried out by risk

analysts developing different types of models and better approximation methods

(BuhImann (1970)).

2 Llt•r•tur• Ruin: _ 11



When the mlxing distribution ls Polsson, the mixlng process is called Polsson mlxing.

The distribution that is being mixed can be either a discrete or a continuous distrib-

utlon provided lt has a single parameter. l-lalght (1968) gives a brief review of

Polsson mlxing. ln almost every work on Polsson mlxing, the parameter being mixed

ls the number of convolutlons of a distribution with itself. This is called a compound

Polsson process. Feller (1943) and Gurland (1958) deal with different types of mixture

dlstributions essumlng various probabillty dlstributions for the parameter that ls be-

ing mixed. The reliabillty model that ls developed here involves Polsson mixlng of

Generalized Gamma dlstributions which has not been solved in closed form. Neuts

(1981) describes some of the properties of this mixture and presents the compute-

tlonal techniques to obtaln its probabllitles.

Tran (1987) studies the unimolecular degradatlon process. lt ls assumed that the

transltlon rates_are independent of both time and state. The mixture of the first pas-

sage tlme ls analyzed under the assumptlon that both the initial and final states are

random variables with Polsson probabillty dlstributions. Only numerlcal methods are

used for the mixture and the numerlcal approximetlons fit a three parameter Weibull

distribution well.

When a component ls subject to multiple failure mechanlsms, extreme value theory

or competlng risk theory may be used for modelling. Extreme value theory analysis

is based upon the assumptlon that the component is subject to a large number of

failure mechanlsms, all having a common distribution. The system can be viewed

as a chain with n links each of which represents a failure mechanism. The system

fails when the weakest link in the system falls. This is also called a series structure.

The distribution of the lifetlme of the chain is equal to the distribution of the lifetlme

2 Literature Review 12



of the weakest link. lf there is no specific link that Is the weakest link, the llfetlme

of the chain has the same distribution as the minimum of lifetimes of all the links.

For a large n, Gumbel (1958) shows that the minimum displays a llmiting dlstrib-

ution. Thls ls the minimum value or the extreme value approach. Gumbel further

shows that there are only three types of extreme value dlstributions. The extreme

value distribution occurs ln many practical sltuations. As an example, the strength

of a material may have a Weibull distribution which Is an extreme value distribution.

This happens because the strength is a result of several forces ln the material. The

extreme value distribution has been lnvestigated by Fisher and Tlppet (1928),

Gnedenko (1943) and others. Gumbel (1958) contains a bibllography and discussion

of applications.

Competlng risk analysis models may be used to evaluate the effect of several failure

mechanlsms actlng slmultaneously on the component with each of them generating

a distinct llfetlme dlstributlon of. The number of mechanlsms may be small. The re-

sultlng llfetlme distribution Is the minimum of these dlstributions. Assumlng that all

mechanlsms are Independent and their number is small, Chiang (1964) explores the

problem in terms of disease processes. The hazard rates of individual failure mech-

anisms are said to be proportional if the ratio of hazard rates of any two mechanlsms

ls constant over time. Elandt·Johnson (1976) considers the case when there are

proportional hazard rates and the Independence assumptlon is relaxed.

ln summary, many relevant results have been developed in different areas. A subset

of these results is used here. Other needed results, particularly in the area of mixture

dlstributions and multiple mechanlsms, do not exist. They will be developed In this

dissertation.
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Development of a Component Failure Model

3.1 Introduction

In this chapter, the structure of a general model for a component reliability ls devel-

oped. The model represents the failure behavior of a component in terms of its fail-

ure mechanlsms. Each mechanlsm can be represented as a chemical degradation

process ln which the molecules of reactant A are contlnuously changing into reaction

product B. The actual process may be a chemical or a physical process depending

on the nature of its degradation. An example is the oxidation of gallium arsenide in

liquid crystal displays (Kool (1968)). While the LCD is in operation, oxygen may react

with the galllum arsenide present ln the crystal thereby reduclng the amount of

arsenide and resultlng in a loss of brilliance of the crystal. This is a chemical proc-

ess. Another example ls electromigration in integrated circuits which is a physical

3 Fellure Model 14



process. Here the contlnuous impact of electrons on the metal gralns causes the

grains to move in the direction of the electron flowi This transfer of metal atoms oc-

curs when there are defective metallzatlon layers caused by flaws ln the pattern mask

or errors in the manufacturlng process (Amarasekhara (1988)).

Every component ls subject to certain mechanisms that lnduce failure ln the compo-

nent. Failure ls the lnability of the component to perform according to a set standard.

In the case of degradatlon mechanlsms, completlon of the reactlon ls not always

necessary for failure. The component falls lf there ls sufflclent amount of reactlon

product B to reduce the performance of the component to an unacceptable level.

·
In the model, the behavior of a single failure mechanism ls studled first. The results

are then used to analyze the effect of several mechanisms of the same class actlng

on the component simultaneously.

3.2 Assumptlons on Component Failure

For the model, the following assumptlons are made concerning component failure.

1. The component ls subject to multiple failure mechanisms. These mechanisms

are actlng on the component simultaneously.

· 2. All failure mechanisms portray slmilar behavior.

3 Fellure Model ·
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3. Each failure mechanlsm exerts a lifetlme distribution on the component. lt is

assumed that the llfetime distributlons generated by individual failure mech-

anisms are independent of each other. Each mechanlsm exerts the same lifetlme

distribution whether it ls actlng alone or in the presence of other failure mech-

anisms.

3.3 Assumptions on the failure mechanisms
’

The main assumptlons about individual mechanisms are the following.

1. Each failure mechanlsm ls of degradatlon type. The state changes ln unit steps.

The failure mechanlsm Involves changes in the physical vor chemical structure of

the component which ultlmately result ln the failure of the component. This

physical or chemical structure Is defined as the state of the process. For the

degradatlon process, the state changes gradually. There is no instantaneous

change of large magnitude in the value of the state. It is also assumed that when

there is any change ln the state, it occurs only in discrete unit steps.

2. The degradatlon process ls lrreversible.

The change ln the state of the failure process ls unidlrectional. In real-life situ-

ations, there may be changes in the reverse direction but for all practical pur-

poses, they are considered to be negligible. ln the terminology of the chemical

degradatlon process, the reaction is lrreversible.

3 Fallure Model 16



3. The future state of the process depends only upon the present state and not upon

the entire past history of the process.

This assumptlon does not lmply that the past course of history has no bearing on

the future. It states that given the present state, the future is independent of the

·past.

4. Reaction rate l,(t) may depend upon the state of the process, time and operating

conditions. The effect of the state and time are independent of each other.

The reaction rate, 1l,(t), ls the rate at which the process changes its state from ]

to ]+1 at time t. ln a chemical degradation, lt is the rate at which an additional

molecule of B is formed per unit time given that ] molecules of B have already

been created.

Depending upon the degradation process, the reaction rate may be a function of

either one or both of the current state and time. Any changes in the physical or

chemlcal structure of the component or in the environment should be reflected

ln the reaction rate function of the model and hence in the equation for failure

times of the component.

The effects of the state and time on the reaction rate are assumed to be inde-

pendent of each other. The reaction rate .1,(t) can be expressed as a product of

two separate functions, one each of state and time. That ls, }„(t) = g(ß•h(t),

where g and h are functions of state] and time t, respectlvely. Note that h(t) also

includes the pertlnent equatlons for the kinetics of the reaction.

5. The process has an initial state i and a final state k. A component falls when the

process reaches the final state k.
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lt is a reasonable assumption that the component has a certain number of defects

(molecules of reactlon product B) at the beginning of operation. Consider this

number to be the lnltlal state, l. As the operation continues, there ls an increase

ln the number of molecules of reactlon product. Accumulatlon of these defects

lmpedes the proper functlonlng of the component. Eventually, at a particular

level of defects, the component falls. This failure state ls the final state k. For

any process, l and k may have fixed or random values.
I

3.4 Randomness ln the Failure Process

The rellablllty model captures much of the essence of a real life situation. Most of the

characteristlcs and parameters of the model are considered to be random rather than

determlnlstic. The randomness of the failure process is described in three levels.

At the bottom level, a single failure mechanlsm which has fixed and known initial and

final states ls consldered. In this situation, the failure time of the component or the

~ required time for the process to reach the final state from the initial state is random

because the reactlon rate or the time the process spends in a particular state is ran-

dom. At the next level, this randomness ls compounded by consldering the ran-
A

domness ln the lnitial and final states of the process. At the third level, the overall

failure process of the component is studled. This failure process is a result of multi-

ple failure mechanlsms, each behaving randomly. To capture all this randomness in

a mathematical model, a stochastic model ls constructed.
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3.5 Mathematical Model

Assume that the initial and final states are fixed and are known. By assumption, the

future course of the process ls Independent of the past, provided that the the present

state is known. For the representative chemical degradatlon process, X(t) represents

the number of molecules of product B present at time t. The inltlal state X(0) = I is

the Initial number of product B molecules present at the start of operation. Failure

occurs when the process reaches state k. Here, k is the absorbing state for the pure

birth process. The corresponding transltlon dlagram is shown in Figure 1.

To study the dynamic behavior of the process, one needs the transltlon rates of the

process. These transltlon rates are derived from the reaction rates of the degradation

process. For the degradatlon process, the reaction rate Ä,(t) is defined as the frac-

tional change in product B per unit time at tlme t. So,

An 1Ä
-
T — . 3.1;(0 A, „j ( )

Rearranglng terms,

An
nl ¤ Ä}(t).At (3.2)

But, Is the probabillty of change In the state during At. So the transltlon rates

of the pure birth process are the same as the reaction rates of the degradatlon proc-

ess. For a given Initial state i and final state k, all the transltlon rates can thus be

obtained.
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- „l,(t) l,(t) 0 0 0

0 0 0

A B
0 0 O 0

0 0 0aaa0

0 0 0 0

Flgura 2. Tranaltlon Matrlx A
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The general state transltlon for a Markov process is defined as the solution to the

Chapman-Kolmogorov forward differentlal equatlons:

P' = PA. (3.3)

Here P is the matrix of transltlon probabilities and P' the derlvatlve of P with respect

to time (Clnlar (1975)). Any entry (I,1) of the matrix P ls defined as P(l,1,t), the proba-

blllty of the process being ln state 1 at time t when the lnitlal state ls l. A ls the matrix

of transltlon rates. It ls also called the generator matrix of the process. The entries

of A are given by,

Au ’ ‘M')

Aj_H_., ¤ .l,(t), for Isjsk-1 (3.4)

and 0 elsewhere. The matrix A is shown in Flgure 2.

The matrix A has a special structure as lt represents a pure birth process. The

process mayonly go from state 1 to state 1+1 at any Instant. Thus, the entries on the

right super-diagonal are positive. Once the process enters the failure state k, it can-

not go to any other state. This makes k an absorbing state and the entries of A cor-

respondlng to row k are equal to zero. All the states other than k are transient. The

probablllty of the process remaining in a translent state decreases as time increases.

Thus, the transltlon rates or the entries on the diagonal are negative. The rest of the

elements are all equal to zero since no other transltlon can take place.

In the general case, the non-zero components of the generator matrix A depend upon

the state, time and operating conditions. Specific assumptlons concerning the re-

actlon rate functions lead to different models and correspondingly different results.
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Lltetlmes as Flrst Passage Tlmes

The llfetime of a component is equal to the time at which the process reaches the

failure state k. Since the process Is a pure birth process, the failure time is the first

passage time from state l to state k. The probability distribution of first passage tlme,

p(i,k,t), thus gives the llfetime distribution. This ls the conditional distribution for

given initial and flnal states and ls denoted by F(tIl,k).

One or both of the extreme states may be random in a given mechanism. The ran-

domness ln these two states ls lncorporated by considerlng them as random vari-

ables and assumlng suitable probability distribution functions tor these two random

variables. For the initial state l, the possible distributlons have to be dlscrete dis-

tributlons. The choice may depend upon the actual physical entity the state repres-

ents. An obvlous choice ls the Poisson distribution. Extensive experience with

counting processes has shown that individual, convoluted and compound counting

processes usually follow or converge to a Polsson distribution (Bortkewitsch (1898)).

Another choice ls the negative binomial distribution. This distribution can occur in

the case of mixlng a Polsson distribution whose mean is gamma distributed (Nachlas,

Rlcapito, and Wiesel (1983)). The binomial distribution may be used it the state of the

process represents the number of defects in the component and each particle in the

component has the same probability of being detective. Similarly, the probability

dlstrlbutlon for the final state k depends on the physical nature of the device. To ac-

count for the randcmness in the two extreme states tor a failure mechanism, mixture

distributlons are computed using the conditional first passage time distributlons and

the probabllity distributlons of the two states. lt P(i) and P(k) are the probability
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density functions for l and k, then the unconditlonal or the marglnal distribution F(t)

is given by,

F(t) = ZF(tlI.k) P(I)P(k). . (3.5)
1« 1

Sometimes lt may be posslble to assume a specific form of a probability distribution

on the difference] between the initial and final states. In this case F(t) ls given by,

FU) -= ZPUU) PU)- (3-6)
1

Once a single mechanlsm is analyzed, the results can be extended to multiple

mechanlsms. lt ls assumed that the mechanlsms are of similar behavior and that

they are independent of each other. If n mechanlsms are active ln a component, then

they generate n random failure times. For any glven failure, only one of these failure

times manifests ltself and this ls the actual observed failure time of the component.

The probablllty dlstributlon of the failure time of the component ls given by the dis-

tributlon of the minimum of the n individual failure times. A specific procedure to

compute the dlstrlbutlon of the minimum depends on additional assumptions. Two

procedures are applied for the present system; one is extreme-value theory and the

other ls competlng risk theory.

3.6 Variations of the model

Variations of the model can be constructed on the basis of the nature of the transition

rate, l,(t), and the nature of the randomness in the initial and final number of defects.

The present analysis considers the variations in the transition rate only.

3 Fallure Model 24



lt is assumed that the transition rate is a separable function of the state occupledand

the time. The combined function will also reflect the operating conditions. The rate

„l,(t) ls expressed ln the form ,l,(t) =· g(])h(t) .

Six reallzatlons of the above equatlon might be considered. They are, ln decreaslng

order of complexlty:

1. g(l)
-· J' and h(t)

-
mal"*·‘

2.g(]) =]' andh(t)
-

a

3. g([)
-

j and h(t) ¤ mal•**‘

4. g(/) ¤ j and h(t)
-

a

5. g(l) = 1 and h(t)
-

mal"·‘

6.g(j) =¤1andh(t) = a

The different forms of transition rates characterlze various failure mechanisms com-

mon to electronic components. The choice of a particular form depends on the

kinetlcs or the dynamics of the mechanism and on the results available from histor-

lcal data. If the mechanism ls of chemlcal nature, then the transition rate may be

obtained from factors that influence the kinetlcs of the process such as the reaction

energy, change in enthalpy, the concentratlon of the products and temperature. ln

the case of a physical mechanism, the rate may depend on the grain size, the mo-

mentum of electrons, temperature, or bond energy. In either case, the transition rate

may further be lnfluenced by the geometry of the component.

Failure mechanisms suitable for the present model are to be ldentifled first. There

are several candldate degradatlon mechanisms for the current model. Examples are

oxldatlon, electromigratlon, and threshold-voltage shlfting effects ln MOS (Metal
'
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Oxide Semiconductor) devices. lt is possible to derive transition rates for some of

these mechanisms from existing rellabillty models. ln these models, a probability

dlstrlbutlon function ls assumed for the fallure tlmes of a mechanlsm. The corre-

spondlng varlables of the functlon such as parameters and fallure rates are ex-

pressed in terms of physiochemlcal properties of the component and operating

conditions. Examlnatlon of these varlables may lndlcate. the rate of progress of the

degradatlon process and possible forms of the transition rate. A few of the relevant

works are dlscussed below.

Often, fallure rate is modeled by an Arrhenlus relationship (equation 2.1). Here, the

fallure rate is independent of tlme and the extent of degradatlon. This lndlcates that

perhaps the transition rate for that fallure mechanlsm also is tlme and state inde-pendent. ‘ _
In the model developed by Frost and Poole (1987), the fallure time of a component l

due to electromlgratlon follows a lognormal distribution (equation 2.2). The median

tlme to fallure t, Is expressed as a function of current density, temperature, and

conductor width:

¢„
- A(W)—/‘" ¤¤¤(E./kl).

where, J ls the current denslty and A(W) ls a material constant that ls function of

width of the component. The above form suggests that the transition rate may de-

pend on the state of the process. The transition rate functions for cases 2 and 4 are

worth considerlng for electromlgration.
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The slx transltlon rate functions are constructed to account for the dependency of the

transltlon rate on the state of the process and time. With a proper choice of con-

stants, they can be applied to many of the degradation processes. Once the transl-

tlon rate ls selected, defect dlstributlons for the Inltlal and final states are to be

Identlfled. A transltlon rate functlon together with the defect dlstributlons describe a

failure process due to a slngle mechanlsm completely. Solution of the model in

presence of several such mechenlsms glves the rellabllity of a given component.

ln the next chapter, a general solution procedure ls presented to compute the rell-

ablllty of the component for all the six varlatlons of the transltlon rate function. Spe-

clflc dlstributlons are assumed to describe the randomness In the Initial and final

values of the degradatlon process. The failure tlme distribution Is approximated

when lt Is not feasible to obtaln a closed form function. The solution procedures are

Illustrated with numerlcal examples.
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Solution Procedure

4.1 Introduction

Solutlon of the model deflned above gives the overall failure behavior of a compo-

nent. As in the model development, the solution procedure follows in three stages.

Analysis of a single stochastlc process with flxed initlal and flnal states forms the first

stage. The failure tlme for thls process is given by the first passage time for the

process from the initial state l to the flnal state k. The second stage deals with a

process where the initial and flnal states are random. The failure time probabillty of

the process ls constructed as a mlxture of the first passage time dlstributlons ob-

talned ln the flrst stage. The mlxture distribution represents„a singe failure mech-

anlsm. Finally, the results of the second stage are expanded to cover the aggregate

effect of several mechanlsms simultaneously active in the component.
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For a failure mechanlsm, an appropriate transition rate function must be selected.

Once a particular form of transition rate ls chosen, the first passage time distribution

for the correspondlng pure birth process ls derlved. This is carrled out by solvlng the

set of Chapman·Kolmogorov differentlal equatlons. Any of the standard techniques

to solve ordinary differentlal equations can be used to obtain the distribution. ln the

present work, the solution is obtained by Laplace transform method. As an example,

the solution procedure for one of the slx cases ls shown ln detail in the current

chapter.

The procedure to derive the mixture distribution depends on the form of the transition

rate and the probabillty dlstributlons of the initlal and final states of the process. The

conditlonal first passage time distribution used in the mixtures can be either a prob·

ability distribution function or its Laplace transform. The choice depends on the ease

of algebralc manipulation of the mixture distribution. When it is not possible to obtain

the mixture distribution ln a closed form, the distribution is numerically approxlmated

to a probabllity function of a known form. The selection of the approximating function

ls decided by the physical model or the norms set by the rellabillty practltioners. The

approxlmation must be valldated by appropriate statlstical methods.

For multiple mechanisms, the failure time of the component can be expressed as the

minimum of the individual failure times. To derive the distribution of the minimum,

failure time functions of single mechanisms or their transforms are used. For some

lndlvldual functions, flndlng the distribution of the minimum is a difficult task because

the form of the function may not be simple. In that case, various approaches must

be employed to obtain a solution. lf all the mechanisms generate identical failure

time dlstributlons and the number of mechanisms in a component ls large, then
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extreme~vaIue theory may be applied. Here, the minimum distribution ls expressed

as a Iimiting distribution. A detailed description of the procedure of the extreme-

value theory ls given ln this chapter. If findlng the distribution of the minimum is not

possible and if the individual failure times are not ldentical, then an approximate

solution must be derlved to express the minimum distribution.

4.2 First Passage Time of a Birth Process

The flrst passage time distribution function is derlved here for a single failure process

with known transitlon rates and given initial and final states. Thls is carried out by

solving the system of equatlons given by (3.3). These are the Chapman·Kolmogorov
{

forward dlfferential equatlons and they are:

P’(l.i.t) ¤ —.1,(f)P(I,l,t) (4.1)

P'(I„},!)
-

1l_,(!)P(l,j— 1 ,t) - l,(t)P(I,},t), for I+ 1 sjsk -1 (4.2)

P’(i,k,t)
-

,1„_,(t)P(i,k- 1,t). (4.3)

The lnitlal and flnal states are represented by l and k respectlvely.

When the transitlon rates of a process are independent of time, the process is time

homogeneous and lt is easy to follow the Laplace transform method to solve the

Chapman-Kolmogorov equatlons. lf the transitlon rates depend on time, then the

process is time non-homogeneous and the set of equatlons will not be linear with
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respect to tlme. Hence Laplace transform methods cannot be used directly. ln this

case, the process is converted to a time homogeneous process by time scale trans-

formation (Clnlar (1975)) and the equatlons can be solved by transform methods. The

solution procedure using the transform method ls shown below:

Taking the Laplace transform of both sldes, equation (4.1) yields

s.P(l,i,s) — P(l,l,0) == —ÄP(i,l,s),

where P(l,l,0) == 1.0 from the lnitlal condltlon.

Solving for P(I,i,s),

P(I,I,s)
-

——J·-·— (4.4)(s + Ä,(t))

For ]=-1, equation (4.2) is .

P’(l,I+1,f) + Ä,,,(t)P(I,i+1,t) = Ä,(t)P(l,i,t)

Taking Laplace Transformations on both sides,

s.P(I,l+1,s) —P(i,I+ 1,0) + Ä,,,,(t)P(l,i+1,s) = .1,(t)P(i,i,s)

P(l,i+1,0) =· 0. So,

M!)
P i,l+ 1, = ———-l-P i,i,( S) (S + z„.„(o> ‘ S)

1== Ä l i·i——‘ ) (S + z,..(¢»(S + um

Solving iteratively, we find
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. 1P(1,;,s) S- ,1}_,(t),1,(t) (S + lm) (S + Am) , for i<j<k. (4.5)

Using Laplace Transforms on both sldes of equation (4.3),

1
(S (S +1m)

from which,

3
P1,k, -

.1_ :....1 ---4-- 4.6( S)
"

*0 s(s+ „1,„,_,(t)) (s+1,(t)) ( )

The inverse Laplace transform of the above equatlon is obtained by first resolving it

into Its partial fractlons. This can be written as,

«-1
& .._^»(S + 1,(:» **7)

M

The coefficients A, and A,'s are given by

AS · 1

k-‘l

(4.8)
rel

~·!
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These values are substituted into equatlon (4.7) and the lnverse of the Laplace

transform ls constructed term by term.
‘

The expllcit solutlon ls shown below for case 2, where .l,(t) =• aj"

The flrst term of P(l,k,s) ls 1/s and the lnverse transform ls 1.

The second term ls

k 1 · r· M ·
‘

a( — )" ou")
(S + ain)

r••l

The lnverse transform ls {a(k - 1)** ai"/aP.*1:i(¤u·* — ¤¤i")} exp( — ai"!)
Jul

NI

-
{(k - 1)** I"/i".i:i(r*' — /*7} exp( — ai"!)

r•l

r¢I

Slmllarly the other terms are evaluated and P(l,k,t) is given by

1:-1 It-1 x-1

P(l,k,t) • 1 — exp[ — ¤u·"t]}/r" l—I{j” — r"} (4.9)
I-! M /·-4

}¢r

Solutions to all the other cases are the followlngz

Case (1). g(j) = j' and h(t) = mul"'·'
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11-1 11-1 1:-1

P(I,k,t) =¤ 1 -( j"). {axp[—ar”t'"]}/r” {_l”—r"} (4.10)U Z U
jif

Casa (3). g(])
-

j and h(t)
-

mal•"·‘

11-1
""‘

1:-1
P(l,k,t) ¤ 1 6xp[—o:rt'"]}/r 1—I{]—r} (4.11)

J-! ,,, J-(

j¢r

_ Casa (4). g(]) ¤ j and h(t) =· az °

1:-1 1:-1 11-1
P(I,k,t) — 1 -(nj>.2{ axp[-art]}/r HU—r} (4.12)

1-I :-1 jnl
[ehr

Casa (5)- 90) -
1 and n(r)

- :ne1«·-•

x-1-1

P(I,k,t)
-

1 - [(e¢'")’. exp- {«1’"}]/:1 (4.13)
:-0

Casß (6)- 90) = 1 and h(t) = e
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k-1-1

P(l,k,t) = 1 — [(at)'. exp — {at}]/rl (4.14)
no

Cases 2, 4 and 6 are special cases of 1, 3, and 5 respectively. All are reallzatlons of

the Generallzed Gamma dlstrlbutlons (Stacy (1962)).

The term P(l,k,t) gives the probablllty of being ln state k at time t when the initial state

ls I. Since the process Is a pure birth process and k Is the absorbing state, P(l,k,t) Is

equlvalent to the distribution function for the first passage tlme to k from l. This is

F(tII,k), the failure tlme distribution for the single mechanism with lnitlal state I and

final state k.

4.3 Mlxture Distrlbutions _

lf the lnitlal and final states are random variables, then the first passage time for the

process ls glven by a mixture distribution. For example, if I and j are random and

their probablllty dlstrlbutlons are given by P(i) and P(k) respectively. then

F(¢) - gl §IF(¢llJ<) P(l)P(k)

Suppose the distance j between I and k ls considered as random and the probablllty

distribution on j Is given by P(j). Then

Flf) = QJFIIID PU)
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The denslty function, f(t), ls used instead of the cumulatlve distribution function, F(t),

whenever f(t) has a more manageable form. Since the expresslons and the solution

procedures depend on the form of .l,(t), the solutions are treated separately.

4.3.1 Case 6.

This ls the simplest of all the cases. The transitlon rate .l.,(t) ls independent of both

state and time. The first passage time for speclflc l and k ls glven by equation (4.14),
]—1

F(tI_l) ¤ 1 —§·[(at)'.exp-(11t)]/rl ,

where] ls the distance between l and k. The probability density function ls given by

-61 (¤ÜH
!(tl1) G9 -———(/_

W
(4.15)

If j has a Polsson distribution with mean 11,

•=¤ -11 -.1
(¤¢)’

.,. MKl) =¤¤ —··—····_;··2¤6
-i—6 (4.16)

(1 — 6 ) M
(I l)! J

ln the model, lnstantaneous failures at time zero are not allowed. The value 0 ls ex-

cluded from the range of values of the Poisson variable j. So the term 1/(1 — e···)

appears in the above expression as the normallzing factor.

Computing the failure probabilltles using the above expression is compllcated.

Moreover, if further analysis is needed where several failure mechanisms are in-

volved, then a more manageable form of the density function is desired. Therefore,

the function ls approximated to a probability density function of a known form. Plots
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of similar types of functions suggest that the model exhibits Weibull distribution be-

havlor (Tran (1987)). Because the Weibull distribution ls an extreme value distrlb-

ution, lt ls well suited for the present model.

Since lnstantaneous fallures at time zero are not allowed and the initial state l is as-

sumed to be strictly less than the flnal value k, the approxlmatlng Welbull distribution

ls taken to be a function of shape and scale parameter only. The location parameter

ls set at zero.

The approxlmatlon ls carrled out by the method of matchlng moments. The moments

of the orlglnal dlstrlbutlon and the approxlmatlng distribution should be equal. The

parameters of the Weibull dlstrlbutlon are to be chosen in such a way that the flrst

and second moments of the distribution are equal to the first and second moments

of the mixture dlstrlbutlon respectively. Since the moments of the mixture distrib-

ution are functions of the physlcal characteristlcs of the failure model, this procedure

of approxlmatlng will preserve the information about the physical properties of the

model.

The procedure of approxlmatlon ls carrled out in the following steps.

(1) Compute the first and second moments of the mixture distribution for specific

numerical values of its parameters.
‘

(2) Estimate the parameters of the Welbull distribution by matchlng its first two mo-

ments wlth those of the mixture distribution.

(3) Check the goodness of the approxlmatlon by comparlng the third and fourth mo-

ments of the mixture distribution with those of the Weibull distribution.

(4) Perform a go0dness·of—flt test to validate the approxlmatlon.
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The moments of the mlxture dlstrlbutlon are derlved from the Laplace transforms.

ä

The n th moment ls glven by ;4,, =· (-1)**-*-;;-äl

where f(s) ls the Laplace transform of the fallure density dlstrlbutlon.

The Laplace transform of the mlxture dlstrlbution (equation (4.16)) ls given by

...J_ä ..2.. A{(5)
· (1-6*-*). M

( ¤¤+S ya- jl

...2. - A _ -' (1-g-·) l_°(¤+s)'°‘°j1 °”

9-:-#l¤•+¤ _ 6-;-•
·····—-··—···—···· 4.17

The flrst four moments are now computed uslng f(s).

Flrst moment p,: .

_
#1. 6-u/•+•

ds (1 —- 6*-) ds (u + s)

,,_; Ai. 8-../... ‘
A

(1 — 6*-*) (a + s)*

_df(S)| _ 1 1 (L)
ds "° (1 - 6*-) ¤* (1 — e*-*) °‘

So, '
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¤„Second moment ;1,: _
A

·
+£}§'·—»- #· - w:%y%[=+%]

- #1 ·},··(2+#) (4-19)

Thlrd moment u,:

+ + z§°&%]·ä·<¤···'·*·>}
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_ 1
{

_ 6w _ 4(w)° 9-,18111+8
(1 (az +

s)1 (cz +s)5

+ Zw + (w)° (- w) 9.,.,).+,.
(8 +8)* (8 +

8)‘
(8 + 8)*

_ 1 _ 6811 _ 4(811)* _ 2(811)* _ (811)* 6.,.,,..,
(1 *9-ß)

(a+s)‘
(a+s)5 (¤z+s)5 (a+s)°

(1 *9-ß) (a+s)1 (a+s)5 (a+s)°

d°'(s) -1 6w 6(w)° (w)°
dsa

|°'°
- (1—¤"‘)(¤1‘ + as +

8°Fromwhich,

us - p1?[6+6u+#2] (4.20)

Fourth moment p,:

d‘1'(s) _ -1 _1L Bw +
6(w)2

+ (w)° 9-,18/818
118* (1

-¤"‘) ds (a+s)1 (8+8)* (8+8)°

, 6811 6(811)* (811)* _„L .,.8,.+,
}[° J
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1 24ap30(ap)2(1

6¤#
2 9-,44;.+4}

(a+s) (a+s) (u+s) (a+s)

_ 1 24¤# + 3¤(¤#)° + 6(¤#)°
(1 -

¤"‘>
(4 + sf (4 + sf (4 + sf

(4 + s)° (a + sf (a + s)°

_ 1 24¤# + 36(¤#)2 + 12(¤#)° + (¤#)‘
(1 — ¤"‘)

(4 + sf (14 + s)° (4 + sf (a + s)°

d‘f( 24 36
’

12So,

#4 - #4 J; (24 + 36# + 12#° + #3) (4-21)
G

Step 2: Estlmatlon of Weibull parametars:
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The first and second moments of the Welbull distribution are set equal to those of the

mixture distribution. The scale parameter 0 and the shape parameter ß are estlmated

by the method of matchlng moments(LIoyd and Lipow (1977)). Since the moments

of the Welbull dlstributlon do not have closed form expressions in terms of the scale

and shape parameters, the parameters are computed by using an iterative procedure.

The Welbull dlstrlbutlon that is used In the analysis ls of the form

I f(t) =¤ 0ßl*•'exp(—-0t*'). 0,ß> 0, t > 0

0 ls called the scale parameter and ß, the shape parameter.

The first moment p, ls given by

p.,
- fr t0ßt*·‘ exp( - 0l*)dt.

Let T = Gl'.

Then t ·¤ (T/0)*/* , and 0ßl*·‘dt
-

dT.

Therefore,

00

„, exp( -r) = (1 1), (4.22)
o

where l"(x) is the Gamma Function defined as

4 Solution Proc•dur• 42



00

l'(x) == exp( -7')dT.
0

Slmilarly, the second moment p, ls given by

&

,1,
- (116)*/*]* 1*/* exp( 1) (4.23)

0

From equation (4.22),

.1. .1 n ·0 ¤ [ #1 I"(
ß

+1)] (4.24)

And, from equation (4.23), 0*/* = ·i-l"(-/ä-+ 1)

from which,

ß ¤ (2 log 0)/[ — log ug + log 11%- + 1)] (4.25)

Using the values of p., and u, of the mlxture distribution obtained in equations (4.18)

and (4.19), 0 and ß are calculated from equations (4.24) and (4.25). A computer pro-

gram Is written in FORTRAN to solve for the parameters iteratlvely. The program is

provided with a starting solution and at each iteratlon, the values of the parameters

are updated until they converge to specific values to simultaneously yield the first
U
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and second moments (Lloyd and Lipow (1974, pp. 186-189)). In the program, the

Gamma function I"(x) ls computed by polynomial approximatlon (Abromowitz and

Stegun (1970, pp.257)).

Step 3. Comparison of higher moments for validation:

The third and fourth moments of the Weibull distribution are given by,

pg = (1/0)°/ßl“(% + 1) (4.26)

and,

4,1,
- (116)"”1‘(—ß- + 1). (4.27)

The third and fourth moments of the approximatlng Weibull distribution are compared

with the correspondlng moments of the mixture distribution given by equations (4.20)

and (4.21). These comparlsons lndicate the accuracy of the approximatlon. The first

two moments of the Weibull distribution are computed from the estimated parameters

to check the convergence of the iteratlve procedure.

Step 4. Kolmogorov-Smirnov Test for Goodness of Fit:

The Kolmogorov-Smlrnov test for goodness of fit(Kraft and Van Eeden (1968)) is ap-

plied to see how well the Weibull distribution approximates the mixture distribution.

This ls to conflrm the conclusions reached from the comparison of higher moments

in the previous step. Although the K-S test of goodness of fit is used to check the

match of a distribution to random samples, it can be used to test the goodness of the
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approxlmatlon with sllght modlflcatlons (Sculli and Wong (1985)). For the present

context, the values of the actual cumulatlve function are treated as random values

from an undetermlned distribution. Then the K-S one sample test can be applled. ln

the test, the approxlmatlon ls checked by measurlng the error D„ , given by

D„
-

max.IF(y,) — E(y,)I, I
-

1,..n (4.28)

where,

F( ) ls the approxlmatlng Welbull distribution

E( ) is the mlxture dlstrlbutlon

n is the number of classes ln the lnterval.

From the value of D„, the K-S test statistic ls calculated. The K-S test statistic ls given

bv

K
-

n x D,, (4.29)

The critical values of K for acceptance or rejectlon of the approxlmatlon are obtained

from tables (Kraft and Van Eeden (1968)). For a level of signiücance of 0.04, the crit-

ical value is 3.0.

The number of lntervals, n, ls usually taken between 30 and 40. The K-S test statistic

ls computed by a FORTRAN program whlch is included In Appendix B.
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4.3.2 Case 5.

The mlxture dlstributlon ls analyzed for the case where the transltlon function ls de-

pendent upon tlme t, l.e., for .1,(t) = mat"'·‘ , where m ls a constant. The condltlonal

denslty functlon for flrst passage tlme ls given by

tm 1
F

f(tIj) = mutm'1 exp( — atm ), (4.30)(J — 1 ) 1

where j is the difference between the flnal and initial states. lf j is assumed to be

Poisson distributed with mean u, then the mlxture distribution gives the failure dls-

- tribution for a mechanlsm. As ln the previous case, the mlxture distribution does not

yleld a closed form expression. The distribution Is again approxlmated as a Weibull

dlstrlbutlon. The procedure follows the same four steps enumerated for the previous

case.

As the first step, the first two moments of the mlxture and the Weibull are matched.

Slnce lt ls not possible to construct the Laplace transform of the mlxture distribution,

a moment for the distribution is calculated by obtaining the condltional moment and

then flndlng the mlxture of the condltional moment.

From equatlon (4.30), the conditlonal mean for a given j ls

·=· „... <«¢"’>"‘ „„
tmat (j_1)l

exp( at )dt
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Let T = oz I"'. Then, mat"'·‘ dt = dT and t = ( -0;
)‘/·'

So,

y1 U —T) dT
o

1;mU+'T;1"'1)! °°<r>'+%"
== exp( -T)dT

o U +F' 1 H

Slnce the lntegrand ls a gamma probabillty denslty functlon, the value of the lntegral

ls equal to 1. Thus,

-„,„„ (1 +"r;T”1)‘#1;, · (¤) •—Uj·g—— (4-31)

Slmllarly, lt can be shown that the condltlonal second moment is

2
- (1 +—— 1 )1el, ·· < ·=> "'" (*32)

From equations (4.31) and (4.32), the moments for the mixture distribution are given

as
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°° 1_ 1 .„„„ lf +W·‘)'
.,.L’_"‘ 11 - 11**1 im ‘°“’T1 11 ° Il "·°‘”

1-1

and

°° 11 + 2 111 1J, ...L_ -11111 ...E;_ -1«_, 4 34#2 (1 —e"") ZM)
(!—1)l

8 J! (° )
j¤1

The moments of the mlxture dlstribution are estlmated numerically and matched wlth

the moments of the Welbull dlstrlbutlon. The estlmatlon of Welbull parameters and

the valldatlon of the approxlmatlon follow exactly the same procedure as in the pre-

vious case.

The approxlmatlon ls carrled out for two values of m; m = 2 and m
-

0.5. Since case

6 corresponds to having a value of m equal to one, the inclusion of the above two m

values will better describe the effect of time dependency upon the failure process.

The results of the approxlmatlon for case 6 and case 5 are presented in Tables 1, 2,

and 3. In these tables, a is the constant in the transitlon rate, and 11 ls the mean of

distance between the lnltlal and final states of the birth process. The estlmated

shape and scale parameters are glven by ß' and 0' respectively. The first four mo-

ments of the mlxture and Welbull distributions are also presented along with the ra-

tlos of correspondlng third and fourth moments of the Welbull and the mlxture

4 Solutlon Procoduro 48



dlstributions. From the tables, it can be seen that the higher moments of the Weibull

distribution are quite close to those of the exact mixture distribution. This shows that

Weibull distribution serves well as an approximating function for this case. The K

values of the K-S test confirm this conclusion.

The Weibull distribution ls taken as a valid representation of the mixture dlstributions.

Once the parameters of the Welbull distribution are estimated, the distribution func-

tion can be used for computing the failure probabilitles for a mechanism or for further

analysis to include multiple mechanlsms.

4.4 Multiple Mechanlsms

The results of the analysis of a single failure mechanism are now expanded to multi-

ple mechanlsms. The mechanisms are assumed to be active ln the component si-

multaneously and are independent of each other. The component behavior can be '

studled using either the extreme value theory or the competlng risk theory. In either

case, the distribution of the aggregate failure time ls given by the distribution of the

minimum of individual failure times.

Extreme value theory ls applled if the individual failure dlstributions are independent

and identlcally distributed and their number is large (Cramer (1946)). The procedure

for obtalnlng the aggregate failure distribution function ls shown below. It is assumed

that each individual distribution is a Weibull function.

Let X be the minimum of n random variables X., X2,...., X„_ Let F be the distribution

function for X and G be the distribution function for X,. j=1 to n. Then
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1=(:) - P(X$t) - 1- P(X>t)

- 1 - {P(X, >t)P(X2>t)...P(x„>t)}
=1 - (1—G(¢))”

Deflne a random varlable 11,,asnn

‘ ”G(X)

L6: 1‘„(:) - P(n„s:), oszsn
S¤,1"„(1) -PlIX S @**11/¤)I|

-
F[G"(1/¤)]

- 1 - IZ1 - G(G"(1/¤))]"

¤ 1 — (1 — tln)*'

Let

- 111; 1*,,(t) - lim) [1 - (1 — t/n)”] -
1—e°' (4.35)

So, the sequence of random varlables 11,, converges to a random variable, say 11.

lf G(t) ls a Welbull dlstrlbutlon,

11, =- ¤G(X) - ¤(1 — ¤""')

Or,

X, .. .1. , ....1..)1 [ °“ [
%[.1.4

Solutlon Procedure 50



Ignoring all the terms with powers greater than 1,

x·= äh/ni
Or,

X = (#1/nü)"'

The distribution of X ls now calculated. By extreme value theory (equation (4.35)),

· P[1y st ] = f;e·‘dX =1— 6** .

Now,

P(X 5 t) = P( [rj/n0]‘/'st)

=P(n$n0t¢)=1—e·'•°°" .

Hence X has a Weibull function with ß as the shape parameter and n0 as the scale

parameter. So lf all the lndlvldual failure mechanisms have ldentlcal Weibull dlstrib-

utions for failure with shape parameter ß and scale parameter 0, then the overall

failure distribution is again a Weibull distribution with the shape parameter equal to

that of the individual dlstrlbutions and the scale parameter equal to the sum of their

scale parameters.

ln competlng rlsk theory, it is assumed that the component is subject to multiple

failure mechanisms and the number of mechanisms, n, is finite. All the lifetlmes

generated by lndlvldual failure mechanisms have Weibull form of distribution. The

distribution of the component llfetime ls given by the distribution of the minimum of

individual dlstributlons. Three situations are considered for the individual dlstrib-

utions: (1) all the dlstrlbutions are identical, (2) the shape parameter ß is the same

for all the dlstrlbutions, and (3) the shape and scale parameters are different for each

distribution. The three situations are analyzed below.
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(1) Let X,_ X,_.....,X,, be the n random variables representlng the lifetlmes corre-

spondlng to the n individual failure mechanisms. All n variables are identlcally dis-

tributed, each having a Weibull distribution with 0 and ß as the parameters.

Let X ¤¤ min.{X,,X,,...., X„ }.

The distribution of X ls given by

P(X S t) = 1-P(X > t)

==1-P(X,>t)P(X,>t) ......,P(X,,>t)

=1 - [exp( -0tß)][ exp( -0 lß)]....[ exp( — 0tß)]

=1- exp(—0tß-0tß ...... -0lß)

=1— exp( —n0tß)

So the minimum is also a Weibull distribution with shape parameter ß and scale pa-

rameter n0.

(2) This ls a situation in which the individual distributlons have a common shape pa-

rameter ß. Their scale parameters are different from each other. Let the scale pa-

rameters be 0,, 0,_ ....., 0,,, respectlvely. The probability distribution of X = min.

{X,_X,_..., X„} Is given by

P(XSt) = 1 — exp[-(0, + 0, + ...... +0,,)t*],

which ls again a Weibull distribution with scale parameter (0, + 0, + .... + 0,,) and

shape parameter ß.

(3) Here, the n random variables have different scale parameters ( 0,_0,_________0„) and dif-

ferent shape parameters (ß,_ß,_....., ß„). ln this case,

p(XS 0 - 1- exp): - (0,:0 + 0,:0 + ..... + 0,:00]
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This expression does not conform to any known probablllty dlstrlbutlon. However, lt

can be directly used to compute the llfetlme distribution of the component.

The above dlstrlbutlon may have a Weibull type of extreme-value form since lt ls the

dlstrlbutlon of the mlnlmum of multiple random variables. To test the validlty of thls

assumptlon, the dlstrlbutlon of the minimum of two Weibull random variables ls ap-

proxlmated as a Welbull dlstrlbutlon. The goodness of the approxlmatlon ls checked

by the comparison of the correspondlng higher moments and the K-S test. The pro-

cedure is described below.

Weibull approxlmatlon to the mlnlmum of two Weibull dlstrlbutlons: A

Let X,_ l
-

1,2 be a random variable with Weibull dlstrlbutlon and 8, and ß, as scale

and shape parameters respectlvely. lt ls assumed that the minimum of two Weibull

random variables ls also a Weibull. The flrst two moments of the original dlstrlbutlon

are computed first.

let X
-

mIn.{X,, X2} .

The dlstrlbutlon of X ls given by

P(X S t)
-

1-P(X > t)

-
1-P(X, > t) P(X2 > t)

A ° (4.36)
-1 - [exp( — 0, tß‘)][ exp( - 02 tß*)]

¤ 1 — exp( -0.lß* -·02lß')

The density function of X ls given by

fl!) (ß. 9. l'•·‘
+ ß.9.¢'=·‘) ¤><r>( — 9.¢ß. —9.¢*=)
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The first moment it, =· t (ß, 0, U1" + ß, 0, l*=·‘) exp( - 0, Ni - 0, t¢=)dt,

and the second moment u, = _[:'l'(ß, 0, th" + ß,0,l*:·‘) exp( —0,t^'« - 0,l'=)dt.

The two moments are numerically estlmated. The first two moments of the approxl-

mating Weibull distribution are matched with these two values and the parameters
0’

and ß' of the approxlmatlng distribution are estlmated. The procedure ls similar

to the one described ln section 4.3. Using the estimated parameters, the third and

fourth moments are calculated and compared with the corresponding moments of the

original dlstrlbutlon (equation 4.36)). K-S Test ls performed for further validation. The

results are presented in Table 4 for different comblnations of parameter values.

The results show that the third and fourth moments of the approxlmatlng distribution

are very close to those of the original distribution. This lndicates that the_Weibull

assumptlon for the minimum is a valid assumptlon. The values of the K-S test sta·

tlstlc further support this assumptlon.

If the mlnlmum of two Weibull distributions ls approximately a Weibull distribution,

then by recurslve argument, the minimum of n Weibull distributions is again another

Weibull. Therefore, even for the situation ln which the individual failure distributions

are different from each other both in their scale and shape parameters, the aggregate

distribution is still a Weibull distribution.
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Tab|• 1. Raaulta for Walbull Approxlmatlon

Äj(f) = a ’

cz = 2.0 30.00 29.99 1.00
u

=•
60.0 930.00 929.77 1.00

O' == 0.22E — 9 297.4551 296.2251 0.96
ß' -

6.40 980.1953 960.0853 0.98
K·S = 0.18

oz
-

2.0 40.00 40.00 1.00
p =- 80.0 164.00 164.00 1.00
0' = .675 -12 688.6052 686.8052 0.99
ß' ¤ 7.47 295.8654 292.9557 0.99

K-S == 0.23 '

an ¤ 2.0 45.00 44.99 1.00
p
-

90.0 207.0051 207.0051 1.00
0' =¤ 4.375 - 13 972.6852 970.3852 0.99
ß' =¤ 7.96 466.5754 462.5454 0.99

K·S == 0.87
a =¤ 5.0 12.00 12.00 1.00

u == 60.0 148.80 148.80 1.00
O' ¤= .785 - 7 190.4051 189.7051 0.99
ß' ¤ 6.4 250.9352 247.40528 0.98

K·S = 0.65
cz ¤ 5.0 16.00 16.00 1.00

u == 80.0 262.40 262.40 1.00
0'

-
0.635 -9 440.7051 439.5051 0.97

ß' = 7.47 757.3852 749.90 0.99
K-S = 0.71

a == 5.0 18.00 17.99 1.00
p == 90.00 331.20 331.30 1.00
0' ¤ 0.645- 10 622.5051 620.9051 0.99
ß' = 7.96 119.4053 118.3053 0.99

K·S = 0.94
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Table 1. (oontlnued)

_

m<>•*¤¤¤*# EI@IMI R¤¤¤<W/¤=>
a ¤= 8.0 7.50 7.50 1.00

u = 60.0 58.12 58.12 1.00
0'

-
0.16E -5 464.80 463.00 0.99

ß' -
6.40 382.9051 377.8051 0.98

K·S = 0.09
a
-

8.0
E

10.00 10.00 1.00
,u =· 80.0 102.50 102.50 1.00
0' ¤ 0.21E-7 107.6051 _ 107.3051 0.99
ß'

• 7.47 115.5752 114.4452 0.99
K-S = 0.12

a
-

8.0 11.25 11.25 1.00
u = 90.0 129.40 129.40 1.00
0'

-
0.27E- 8 151.9851 151.6551 0.99

ß' ¤ 7.95 182.2652 180.7252 0.99
K-S = 0.46
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Tabla 2. Roaulta for Walbull Approxlmatlon

1;:)
-

mat'"°1
m == 2.0

_

mom6nt# mlxtura(m) Ratio(W/m)
a =¤ 2.0 5.45 5.45 1.00

u
•= 60.0 30.00 30.00 1.00

0' = 0.97E — 10 166.37 166.27 0.99
· ß' ¤ 13.28 930.00 928.03 0.99

K·S = 0.23
u = 2.0 6.30 6.30 1.00

u ·
80.0 40.30 40.00 1.00

O' ¤ 0.25E -12 255.36 255.30 0.99
ß' ¤ 15.48 164.0E1 163.8E1 0.99

K·S == 0.11
a ¤ 2.0 6.69 6.69 1.00

u = 90.0 45.00 45.03 1.00
0' ¤ 0.15E — 13 304.4 304.6 1.00
ß' =¤ 15.49 207.0E1 207.0E1 1.00

K-S = 0.07
a ¤ 5.0 3.45 3.45 1.00

p • 60.0 12.00 12.00 1.00
0' ¤ 0.43E — 7 42.09 42.06 1.00
ß' = 13.28 148.8 148.4 1.00

K-S = 0.07
a ¤ 5.0 3.99 3.99 1.00

p == 80.0 16.00 15.99 1.00
0' ¤ 0.34E-9 64.60 64.57 1.00
ß' = 15.38 262.40 262.0 1.00

K·S = 0.10
cz ¤ 5.0 4.23 4.23 1.00

51 = 90.0 18.00 18.00 1.000’
= 0.29E — 10 77.00 76.97 0.99

ß' ¤ 16.46 331.20 330.75 0.99
K·S == 0.09
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Teble 2. (contlnued)—
¤•¤¤«¤¤¢# ¤EEI¤¤I@II¤l R¤*‘¤<W/m)

u
-

8.0 2.72 2.72 1.00
p - 60.0 7.50 7.50 1.00
0' = 0.976-6 20.79 20.78 1.00
ß' -

13.28 58.12 58.00 0.99
K·S == 0.45

a =¤ 8.0 3.15 3.12 1.00
p
-

80.0 10.00 10.00 1.00
0' = 0.11E-7 31.92 31.90 1.00
ß' -

15.47 102.50 102.30 1.00
K-S == 0.07

a ·= 8.0 3.35 3.35 1.00
u = 90.0 11.25 11.26 1.00
0' ¤ 0.366-8 38.05 38.16 1.00
ß' -

15.65 129.37 129.90 1.00
K·S = 0.09
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Tabla 3. Roaulta for Walbull Approxlmation ‘

.1}(t) -
m¤:’""

m = 0.5—
moment# mixture(m) Ratio(W/m)

oz = 2.0 930.00 930.00 1.00
u = 60.0 980.1953 980.1953 1.00
0' ¤ 0.99E — 9 115.8456 113.2056 0.97
ß' =¤ 2.98 „ 152.16510 140.80510 0.92

K-S = 1.7
a = 2.0 164.0051 164.0051 1.00

u = 80.0 292.8554 292.8554 1.00
0' ¤ 0.375 -11 583.3857 573.6757 0.98
ß' = 3.50 125.06511 117.88511 0.94

K-S = 0.98
oz = 2.0 207.0051 206.98 1.00

u = 90.0 466.5754 466.49524 1.00
O' = 0.275 - 12 113.9358 112.2258 0.98
ß' = 3.74 300.06511 284.64511 0.94

K-S = 2.5
a ¤ 5.0 148.80 148.80 1.00

. p == 60.0 250.9352 250.9352 1.00
0' = 0.235 -6 474.4854 464.0354 0.98
ß' = 2.98 997.2056 922.7856 0.93

K-S = 2.12
a == 5.0 262.40 262.41 1.00

u = 80.0 757.3852 757.4452 1.00
0' =¤ 0.235 — 8 238.9555 235.0055 0.98
ß' = 3.5 819.5657 772.7057 0.94

K-S = 1.81
a =¤= 5.0 331.20 331.20 1.00

p = 90.0 119.4453 119.4453 1.00
0' == 0.255 — 9 466.6655 459.7655 0.98
ß' = 3.74 196.6058 186.6058 0.94

K-S = 1.45
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T•bI• 3. (c0ntInu•d)—
moment# mixture(m) Ratio(W/m)

a ¤ 8.0 58.12 58.12 1.00
pn = 60.0 382.851 382.851 1.00
O' ¤ 0.395 — 5 282.8053 276.5053 0.97
ß' -

2.98 232.1855 214.8555 0.92 _
K·S = 0.54

a == 8.0 102.50 102.50 1.00
u = 80.0 115.5752 115.5752 1.000’

¤ 0.625 — 7 142.4054 140.0054 0.98
ß' ¤ 3.50 190.8256 179.8856 0.94

K·S = 0.12
a = 8.0 129.37 129.37 1.00

u -
90.0 182.2652 182.2652 1.00

0' ¤ 0.855 - 8 278.1554 274.0454 0.98
ß' == 3.74 457.8556 434.4756 0.94

K-S = 1.4
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Tabla 4. Walbull Approxlmatlon for tha mln. of two varlabloa.

—¤HIE¤¤lEIEIIMI Ra«¤¤«w«m>
6,

-
0.225 - 9 26.99 26.98 1.00

ß, =· 6.40 753.00 753.0 1.00
6, ¤· 0.22E - 9 215.8052 215.7052 1.00
ß, =¤ 6.40 633.3056 632.9056 0.99
6* ¤ 0.435-09 K·S = 1.27
ß'

=• 6.40
6,

-
0.2195-0 29.55 29.55 1.00

ß, == 6.40 90.18 90.18 1.00
6, =· 0.675 - 12 282.5052 282.5052 1.00
ß, =· 7.47 905.9053 905.8053 0.99
6* =¤ 0.175-9 K-S = 0.87
ß' =¤ 6.51
6, == 0.445- 13 12.02 12.02 1.00

ß, = 7.96 149.3 149.3 1.00
6, =¤ 0.775 - 7 190.6051 190.6051 1.00
ß, =¤ 6.40 249.1052 249.1052 1.00
6*

-
0.775 -7 K·S =• 0.72

ß' = 6.4
6, ¤¤ 0.625 -7 93.45 93.45 1.00

ß, == 3.50 957.9051 957.9051 1.00
6, ¤= 0.855 -9 105.0054 105.0054 1.00
ß, == 3.74 122.5356 122.5256 1.00
6* =¤ 0.635 -7 K-S = 1.04

· ß' =¤ 3.57
6, == 0.445- 13 7.51 7.51 1.00

ß, == 7.96 58.33 58.33 1.00
6, = 0.165 - 5 465.50 465.50 1.00
ß,

·
6.40 380.3251 380.3251 1.00

6* == 0.165-5 K-S =- 0.61
ß' = 6.40
6, = 0.995-09 14.96 14.96 1.00

ß, =s 2.98
‘

254.0052 254.0052 1.00
6,
-

0.2345 - 6 472.8054 472.8054 1.00
ß, = 2.98 946.5056 946.6056 0.99
6* = 0.245 -6 K-S = 0.90
ß' == 2.97
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T•bI• 4. (contlnuod)

0, = 0.225 - 9 30.00 30.00 1.00
ß, = 6.40 932.00 932.00 1.00
0, =¤ 0.235 - 6 297.4052 297.5052 1.00
ß, = 2.98 972.0053 972.3053 1.00
0' ¤ 0.265-9 K-S == 1.17
ß'

-
6.35

0, = 0.225- 9 5.53 5.53 1.00
ß,

-
6.40 30.82 30.82 1.00

0, ¤ 0.975 - 10 173.20 172.70 0.99
ß, -_ 13.30 982.70 973.70 0.99
0' = 0.525-11 K-S = 1.83
ß' ¤= 14.89
0, = 0.255 -12 5.28 5.28 1.00

ß, = 15.50 29.12 29.12 1.00
0, = 0.975 - 10 162.20 166.20 1.02
ß,

-
13.30 911.30 917.60 0.98

0' ¤ 0.655-4 K-S = 2.44
ß' == 5.53
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Concluslons and Discussion

5.1 Concluslons

A rellabillty model whlch captures the dynamic behavior of failure of a component in

terms of the properties of the material and operating conditions is developed. The

model analyzes the effect of degradatlon mechanisms on component failure time. A

component subject to a single mechanism ls assumed to have an initial number i, and

a flnal number k of defects. During operation, the component falls when the number

of defects equals the flnal number. For the case of a single mechanism with fixed i

and k, the component failure distribution is given as the first passage tlme distribution

of the representatlve pure birth process to the final state. First passage time distrib-

utlons can be derived using direct methods or Laplace transform methods for various

forms of transitlon rates. All these distrlbutions have the form of generalized Gamma
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distribution. For the slmplest case, where the transition rate ls independent of state

and temperature, the tirst passage tlme distribution is a Gamma dlstributicn.

When the initial and final states of a mechanlsms are random, the failure tlme of the

component ls given by mixture distribution derived from the condltlonal first passage

time distrlbutlons. The mixture distribution ls analyzed for two types of transition

rates. In both the cases, the mlxture distribution does not have a closed form when

the distance between the final and lnitlal states ls taken to be Poisson distributed

with mean u. From the results of approximatlon, lt can be concluded that the mixture

follows a Weibull form of distribution. The mean time to failure ls directly proportional

to the mean of the difference between the initial and final number of defects. This is

because the tlme to failure ls greater lf the process has to traverse a larger distance

from the initial to the final state. As the transition rate lncreases, the process

changes states faster and hence component fails earlier. The mean failure tlme is

lnversely proportional to a , the constant in the transition rate. Since ez includes the

reaction kinetics, lt dlctates the reaction rate and hence the failure rate and the mean

failure tlme. The shape parameter ß of the Weibull distribution remains almost the

same for a fixed value of u. The shape parameter is quite insensitive to the changes

in the transition rates. The variable m, the factor describing the effect of time on the

transition rate function, has a great Impact on the failure times. As the value of m _

lncreases, the mean of the failure tlme decreases exponentially.

Multlple mechanlsms are lncorporated into the model by using either the extreme-

value theory or the competing risk theory. ln both the cases, the overall distribution

ls a Weibull distribution. The results conform with the general practice of assuming

a Weibull distribution for the failure time of electronic components.
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5.2 Extensions

The model by its very structure creates an exhaustlve range of possibllltles for future

research. lt has a two dlmenslonal expansion potential, practical and analytical.

Experimental work needs to be done to ldentify the forms of the transltlon rate for

failure mechanisms. Another major area of research that ls needed ls ln the study

of defect dlstrlbutlons. Although conslderable work has been carried out ln the area

of defect dlstrlbutlons, much ls needed to ldentify the dlstrlbutlons of the defects at

whlch fallures occur.

On the theoretlcal front, analysis of the model ls Interestlng if some of the present

assumptions are relaxed. For example the degradatlon process may be allowed to

have a reaction ln the reverse direction . The process will then no longer be a pure

birth process and the first passage time dlstrlbutlons will be quite compllcated to

obtaln. One advantage of this analysis would be that more failure mechanlsms could

be analyzed. Trapplng of hot electrons is an example. Once the reaction ls allowed

to be reversible, the model may be used with some modificatlons to analyze me-

chanlcal systems as well.

In summary, a component failure model that explalns the causal relationship between

the failure of a component and factors like the properties of the material of the com-

ponent and the operating conditions is developed. This relationship can be used for

estlmatlng the rellabillty of a component at different operating conditions without re-

sorting to the accelerated testing methodology. Another advantage is that rellabillty

can be built into a component from the design stage itself using this model.
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Appendix A.

Program to Compute Weibull Parameters

C GIVEN THE FIRST AND SECOND MOMENTS, THIS PROGRAM

C COMPUTES ALPHA AND BETA OF WEIBULL DIST. BY AN ITERATIVE

C PROCEDURE.

C

DOUBLE PRECISION A(2,2), B(2,2), X0(2), X1(2), XNEW(2), DEN

DOUBLE PRECISION RMU1, RMU2 , RMU3, RMU4, ALPHA , RMU

COMMON RMU1, RMU2,RMU3 , RMU4

READ(5,‘I0) ALPHA, RMU

C ALPHA IS THE PARAMETER FOR EXPO. DIST. OF THE BIRTH PROCESS

C RMU IS THE MEAN OF POISSON DIST. OF THE DISTANCE
l

10 FORMAT(D10.5,2X,D10.5)

WRITE(6,20)ALPHA, RMU
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20 FORMAT(2X,’ALPHA =
’,

D10.5,' MU =
’,

D10.2)

C COMPUTE THE FIRST MOMENT RMU1 AND THE SECOND MOMENT RMU2

C

DEN = 1.D00

|F(RMU.LT.20.D0) DEN = 1.D0-(DEXP(·RMU))

RMU1 = (RMU / ALPHA)'(1.D0/DEN)

RMU2 = RMU1 "((RMU/ALPHA) +(2.D0/ALPHA))

RMU3=RMU1'(8.D0+6.D0'RMU + (RMU"2))'(1.D0/ALPHA"2)

RMU4 = RMU1°(24.D0 + 38.D0‘RMU + 12.D0'(RMU"'2) + (RMU"3))'

1 (1.D0/(ALPHA°°3))

WRITE(6,35)RMU1,RMU2 ,DEN

35 FORMAT(2X,'RMU1=',D12.5, 3X, 'RMU2=’,D12.5,5X,’DEN',D12.5)

CALL SR1

STOP

END

C SUBROUTINE TO ITERATIVELY FIND ALPHA AND BETA OF THE

C WEIBULL DISTRIBUTION.

C

SUBROUTINE SR1

DOUBLE PRECISION RJ(2,2), RIJ(2,2), B(2,2), A(2,2)

DOUBLE PRECISION ALPHAO, BETAO, ALPHA1, BETA1,ALPHANU, BETANU

DOUBLE PRECISION RMU1, RMU2,FUNC1QFUNC2,RMEAN,DET,RMEAN2,RMEAN3,

1 RMEAN4 ,RMU3, RMU4

COMMON RMU1, RMU2 , RMU3, RMU4

C

C INIITIALIZE ALPHA AND BETA AND THE COUNTER

K = 1
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I
READ(5,10)BETA0

10 FORMAT(D10.5) .

ALPHA0 +0.005

100 WR|TE(6,15) ALPHAO, BETA0

15 FORMAT(2X, 'ALPHAO=
’,

D12.5,3X,’BETAO=', D12.5)

ALPHA1 = FUNC1(BETAO)

BETA1 = FUNC2(ALPHAO, BETAO)

WRITE(8,55)ALPHA1, BETA1

55 FORMAT(2X, ’ALPHA1', D12.5,
’

BETA1’, D12.5)

C COMPUTE APPROXIMATE VALUES OF PARTIAL DIFFERENTIAL FUNCTIONS

C

RJ(1,1) = 0.DO _

RJ(1,2) = (FUNC1(BETA1)·ALPHA1)I (BETA1 · BETAO)

RJ(2,1) = (FUNC2(ALPHA1,BETAO) - BETA1) I (ALPHA1 -ALPHAO)

RJ(2,2) = (FUNC2(ALPHAO, BETA1) · BETA1) / (BETA1 - BETAO)

C CALCULATE THE |·J MATRIX

RIJ(1,1) = 1.DO - RJ(1,1)

R|J(1,2) = •RJ(1,2)

RIJ(2,1) = -RJ(2,1)

RIJ(2,2) = 1.D0 ·RJ(2,2)

C

C FIND B, THE INVERSE OF |·J. A '

C

DET = R|J(1,1)°R|J(2,2) · RIJ(1,2)°R|J(2,1)

B(1,1) = RIJ(2,2)IDET

B(1,2) = -R|J(1,2)/DET

B(2,1) = -R|J(2,1) I DET
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B(2,2) = RIJ(1,1)/DET
E

V

C

C COMPUTE A = I-B ·
'

C

A(1,1) = 1.D0-E(1,1)

A(1,2) = ·B(1,2)

A(2,1) = •B(2,1)

A(2,2) = 1.D0 · B(2,2)

C CALCULATE THE NEXT SET OF VALUES

C

ALPHANU = A(1,1)°ALPHA0 + A(1,2)"BETA0 + B(1,1)"ALPHA1 +

1 B(1,2)'BETA1

BETANU = A(2,1)'ALPHA0 + A(2,2)°BETA0 + B(2,1)°ALPHA1 +

1 B(2,2)°BETA1 _

C

C CHECK FOR CONVERGENCE
l

. IF((DABS(ALPHANU·ALPHAO)).LE.1.D-14.0R.K.GT.6)GOTO40

ALPHA0 = ALPHANU

BETA0 = BETANU

K = K+1

GOTO 1w

40 WR|TE(6,50)ALPHANU, BETANU,K

50 FORMAT(2X, ’ALPHANU', D15.06, 2X, ’BETANU', 3X, D12.6,4X,|5)

RMEAN = ((1.00/ALPHANU)'°(1.00/BETANU)) ' GAMMA1(1.D0/BETANU)

RMEAN2 = ((1.D0/ALPHANU)*°(2.D0/BETANU))° GAMMA1(2.D0/BETANU)

RMEAN3 = ((1.D0/ALPHANU)"(3.DO/BETANU))° GAMMA1(3.D0/BETANU)

RMEAN4 = ((1.DO/ALPHANU)°"(4.D0/BETANU))" GAMMA1(4.D0/BETANU)

WR|TE(8,30)RMU1, RMU2, RMU3, RMU4
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30 FORMAT(2X,’RMU1 =
’,

D12.5, 2X, 'RMU2= ', D12.5,'RMU3_= ’,D12.5,

1 ’RMU4 = ',D12.5)

WRITE(6,44)RMEAN, RMEAN2,RMEAN3,RMEAN444

FORMAT(2X, 'RMEAN = ', D12.5,3X, D12.5,2X,'RMEAN3= ',D12.5,

1 ’RMEAN4 = ',D12.5)
~

C .

RETURN

END

C

C FUNCTION FOR THE ALPHA VALUE

C

FUNCTION FUNC1( BETA)

DOUBLE PRECISION ALPHA, BETA, A, VALUE, GAMMA1, FUNC1

DOUBLE PRECISION RMU1, RMU2

COMMON RMU1, RMU2, RMU3,RMU4

A = 1.D0/BETA

WR|TE(6,30)BETA

30 FORMAT(2X, 'BETA IN FUNC1', D15.7)

VALUE = GAMMA1(A)

FUNC1 = (VALUE/RMU1)"BETA

RETURN

END
·

C

C FUNCTION FOR THE BETA VALUE

FUNCTION FUNC2(ALPHA, BETA)

DOUBLE PRECISION ALPHA, BETA, A, VALUE, GAMMA1, FUNC2

DOUBLE PRECISION RMU1, RMU2

COMMON RMU1, RMU2 , RMU3,RMU4
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A =2.D0/BETA

VALUE = GAMMA1(A)

~ FUNC2 = (2.D0'DLOG(ALPHA)) / DLOG(VALUE/RMU2)
I

WRITE(6,66)FUNC2, ALPHA, VALUE

66 FORMAT(2X,'FUNC2 ALPHA VALUE', 4X,3D12.7)

RETURN

END .

C

C NUMERICAL APPROXIMATION FOR GAMMA FUNCTION

C THIS FUNCTION CALCULATES GAMMA FUNCTION BY APPROXIMATION

FUNCTION GAMMA1(A)

DOUBLE PRECISION GAMMA1, A, B, PROD,VALUE

REAL'8 A1, A2, A3, A4, A5

DATA A1 ,A2,A3,A4,AS/-5748.646D-4,9512.363D·4,—6998.588D-4,

1 4245.S49D·4,-1010.678D·4/

B = A

PROD = 1.D0

30 |F(A.LE.1.D0) GO TO 40

PROD = PROD'A ·
A = A·1.D0

GO TO 30

40 VALUE = 1.D0+A1°A + A2°(A'°2) + A3°(A"3) + A4"(A"4) +A5'(A"S)

GAMMA1 = PROD'VALUE

WR|TE(6,20)GAMMA1,B

20 FORMAT(2X, ’GAMMA’, SX, D10.5,
’

FOR ARG.’, 2X,D12.S)

RETURN

END
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Appendix B.

Computatlon of K-S Test Statlstic

C THIS PROGRAM COMPUTES THE K-S TEST STATISTIC BY

C COMPARING THE CDP OF THEORETICAL AND

C FITTED WEIBULL. ~

DIMENSION F(20),TI·IEO(20), YBUL(20)

INTEGER T, T1 ,T2

DOUBLE PRECISION ALPHA, RMU,RM,F,THEO, YBUL, FT

DOUBLE PRECISION ALPHANU, BETANU

DOUBLE PRECISION DMAX, DIPF, PMIX, PDF

COMMON ALPHA, RMU, RM

C DO 100 IC = 1,9

C READ TRANSITION RATE, MEAN OP POISSON DISTANCE AND POWER IN LAMBDA

READ(5,10)ALPHA, RMU ,RM

10 FORMAT(D15.3,D15.3,D15.3)

READ(5,15)ALPHANU,BETANU
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15 FORMAT(015.3, 015.3)
I

WRITE(6,°)ALPHANU, BETANU

C FREQUENCIES ARE TABULATED FOR T =1_ TO T =20
n

T1 = 1

T2 = 20

THEO(1) = FM|X(1.00)/1.00

C CALCULATE THE CDF FOR WEIBULL DISTRIBUTION

YBUL(1) = 1.00 · 0EXP(-ALPHANU'(FT°°BETANU))

C DMAX IS THE MAXIMUM ABSOLUTE DIFFERENCE
’

DMAX = 0ABS(THEO(1)-YBUL(1))

DO40T = T1+1, T2

FT = 0FLOAT(T)/1.000

YBUL(T) = 1.00 · 0EXP(·ALPHANU°(FT"BETANU))

PDF = FMIX(FT)/1.0CXJ

THEO(T) = THEO(T·1) + PDF

DIFF = DABS(THEO(T) - YBUL(T))

IF(DMAX.LT.0IFF) DMAX = DIFF

WRITE(6,35)0IFF,POF, THEO(T), YBUL(T), T

35 FORMAT(2X,'0|FF,POF,THEO.COF, YBUL CDF
=’,

4(014.5, 2X), I5)

40 CONTINUE

WRITE(6,50)0MAX

50 FORMAT(//2X, ' DMAX =
’,

014.5)C1(D

CONTINUEI
STOP

EN0

FUNCTION FMIX(FT) '
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DOUBLE PRECISION ALPHA,RMU,RM,FT,FJ, SUM,POW _

DOUBLE PRECISION TERM(2(I)) , FMIX

COMMON ALPHA, RMU, RM

SUM = 0.D0
-

WRITE(6,35)ALPHA, RMU, RM, FT

35 FORMAT(2X,4(D14.3, 2X))

POW = ALPHA ° (FT " RM)

TERM(1) = (DEXP(· POW/2.D0))'ALPHA ° RM °(DEXP(· POW/2.D0))'

1 (FT °° (RM•1.D0)) ' (DEXP(·RMU)) °RMU

C WR|TE(8,40)TERM(1)

DO 20 J = 2,100

FJ = DFLOAT(J)

TERM(J) = (TERM(J·1) ° POW ' RMU)/((FJ·1.D0)'FJ)
l

C

C STOP IF TERM VALUE IS TOO LOW

IF(FJ.GT.RMU.AND.TERM(J).LE.1.D·20) GOTO 30 _

WRITE(6,40)TERM(J)

40 FORMAT(2X, 'TERM = ', D15.6)

SUM = SUM + TERM(J)

20 CONTINUE

30 FMIX = SUM

RETURN

END
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Appendix C.

Approximation for Minimum of Two Weibull Random Vadables

C WEIBULL APPROXIMATION FOR MINIMUM OF TWO WEIBULL DIST.

C GIVEN THE FIRST AND SECOND MOMENTS, THIS PROGRAM

C COMPUTES ALPHA AND BETA OF WEIBULL DIST. BY AN ITERATIVE

C PROCEDURE.

C

DOUBLE PRECISION THETA1, THETA2. BETA1, BETA2

DOUBLE PRECISION RMU1, RMU2 , RMU3, RMU4

DOUBLE PRECISION DT, DF(4), SUM(4), PROD1

INTEGER T.TT

COMMON RMU1, RMU2,RMU3 , RMU4

READ(5,5)TT

5 FORMAT(I5) q

CC DO 2II] KK=‘I.7
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READ(5,10) THETA1, BETA1, THETA2, BETA2

WR|TE(6,°)THETA1, BETA1, THETA2, BETA2

C THETA IS THE SCALE PARAMETER ABD BETA IS THE SHAPE PARAMETER

10 FORMAT(4D15.3)

C SUM IS THE SUMMATION OF MIN.DENSITY VALUES. SUM = MOMENT

DO 20 I=1,4

20 SUM(|) = 0.D0

DO 100 T = 1,TT

C PROD1 = DENSITY FUN. OF MIN. WITHOUT THE EXP. TERMS _

C DF = VARIABLE TO EXPRESS THE LOG. OF THE DENSITY

DT = DFLOAT(T)

PROD1 = (BETA1 ' THETA1 ' (DT '° (BETA1 · 1.D0)))

1 + (BETA2 ° THETA2 " (DT "' (BETA2 · 1.D0)))

DO 80 K = 1,4

DF(K) = DFLOAT(K) ° DLOG(D'I’) + DLOG(PROD1) ·

1 (THETA1 ' (DT " (BETA1)) + THETA2 ' (DT " ( BETA2)) )

SUM(K) = SUM(K) + DEXP(DF(K))

80 CONTINUE

1(IJ CONTINUE

RMU1 = SUM(1)

RMU2 = SUM(2)

RMU3 = SUM(3)

RMU4 = SUM(4)

WR|TE(6,35)RMU1,RMU2 ,RMU3,RMU4

35 FORMAT(2X.’RMU1=',D12.5, 3X, ’RMU2=',D12.5,5X,'RMU3=',D12.5,

1 SX, ’RMU4 =
’,

D12.S)

CALL SR1
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CONTINUE

STOP

END

C SUBROUTINE TO ITERATIVELY FIND ALPHA AND BETA OF THE

C WEIBULL DISTRIBUTION.

SUBROUTINE SR1

DOUBLE PRECISION RJ(2,2), R|J(2,2), B(2,2), A(2,2)

DOUBLE PRECISION ALPHAO, BETAO, ALPHA1, BETA1,ALPHANU, BETANU

DOUBLE PRECISION RMU1, RMU2,FUNC1,FUNC2,RMEAN,DET,RMEAN2,RMEAN3,

. 1 RMEAN4 ,RMU3, RMU4

COMMON RMU1, RMU2 , RMU3, RMU4

C

C INHTIALIZE ALPHA AND BETA AND THE COUNTER

K = 1

READ(5,10)BETA0

10 FORMAT(D10.5)

ALPHA0 = FUNC1(BETAO)+5.D-03

1f.D WRITE(6,15) ALPHAO, BETA0

15 FORMAT(2X, ’ALPHAO= ', D12.5,3X,'BETAO=', D12.5)

ALPHA1 = FUNC1(BETAO)

BETA1 = FUNC2(ALPHAO, BETAO)

RJ(1,1) = 0.00

RJ(1,2) = (FUNC1(BETA1)-ALPHA1)/ (BETA1 - BETAO)
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RJ(2,1) = (FUNC2(ALPHA1,BETAO) - BETA1) / (ALPHA1 ·ALPHAO)
I

RJ(2,2) = (FUNC2(ALPHAO, BETA1) · BETA1) / (BETA1 · BETAO)

C CALCULATE THE |·J MATRIX

RIJ(1,1) = 1.00 · RJ(1,1)

RIJ(1,2) = ·RJ(1,2)

R|J(2,1) = ·RJ(2,1)

RIJ(2,2) = 1.00 ·RJ(2,2)

C

C FIND B, THE INVERSE OF I-J.

C

DET = R|J(1,1)'RIJ(2,2) · RIJ(1,2)°R|J(2,1)

B(1,1) = RIJ(2,2)/0ET

B(1,2) = ·RIJ(1,2)/DET

B(2,1) = -RIJ(2,1) / 0ET

B(2,2) = RIJ(1,1)/DET

C

C COMPUTE A = |·B

C

A(1,1) = 1.00—B(1,1)

A(1,2) = -B(1,2)

A(2,1) = ·B(2,1)

A(2,2) = 1.00 · B(2,2)

C CALCULATE THE NEXT SET OF VALUES

C

ALPHANU = A(1,1)'ALPHA0 + A(1,2)"BETA0 + B(1,1)°ALPHA1 +
Ü

1 B(1,2)"BETA1

BETANU = A(2,1)°ALPHA0 + A(2,2)'BETA0 + B(2,1)°ALPHA1 +
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1 B(2,2)°BETA1

C

C CHECK FOR CONVERGENCE .

IF((DABS(ALPHANU-ALPHAO)).LE.1.D·14.0R.K.GT.7)GOTO 40

ALPHA0 = ALPHANU

BETA0 = BETANU

K = K+1 4

OOTO 100

40 WR|TE(6,50)ALPHANU, BETANU,K

50 FORMAT(2X, 'ALPHANU’, D15.06, 2X, 'BETANU', 3X, D12.8,4X,I5)

RMEAN = ((1.D0/ALPHANU)°'(1.D0/BETANU)) ° GAMMA1(1.D0/BETANU)

RMEAN2 = ((1.D0/ALPHANU)°°(2.D0/BETANU))' GAMMA1(2.D0/BETANU)

RMEAN3 = ((1.D0/ALPHANU)°'(3.D0/BETANU))' GAMMA1(3.D0/BETANU)

RMEAN4 = ((1.D0/ALPHANU)"(4.D0/BETANU))" GAMMA1(4.D0/BETANU)

WR|TE(8,30)RMU1, RMU2, RMU3, RMU4-

30 FORMAT(2X,'RMU1= ', D12.5, 2X, 'RMU2=
’,

D12.5,'RMU3= ’,D12.5,

1 'RMU4 = ’,D12.5)

WR|TE(6,44)RMEAN, RMEAN2, RMEAN3,RMEAN4

44 FORMAT(2X, 'RMEAN =
’,

D12.5,3X, D12.5,2X,’RMEAN3= ',D12.5,

1 ’RMEAN4 = ',D12.5)

C

RETURN

END
n

C

C FUNCTION FOR THE ALPHA VALUE

C

FUNCTION FUNC1( BETA)

DOUBLE PRECISION ALPHA, BETA, A, VALUE, GAMMA1, FUNC1
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DOUBLE PRECISION RMU1, RMU2

COMMON RMU1, RMU2, RMU3,RMU4

A = 1.D0/BETA

WRITE(6,30)BETA

30 FORMAT(2X, ’BETA IN FUNC1’, D15.7)

VALUE = GAMMA1(A)

FUNC1 = (VALUE/RMU1)°'BETA

RETURN

END

C

C FUNCTION FOR THE BETA VALUE

FUNCTION FUNC2(ALPHA, BETA)

DOUBLE PRECISION ALPHA, BETA, A, VALUE, GAMMA1, FUNC2

DOUBLE PRECISION RMU1, RMU2

COMMON RMU1, RMU2 , RMU3,RMU4

A =2.D0/BETA

VALUE = GAMMA1(A)

FUNC2 = (2.D0'DLOG(ALPHA)) / DLOG(VALUE/RMU2) '

CC WR|TE(6,66)FUNC2, ALPHA, VALUE

CC66 FORMAT(2X,’FUNC2 ALPHA VALUE', 4X,3D12.7)

RETURN

END

C

C NUMERICAL APPROXIMATION FOR GAMMA FUNCTION

C THIS FUNCTION CALCULATES GAMMA FUNCTION BY APPROXIMATION

FUNCTION GAMMA1(A) _

DOUBLE PRECISION GAMMA1, A, B, PROD,VALUE
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REAL°8 A1, A2, A3, A4, A5 \

DATA A1 ,A2,A3,A4,A5/·5748.648D·4,9512.363D-4,·6998.588D-4,

1 4245.549D-4,-1010.678D·4/

B = A

PROD = 1.D0
A

30 |F(B.LE.1.D0) GO TO 40

PROD = PROD°B

B = B·1.D0

GO TO 30

40 VALUE = 1.D0+A1'B + A2°(B"°2) + A3°(B°'3) + A4°(B"4) +A5°(B"'S)

GAMMA1 = PROD'VALUE

WR|TE(6,20)GAMMA1,B

20 FORMAT(2X, ’GAMMA', SX, D10.5, ' FOR ARG.’, 2X,D12.5)

RETURN

END
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