
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 93652, 8 pages
doi:10.1155/2007/93652

Research Article
Examining the Viability of FPGA Supercomputing

Stephen Craven and Peter Athanas

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA

Received 16 May 2006; Revised 6 October 2006; Accepted 16 November 2006

Recommended by Marco Platzner

For certain applications, custom computational hardware created using field programmable gate arrays (FPGAs) can produce
significant performance improvements over processors, leading some in academia and industry to call for the inclusion of FPGAs
in supercomputing clusters. This paper presents a comparative analysis of FPGAs and traditional processors, focusing on floating-
point performance and procurement costs, revealing economic hurdles in the adoption of FPGAs for general high-performance
computing (HPC).

Copyright © 2007 S. Craven and P. Athanas. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Supercomputers have experienced a resurgence, fueled by
government research dollars and the development of low-
cost supercomputing clusters constructed from commodity
PC processors. Recently, interest has arisen in augmenting
these clusters with programmable logic devices, such as FP-
GAs. By tailoring an FPGA’s hardware to the specific task at
hand, a custom coprocessor can be created for each HPC ap-
plication.

A wide body of research over two decades has repeat-
edly demonstrated significant performance improvements
for certain classes of applications through hardware accelera-
tion in an FPGA [1]. Applications well suited to acceleration
by FPGAs typically exhibit massive parallelism and small in-
teger or fixed-point data types. Significant performance gains
have been described for gene sequencing [2, 3], digital filter-
ing [4], cryptography [5], network packet filtering [6], target
recognition [7], and pattern matching [8].

These successes have led SRC Computers [9], DRC Com-
puter Corp. [10], Cray [11], Starbridge Systems [12], and SGI
[13] to offer clusters featuring programmable logic. Cray’s
XD1 architecture, characteristic of many of these systems,
integrates 12 AMD Opteron processors in a chassis with six
large Xilinx Virtex-4 FPGAs. Many systems feature some of
the largest FPGAs in production.

Many HPC applications and benchmarks require double-
precision floating-point arithmetic to support a large dy-

namic range and ensure numerical stability. Floating-point
arithmetic is so prevalent that the benchmarking application
ranking supercomputers, LINPACK, heavily utilizes double-
precision floating-point math. Due to the prevalence of
floating-point arithmetic in HPC applications, research in
academia and industry has focused on floating-point hard-
ware designs [14, 15], libraries [16, 17], and development
tools [18] to effectively perform floating-point math on FP-
GAs. The strong suit of FPGAs, however, is low-precision
fixed-point or integer arithmetic and no current device fam-
ilies contain dedicated floating-point operators though ded-
icated integer multipliers are prevalent. FPGA vendors tai-
lor their products toward their dominant customers, driv-
ing development of architectures proficient at digital signal
processing, network applications, and embedded computing.
None of these domains demand floating-point performance.

Published reports comparing FPGA-augmented systems
to software-only implementations generally focus solely on
performance. As a key driver in the adoption of any new tech-
nology is cost, the exclusion of a cost-benefit analysis fails to
capture the true viability of FPGA-based supercomputing. Of
two previous works that do incorporate cost into the analy-
sis, one [19] limits its scope to a single intelligent network
interface design and, while the other [20] presents impres-
sive cost-performance numbers, details and analysis are lack-
ing. Furthermore, many comparisons in literature are inef-
fective, as they compare a highly optimized FPGA floating-
point implementation to nonoptimized software. A much

2 EURASIP Journal on Embedded Systems

Table 1: Published FPGA supercomputing application results.

Application Platform Format Speedup

DGEMM [21] SRC-6 DP 0.9x

Boltzmann [22] XC2VP70 Float 1x

Dynamics [23] SRC-6E SP 2x

Dynamics [24] SRC-6E SP 3x

Dynamics [25] SRC-6E Float 3.8x

MATPHOT [26] SRC DP 8.5x

Filtering [27] SRC-6E Fixed 14x

Translation [28] SRC-6 Integer 75x

Matching [29] SRC-6/Cray XD1 Bit 256x/512x

Crypto [30] SRC-6E Bit 1700x

better benchmark would redesign the algorithm to play to
the FPGA’s strengths, comparing the design’s performance to
that of an optimized program.

The key contributions of this paper are the addition of an
economic analysis to a discussion of FPGA supercomputing
projects and the presentation of an effective benchmark for
comparing FPGAs and processors on an equal footing. A sur-
vey of current research, along with a cost-performance anal-
ysis of FPGA floating-point implementations, is presented in
Section 2. Section 3 describes alternatives to floating-point
implementations in FPGAs, presenting a balanced bench-
mark for comparing FPGAs to processors. Finally, conclu-
sions are presented in Section 4.

2. FPGA SUPERCOMPUTING TRENDS

This section presents an overview of the use of FPGAs in su-
percomputers, analyzing the reported performance enhance-
ments from a cost perspective.

2.1. HPC implementations

The availability of high-performance clusters incorporating
FPGAs has prompted efforts to explore acceleration of HPC
applications. While not an exhaustive list, Table 1 provides
a survey of recent representative applications. The SRC-6
and 6E combine two Xeon or Pentium processors with two
large Virtex-II or Virtex-II Pro FPGAs. The Cray XD1 places
a Virtex-4 FPGA on a special interconnect system for low-
latency communication with the host Opteron processors.

In the table, the applications are listed by performance.
The abbreviations SP and DP refer to single-precision
and double-precision floating point, respectively. While the
speedups provided in the table are not normalized to a com-
mon processor, a trend is clearly visible. The top six examples
all incorporate floating-point arithmetic and fare worse than
the applications that utilize small data widths.

With no cost information regarding the SRC-6 or Cray
XD1 available to the authors a thorough cost-performance
analysis is not possible. However, as the cost of the FPGA ac-
celeration hardware in these machines alone likely is on the
order of US$10 000 or more, it is likely that the floating-point

examples may loose some of their appeal when compared to
processors on a cost-effective basis. The observed speedups
of 75–1700 for integer and bit-level operations, on the other
hand, would likely be very beneficial from a cost perspective.

2.2. Theoretical floating-point performance

FPGA designs may suffer significant performance penalties
due to memory and I/O bottlenecks. To understand the po-
tential of FPGAs in the absence of bottlenecks, it is instructive
to consider the theoretical maximum floating-point perfor-
mance of an FPGA.

Traditional processors, with a fixed data path width of
32 or 64 bits, provide no incentive to explore reduced pre-
cision formats. While FPGAs permit data path width cus-
tomization, some in the HPC community are loath to utilize
a nonstandard format owing to verification and portability
difficulties. This principle is at the heart of the Top500 List
of fastest supercomputers [31], where ranked machines must
exactly reproduce valid results when running the LINPACK
benchmarks. Many applications also require the full dynamic
range of the double-precision format to ensure numeric sta-
bility.

Due to the prevalence of IEEE standard floating-point
in a wide range of applications, several researchers have de-
signed IEEE 754 compliant floating-point accelerator cores
constructed out of the Xilinx Virtex-II Pro FPGA’s config-
urable logic and dedicated integer multipliers [32–34]. Dou
et al. published one of the highest performance benchmarks
of 15.6 GFLOPS by placing 39 floating-point processing el-
ements on a theoretical Xilinx XC2VP125 FPGA [14]. Inter-
polating their results for the largest production Xilinx Virtex-
II Pro device, the XC2VP100, produces 12.4 GFLOPS, com-
pared to the peak 6.4 GFLOPS achievable for a 3.2 GHz Intel
Pentium processor. Assuming that the Pentium can sustain
50% of its peak, the FPGA outperforms the processor by a
factor of four for matrix multiplication.

Dou et al.’s design is comprised of a linear array of MAC
elements, linked to a host processor providing memory ac-
cess. The design is pipelined to a depth of 12, permitting op-
eration at a frequency up to 200 MHz. This architecture en-
ables high computational density by simplifying routing and
control, at the requirement of a host controller. Since the re-
sults of Dou et al. are superior to other published results, and
even Xilinx’s floating-point cores, they are taken as an abso-
lute upper limit on FPGA’s double-precision floating-point
performance. Performance in any deployed system would be
lower because of the addition of interface logic.

Table 2 extrapolates Dou et al.’s performance results for
other FPGA device families. Given the similar configurable
logic architectures between the different Xilinx families, it
has been assumed that Dou et al.’s requirements of 1419
logic slices and nine dedicated multipliers hold for all fam-
ilies. While the slice requirements may be less for the Virtex-
4 family, owing to the inclusion of an MAC function with
the dedicated multipliers, as all considered Virtex-4 imple-
mentations were multiplier limited the overestimate in re-
quired slices does not affect the results. The clock frequency

S. Craven and P. Athanas 3

Table 2: Double-precision floating-point multiply accumulate
cost-performance in US dollars.

Device
Speed
(MHz)

GFlops
Device
cost

$/GFlops

xc4vlx200 280 5.6 $7010 $1,250

xc4vsx35 280 5.6 $542 $97

xc2vp100-7 200 12.4 $9610 $775

xc2vp100-6 180 11.2 $6860 $613

xc2vp70-6 180 8.3 $2780 $334

xc2vp30-6 180 3.2 $781 $244

xc3s5000-5 140 3.1 $242 $78

xc3s4000-5 140 2.8 $164 $59

ClearSpeed
CSX 600

N/A 50 [36] $7500 [37] $150

Pentium 630 3000 3 $167 $56

Pentium D 920 2800 × 2 5.6 $203 $36

Cell processor 3200 × 9 10 [38] $230 [39] $23

System X 2300 × 2200 12 250 [31] $5.8 M [40] $473

has been scaled by a factor obtained by averaging the perfor-
mance differential of Xilinx’s double-precision floating-point
multiplier and adder cores [35] across the different families.

For comparison purposes, several commercial processors
have been included in the list. The peak performance for each
processor was reduced by 50%, taking into account compiler
and system inefficiencies, permitting a fairer comparison as
FPGAs designs typically sustain a much higher percentage of
their peak performance than processors. This 50% perfor-
mance penalty is in line with the sustained performance seen
in the Top500 List’s LINPACK benchmark [31]. In the table,
FPGAs are assumed to sustain their peak performance.

As can be seen from the table, FPGA double-precision
floating-point performance is noticeably higher than for tra-
ditional Intel processors; however, considering the cost of
this performance processors fare better, with the worst pro-
cessor beating the best FPGA. In particular, Sony’s Cell pro-
cessor is more than two times cheaper per GFLOPS than the
best FPGA. The results indicate that the current generation of
larger FPGAs found on many FPGA-augmented HPC clus-
ters are far from cost competitive with the current genera-
tion of processors for double-precision floating-point tasks
typical of supercomputing applications.

With two exceptions, ClearSpeed and System X, all costs
in Table 2 only cover the price of the device not including
other components (motherboard, memory, network, etc.)
that are necessary to produce a functioning supercomputer.
It is also assumed here that operational costs are equiva-
lent. These additional costs are nonnegligible and, while the
FPGA accelerators would also incur additional costs for cir-
cuit board and components, it is likely that the cost of com-
ponents to create a functioning HPC node from a processor,
even factoring in economies of scale, would be larger than for
creating an accelerator plug-in from an FPGA. However, as

most clusters incorporating FPGAs also include a host pro-
cessor to handle serial tasks and communication, it is reason-
able to assume that the cost analysis in Table 2 favors FPGAs.

To place the additional component costs in perspec-
tive, the cost-performance for Virginia Tech’s System X su-
percomputing cluster has been included [41]. Constructed
from 1100 dual core Apple XServe nodes, the supercom-
puter, including the cost of all components, cost US$473 per
GFLOPS. Several of the larger FPGAs cost more per GFLOPS
even without the memory, boards, and assembly required to
create a functional accelerator.

As the dedicated integer multipliers included by Xilinx,
the largest configurable logic manufacturer, are only 18-bits
wide, several multipliers must be combined to produce the
52-bit multiplication needed for double-precision floating-
point multiplication. For Xilinx’s double-precision floating-
point core 16 of these 18-bit multipliers are required [35]
for each multiplier, while for the Dou et al. design only nine
are needed. For many FPGA device families the high multi-
plier requirement limits the number of floating-point multi-
pliers that may be placed on the device. For example, while
31 of Dou’s MAC units may be placed on an XC2VP100, the
largest Virtex-II Pro device, the lack of sufficient dedicated
multipliers permits only 10 to be placed on the largest Xilinx
FPGA, an XC4VLX200. If this device was solely used as a ma-
trix multiplication accelerator, as in Dou’s work, over 80% of
the device would be unused. Of course this idle configurable
logic could be used to implement additional multipliers, at a
significant performance penalty.

While the larger FPGA devices that are prevalent in com-
putational accelerators do not provide a cost benefit for the
double-precision floating-point calculations required by the
HPC community, historical trends [42] suggest that FPGA
performance is improving at a rate faster than that of pro-
cessors. The question is then asked, when, if ever, will FPGAs
overtake processors in cost performance?

As has been noted by some, the cost of the largest cutt-
ing-edge FPGA remains roughly constant over time, while
performance and size improve. A first-order estimate of US$
8,000 has been made for the cost of the largest and newest
FPGA—an estimate supported by the cost of the largest
Virtex-II Pro and Virtex-4 devices. Furthermore, it is as-
sumed that the cost of a processor remains constant at
US$500 over time as well. While these estimates are some-
what misleading, as these costs certainly do vary over time,
the variability in the cost of computing devices between
generations is much less than the increase in performance.
The comparison further assumes, as before, that processors
can sustain 50% of their peak floating-point performance
while FPGAs sustain 100%. Whenever possible, estimates
were rounded to favor FPGAs.

Two sources of data were used for performance extrap-
olation to increase the validity of the results. The work of
Dou et al. [14], representing the fastest double-precision
floating-point MAC design, was extrapolated to the largest
parts in several Xilinx device families. Additional data was
obtained by extrapolating the results of Underwood’s histor-
ical analysis [42] to include the Virtex-4 family. Underwood’s

4 EURASIP Journal on Embedded Systems

2000 2002 2004 2006 2008 2010
10

100

1000

10000
C

os
t/

G
FL

O
P

S
($

)

Year

FPGAs
Processors
Extrapolation FPGA w/o Virtex-4
Extrapolation FPGA
Extrapolation processor

(a)

2000 2002 2004 2006 2008 2010
10

100

1000

10000

C
os

t/
G

FL
O

P
S

($
)

Year

FPGAs
Processors
Extrapolation FPGA w/o Virtex-4
Extrapolation FPGA
Extrapolation processor

(b)

Figure 1: Extrapolated double-precision floating-point MAC cost-
performance, in US dollars, for: (a) Underwood design and (b) Dou
et al. design.

data came from his IEEE standard floating-point designs
pipelined, depending on the device, to a maximum depth of
34. The results are shown in Figure 1(a) for the Underwood
data and Figure 1(b) for Dou et al.

An additional data point exists for the Underwood graph
as his work included results for the Virtex-E FPGAs. The
Dou et al. design is higher performance and smaller, in terms
of slices, than Underwood’s design. In both graphs, the lat-
est data point, representing the largest Virtex-4 device, dis-

plays worse cost-performance than the previous generation
of devices. This is due to the shortage of dedicated multipli-
ers on the larger Virtex-4 devices. The Virtex-4 architecture
is comprised of three subfamilies: the LX, SX, and FX. The
Virtex-4 subfamily with the largest devices, by far, is the LX
and it is these devices that are found in FPGA-augmented
HPC nodes. However, the LX subfamily is focused on logic
density, trading most of the dedicated multipliers found in
the smaller SX subfamily for configurable logic. This signifi-
cantly reduces the floating-point multiplication performance
of the larger Virtex-4 devices.

As the graphs illustrate, if this trend towards logic-centric
large FPGAs continues it is unlikely that the largest FPGAs
will be cost effective compared to processors anytime soon,
if ever. However, as preliminary data on the next-generation
Virtex-5 suggests that the relatively poor floating-point per-
formance of the Virtex-4 is an aberration and not indica-
tive of a trend in FPGA architectures, it seems reasonable
to reconsider the results excluding the Virtex-4 data points.
Figure 1 trend lines labeled “FPGA extrapolation w/o Virtex-
4” exclude these potential misleading data points.

When the Virtex-4 data is ignored, the cost-performance
of FPGAs for double-precision floating-point matrix multi-
plication improves at a rate greater than that for processors.
While there is always a danger from drawing conclusions
from a small data set, both the Dou et al. and Underwood
design results point to a crossover point sometime around
2009 to 2012 when the largest FPGA devices, like those typ-
ically found in commercial FPGA-augmented HPC clusters,
will be cost effectively compared to processors for double-
precision floating-point calculations.

2.3. Tools

The typical HPC user is a scientist, researcher, or engineer
desiring to accelerate some scientific application. These users
are generally acquainted with a programming language ap-
propriate to their fields (C, FORTAN, MATLAB, etc.) but
have little, if any, hardware design knowledge. Many have
noted the requirement of high-level development environ-
ments to speed acceptance of FPGA-augmented clusters.
These development tools accept a description of the appli-
cation written in a high level language (HLL) and automate
the translation of appropriate sections of code into hardware.
Several companies market HLL-to-gates synthesizers to the
HPC community, including impulse accelerated technolo-
gies, Celoxica, and SRC.

The state of these tools, however, as noted by some [43],
does not remove the need for dedicated hardware expertise.
Hardware debugging and interfacing still must occur. The
use of automatic translation also drives up development costs
compared to software implementations. C compilers and de-
buggers are free. Electronic design automation tools, on the
other hand, may require expensive yearly licenses. Further-
more, the added inefficiencies of translating an inherently
sequential high-level description into a parallel hardware im-
plementation eat into the performance of hardware accelera-
tors.

S. Craven and P. Athanas 5

3. FLOATING-POINT ALTERNATIVES

3.1. Nonstandard data formats

The use of IEEE standard floating-point data formats in
hardware implementations prevents the user from leverag-
ing an FPGA’s fine-grained configurability, effectively reduc-
ing an FPGA to a collection of floating-point units with con-
figurable interconnect. Seeing the advantages of customizing
the data format to fit the problem, several authors have con-
structed nonstandard floating-point units.

One of the earlier projects demonstrated a 23x speedup
on a 2D fast Fourier transform (FFT) through the use of a
custom 18-bit floating-point format [44]. More recent work
has focused on parameterizible libraries of floating-point
units that can be tailored to the task at hand [45–47]. By us-
ing a custom floating-point format sized to match the width
of the FPGA’s internal integer multipliers, a speedup of 44
was achieved by Nakasato and Hamada for a hydrodynamics
simulation [48] using four large FPGAs.

Nakasato and Hamada’s 38 GFLOPS of performance is
impressive, even from a cost-performance standpoint. For
the cost of their PROGRAPE-3 board, estimated at US$
15,000, it is likely that a 15-node processor cluster could be
constructed producing 196 single-precision peak GFLOPS.
Even in the unlikely scenario that this cluster could sus-
tain the same 10% of peak performance obtained by Naka-
sato and Hamada’s for their software implementation, the
PROGRAPE-3 design would still achieve a 2x speedup.

As in many FPGA to CPU comparisons, it is likely that
the analysis unfairly favors the FPGA solution. Many com-
parisons spend significantly more time optimizing hardware
implementations than is spent optimizing software. Signif-
icant compiler inefficiencies exist for common HPC func-
tions [49], with some hand-coded functions outperform-
ing the compiler by many times. It is possible that Nakasato
and Hamada’s speedup would be significantly reduced, and
perhaps eliminated on a cost-performance basis, if equal
effort was applied to optimizing software at the assembly
level. However, to permit their design to be more cost-
competitive, even against efficient software implementations,
smaller more cost-effective FPGAs could be used.

3.2. GIMPS benchmark

The strength of configurable logic stems from the ability to
customize a hardware solution to a specific problem at the bit
level. The previously presented works implemented coarse-
grained floating-point units inside an FPGA for a wide range
of HPC applications. For certain applications the full flexibil-
ity of configurable logic can be leveraged to create a custom
solution to a specific problem, utilizing data types that play
to the FPGA’s strengths—integer arithmetic.

One such application can be found in the great Inter-
net Mersenne prime search (GIMPS) [50]. The software used
by GIMPS relies heavily on double-precision floating-point
FFTs. Through a careful analysis of the problem, an all-
integer solution is possible that improves FPGA performance
by a factor of two and avoids the inaccuracies inherit in
floating-point math.

The largest known prime numbers are Mersenne pri-
mes—prime numbers of the form 2q − 1, where q is also
prime. The distributed computing project GIMPS was cre-
ated to identify large Mersenne primes and a reward of
US$100,000 has been issued for the first person to identify
a prime number with greater than 10 million digits. The al-
gorithm used by GIMPS, the Lucas-Lehmer test, is iterative,
repeatedly performing modular squaring.

One of the most efficient multiplication algorithms for
large integers utilizes the FFT, treating the number being
squared as a long sequence of smaller numbers. The linear
convolution of this sequence with itself performs the squar-
ing. As linear convolution in the time domain is equivalent
to multiplication in the frequency domain, the FFT of the se-
quence is taken and the resulting frequency domain sequence
is squared elementwise before being brought back into the
time domain. Floating-point arithmetic is used to meet the
strict precision requirements across the time and frequency
domains. The software used by GIMPS has been optimized
at the assembly level for maximum performance on Pentium
processors, making this application an effective benchmark
of relative processor floating-point performance.

Previous work focused on an FPGA hardware implemen-
tation of the GIMPS algorithm to compare FPGA and pro-
cessor floating-point performance [51]. Performing a tradi-
tional port of the algorithm from software to hardware in-
volves the creation of a floating-point FFT on the FPGA.
On an XC2VP100, the largest Virtex-II Pro, 12 near-double-
precision complex multipliers could be created from the 444
dedicated integer multipliers. Such a design with pipelining
performs a single iteration of the Lucas-Lehmer test in 3.7
million clock cycles.

To leverage the advantages of a configurable architec-
ture an all-integer number theoretical transform was con-
sidered. In particular, the irrational base discrete weighted
transform (IBDWT) can be used to perform integer convo-
lution, serving the exact same purpose as the floating-point
FFT in the Lucas-Lehmer test. In the IBDWT, all arithmetic is
performed modulo a special prime number. Normally mod-
ulo arithmetic is a demanding operation requiring many cy-
cles of latency, but by careful selection of this prime num-
ber the reduction can be performed by simple additions and
shifting [51]. The resulting all-integer implementation incor-
porates two 8-point butterfly structures constructed with 24-
64-bit integer multipliers and pipelined to a depth of 10. A
single iteration of Lucas-Lehmer requires 1.7 million clock
cycles, a more than two-fold improvement over the floating-
point design.

The final GIMPS accelerator, shown in Figure 2 imple-
mented in the largest Virtex-II Pro FPGA, consisted of two
butterflies fed by reorder caches constructed from the inter-
nal memories. To prevent a memory bottleneck, the design
assumed four independent banks of double data rate (DDR)
SDRAM. Three sets of reorder buffers were created out of
the dedicated block memories on the device. These mem-
ories operated concurrently, two of the buffers feeding the
butterfly units while the third exchanged data with the ex-
ternal SDRAM. The final design could be clocked at 80 MHz

6 EURASIP Journal on Embedded Systems

DDR
SDRAM

Recorder
RAM

(�16) (�8) (�8)

Recorder
RAM

Recorder
RAM

8-point
butterfly

8-point
butterfly

Mux

XC2VP100

Figure 2: All-integer Lucas-Lehmer implementation.

and used 86% of the dedicated multipliers and 70% of the
configurable logic.

In spite of the unique all-integer algorithmic approach,
the stand-alone FPGA implementation only achieved a
speedup of 1.76 compared to a 3.4 GHz Pentium 4 processor.
Amdahl’s Law limited the FPGA’s performance due to the se-
rial nature of certain steps in the algorithm, namely the final
modulo reduction after the multimillion bit multiplication.
A slightly reworked implementation, designed as an FFT ac-
celerator with all serial functions implemented on an at-
tached processor, could achieve a speedup of 2.6 compared to
a processor alone. From a cost perspective, the FPGA imple-
mentation fares far worse, with the large FPGA’s cost roughly
ten times that of the processor.

4. CONCLUSION

When comparing HPC architectures many factors must be
weighed, including memory and I/O bandwidth, commu-
nication latencies, and peak and sustained performance.
However, as the recent focus on commodity processor clus-
ters demonstrates, cost-performance is of paramount impor-
tance. In order for FPGAs to gain acceptance within the gen-
eral HPC community, they must be cost-competitive with
traditional processors for the floating-point arithmetic typi-
cal in supercomputing applications. The analysis of the cost-
performance of various current generation FPGAs revealed
that only the lower-end devices were cost-competitive with
processors for double-precision floating-point matrix multi-
plications.

An extrapolation of the double-precision floating-point
cost-performance of larger FPGAs using two different de-
signs suggests that these devices will not be cost-competitive
with processors any earlier than 2009. However, FPGA
floating-point performance is very sensitive to the mix of
dedicated arithmetic units in the architecture and for this

cost-performance crossover point to be reached requires ar-
chitectures with significant dedicated multipliers.

For lower precision data formats current generation FP-
GAs fare much better, being cost-competitive with proces-
sors. While completely integer implementations of floating-
point applications permit the FPGA to fully leverage its
strengths, for at least one such application the cost-
performance of an all-integer implementation was signifi-
cantly worse than a processor. This benchmark suggests that
only certain domains of supercomputing problems will expe-
rience significant performance improvements when imple-
mented in FPGAs and floating-point arithmetic is not cur-
rently one of them.

REFERENCES

[1] K. Compton and S. Hauck, “Reconfigurable computing: a sur-
vey of systems and software,” ACM Computing Surveys, vol. 34,
no. 2, pp. 171–210, 2002.

[2] K. Puttegowda, W. Worek, P. Pappas, A. Dandapani, P. Atha-
nas, and A. Dickerman, “A run-time reconfigurable system for
gene-sequence searching,” in Proceedings of the 16th Interna-
tional Conference on VLSI Design, pp. 561–566, New Delhi, In-
dia, January 2003.

[3] TimeLogic, “DeCypher Engine G4,” 2006, http://www.time-
logic.com/decypher engine.html.

[4] R. Tessier and W. Burleson, “Reconfigurable computing for
digital signal processing: a survey,” Journal of VLSI Signal Pro-
cessing Systems for Signal, Image, and Video Technology, vol. 28,
no. 1-2, pp. 7–27, 2001.

[5] C. Patterson, “High performance DES encryption in vir-
tex(tm) FPGAs using Jbits(tm),” in Proceedings of the 8th An-
nual IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM ’00), p. 113, Napa Valley, Calif, USA,
April 2000.

[6] R. Sinnappan and S. Hazelhurst, “A reconfigurable approach
to packet filtering,” in Proceedings of the 11th International
Conference on Field-Programmable Logic and Applications (FPL
’01), vol. 2147 of Lecture Notes in Computer Science, pp. 638–
642, Belfast, Northern Ireland, UK, August 2001.

[7] J. Jean, X. Liang, B. Drozd, and K. Tomko, “Accelerating an
IR automatic target recognition application with FPGAs,”
in Proceedings of the 7th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCMM ’99), pp.
290–291, Napa Valley, Calif, USA, April 1999.

[8] Z. K. Baker and V. K. Prasanna, “Time and area efficient
pattern matching on FPGAs,” in Proceedings of the 12th
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’04), pp. 223–232, Monterey, Calif, USA,
February 2004.

[9] SRC, “SRC-7 Product Sheet,” 2006, http://www.srccomp.com/
Product%20Sheets/.

[10] A. Vance, “Start-up could kick Opteron into overdrive,” The
Register, 2006.

[11] G. Woods, “Cray ARSC presentation FPGA,” in Proceedings of
ARSC High-Performance Reconfigurable Computing Workshop,
Fairbanks, Ala, USA, August 2005.

[12] J. Collins, G. Kent, and J. Yardley, “Using the starbridge sys-
tems FPGA-based hypercomputer for cancer research,” in Pro-
ceedings of the 7th International Conference on Military and
Aerospace Programmable Logic Devices (MAPLD ’04), Wash-
ington, DC, USA, September 2004.

http://www.timelogic.com/decypher_engine.html
http://www.timelogic.com/decypher_engine.html
http://www.srccomp.com/Product%20Sheets/
http://www.srccomp.com/Product%20Sheets/

S. Craven and P. Athanas 7

[13] SGI, “Extraordinary acceleration of workflows with reconfig-
urable application-specific computing from SGI,” White Pa-
per, Silicon Graphics, Mountain View, Calif, USA, November
2004.

[14] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev,
“64-bit floating-point FPGA matrix multiplication,” in Pro-
ceedings of the 13th ACM/SIGDA ACM International Sympo-
sium on Field Programmable Gate Arrays (FPGA ’05), pp. 86–
95, Monterey, Calif, USA, February 2005.

[15] M. C. Smith, J. S. Vetter, and S. R. Alam, “Scientific comput-
ing beyond CPUs: FPGA implementations of common scien-
tific Kernels,” in Proceedings of the 8th International Confer-
ence on Military and Aerospace Programmable Logic Devices
(MAPLD ’05), Washington, DC, USA, September 2005.

[16] E. Stahlberg, K. Wohlever, and D. Strenski, ““Defining recon-
figurable supercomputing” Status Report of the OpenFPGA
Initiative: Effort in FPGA Application Standardization,” Cray
User Group, Seattle, Wash, USA, May 2006.

[17] K. Turkington, K. Masselos, G. A. Constantinides, and P.
Leong, “FPGA acceleration of the LINPACK benchmark us-
ing handel-C and the celoxica floating point library,” in Pro-
ceedings of the 9th International Conference on Military and
Aerospace Programmable Logic Devices (MAPLD ’06), Wash-
ington, DC, USA, September 2006.

[18] W. Bohm and H. Hammes, “A transformational approach to
high performance embedded computing,” in Proceedings of
High Performance Embedded Computing (HPEC ’04), Lexing-
ton, Mass, USA, September 2004.

[19] K. Underwood, W. Ligon III, and R. Sass, “An analysis of the
cost effectiveness of an adaptable computing cluster,” Cluster
Computing, vol. 7, no. 4, pp. 357–371, 2004.

[20] D. Bennett, E. Dellinger, J. Mason, and P. Sundarajan, “An
FPGA-oriented target language for HLL compilation,” in Pro-
ceedings of Reconfigurable Systems Summer Institute (RSSI ’06),
Urbana, Ill, USA, July 2006.

[21] M. Smith, J. Vetter, and S. Alam, “Scientific computing beyond
CPUs: FPGA implementations of common scientific Kernels,”
in Proceedings of the 8th International Conference on Mili-
tary and Aerospace Programmable Logic Devices (MAPLD ’05),
Washington, DC, USA, September 2005.

[22] D. Shand, R. Chamberlain, D. Denning, and E. Lord, “A study
into implementing the lattice Boltzmann floating point model
with reconfigurable computing,” in Proceedings of Reconfig-
urable Systems Summer Institute (RSSI ’06), Urbana, Ill, USA,
July 2006.

[23] R. Scrofano, M. Gokhale, F. Trouw, and V. K. Prasanna, “A
hardware/software approach to molecular dynamics on recon-
figurable computers,” in Proceedings of the 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM ’06), pp. 23–34, Napa, Calif, USA, April 2006.

[24] V. Kindratenko and D. Pointer, “A case study in porting a pro-
duction scientific supercomputing application to a reconfig-
urable computer,” in Proceedings of the 14th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM ’06), pp. 13–22, Napa, Calif, USA, April 2006.

[25] M. Smith, S. Alam, P. Agarwal, J. Vetter, and D. Caliga, “A
task-based development model for accelerating large-scale sci-
entific applications on FPGA-based reconfigurable computing
platforms,” in Proceedings of Reconfigurable Systems Summer
Institute (RSSI ’06), Urbana, Ill, USA, July 2006.

[26] V. Kindratenko, “First-hand experience on porting MAT-
PHOT code to SRC platform,” in Proceedings of Reconfigurable
Systems Summer Institute (RSSI ’06), Urbana, Ill, USA, July
2006.

[27] E. El-Araby, T. El-Ghazawi, J. Le Moigne, and K. Gaj, “Wavelet
spectral dimension reduction of hyperspectral imagery on a
reconfigurable computer,” in Proceedings of IEEE International
Conference on Field-Programmable Technology (FPT ’04), pp.
399–402, Brisbane, Queensland, Australia, December 2004.

[28] S. Akella, D. A. Buell, L. E. Cordova, and J. Hammes, “The
DARPA data transposition Benchmark on a reconfigurable
computer,” in Proceedings of the 8th International Confer-
ence on Military and Aerospace Programmable Logic Devices
(MAPLD ’05), Washington, DC, USA, September 2005.

[29] E. El-Araby, M. Taher, T. El-Ghazawi, M. Abouellail, N. Sas-
try, and K. Gaj, “Efficient implementation of a string match-
ing algorithm for SRC and cray reconfigurable computers,” in
Proceedings of the 8th International Conference on Military and
Aerospace Programmable Logic Devices (MAPLD ’05), Wash-
ington, DC, USA, September 2005.

[30] K. Gaj, T. El-Ghazawi, D. Poznanovic, et al., “Development
and maintenance of user libraries for SRC reconfigurable
computers,” in Proceedings of the 8th International Confer-
ence on Military and Aerospace Programmable Logic Devices
(MAPLD ’05), Washington, DC, USA, September 2005.

[31] H. Meuer, J. Dongarra, and E. Strohmaier, “Top 500 List,”
2005, http://www.top500.org/.

[32] K. D. Underwood and K. S. Hemmert, “Closing the gap:
CPU and FPGA trends in sustainable floating-point BLAS
performance,” in Proceedings of the 12th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM ’04), pp. 219–228, Napa, Calif, USA, April 2004.

[33] L. Zhuo and V. K. Prasanna, “Design tradeoffs for BLAS oper-
ations on reconfigurable hardware,” in Proceedings of the Inter-
national Conference on Parallel Processing (ICPP ’05), pp. 78–
86, Oslo, Norway, June 2005.

[34] C. H. Ho, M. P. Leong, P. H. W. Leong, J. Becker, and M.
Glesner, “Rapid prototyping of FPGA based floating point
DSP systems,” in Proceedings of the 13th IEEE International
Workshop on Rapid System Prototyping (RSP ’02), pp. 19–24,
Darmstadt, Germany, July 2002.

[35] Xilinx, “Floating-point Operator v2.0 Datasheet,” 2006.
[36] ClearSpeed, “Advance Accelerator Board Product Brief,” 2006,

http://www.clearspeed.com/docs/resources/.
[37] ClearSpeed, “Low volume price quote on Advance Accelerator

Board,” Email correspondence, 2006.
[38] T. Chen, R. Raghavan, J. Dale, and E. Iwata, “Cell Broadband

Engine Architecture and its first implementation,” IBM Devel-
opWorks, 2005.

[39] Merrill Lynch, “Playstation 3 slippage looking more likely—
implications,” Technology Strategy Report.

[40] L. Kahney, “System X faster, but falls behind,” Wired News,
2004.

[41] C. J. Ribbens, S. Varadarjan, M. Chinnusamy, and G. Swami-
nathan, “Balancing computational science and computer sci-
ence research on a terascale computing facility,” in Proceedings
of the 5th International Conference on Computational Science
(ICCS ’05), vol. 3515, pp. 60–67, Atlanta, Ga, USA, May 2005.

[42] U. Keith, “FPGAs vs. CPUs: trends in peak floating-point perf-
ormance,” in Proceedings of the 12th ACM/SIGDA Internation-
al Symposium on Field Programmable Gate Arrays (FPGA ’04),
pp. 171–180, Monterey, Calif, USA, February 2004.

[43] B. Holland, M. Vacas, V. Aggarwal, R. DeVille, I. Troxel, and
A. D. George, “Survey of C-based application mapping tools
for reconfigurable computing,” in Proceedings of the 8th Inter-
national Conference on Military and Aerospace Programmable
Logic Devices (MAPLD ’05), Washington, DC, USA, Septem-
ber 2005.

http://www.top500.org/
http://www.clearspeed.com/docs/resources/

8 EURASIP Journal on Embedded Systems

[44] N. Shirazi, P. Athanas, and A. Abbott, “Implementation of a 2-
D fast fourier transform on a FPGA-based custom computing
machine,” in Proceedings of the 5th International Workshop on
Field Programmable Logic and Applications (FPL ’95), Oxford,
UK, August-September 1995.

[45] J. Liang, R. Tessier, and O. Mencer, “Floating point unit gen-
eration and evaluation for FPGAs,” in Proceedings of the 11th
Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM ’03), pp. 185–194, Napa, Calif, USA,
April 2003.

[46] P. Belanovic and M. Leeser, “A library of parameterized float-
ing point modules and their use,” in Proceedings of the 12th
International Conference on Field Programmable Logic and Ap-
plications (FPL ’02), Montpelier, France, September 2002.

[47] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria, and
D. Poirier, “A flexible floating-point format for optimizing
data-paths and operators in FPGA based DSPs,” in Proceed-
ings of the 10th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA ’02), pp. 50–55, Monterey,
Calif, USA, February 2002.

[48] N. Nakasato and T. Hamada, “Astrophysical hydrodynamics
simulations on a reconfigurable system,” in Proceedings of the
13th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’05), pp. 279–280, Napa, Calif,
USA, April 2005.

[49] W. Gropp, “Closing the performance gap,” in Proceedings of
DOE SciDAC PI Meeting, Napa, Calif, USA, March 2003.

[50] GIMPS, “The Great Internet Mersenne Prime Search,” http://
www.mersenne.org/.

[51] S. Craven, C. Patterson, and P. Athanas, “Super-sized multi-
plies: how do FPGAs fare in extended digit multipliers?” in
Proceedings of the 7th International Conference on Military and
Aerospace Programmable Logic Devices (MAPLD ’04), Wash-
ington, DC, USA, September 2004.

http://www.mersenne.org/
http://www.mersenne.org/

	Introduction
	FPGA supercomputing trends
	HPC implementations
	Theoretical floating-point performance
	Tools

	Floating-point alternatives
	Nonstandard data formats
	GIMPS benchmark

	Conclusion
	REFERENCES

