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Chapter 3: Kinematic Position Analysis

Kinematic position analysis is the first step in creating a complete mathematical model of the
new manipulator architecture.  This analysis will begin by developing a general descriptive
model that characterizes the kinematic geometry of the device.  From this geometric model, a
mathematical function relating the input-to-output position parameters will be formed.  The goal
of this function is to describe the forward and inverse position relationships in closed-form.  The
position analysis will also be demonstrated when the wrist is kinematically constrained to behave
as a spherical two degree-of-freedom orienting device.  Finally, the kinematic position solutions
will be used to generate kinematic workspace plots that demonstrate the manipulator’s range of
motion.

3.1 Review of Similar Geometric Architectures

The first reference to a geometry similar to that of the proposed wrist was by Clemens, (1872)
who patented a parallel chain R-R-S-R-R spatial linkage that formed a constant velocity
coupling.  In 1973, Hunt cataloged a variety of couplings, including this R-R-S-R-R coupling.
Although these devices have an architecture similar to that of the proposed wrist, they differ
substantially in application.  For example, all of these earlier works treat the device as a passive
torque coupling rather than as an actuated positioning device.  This research has evolved from
the shaft coupling research and the author’s work with parallel robotic platform manipulators and
an all-revolute constant-velocity coupling (Salerno, 1994), (Canfield and Reinholtz, 1995),
(Canfield et al., 1994).  All the devices share a common basic geometric architecture, called the
double octahedron, shown in Fig. 3.1.

3.2 Geometric Model of the Wrist Architecture

A schematic diagram illustrating the geometry of the Carpal wrist is shown in Fig. 3.2.  This
wrist consists of two rigid plates, referred to as the basal and distal plates, coupled together by
three five-revolute (RRRRR) chains, with the central three revolutes intersecting at a common
point.  As a simplification, the central three intersecting revolutes could be replace with a spheric
joint.  However, it is considered that this all-revolute design will lead to increased reliability and
superior precision.  Although other possible geometries exist, this paper will specifically address
configurations in which the revolute axes of the basal and distal plates form equilateral triangles
with base dimension, b, and which have six connecting arms of equal length, l.  This symmetric
construction was specifically chosen to result in a closed-form kinematic analysis.  By actuating
the three basal revolute joints, θ1, θ2, and θ3, the motion of the distal plate may be controlled
relative to the basal plate.  This wrist is capable of producing pitch and yaw rotations in excess of
180 degrees combined with a third translational or “plunging” motion. The plunging motion is
defined as an extension along the normal axis of the distal plate.  A fourth degree-of-freedom
may be added in the form of a revolute joint on the distal plate that allows rotation about the
pointing direction to accommodate tasks requiring general orientations of the end-effector.  Note
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that adding roll motion in this manner results in an overall structure that is no longer parallel, but
rather a hybrid parallel/serial device.  Issues involved with adding a roll degree of freedom to the
Carpal Wrist are addressed in detail in Chap. 7.

The plunging motion of the proposed wrist potentially creates control challenges.  This degree-
of-freedom complicates the solution to the inverse kinematics of the manipulator since the
plunge capability creates a redundant positioning problem.  In some applications the extra
degree-of-freedom may be advantageous; for example in increasing manipulator dexterity or
increasing available workspace.  However, for many industrial applications it is an unnecessary
redundant degree of freedom.  One way of resolving this control problem is by coupling the three
degrees-of-freedom (pitch, yaw, and plunge) such that the wrist is only capable of producing
pitch and yaw orientation.  The constraint on the plunge motion may be imposed by coupling the
control of the actuators through the control algorithms, as demonstrated in this chapter, or by
physically coupling the device such that only the two angular motions may occur.  Operated in
this two degree-of-freedom mode, the device is a true spherical wrist, and the manipulator/wrist
combination will satisfy necessary  criteria for a closed-form solution of a six degree-of-freedom
manipulator, e.g., Pieper’s criteria (Craig, 1989).

Figure 3.1: Schematic of Double Octahedron
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3.3 Kinematic Position Analysis of Proposed Wrist Architecture

This section will develop closed-form solutions to both the forward and inverse kinematic
analyses of the proposed wrist. Spherical constraints will then be developed and imposed on the
inverse kinematic solution.  Finally, this solution will be used to develop workspace plots.

From the kinematic diagram shown in Fig. 3.2, the geometry of the basal and distal plates can
be characterized by the location and orientation of their corresponding revolute joints. These
revolutes were chosen to lie on equilateral triangles with the center of each revolute located at the
midpoint of each side of the triangle and the axes of the revolutes coincident with the sides of the
triangle.  The revolutes of the basal and distal plates are located by vectors bi and di (i = 1...3),
respectively.  The orientation of each basal revolute are denoted by the unit vectors ûi (i = 1...3).
The midpoint of each branch is the point of intersection for the center three revolutes and are
labeled as points mi (i = 1...3).  Also shown in Fig. 3.2 is the mid-plane of the wrist which is
defined by the midpoints of the three branches.  This midplane forms a plane of symmetry for
this particular wrist geometry.  Coordinate frames {B}  and {D}  are located at the centroids of the
basal and distal plates with the z-axis of each coordinate frame normal to its corresponding plate
and with each corresponding x-axis pointing toward the first nodal point, b1 or d1 (see Figs. 3.2
and 3.3). The centroid of the basal plate, cB, is the system origin. The geometric center of  the
wrist, cW is defined as the intersection of the normal-axes of the basal and distal coordinate
frames. This position is unique in that the distance from cW to either cD or cB is equal to the
plunge distance, pd.  While the geometric center does not necessarily lie on any physical part of

θ1
θ2

θ3

û1

û2

û3

m1 m2

m3

d3

d1

d2

b1

b2

b3

q2
^

q1^ q3
^

l

l

b

Basal Plate

Figure 3.2: Kinematic Diagram of Proposed Wrist
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the wrist, it is important because, in the spherically constrained mode, the motion of the distal
coordinate frame  describes a sphere of radius pd about the geometric center of the wrist.  The
final roll axis, when included, is configured such that the tool coordinate frame {T} rotates about
the z-axis of frame {D}.

3.3.1 Forward Kinematic Analysis

The forward kinematic problem for this manipulator can be stated as: given a set of basal
revolute angles (θ1, θ2, θ3), and a roll angle, (θr), find the position and orientation of the tool
coordinate frame.

With the location of the basal revolutes and their corresponding angles known, the location of
the mid-points of each branch are found as follows:

m R q bui i ii i
l= +[ , ] �� θ i = ⋅⋅⋅1 3 (3.1)

where R u[ , ]
�

i iθ  represents a rotation about axis ûi by an amount θi, and �q i  defines an inward

pointing unit vector perpendicular to ûi  lying in the base plane, as shown in Fig. 3.2.

Using the mid-points m1, m2, and m3, the plane coefficients, Am. Bm, Cm, Dm, of the midplane
can be determined in standard form as:

[ ] ( ) ( )A B Cm m m
T

, , = − × −m m m m2 1 3 2 (3.2)

Figure 3.3: Wrist Reference Frames
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Now that the midplane is defined, the perpendicular distance from each point,  b1, b2, and b3,  to
the midplane can be found as follows:

( )δ i m i i= ⋅ −�N m b i = ⋅⋅⋅1 3 (3.3)

where the midplane normal, �Nm , is defined as:

�
[ , , ]

Nm
m m m

T

m m m

A B C

A B C
=

+ +2 2 2
(3.4)

Using the inherent midplane symmetry of the wrist shown in Fig. 3.3, the distal revolute centers
may be located relative to the basal revolutes by traversing a distance 2(δi ) from each basal
revolute in the direction of the midplane normal.  Hence,

d b Ni i i m= + 2δ � i = ⋅⋅⋅1 3 (3.5)

These distal revolute centers define the distal plane. The position of the origin of the distal and
tool coordinate frames, cD and cT, are simply determined from the average or center position of
the three distal revolutes.

( )c c d d dD T= = + +1 2 3 3 (3.6)

The z-axis of the distal frame is identified from the vector cross-product.

( ) ( )
( ) ( )

�z
d d d d

d d d d
D =

− × −

− × −
2 1 3 2

2 1 3 2

(3.7)

The other axes of the distal coordinate frame may similarly be defined based on knowledge of the
distal revolute positions:

�x
d c

d c
D

T

T

=
−

−
1

1

(3.8)

� � �y x zD D D= − × (3.9)

Now that all axes of the distal frame are defined with respect to the basal frame, a rotation matrix
characterizing the relative rotation between {B} and {D} may be expressed as:

[ ]D
B

D D DR x y z= � ,� ,� (3.10)

Note that this rotation matrix is a function of θ1, θ2, and θ3.  The last roll axis (when included)
may now be accounted for as:

( )T
B

D
B

z rR RR= θ (3.11)

where T
BR  is a rotation matrix that describes the orientation of the tool relative to the basal

coordinate frame and ( )R z rθ is a rotation about the z-axis by an amount θr.
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Now that the position and orientation of the tip frame are known with respect to the basal
coordinate frame, it is possible to extract any description of rotation that best suits a particular
application.

3.3.2 Inverse Kinematic Analysis

The inverse kinematic problem for the Carpal wrist architecture may be stated as: given a
desired end orientation and plunge distance, find a set of input angles, θ1, θ2, θ3, that will
produce this desired result.

The inverse problem presents difficulties not present in the forward analysis.  The primary
complication results from the fact that only a two degree-of-freedom orientation can be achieved
between the base and distal frames, {B} and {D}.

Briefly, the inverse kinematic solution for a specified position will proceed as follows:

1. Determine that the specified position and orientation lie within the three degree-of-freedom
subspace of the wrist. That is to say, verify that the goal is attainable.

2. Use the given information to first position and orient the tool. This will simultaneously
locate the center of the distal plate and determine its common normal.

3. From this resulting center position and common normal, the location of the distal revolutes
may be uniquely determined.

4. With the location of the distal revolutes known, it is possible to solve for the required basal
angles, θ1 , θ2 and θ3.

5. When a roll axis is included, determine the relative rotation between the distal coordinate
frame and the tool frame.  This angle is the resulting roll axis angle, θr.

The first task above may be simplified by restricting the goal specification to a consistent set of
three variables. For this wrist, it is natural to specify the pointing orientation (two parameters)
and the plunge distance (one additional parameter). The architecture of the wrist prohibits
relative rotation between the basal and distal plates about their common normal axes (Hunt,
1973), (Canfield and Reinholtz, 1993).  This implies that only two angular degrees of freedom
exist between the basal and distal plates. The pointing orientation of the tool may be specified
using any convenient method.  Ultimately, whatever description is used, it may be converted into
a general rotation matrix.

To better visualize the inverse problem, the wrist will momentarily be modeled as two rods of
length pd (the plunge distance), joined by a spheric joint.  Fig. 3.4 illustrates this model of the
wrist.  From the specified tool rotation matrix it is possible to extract the direction of the z-axis
of  the tool frame.  This is simply the last column of the rotation matrix that describes the desired
orientation.  The components of this vector along with the components of the z-axis of the basal
frame determine the axis of bending, �ubend, which is perpendicular to both.  Continuing with the
above model, the axis of bending is first defined, enabling the second link to be rotated about this
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axis. The two orientational degrees-of-freedom are now given by the axis of bending and the
angle, φ, which specifies the degree of bending.

Step two may be accomplished by evaluating �ubend and φ:

�

� �

� �

u
z z
z zbend

T B

T B

= ×
×

(3.12)

( )φ = ⋅−cos � �

1 z zT B (3.13)

where, �zB , �zT  are the z-axes of the basal and tool frames respectively.

The location of the distal revolute joints may now be found by rotating their undeflected
positions as  follows:

d R dui ibend i
= ( )� , 'φ i 1,...,3= (3.14)

where
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k k v c k k v k s k k v k s

k k v k s k k v c k k v k s

k k v k s k k v k s k k v c

x x x y z x z y

x y z y y y z x

x z y y z x z z

φ

φ φ φ φ φ φ
φ φ φ φ φ φ
φ φ φ φ φ φ

=
+ − +

+ + −
− + +
















, (3.15)

k

k

k

v c
x

y

z

bend

















= = −�u  and φ φ1 , (3.16)

and the vectors d d d' , ' , '1 2 3  represent the position of the undeflected revolutes described about the
wrist center, cW.  Thus,

[ ] [ ]d c' , , , , ,i i i d

T

w d
T

b b p p
x y

= = 0 0 i 1,...,3= (3.17)

With the location of the distal revolutes known, it is possible to identify points which must lie
on the plane of symmetry.  Three such points may be conveniently found as follows:

Figure 3.4: Spherical Kinematic Model
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p d bi i i= +( ) 2 i 1,...,3= (3.18)

These points bisect the vector connecting the corresponding revolutes on the basal and distal
plates (see Fig. 3.3).  In general these points are not coincident with the midplane spheric joints,
m1, m2, m3.  Using these three bisecting points the coefficients for the equation of the midplane
may be determined:

N p p p p N pm m m m
T

m mA B C D= = − × − = − ⋅{ } ( ) ( ),, , 2 1 3 1 1 (3.19)

where Nm  is the common normal to the midplane, and Am ... Dm are the plane coefficients for the
midplane.  The basal and distal ends of the wrist are joined by three symmetric RRRRR chains.
Both the basal and distal arms form circles that intersect the midplane at the location of the
intersecting revolute midplane points.  This is characterized in the following set of constraint
equations:

m bi i

c i c i c i c

m i m i m i m

l
A m B m C m D
A m B m C m D

x y z

x y z

− =
+ + + =
+ + + =

,
,

,
0

0
i 1,...,3= (3.20)

where m1 ... m3 are the midplane nodes, l is the arm length, and Ac ... Dc represent the plane
equation coefficients for the base arm circle.  These three equations are solved by expanding the
distance equation and substituting into each plane equation until a quadratic solution is found for
each of the three nodes.  Thus, the entire inverse positioning problem has eight (23) distinct
closures.

Once each of the midplane nodes are found, the required input angles are determined as the
angle between the basal arms and the unit vectors, �qi .

( )
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θ i
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i i
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−




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


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−cos
�

1 m b q

m b
i 1,...,3= (3.21)

where θi, i=1,…,3, are the required input angles.

The final roll axis rotation may now be evaluated by observing the angle between the �xD  and
�xT  axes,

( )θr D T= ⋅−cos � �
1 x x . (3.22)

For any orientation and plunge distance, it is now possible to solve for the four input angles.
This solution does, however, couple the positional and orientational degrees-of-freedom and
perhaps complicates the overall manipulator solution. This complication may be avoided by
imposing spherical constraints which decouple the position and orientation, essentially making
this a spherical wrist.  Simpler, three degree-of-freedom parallel wrists have been proposed by
Angeles and Gosselin (1989) and Asada and Cro Granito (1985), but these appear to lack the
high dexterity and large workspace characteristics exhibited by this device



Stephen L. Canfield Chapter 3: Kinematic Position Analysis 24

3.4 Artificially Coupled Spherical Configuration

Imposing spherical constraints on the proposed wrist is simply a matter of specifying the
plunge distance parameter, pd, as a constant.  This results in cW, the location of the wrist’s
geometric center remaining fixed.  In many respects, this may prove to be a useful mode in which
to operate the wrist.  Solutions may be generated for a six degree-of-freedom positioning
problem without the need to account for the redundant plunge axis.  Several two degree-of-
freedom parallel pointing devices exist; for example, a single loop, spherical 5R mechanism
(Ouerfelli and Kumar, 1991), and a two degree-of-freedom spherical parallel manipulator
(Gosselin et. al., 1994).  However, it is believed that the proposed wrist has the  advantages of
symmetry and a large, singularity free workspace.  Additionally, it is possible that more
sophisticated control methods could use this extra degree-of-freedom to optimize a given
objective function, as demonstrated in Chap. 7.

3.5 Kinematic Workspace Analysis

A kinematic workspace analysis for the new wrist concept was performed to demonstrate its
range of motion.  The workspace, presented in Fig. 3.5, is  limited only by kinematic constraints
and does not account for physical link interferences.  This analysis was performed by moving the
wrist model to increasingly large displacement angles and checking the kinematic position
equations for closure (or assembly).  In order to demonstrate the clearest visible representation,
surfaces were plotted, each of which represent a different fixed plunge value, represented by the
dimensionless plunge distance to leg length ratio, Rd =pd/l.  The available kinematic workspace is
a function of the base to leg length ratio, Rb  = b/l and the plunge distance to leg length ratio
(Canfield, Salerno, and Reinholtz, 1994).  For any given Rd, the wrist sweeps through a
spherically constrained workspace.  To illustrate the total unconstrained kinematic wrist
workspace, a series of these spherically constrained workspace plots are developed for ratios Rd =
0.7467 to 0.8667, while the ratio Rb is held fixed at 0.6667.  The total workspace volume may be
visualized as the sum of all the individual fixed plunge ratio plots.  For clarity the plots shown in
Fig. 3.5 are shown separated along the vertical axis.  In reality these workspace shells would be
nested about a near common center.
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3.6 Conclusions to Kinematic Position Analysis

The initial position kinematic analysis of the parallel-architecture Carpal wrist concept is
presented in this chapter.  The geometric model and kinematic model demonstrate that the wrist
possesses a number of characteristics that are beneficial and necessary to a majority of robotic
manipulator applications; i.e., a large workspace, a high strength-to-weight ratio (Ganino, 1996),
and an open-center architecture.  The kinematic analyses result in closed-form solutions for both
the forward and inverse positioning problem.  The inverse kinematic problem for the wrist has
been solved for the general three degree-of-freedom Wrist and the four degree-of-freedom fully
orientational Wrist, providing both orientation and plunge position, and also for the constrained
spherical configuration, providing only general pointing orientation.  These solutions for the
inverse kinematic problem are significant since they show that the Wrist may be controlled in
real time with minimal computational effort.  Results from the workspace analysis demonstrates
the necessary large workspace for robotic wrist applications.  It possesses a large, continuous
workspace which can be optimized for a particular application by altering the geometric
dimensions.  In addition to the large workspace, the Carpal Wrist will be shown in Chap. 4 to be
free of singularities within its boundaries.

Figure 3.5: Theoretical Workspace
Corresponding to Various Rd Ratios
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