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(ABSTRACT) 

 

 

The work is focused in investigating the effectiveness of discretized damping tapes applied to a 

cantilever beam subjected to free and forced vibrations. The work is divided into three main 

sections. First, we performed material characterization of the viscoelastic (VE) pressure sensitive 

adhesive layer of the damping tapes. To do so, we designed a novel quad shear specimen to 

measure shear storage and loss moduli, and tan δ from dynamic mechanical analyzer 

measurements. Second, the optimal discretization length for different damping tapes was 

experimentally determined and analytically verified using linear viscoelasticity and basic 

strength of materials and vibrations principles. These results showed a mean to improve the 

damping of a structure without increasing the weight of the added damping layer. Third, a 

nonlinear analysis was performed for cantilever beams with damping layers subjected to 

parametric excitation. Comparison of the response amplitude of the parametrically excited beam 

was performed for different discretization lengths, and system identification of the nonlinear 

parameters was carried out. The effects of large deflections of a beam under parametric 

excitation were analyzed; large deflections were found to induce localized buckling of the stiff 

constraining layer of the damping tape that would invalidate some of the assumptions and 

analytical solutions that do not take such phenomena into account. 
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Chapter 1 Thesis Overview 

 

 

A brief introduction is made about the basic concepts used in this work to study the energy 

dissipation of structural elements with equipped discretized damping layers. The chapter starts 

with an overview of the problem of vibration control in structural elements. This is followed by 

an introduction of the concept of damping tapes including, configuration, history, and 

applications, along with the concept of discretized constrained damping layers. The nonlinear 

vibrations of a cantilever beams and the buckling of a thin beam on an elastic foundation are also 

introduced.  

 

1.1 Background 

Vibration problems are of significant concern in many industrial systems nowadays. Often, 

vibrations are an undesirable problem and the goal is to reduce the amplitude of such vibrations 

to non-harmful levels. Failures due to excessive vibration are often expensive and can even be 

life threatening. The costs of preventive solutions are often less than the damage result, including 

the possibility of catastrophic failures. Therefore, an understanding of vibrations and mitigation 

strategies is very important for practicing engineers. 

 

1.1.1 Damping tapes as vibration control solutions 

Commonly used damping control mechanisms include viscoelastic (VE) pads/layers that help 

decrease harmful vibrations of critical components. The characteristic that makes these materials 

appropriate for such applications is the fact that VE materials under most loading conditions will 

dissipate energy through viscous dissipation and resulting heating of the viscoelastic material.  

This energy dissipation is important when the VE material undergoes steady state oscillations 

(Dillard, 2013). Therefore, VE materials are can be used as damping methods.  
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1.1.2 Damping tape configurations 

Available forms of damping tapes are often composed of three main components, as shown in 
Figure 1.1: 
 
 

1. Backing layer: a stiff constraining layer on the top of the adhesive layer to enhance the 

energy dissipation. Commercially available damping tapes often have a dead soft 

aluminum backing material to enable them to be conformed to nonplanar surfaces. 

2. Pressure sensitive adhesive (PSA) layer: the viscoelastic material used as the dissipating 

layer. 

3. Liner layer: a siliconized paper layer is often used to prevent blocking during storage, and 

it is always removed prior to application of the tape. 

 

 
Figure 1.1: Damping tape configuration. Source: 3M. “3M Metal Foil Tapes”. edited by 3M, 

2012. URL: 

http://multimedia.3m.com/mws/mediawebserver?mwsId=66666UgxGCuNyXTtMxM_58TtEVt

QEcuZgVs6EVs6E666666--&fn=70-0709-5390-9%20LR_R4.pdf  Used under fair use, 2014. 

 (3M, 2012a)  
 

1.1.3 Historical background of damping tapes. 

One of the most typical solutions for vibration damping is to simply bond VE materials to the 

structure. This type of damping mechanism has been considered since the 1950s for the purpose 

of noise reduction in diverse industrial applications. Although the literature has included this 

Backing layer 

PSA layer 

Liner layer 
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solution since the 1950s, the fact that covering metal sheets with rubberlike materials reduces the 

noise associated with common loads was recognized earlier (Ungar, 2000). 

 

 
Figure 1.2: Free damping layer. 

 

The idea of covering vibrating structures with VE materials to damp such vibrations to reduce 

noise and avoid dangerous oscillatory loads soon became popular, and so researchers tried to 

optimize such layers because of their relatively low cost and wide range of applications. To this 

end, one of the configurations considered was a constrained damping layer.  

 

In 1959, Kerwin investigated the effectiveness of the constrained damping layers, and called this 

configuration a “damping tape” or passive constrained damping layer (PCDL). This 

configuration consisted of a VE layer sandwiched between a stiff elastic material and the 

vibrating structure, thereby increasing the energy dissipation of the damping treatment. This 

damping tape was observed to be more effective than the free damping layer because of the shear 

deformation induced within the VE layer (Kerwin, 1959). Ross, Ungar and Kerwin published 

analytical models to predict the damping of an infinite long sandwich configuration where the 

damping material was fully constrained (Ungar, Ross, & Kerwin, 1960). DiTaranto addressed a 

similar specimen but considering a finite length beam for different end conditions (DiTaranto, 

1965). Figure 1.3 illustrates a “damping tape” bonded to the base structure. 
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Figure 1.3: Constrained damping layer. 

In 1960, Parfitt and Lambeth compared the performance of free and constrained VE damping 

layers. They showed that the performance of a constrained damping layer is better than a free VE 

layer. Yet, one of their most important findings was what they referred to as wrinkles in the 

damping tapes, which affected the energy dissipation. They expected that not having perfectly 

straight constraining layers would decrease the “extensional stiffness” of the backing layer, on 

which the enhanced damping depended. They observed instead that the presence of buckling 

actually improved the damping capabilities of the damping layer (Parfitt & Lambeth, 1960). In 

1962, Parfitt found that by discretizing the constrained damping layer, the damping capabilities 

could be improved (Parfitt, 1962). This result was the beginning of a broad and significant field 

of research because it showed that discretized damping tapes might improve damping without 

adding more weight to the structure or any additional complicated mechanism. 

 

Later, in 1970, Plunkett and Lee considered the case of finite-length surface treatment of a well-

known engineering structure, a vibrating cantilever beam with cyclic loadings and showed the 

enhancement of the loss coefficient of a discretized constrained damping layer as shown in 

Figure 1.4 (Plunkett & Lee, 1970). In the current work, we have focused on studying the 

effectiveness of this discretized configuration. 
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Figure 1.4: Discretized damping tape. 

 

 

 

1.1.4 Applications of damping tapes 

Nowadays, continuous damping layers are being used in several industries to reduce undesirable 

noise and vibrations of structural and mechanical elements. Examples of such applications are 

illustrated in Figure 1.5. Damping tapes can be used to damp undesirable noise of domestic 

appliances such a washing machines by bonding a continuous damping tape layer to appropriate 

structural elements. In the automotive industry damping tapes are used to reduce noise and 

vibrations of a cars’ body. Damping tapes are also used to reduce vibrations in aeronautical 

structural elements.  

 

  

  

Discretized constraining layer 

Vibrating structure 
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(a) 

 

(b) 

 

(c) 

 
Figure 1.5: Applications of damping tapes on: a) domestic appliances. b) automotive industry. c) 

aeronautical industry. Source: 3M “Damping Tapes Applications” 3M catalog, 2012. URL: 

http://solutions.3m.com/wps/portal/3M/en_US/Adhesives/Tapes/Applications/~/Industrial-

Adhesives-Tapes-Applications/Damping?N=5865944&rt=r3 Used under fair use, 2014. 

(3M, 2012b). 
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1.2 Project overview 

1.2.1 Motivation for the project 

In spite of the well-known benefits of discretizing constrained layer damping tapes, current usage 

often involves the use of continuous damping layers applied to vibrating structures. This research 

is interested in reviewing the benefits of discretization and investigates other effects of 

alternative embodiments to enhance the performance of damping tapes. 

 

1.2.2 Objectives of the project 

The overall goal of the research is to verify the effectiveness of discretized damping layers 

compared to continuous damping layers applied to cantilever beams. With this method, our goal 

is to observe the reduction of vibration amplitudes in cantilever beams undergoing free and 

forced vibrations. To this end, we divided our goal into the following specific objectives: 

 

1. To perform a dynamic mechanical analysis and determine material properties of 

viscoelastic layers of the damping tapes. This is to predict the performance of the 

damping material in effectively reducing vibration of the tested cantilever beams. The 

target properties of such material characterization are: 

a. Storage modulus. 

b. Loss modulus. 

c. tan δ.  

2. To verify the effect of discretized damping layer on the damping ratio of cantilever 

beams considering: 

a. Different types of damping tapes. 

b. Different materials and thickness beams. 

c. Different surface treatments (fully vs. partially applied)  

3. To investigate and compare the nonlinear response of cantilever beams with and without 

surface treatment as well as different discretization damping layer lengths by considering 

the following aspects: 
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a. Different driving amplitudes of the excitation to observe the damping of 

amplitude of the response in cantilever beams.  

b. Identification of nonlinear parameters such as nonlinear damping, cubic 

nonlinearities and forcing parameters for the beams, considering different 

discretization lengths of the damping tapes applied to the beams.  

 

Our aim is to observe any effect of the tape on nonlinear parameters that govern the 

response of cantilever beams undergoing parametric excitation. So far, the model 

used to perform the identification was for identifying nonlinear parameter of beams 

without surface treatments. In this work one of our objectives is to extend the use of 

the considered model to beams with thin surface treatments. Nonlinear parameters 

have shown to be necessary to model the motion of these beams when the amplitudes 

of the vibration are large enough. We will observe which of the identified parameters 

affect the dynamic of the beam the most when the damping layers are added to the 

system. 

 
 

1.3 Methodology of the project 

The methodology used to pursue the goals of this research is illustrated in Figure 1.6. This figure 

includes the sections and outcomes expected of each main component of the research 

methodology.  

 

1.3.1 Material characterization 

To characterize the VE layer we reviewed literature on VE experimental techniques in order to 

determine an appropriate experimental procedure to obtain shear properties of the polymer. Once 

an appropriate method was chosen, we designed experimental samples to fit the experimental 

procedure that was used in this research. To finish this section, experiments were conducted to 

obtain material properties such as: shear storage modulus, shear loss modulus, and tan δ, all as 

functions of temperature and frequency. 
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1.3.2 Linear analysis 

For this component of the research the first step was to obtain analytical equations to predict the 

energy dissipation of discretized damping layers. To this end, the considered concepts were: 

shear lag model (Volkersen, 1938), viscoelasticity concepts (Dillard, 2013) (Brinson & Brinson, 

2007), and vibrations concepts (Meirovitch, 2010). To complete the linear study an experimental 

part were included. With these experiments we obtained damping ratios for several beams with 

different discretization length. This section of the work relied heavily on the Plunkett and Lee 

analysis (Plunkett & Lee, 1970). 

 

1.3.3 Nonlinear analysis 

As a complementary section of this research, a nonlinear analysis was performed to analyze the 

performance of the damping tapes under high amplitudes of vibrations. To this end, we 

performed experiments in which cantilever beams were parametrically excited at different 

excitation amplitudes and data was recorded for each case. With the experimental measurements, 

nonlinear parametric identification was made. From this identification we obtained values for the 

nonlinear damping, geometric nonlinearity, and forcing parameter for different discretization 

lengths, and compared with identified values for the bare beam.  
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Figure 1.6: Schematic of the research methodology. 

 
 

1.4 Thesis outline 

Following the introduction presented in Chapter 1, the remainder of the thesis is organized as 

follows: 

 

In Chapter 2, we present results from VE material characterization using dynamic mechanical 

analysis (DMA). Because the damping layers that were used for the analysis are commercial 

damping tapes, the characterization of the viscoelastic material is not straightforward because the 

VE PSA layer of the damping tapes is bonded to the backing material and cannot be separated. 

Hence, we designed specimens for testing in the DMA using multiple layers of the constrained 

damping tapes. This geometry allowed us to characterize the VE material within the damping 

tapes. Estimates of the storage and loss shear modulus, and tan δ were obtained from the DMA. 

Finally, we obtained master curves for shear storage and loss moduli as well as tan δ. 

 

Chapter 3 presents a mechanics background for the energy dissipation mechanism within 

damping layers constrained by stiff backing materials. We based this analysis on a linear 

viscoelastic analysis and basic vibrations principles to set the theoretical pillars for comparing 
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the experimental results obtained in the following sections. This chapter also contains additional 

tools to analyze the buckling of the backing layer of the damping tape when the beam is 

subjected to large deflections.  

 

In Chapter 4, we compiled results obtained from the linear analysis of the cantilever beams 

tested. We completed a study of the effect of the constraining layer length on damping ratio of 

the tested beams. Experimental data are shown and analyzed in this chapter. To collect the 

required data we used the available hardware configuration and software programing in 

LabVIEW. We used the experimental values of tan δ obtained from the DMA test performed in 

Chapter 2, and calculated theoretical values for the loss factor of the constrained viscoelastic 

layers. We then compared these results with those obtained from the experiments for several 

damping tapes and damping layer discretization lengths. Numerical integrations were run in 

Matlab® to compute the mode shapes of the structure and compare experimental results. 

 

One of the issues that we wanted to investigate is any nonlinear damping effect of the 

constrained damping layer on cantilever beams undergoing large deflections. For this purpose we 

present in Chapter 5 a nonlinear analysis of cantilever beams. The samples were tested under 

parametric excitation, about twice their natural frequency, to estimate the system’s nonlinearities. 

This was done for different discretization lengths of the constraining layers as in Chapter 4. In 

this section we analyzed the effect of the large deflection experienced by the beam due to the 

parametric excitation, including the buckling of the backing material. Again, we used the 

available hardware configuration and software programing in LabVIEW and ran numerical 

integrations in Matlab® to validate the nonlinear equation of motion.  

 

Chapter 6, complements the nonlinear analysis by investigating the effect of large deflections to 

the damping tapes geometry. Here, the onset of buckling effects as a critical bending strain is 

reached was studied.  

 

Finally, Chapter 7 includes our conclusions of the linear and nonlinear analysis of cantilever 

beams with discretized damping layers, and recommendations for future work. 
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Chapter 2 Experimental Characterization of 

Viscoelastic Material Properties 
 

2.1 Methodology to characterize viscoelastic material properties 

In this chapter, we present an overview of the viscoelastic material characteristics. This section 

contains basic considerations of mechanical properties and characterization techniques. The 

damping tapes used for this thesis were tested using multiple layered samples. We present details 

of such specimen including geometry, composition and construction. Dynamic Mechanical 

Analysis (DMA) settings used with this type of sample and the analytical equations used to 

derive the shear storage and loss moduli from the raw DMA data are listed. With this technique 

we were able accomplish the overall goal of this chapter: to complete an analysis and obtain 

master curves for the viscoelastic materials found in the damping tapes.  

 

2.2 Properties of viscoelastic materials 

To characterize the pressure sensitive adhesive present in the damping tapes, we will assume 

linear viscoelastic behavior. Figure 2.1 shows the response due to a harmonic stress of an elastic 

material, a viscous material and a viscoelastic material to illustrate the differences of each 

response. In Figure 2.1a, we observe the response of a perfectly elastic material. The angle δ 

represents the phase between the excitation and the response for the elastic linear material, δ = 

0°. Figure 2.1b, shows the response of a viscous material with the phase angle δ = 90° and Figure 

2.1c represents a viscoelastic material and the phase angle δ may assume values between 0° and 

90°. So we observe that there is a lag between the excitation stress and the strain response. 
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Figure 2.1: Response to harmonic excitation of: a) elastic material b) viscous material. c) 

viscoelastic material. 

Following the analysis of material properties of damping layers, Figure 2.1 considers the analysis 

of viscoelastic materials undergoing a stress input resulting in a strain output. On the other hand, 

Figure 2.2a considers the response of linear viscoelastic materials under cyclic strain input 

resulting in stress output. Figure 2.2b shows the complex notation used to describe properties of 

this type of material. Linear viscoelastic behavior can be defined by the following shear 

properties (Dillard, 2013) (Brinson & Brinson, 2007): 

  

1. Storage shear modulus: G ' , from Figure 2.2b. The amplitude of the storage shear 

modulus represents the stiffness which is in-phase with the strain, and is related to the 

energy stored and recovered per cycle: 

  

 
δ = 0 

Elastic behavior 

δ = 90 

0 < δ < 90 

Viscous behavior 

Viscoelastic behavior 

(a) 

(b) 

(c) 

τ 
 

γ 
 

τ 
 

γ 
 

γ 
 

τ 
 

 
δ = 0 

Elastic behavior 

δ = 90 

0 < δ < 90 

Viscous behavior 

Viscoelastic behavior 

(a) 

(b) 

(c) 

τ 
 

γ 
 

τ 
 

γ 
 

γ 
 

τ 
 

 
δ = 0 

Elastic behavior 

δ = 90 

0 < δ < 90 

Viscous behavior 

Viscoelastic behavior 

(a) 

(b) 

(c) 

τ 
 

γ 
 

τ 
 

γ 
 

γ 
 

τ 
 



 
14 

 G ' = τ̂
γ̂
cosδ  (2.1) 

 

2. Loss shear modulus: G '' , from Figure 2.2b. The loss modulus represents the stiffness of 

the stress that leads the strain by 90°. G ''  is related to the mechanical energy converted 

to heat through viscous frictional forces: 

 G '' = τ̂
γ̂
sinδ  

(2.2) 

 

 

3. Tan δ: Is the tangent of the loss angle of the material. Defined as the ratio of the loss 

modulus, G '' to the storage modulus,G ' : 

 

 tanδ = G ''
G '

 (2.3) 

 

For the case of a Voigt element (spring and dashpot in parallel), these three properties can be 

related as follows: 

 

 

 

G*(iω ) =G + iωη
G ' =G
G '' =ωη

tanδ = ωη
G

 (2.4) 
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(a) (b) 

Figure 2.2: Response of a viscoelastic material, complex notation results in: a) lagging strain 

response in time domain. b) decomposition of stress into in-phase and out-of-phase components.   

 
 

2.2.1 Frequency and temperature dependence of linear viscoelastic materials 

Although the response of perfectly elastic solids is independent of frequency, this is not the case 

for viscoelastic materials, where the viscoelastic properties in equation (2.4) are all strongly 

dependent on frequency. At a fixed temperature the behavior of the storage and loss moduli and 

tan δ at different frequencies is schematically illustrated in Figure 2.3. Notice that the frequency 

in Figure 2.3 is defined as: 

 

 f = ω
2π

 (2.5) 
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Figure 2.3: Schematic illustration of the effect of the frequency, f on the storage and loss moduli 

and tan δ behavior at constant temperature. 

 

Temperature is another variable to take into account when characterizing VE materials. The 

behavior of G ' , G ''  and tan δ changes with temperature in a similar manner to what happens at 

different excitation frequencies. This temperature and frequency dependency adds complexities 

to the characterization of viscoelastic materials and their applications to industrial design.  One 

can observe from Figure 2.4 that for high temperatures, the behavior of the VE properties is 

similar to that observed when we excite the material at lower frequencies.  
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Figure 2.4: Schematic illustration of the effect of the temperature on the storage and loss moduli 

and tan δ behavior at constant frequency. 

 

From Figure 2.3 and Figure 2.4, we can observe that the behavior of G ' , G ''  and tan δ is 

distributed in three main regions: 

1. Glassy Region: The polymer acts glassy at low temperatures or high frequencies. The 

storage modulus is high with respect to the loss modulus. 

2. Transition Region: The primary transition region begins as the temperature approaches 

the glass transition temperature or its equivalent frequency.  At this point, the molecules 

of the material are more mobile, resulting in larger deformations with substantial energy 

dissipation. This region is important for industrial applications such as vibration control 

so good damping properties can be obtained from the selected VE materials. 

3. Rubbery Region: This region is associated with high temperatures or low frequencies. 

Because the polymer chains have more mobility and offer little resistance in this region, 

the loss modulus, G '' decreases.  
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2.2.2 Time-Temperature Superposition Principle (TTSP) 

The Time-Temperature Superposition Principle (TTSP) is a useful tool when characterizing 

viscoelastic materials. As outlined above, the loss and storage moduli, and tan δ are all frequency 

and temperature dependent. With the TTSP, we are able to span the measured data collected at 

multiple temperatures over a broad time or frequency range.  TTSP, in its simplest form, assumes 

that the complex modulus values at a given frequency and temperature are identical to those at 

any some other frequency and correspondingly different temperature (Sperling, 2005): 

 

 G*( f0,T0 ) = G
*( f = aT f2,T )   (2.6) 

where aT is the thermal shift factor that needs to be determined. One can initially determine the 

values of aT by selecting a reference temperature and shifting the measured data points to the left 

or to the right along the logarithmic frequency scale. Strictly speaking, due to entropic effects, 

the absolute temperature corresponding to each data point also affects the modulus in another 

way as well. For this reason, each data point should be multiplied by the ratio, ρT/ρ0T0, where T 

is the absolute temperature of a particular data point, T0 is the absolute reference temperature, ρ 

is the density at the temperature T, and ρ0 is the density at the reference temperature. But, this 

vertical shifting is typically small compared to the horizontal shift and is often neglected (Ferry, 

1980).  

In the relevant literature one can find different shift factor relationships; one commonly used is 

the WLF (Williams – Landel – Ferry) shift factor equation:    

 
 

(2.7) 

where C1 and C2 are constants that should be determined for each material at the chosen 

reference temperature. The WLF equation is often believed to be appropriate in the rubbery 

regime for Tg< T <Tg+100 °C, which is the case for the adhesives studied in this thesis. Table 2.1 

shows representative constants for different materials used with the WLF equation (2.7), where 

the universal values have been found to be approximately appropriate for a range of polymers, 

provided the reference temperature is taken to the be the respective glass transition temperature. 
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Table 2.1: WLF Parameters. 

Polymer T0 [K] C1
 C2 [K] 

Poly(ethyl methacrylate) 335 17.6 65.5 

Hevea rubber 200 16.7 53.6 

Universal Constants T0 = Tg 17.4 51.6 

Source: (Sperling, 2005) 

 

2.2.3 Experimental approach for characterizing viscoelastic materials 

To obtain properties of viscoelastic materials one can consider different approaches to perform 

characterization. In this section we will introduce the experimental methodology used to evaluate 

the frequency and temperature effect on the properties of the viscoelastic layers in the tapes 

considered for this study. The temperature and frequency dependence of linear viscoelastic 

material properties means that a simple quasi-static tensile test is not sufficient to properly 

characterize such materials. In this work we used dynamic testing to characterize the damping 

tapes’ PSA layer while undergoing harmonic loading at different frequencies and temperatures. 

A technique widely used in the polymer field to test viscoelastic materials under such conditions 

is dynamic mechanical analysis (DMA).  

 

During a dynamic oscillatory test, sinusoidal stress or strain is applied to the material at a fixed 

frequency and temperature and the resultant sinusoidal strain or stress is measured. Additionally, 

the phase angle, δ, is recorded. Using the geometry of the sample, and the raw data of force and 

displacement, the DMA determines values of the storage and loss modulus. This test is repeated 

for different frequencies at a fixed temperature in what is called a frequency sweep. Also the 

DMA allows cooling and heating of the sample so that temperature can be controlled over a 

broad range of values, allowing for characterization of viscoelastic materials under different 

frequency and temperature conditions.  

 

2.3 Dynamic mechanical analysis of damping tapes 

The damping tapes were tested using a TA Instruments Q800 Dynamic Mechanical Analysis 

Instrument shown in Figure 2.5. Although, the complex shear modulus is the target property of 
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this analysis, we used the tension film clamp shown on Figure 2.6; the procedure used for this 

analysis will be explained in this section.  

 

 

 

Figure 2.5: TA Q800 Dynamic Mechanical Analysis testing machine. 
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Figure 2.6: Tension film clamp for DMA Q800 TA Instruments. Source: TA Instruments. “TA 

Instruments Thermal Analysis” edited by TA Instruments, 2010. URL: 

http://www.tainstruments.com/pdf/brochure/dma.pdf Used under fair use, 2014. 

(TA-Instruments, 2010) 

 

2.3.1 Experimental sample design 

In 2007, Yang et al. performed material characterization of PSA with a backing material using 

DMA. In their work they considered a multiple layer configuration, consisting of several layers 

of tape (PSA plus the backing material) laminated one on top of the other. Because the backing 

material was much stiffer than the PSA, the deformation of the sample recorded by the DMA 

was assumed to be only due to the deformation of the PSA layers (Yang, Zhang, Moffitt, Ward, 

& Dillard, 2007). In this work a similar strategy has been used but the geometry considered for 

our DMA test was different and it will be explained in this section.  

 

The design used in this work is based on a multiple layer configuration as shown in Figure 2.7a. 

We called this configuration a quad shear sample because it has four active shear areas, each 

with 8 layers of the damping tape. The geometry used for this samples is shown in Figure 2.7b. 
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(a)  (b) 

 
(c) 

Figure 2.7: Geometry of quad shear samples using the 3M 425 Tape. a) basic geometry of the 

quad shear sample. b) schematic with geometric values for the quad shear sample. c) detail of 

two of the four shear areas of the quad shear sample showing the multiple layer configuration. 

 

Figure 2.7c shows a detail of the multiple layer configuration considered in two of the four shear 

areas. The damping tape used to prepare these samples was the 3M 425 damping tape with an 

acrylic adhesive 0.05 mm thick and a 0.07 mm dead soft aluminum backing layer (dimensions 

are nominal values provided by 3M). To explain the construction of these samples, consider the 

two components showed in Figure 2.8. Part A has eight layers of the 3M 425 PSA tape laminated 

over a 6 mm length on both sides of small aluminum plates (0.8 mm thick, 16 mm long, and 10 

mm wide). Part B of the samples is a similar aluminum plate with the same dimensions. Surface 

preparation is used to prepare part B for bonding with an auxiliary adhesive; the surface of the 
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plates were abraded using a 400 grit silicon carbide sandpaper and then cleaned with a water-

based acidic surface cleaner. Finally, parts A and B are bonded using a thin layer of epoxy 

adhesive; C-clamps were used to provide pressure during the bonding of the epoxy adhesive as 

shown in Figure 2.9a-b. 

 

 

 
Figure 2.8: Part of the 8 layered quad shear sample with damping tape 3M 425. 
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(a)                   (b) 

Figure 2.9: Quad shear samples for DMA testing using 3M 425 tape. a) detail of one of the quad 

shear samples during bonding of the thin epoxy layer. b) view of three of the tested quad shear 

samples during bonding. 
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Figure 2.10: Quad shear samples with 3M 425 tape set in the tension film clamp 

 

The tension clamp of the DMA was used and the samples were mounted as shown in Figure 

2.10. In the DMA software we configured the system for a tension analysis. The software 

required input of specific geometric dimensions for this type of analysis. The geometry of a 

fictitious rectangular sample with the overall geometry of the samples was introduced as shown 

in Figure 2.11. The experimental sample was cooled to 0°C using liquid nitrogen (LN2). From 

this point, data was recorded over a range of frequencies (10-1 to 102 Hz) at temperatures of 0°C, 

10°C, 20°C, 32°C, 40°C and 50°C.  
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Figure 2.11: Software set up of the DMA test for a sample of adhesive 3M 425 

 

2.3.2 Shear stress calculations from experimental data 

From the frequency sweep/temperature step test performed, values of tan δ were obtained from 

the DMA software as they were calculated from the ratio, G ''/G ' . This ratio was obtained 

directly from the excitation and response waves and so it was not obtained from internal 

manipulation of the DMA software considering the overall fictitious rectangular geometry given 

to the software (TA-Instruments, 2010). On the other hand the shear properties of the material 

need to be calculated from the raw data of force and displacement recorded for the samples. 

These shear properties were computed from an analysis of the quad shear sample. Figure 2.12a 

shows a free body diagram of the upper part of the tested samples, the double shear force 

distribution can be observed. As the sample is loaded by the DMA at a given frequency and 

temperature, Figure 2.12b schematically illustrates the deformation of the damping tape layers in 

the sample. Figure 2.12c illustrates the deformation of the PSA layer as the deformation of the 

backing material was deemed to be negligible in the analysis. 
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(a) (b) 

 
(c) 

Figure 2.12: Free body diagram of the DMA samples. a) FBD of a tested sample. b) deformed 

FBD of a tested sample. c) detail of the 8-layered sample deformation. 
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We assume that as the DMA gives a displacement to one of the aluminum plates and the total 

displacement of the sample is equally split between the upper and the lower shear areas of the 

sample, as shown in Figure 2.12b.  Therefore, the shear deformation in each active area is half of 

the total displacement recorded by the instrument over the thickness of the damping tape. This 

results in: 

 

 
  
γ (t) =

ΔDMA(t) / 2
nlayerst

 (2.8) 

 

where ΔDMA(t) is the total deformation of the sample, t is the thickness of a single layer of the 

PSA portion of the 3M 425 damping tape, and nlayers  is the number of layers of tape used in the 

circled region of Figure 2.12b. The average shear stress is: 

 

  
τ (t) = P(t) / 2

A
 

(2.9) 

 
where P(t) is the force measured directly from the specimen, and A is the shear area at one of the 

actives shear sections of the sample as shown in Figure 2.12b. This area is equal to: 

 A = lw (2.10) 
 
where l is the overlap length of the PSA tape and w  is the width of the sample. The complex 

shear modulus of the viscoelastic material will be, 

 
G*(iω ) = τ̂

γ̂
cosδ + i τ̂

γ̂
sinδ

G*(iω ) =G '(ω ) + iG ''(ω )
 (2.11) 

   

where   G
*(iω )  is the complex shear modulus,  τ̂  is the amplitude of the shear stress,  γ̂ is the 

amplitude of the shear strain, and δ is the loss angle of the material. Furthermore the storage and 

loss moduli are   G '(ω )  and   G '' , respectively.  
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As a final consideration, these calculations assumed no tensile or shear deformation within the 

dead soft aluminum backing and the aluminum pieces used to construct the samples, because the 

aluminum is much stiffer than the PSA layer. To validate this assumption we used the recorded 

values of force to calculate the deformation of the aluminum foil and plates using the following 

equation: 

 
Δalum = PL

EAc
 

(2.12) 

 

where P, L, E, Ac are the force exerted by the DMA, length of the dead soft aluminum backing 

and the aluminum pieces, Young’s modulus, and Ac is the cross-sectional area of the aluminum 

parts, respectively. The maximum force measured from the DMA results was approximately 0.02 

N. By using equation (2.12), the calculated deformation was shown to be in the order of the 

picometers (pm), six orders of magnitudes less than the deformation data recorded with the 

DMA. So we can reasonably neglect aluminum deformation and use the displacement data to 

calculate the shear deformation of the damping tape as described in the previous steps.  

 

Also, note that the shear storage and loss moduli depend on the thickness of the PSA layer. We 

used the reported values from the 3M datasheet for the damping tape 3M 425 and confirmed 

experimentally these values using a micrometer. Note that changes in this thickness caused by 

storage conditions or manufacturing process variations might cause changes of the values of the 

shear complex modulus calculated with equations (2.11). 
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2.4 Results of the material characterization 

 

2.4.1 Frequency sweep/isothermal test results 

The shear properties from the frequency sweep/isothermal temperature test of the quad sample 

are shown in Figure 2.13 to Figure 2.15. In these plots the results were obtained from 0 to 50°C, 

within the frequency range of 10-1 to 102 Hz. 

 

 
Figure 2.13: Measured storage modulus from the frequency sweep/isothermal temperature test at 

T=0°C, 10°C, 20°C, 32°C, 40°C, and 50°C for a sample prepared with 3M 425 damping tape. 
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Figure 2.14: Measured loss modulus from the frequency sweep/isothermal temperature test at 

T=0°C, 10°C, 20°C, 32°C, 40°C, and 50°C for a sample prepared with 3M 425 damping tape. 

 

 

 
Figure 2.15: Measured tanδ  from the frequency sweep/isothermal temperature test at T=0°C, 

10°C, 20°C, 32°C, 40°C, and 50°C for a sample prepared with 3M 425 damping tape. 
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2.4.2 Time-Temperature Superposition master curves 

The master curves obtained by the Time-Temperature Superposition Principle for the 8-layers of 

PSA tape sample were generated by shifting the curves in Figure 2.13-Figure 2.15 to the chosen 

reference temperature of 20°C. This temperature was chosen because the temperature in the 

laboratory where the vibrations tests were subsequently performed was recorded to be near 20°C. 

We followed the procedure explained in section 2.4.2 and the results are shown in Figure 2.16 to 

Figure 2.19. The narrow range of the temperature steps used only allowed the frequency of the 

master curves to cover from 10-3 to 103 Hz approximately. These plots could be used to predict 

the damping performance of the PSA on the tested 3M 425 damping tape over this range of the 

frequencies. 

 
Figure 2.16: Shift factor obtained for the TTSP for Tref = 20°C. 
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Figure 2.17: The TTSP master curve for storage modulus vs. frequency for a sample prepared 

with 3M 425 damping tape; Tref=20°C. 

 

 

 
Figure 2.18: The TTSP master curve for loss modulus vs. frequency for a sample prepared with 

3M 425 damping tape; Tref=20°C. 
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Figure 2.19: The TTSP master curve for tan δ vs. frequency for a sample prepared with 3M 425 

damping tape; Tref=20°. 

 

The master curves show reasonable shapes, though curves are not as smooth as would be desired.  

The small thicknesses of the PSA layers and stiff behavior of the geometry used may have 

contributed to the greater variation.  Nonetheless, the results were deemed adequate for the 

present study, in part because modulus appears to the one half power in the resulting stress 

distributions, thereby reducing sensitivity to PSA shear modulus. 

 

2.5 Summary 

The quad shear specimen designed for this section has been used to characterize the properties of 

the acrylic pressure sensitive adhesive (PSA) of the 3M 425 damping tape. A series of 

experiments was conducted using a dynamic mechanical analyzer (DMA). The samples were 

setup in the tensile film clamp of the DMA; frequency sweeps at several temperature steps were 

carried out. The shear storage and loss moduli were calculated by analyzing the free body 

diagram of Figure 2.12 and the raw force and displacement data recorded by the DMA, with 

results obtained from equations (2.11). Values of tan δ, were obtained directly from the DMA, 
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because they were not affected by the fictitious geometrical data given to the DMA software.  

Master curves were produced by using the time-temperature superposition principle (TTSP) at 

room temperature from the temperature step/frequency sweep tests. These master curves can be 

used to estimate mechanical properties of the PSA over a broad range of frequencies at different 

temperatures. 
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Chapter 3 Mechanical Analysis of Discretized 

Constrained Damping Layers and their Effects on a 

Structure’s Damping  
 

 

3.1 Methodology to the theoretical analysis of discretized damping layers 

In this chapter, the theoretical foundations for discretized constrained damping layers are given. 

Our analysis is based on a linear viscoelasticity analysis using the material characterization 

performed in Chapter 2, and basic vibrations principles to set the theoretical pillars to understand 

the physical parameters governing energy dissipation for basic structural elements such as 

cantilever beams. We considered different geometries of commercially available damping tapes 

and obtained theoretical loss coefficients from our analysis. In this chapter, based on the previous 

work of Plunkett and Lee, we repeat the derivation of an expression to calculate the optimal 

discretization length required to maximize the loss coefficient of the structure for a given amount 

of damping material.  

 

3.2 Mechanics of constrained damping layers 

In 1960, Parfitt and Lambeth made a comprehensive study about free and constrained damping 

layers. They experimentally compared free and constrained damping layers and called the latter 

“damping tape”. During experiments, they noticed that buckling of the constraining layer, 

induced during storage or loading, caused an improvement of the damping properties. Later, 

Parfitt published one of the first papers in the field and analyzed the effect of discretizing cuts on 

the damping tapes instead of buckling, and concluded that the discretized constraining layer 

effectively improved the damping (Parfitt & Lambeth, 1960). In this work, we will consider 

vibrating cantilever beams with discretized damping layers; analytical and experimental results 

are compared in the next chapters, concluding that this technique of discretizing the constrained 

layer enhances damping of beams. This chapter also provides a mechanics background using 
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viscoelasticity, along with fundamental vibrations and strength of materials concepts to estimate 

the loss coefficient of cantilever beams with discretized damping layer. Additionally, a beam on 

an elastic foundation approach is included to estimate the critical load at which the backing 

material of the damping tape will buckle. These equations will be used later in Chapter 6 to 

compare and interpret experimental observations.  

 

3.3 Optimization of discretized damping tape segment length 

In this section we will follow the procedure published by Plunkett and Lee in order to present an 

expression for the optimal discretization length in order to maximize the loss coefficient of the 

structure without adding additional damping tape (Plunkett & Lee, 1970). To this end, we will 

assume that the analysis is performed over a symmetric cross section; this means that the 

damping tape is bonded at each side of the beam as shown in Figure 3.1 

 

 

 
Figure 3.1: Schematic illustration of discretized damping layers bonded to a cantilever beam. 
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Figure 3.2: Highly exaggerated shear deformations of a: a) continuous constrained damping 

layer. b) discretized constrained damping layer. c) upper discretized constraining 

damping layer and lower layer with small spacing between the discretized segments 

allowing contact. 

 

As an assumption from the literature review given in section 1.1.3, the dominant damping 

mechanism in damping tapes is the shear deformation of the VE layer induced by the stiffer 

constraining layer. Figure 3.2a shows a continuous constrained damping layer; notice that the 

shear deformation due to the stiff backing is localized at the ends of the constraining layer. 

Figure 3.2b shows a discretized damping layer bonded to a deformed beam in this case. Notice 

that additional sections of the viscoelastic material are subjected to shear deformation compared 

to Figure 3.2a. The shear deformation produced at the ends of the stiff backing is now present at 

the ends of each segment of the discretized damping layer. As an additional configuration, 
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consider Figure 3.2c showing in the upper damping layer the effect of the constraining layer as 

explained for Figure 3.2b, but for the lower section since there is no sufficient gap between each 

segment and we will not obtain the enhancement of the damping due to the discretization of the 

damping layer, similarly to what happens in Figure 3.2a. In this work we considered the case 

illustrated in Figure 3.2b. 

 

3.3.1 Volkersen’s shear lag analysis and Plunkett and Lee methodology 

In 1938, Volkersen proposed a shear lag model in which the adherend was modeled as a member 

undergoing axial or longitudinal deformation only and the adhesive as a continuous shear spring 

(da Silva, 2011). In this section, the equation for the shear strain deformation of the constrained 

viscoelastic layer is obtained applying the shear lag model as used by Plunkett and Lee. The 

following assumptions were made in the analysis, which follows (Plunkett & Lee, 1970): 

 

1. The thicknesses of the constraining layer and of the viscoelastic layer are very small 

compared to the thickness of the base structure, for this study a cantilever beam. 

2. The constraining layer segments extend but do not deform in shear. 

3. The VE layer deforms in shear and offers no axial stiffness 

4. The VE layer behaves as a linear VE material. Complex notation can be used to define 

the complex shear modulus: 
  
G*(iω ) = G '(ω )+ iG ''(ω ) = G* (cosδ + isinδ ) . 

5. The constraining material is elastic and does not dissipate energy. 

6. The effects of Poisson ratio are negligible on the one-dimensional problem. 

7. The axial strains at the interface of the base structure and the VE layer are compatible. 

8. The shear strain is uniform through the thickness of the VE layer. 

9. The normal stress is approximated as being uniform through the thickness of the 

constraining layer. 

10. The elastic modulus of VE layers is small compared to those of the base structure and the 

constraining layer. 
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To obtain the expressions for the shear modulus, Plunkett and Lee carried out the following 

analysis: locating the origin of the coordinate system at the center of the constraining layer, as 

shown in Figure 3.3a.  

 

  
(a) (b) 

Figure 3.3: a. Coordinate system as located for the Plunkett and Lee analysis. b. Schematic 
illustration of axial stress and shear stress on the constraining and viscoelastic layer, 

respectively. Source: Plunkett, R. and C. T. Lee. "Length Optimization for Constrained 
Viscoelastic Layer Damping." The Journal of the Acoustical Society of America 48, no. 

1B (1970): 150-161. Used under fair use, 2014. 
(Plunkett & Lee, 1970)  

 

From Figure 3.3b, the equilibrium equations for the constraining layer and the constitutive 

equations are: 

 dσ 2
*

dx
⎛
⎝⎜

⎞
⎠⎟
t2 = τ

*

σ 2
* = E2ε

* = E2
du*

dx

 

 

(3.1) 

 

where E2 is the Young’s modulus of the constraining layer, and t2 is the thickness of the 

constraining layer. The adhesive complex shear stress is defined as: 

 

  
τ * = G*γ * = G*

t1
(u* − u0

*)   (3.2) 

where, G*
 is the complex shear modulus of the viscoelastic material; γ* is the complex shear 

strain; t1 is the thickness of the viscoelastic layer; u* is the displacement at the upper interface 

 
 

La 

t2 

t1 

 

x 

y 

 
 

τ* 

 

 t2 

t1 

dx 

u*(x) 

(x) 

 

 

τ* 
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(constraining layer/viscoelastic material); and u0
*
 is the displacement at the interface of the basic 

structure and the viscoelastic material. Assuming a uniform shear strain through the thickness of 

the viscoelastic layer: 

 u0
* = ε0

*x  (3.3) 

where  ε0
*  is the strain in the beam. Substituting equations (3.3) and (3.2) into (3.1), and 

considering the magnitude of the shear modulus of the adhesive we obtain the governing 

differential equation:  

 
  

d 2u*

dx2 =
G*(iω )
E2t1t2

(u* − ε0
*x)  

 

(3.4) 

 

The term G*(iω ) E2t1t2  from equation (3.4) can be recognized as the shear lag parameter 

from Volkersen’s original shear lag model derivation. The inverse of this parameter is called the 

“shear lag distance”. The shear lag distance represents the characteristic distance associated with 

the transfer of axial load from one adherend to the other, meaning that there is a spatial lag 

before the axial stress reaches equilibrium. (Dillard D. , 2013) (da Silva, Ochsner, & Adams, 

2011). Volkersen’s shear lag parameter is defined as:  

 
  

SL =
t1

G*(iω )
EbtbE2t2

Ebtb + E2t2  
 

 

(3.5) 

 

where Eb and tb are the Young’s modulus and thickness of the base structure, respectively. Notice 

that from assumption (1) given earlier in this section, the ratio of the damping tape to the beam 

thickness was very small, so equation (3.5) can be written as: 

 

  

1
SL

=
G*(iω )
E2t1t2

 

 
 



 
 

42 

Finally, equation (3.4) can be expressed as: 

 

  

d 2u*

dx2 = 1
SL2 (u* − ε0

*x)  

 

(3.6) 

 

Boundary conditions for equation (3.6) considering a single element of the constraining layer 

are: 

 du*

dx
= 0

at x = ± La
2

  (3.7) 

The general solution of equation (3.6) satisfying the boundary conditions is: 

 

 
u*(x) = ε0

* x − SL sinh(x / SL)
cosh(La / 2SL)

⎛
⎝⎜

⎞
⎠⎟

  (3.8) 

 
Equation (3.8) governs the shear deformation of the viscoelastic layer used in the damping 

treatment. In the next section we relate the shear deformation of the viscoelastic layer to the loss 

coefficient of the system. 

 

3.3.2 Energy dissipation within the viscoelastic layer 

An analytical model was needed to use the equation for the shear deformation of the viscoelastic 

layer obtained in section 3.3.1 and find the corresponding loss coefficient for cantilever beams to 

which the damping treatment was applied. From classical viscoelastic concepts and following the 

procedure given by Plunkett and Lee, the energy dissipated per cycle per volume unit of a linear 

viscoelastic material subjected to uniform shear is the area within the stress-strain hysteresis 

loop, and is given by (Brinson & Brinson, 2007) (Dillard, 2013): 

 

 Work dissipated
cycle

= πγ̂ 2G ''(ω )    (3.9) 
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where, γ̂ = γ *  as in (3.2), and G ''(ω ) is the shear loss modulus of the viscoelastic material. 

Using the result of equation (3.8) to obtain the complex shear strain and substituting the results 

into equation (3.9) and multiplying by the beam’s width gives the work dissipated per cycle per 

unit width: 

 

 
Work dissipated

cycle
= πG ''(ω ) ε0

*( )2 1
t1
SL sinh(x / SL)

cosh(La / 2SL)
⎛
⎝⎜

⎞
⎠⎟

2

 

 

(3.10) 

 

Note that Equation (3.10) is in terms of the axial strain of the base rather than explicitly in terms 

of the viscoelastic layer shear strain; this was assumed in (7) in section 3.3.1. Equation (3.10) can 

also be written in terms of G '' = G* sinδ , where the loss shear modulus is expressed in terms of 

the magnitude of the shear stress and tan δ of the viscoelastic material. The resulting energy 

dissipation of the viscoelastic layer was determined by integrating over the length of one 

damping tape element of the assumed discretized surface treatment: 

 

 Wdis = 2π ε0
*( )2 t2E2La 1r

sinh(r cosδ / 2)sinδ / 2 − sin(r sinδ / 2)cosδ / 2
cosh(r cosδ / 2)+ cos(r sinδ / 2)

⎡
⎣⎢

⎤
⎦⎥

  
(3.11) 

 
 

where r is the ratio of the adhesive layer length, La to the shear lag distance, SL. From equation 

(3.11), the loss coefficient of an element of the discretized damping layer was obtained: 

 

dis
d

nom

W
W

η =  

 

(3.12) 

 

where ηd is the nondimensional loss coefficient, and Wnom the nominal energy stored by the 

constraining layer of the damping tape. This would be the energy stored by an element of the 

discretized damping layer if the whole layer were strained by an amount of ε0. The nominal 

energy stored, Wnom is given by: 

 



 
 

44 

 Wnom = 1
2

ε0
*( )2 E2t2La  (3.13) 

 

Applying equations (3.11) and (3.13) into equations (3.12), the loss coefficient is provided by 

(3.14): 

 
 

ηd = 4π
1
r
sinh(A)sinδ / 2 − sin(B)cosδ / 2

cosh(A)+ cos(B)
⎡
⎣⎢

⎤
⎦⎥

A = r cosδ / 2
B = r sinδ / 2

 

 

(3.14) 

 

 

 

Notice, equation (3.12) is different from the specific damping defined for viscoelastic dissipation 

given by: 

 

 
ψ  = Energy dissipation/cycle

Max. energy stored
ψ = 2π tanδ

  (3.15) 

 

Notice that equation (3.14) gives values of the loss coefficient of an element of the discretized 

damping layer and it only depends on the ratio r and the loss tangent, tan δ of the viscoelastic 

material. Figure 3.4 shows loss coefficient plots for different viscoelastic material loss tangent 

values, tan δ. It can be observed that when tan δ < 1, the loss coefficient is more dependent on 

the loss tangent, but when tan δ > 1 this dependence decreases. One important observation from 

Figure 3.4 is that for all values of tan δ, the maximum loss coefficient is found when, r = 3.28. 

Hence, it has been confirmed that for a given viscoelastic material for which its loss tangent is 

available, the maximum damping is obtained when the length of the discretize segments is 3.28 

times the shear lag distance, SL (Parfitt, 1962) (Plunkett & Lee, 1970). 

 



 
 

45 

 
Figure 3.4: Loss coefficient versus r = La / SL for a single constraining layer, plots with different 

values of tan δ. 

  

From Figure 3.4, we can observe the frequency dependence of the loss coefficient for different 

values of tan δ. Therefore, a proper characterization of the viscoelastic material used as the 

damping layer is important. In this research, the DMA allowed us to obtain these material 

properties over a considerably wide range of frequencies and temperatures. This discretization 

method with the proper damping material can be relevant for industrial applications for which 

the weight cannot be dramatically increased.  
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3.4 Discussion of the theoretical results. 

 

3.4.1 Uniform strain distribution analysis 

It has been demonstrated that discretizing damping tapes can increase damping, and that there is 

an optimal segment length to obtain the maximum loss coefficient. This length depends on the 

mechanical properties of the viscoelastic damping polymer. In this section we will address the 

end effect that provides the increase in the loss coefficient. To this end, we write the shear stress 

in the viscoelastic layer from equation (3.2) and (3.8): 

 

 
τ * =G* ε0

*SL
t1

sinh(x / SL)
cos(La / 2SL)

  
(3.16) 

 

The dimensionless shear stress, τ , in the viscoelastic material can be calculated by dividing 

equations (3.16) by
  
G* ε0

*SL
t1

. This yields: 

 

 
τ = sinh(x / SL)

cos(La / 2SL)
 (3.17) 

 

Figure 3.5 shows how the dimensionless shear stress changes along the length of the surface 

treatment considering uniform strain in the underlying substrate. For a large La (orange line), 

there is no shear stress away from the ends of the segment, so the damping is small. On the other 

hand, if the La is very small as shown in Figure 3.5 (red line), the constraining layer does not 

exert sufficient constraint on the adhesive material. This means that the shear strain due to the 

stiff constraining layer is reduced so the energy dissipation also decreases, and the damping is 

small. For values near the optimal length ratio obtained by Plunkett and Lee and confirmed in 

section 3.3.2, r = 3.28, the shear-strain energy integrated over the length of the damping tape 

section, La, reaches maximum values as shown in Figure 3.5 (blue and green lines). We observe 

that more regions of the damping tape are actively being sheared if the discretization length is 

near the optimal value. 
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Figure 3.5: Nondimensional shear stress undergoing uniform strain for different lengths of 

surface treatment. 

 

3.4.2 Cantilever beam strain distribution 

The dimensionless analysis permitted us to understand the physical phenomena behind the 

increase damping obtained with the discretized damping layer. Now, we will extend this analysis 

considering the strain distribution for a structural element. The shear stress distribution along the 

length of the segment can be obtained from equation (3.16). Again, from assumption (7) in 

section 3.3.1 the strain distribution will be taken as the strain to which the surface of the 

structural element is subjected. So ε0
*  in equation (3.16) will be replaced by: 

 

 
ε0
* = − tb

2
d 2y(x,t)
dx2

 
(3.18) 

 

 

where tb/2 is the distance from the neutral axis to the top fiber of the structure’s cross section, 

and d 2y(x,t) dx2  is the curvature of the structure. In this case we analyzed a cantilever beam 

ï1

ï0.5

0

0.5

1

La

o

 

 

0.3SL
1.9SL
3.28SL
3.8SL
4.6SL

La



 
 

48 

with uniform cross section so the curvature of a cantilever beam can be determined from the 

mode shapes for a cantilever beam vibrating at the fundamental mode. If we set l = L (See Figure 

3.1), the shear stress distribution for the cantilever beam with a continuous damping layer is 

shown in Figure 3.6. 

 

 
Figure 3.6: Shear stress along the length x of a cantilever beam vibrating at the fundamental 

mode. 

Figure 3.6 shows the shear stress distribution for a discretized damping layer, taking into account 

the strain distribution of the cantilever beam vibrating at the fundamental mode. The x-axis of 

Figure 3.6 represents the total length of the analyzed structural element. As we can observe, the 

largest amount of strain is near the base of the structure, where the axial bending strains in the 

beam are also largest. In Figure 3.6 the blue line corresponds to a continuous damping layer. 

Notice how the portion near the base sustains most of the shear stresses and therefore only this 

region is successfully dissipating energy. On the other hand red, green, and purple lines in Figure 

3.6 show the shear stress distributions as we discretized the damping layer. With these 

configurations we observe that regions that were not undergoing shear stress in the continuous-

damping layer configuration start participating in the energy dissipation of the structure, thereby 

leading to the enhanced damping.  This figure could be a bit misleading since dissipation is 
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proportional to the square of the stress amplitude, so it is appropriate to show energy dissipation 

as a function of position along the beam. 

 

 
Figure 3.7: Energy dissipation per cycle per unit volume of a cantilever beam in its first vibration 

mode with damping tapes on both sides for different number of damping layer segments. 

 

 

Figure 3.7 shows the energy dissipation per cycle per unit volume of a continuous and 

discretized damping layer applied to a cantilever beam on its first vibration mode. Observe that 

for the continuous damping layer, most of the energy dissipation occurs during the first 50 mm 

of the beam; the remaining length of the damping layer is not undergoing shear deformation and 

therefore the energy dissipation at this section of the beam is near zero. (In fact, as will be 

demonstrated later in the thesis, removing much of this inactive material can reduce added mass 

and cost and actually improve the damping.)  On the other hand, for discretized configurations 

consisting of 2 to 6 segments, more regions of the damping tape are contributing to the energy 

dissipation of the system. Conversely, when the damping layer is discretized into too many 

segments, the energy dissipation decreased compared to the optimal value of the ratio, r.  Hence, 

having a discretized damping layer increases the damping of the structure compared to the 
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5/31/14 18 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5 x 109

x (m)

En
er

gy
 D

is
si

pa
tio

n
pe

r c
yc

le
 p

er
 u

ni
t v

ol
um

e 
(N

/m
2 )

 

 

Continuous damping layer
2 segments
4 segments
6 segments
10 segments

La 

En
er

gy
 d

is
si

pa
tio

n 
pe

r c
yc

le
 

pe
r u

ni
t v

ol
um

e 
(J

/m
3 )

 

x (m) 

x (m) 



 
 

50 

continuous damping layer, but as we increased the number of segments, the benefits of 

discretizing the damping layers decreased.  

 

 

3.5 Beam on elastic foundation approach applied to damping tapes. 

The damping tapes considered in the analysis have two basic components, a stiff backing 

material, in this case a dead soft aluminum layer, and an acrylic pressure sensitive adhesive 

(PSA). (Note that dead soft indicates a very low yield strength; the modulus of the aluminum is 

still about 70 GPa.)  During deflection to which the beam is subjected, axial forces are induced in 

the backing material as shown in Figure 3.8. As the response amplitude increases, the backing 

material of the damping tapes is subjected to increasingly higher axial forces that might cause 

buckling of the stiff backing layer. (See Figure 6.1a) At this point, the energy dissipation by 

means of shear deformation and the theoretical formulation described in sections 3.3 and 3.4 will 

no longer be sufficient to describe the behavior, as an additional deformation mode and 

associated dissipation are introduced.  

 

 
 

Figure 3.8: Schematic of the damping tape configuration. 
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The stiff backing layer of the damping tape over the viscoelastic layer can be modeled as a beam 

on an elastic foundation (BoEF) or Winkler foundation. The Winkler foundation assumes that the 

force required to deflect a foundation is linearly proportional to the deflection of the beam: 

 

 q=ky (3.19) 

 

where k is the stiffness of the foundation and y the deflection of the beam (Winkler, 1872). In 

1946, Hetenyi, addressed the problem of the elastic stability of a straight beam on an elastic 

foundation (Winkler foundation). If a straight beam undergoes purely axial compressive force of 

increasing amplitude, at some critical value of the load, a sudden lateral deflection (buckling) of 

the beam will occur, as shown in Figure 3.9. 

 

 
Figure 3.9: Schematic illustration of a beam on elastic foundation undergoing critical buckling 

load. 

 

The critical values of the axial compressive force can be derived from the deflection equation for 

a beam on an elastic foundation, assuming that the structural element is under simultaneous axial 

and transverse forces (Hetényi, 1971). The equation of the deflection line of an infinitely long 

beam undergoing axial compressive force N and a transverse force P is: 
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 (3.20) 

 

where k is the stiffness of the elastic foundation, E and I are the Young’s modulus and the second 

moment of area of the backing material of the damping tapes. From equation (3.20) as we set 

ab=0 we obtain the critical buckling load of unlimited length and axially loaded beams (Hetényi, 

1971): 

 (3.21) 

 
and the frequency of the buckling is given by: 

  

n = 1
π

k
EI

 

 

(3.22) 
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Figure 3.10: Schematic of buckled configuration of the damping tape with transverse load and 

normal critical load. 

 

 

The BoEF formulation and Hetenyi approach allows for estimating the critical load or 

deformation to which the beam has to be subjected in order to induce buckling of the 

constraining layer of the damping tape, as shown in Figure 3.10. From equation (3.21) we obtain 

the critical buckling load, Ncr, and the corresponding axial stress over the cross section of the 

damping tape as:  

 σ c =
Ncr

Ac
 

 

(3.23) 

 

where Ac is the area of the cross section of the backing layer of the damping tape. Equation 

(3.23) can be related to the normal stress imposed on the beam, and to the strain to which the 
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beam is subjected. This is necessary since the available experimental resources will only allow 

measuring strain at the outer fibers of the beam and not directly from the backing material. 

Experimental details will be covered in the following chapters.  

 

Based on strength of materials concepts, we consider the cross sections of a cantilever beam with 

damping tapes on each side, as shown in Figure 3.11. Notice that, to obtain the stress to which 

the beam is subjected, it is necessary to consider the distance of the backing layer to the neutral 

axis. 

 

 

 
Figure 3.11: Symmetric cross section of a cantilever beam with damping tape applied to both 

sides. 

 

Under bending loads, longitudinal elements of the beam are subjected to axial tension or 

compression loads, so we can use the stress-strain relation for the material to determine the stress 

from the strain or vice versa. The stress acting over the beam and damping tapes varies in 

intensity depending upon the moduli of the materials and the dimensions of the cross section.  

 

The most common stress-strain relationship in engineering is the equation for a linearly elastic 

material. For such materials, Hooke’s law for uniaxial stress is (Gere & Goodno, 2009): 
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 σ=Eε=-Eκy (3.24) 

 

where, E, is the Young’s modulus of the considered cross section, κ is the curvature of the beam, 

and y is the distance from the neutral axis. Equation (3.24) shows that the normal stress acting on 

the cross section of the beam varies linearly with the distance y from the neutral axis. The stress 

distribution is illustrated in Figure 3.12. 

 

 
Figure 3.12: Side view of beam showing distribution normal stresses. 

 

The critical strain, εcr, is calculated from equation (3.24): 

 εcr =
Ncryb
AcEbyc

 

 

(3.25) 

 

This strain is at a distance x1 from the clamped end of the beam. On experimental beams with 

surface treatments, the strain will be measured at another x2 distance, as shown in Figure 3.13. 
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Figure 3.13: Strain measurement distance of a cantilever beam. 

 

To obtain the value of the critical strain detected by the strain gage located at a distance x2 

consider a cantilever beam undergoing harmonic motion at its first vibration mode and the strain 

distribution along the length of the beam as shown in Figure 3.14. 
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Figure 3.14: Schematic of cantilever beam: a) length of the cantilever beam. b) strain 

distributions of cantilever beam at its first vibration mode.  

 

The axial strain distribution along the x direction of a beam is given by: 

 

 
ε = − y

2
d 2y(x,t)
dx2

 (3.26) 

where, d
2y(x,t)
dx2

is the curvature of the beam. We can replace the curvature of the beam by the 

mode shape, ϕ1(x), at the fundamental mode: 

 

 
φ1(x) = Ar sinβ1x − sinhβ1x −

sinβ1L + sinhβ1L
cosβ1L + coshβ1L

cosβ1x − coshβ1x( )⎛
⎝⎜

⎞
⎠⎟

β1 = 1.875

 
(3.27) 

 

 

Taking derivatives twice of equation (3.27) to obtain an expression for the curvature of the 

cantilever beam: 
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φ1
'' (x) = −β1

2Ar sinβ1x + sinhβ1x +
sinβ1L + sinhβ1L
cosβ1L + coshβ1L

cosβ1x + coshβ1x( )⎛
⎝⎜

⎞
⎠⎟

 
(3.28) 

 

From equation (3.26) and the critical value of the strain from equation (3.25), the strain is: 

  

 
ε = y

2
β1
2Ar sinβ1x + sinhβ1x +

sinβ1L + sinhβ1L
cosβ1L + coshβ1L
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(3.29) 

 

 

and, Ar can be obtained evaluating equation (3.29), with the critical value of the strain at x1: 

 

 Ar =
2εcr
y

1

β1
2 sinβ1x1 + sinhβ1x1 +

sinβ1L + sinhβ1L
cosβ1L + coshβ1L

cosβ1x1 + coshβ1x1( )⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 (3.30) 

 

 

Once Ar is obtained, equation (3.29) can be used to determine the critical strain measured at the 

position of the strain gages on the experimental beam. This approach will be used in Chapter 6 to 

obtain numerical values of the critical strain values, as for the experimentally parametrically 

excited cantilever beams considered in Chapter 5. The numerical values will be shown in 

Chapter 6 and compared to visual data gathered during the parametric excitation experiment of 

Chapter 5. 

 

3.6 Summary 

We presented analytical tools to analyze the end effect responsible for increased damping of the 

system with a discretized damping layer compared to the continuous damping layer considered 

by Kerwin in 1959. To achieve this, the approach followed was based on the Plunkett and Lee 

analysis (Plunkett & Lee, 1970). The nondimensional shear stress of an element of the 

discretized layer was plotted in Figure 3.5. As the length of the element decreased, the element 

undergoes more shear stress and therefore more shear deformation, increasing the damping of the 

system. But as the element becomes shorter, the constraining layer does not offer enough 

constraint to the VE layer so the total damping of the system decreases. The case of a cantilever 

beam vibrating in its first mode was studied and plots of shear stress distribution and energy 
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dissipation along the length of the beam were shown in Figure 3.6 and Figure 3.7, respectively. It 

was shown by Plunkett and Lee that the discretized damping layer enhanced the energy 

dissipation compared to a continuous damping layer when the discretization length was near the 

optimal value, but as the length of the segments decreases, the end effect caused by the shear 

deformation becomes less important, resulting again in lower damping. The relation of this 

phenomenon to the shear lag distance from Volkersen’s analysis was investigated obtaining that 

the optimal values of the length of segments were 3.28 times the shear lag distance (Parfitt, 

1962) (Plunkett & Lee, 1970).  Additionally, we presented the BoEF analysis to predict the 

critical bending strain at which the backing material of the damping tape might suffer sudden 

lateral deflection (buckling) that will be considered in the analysis performed in Chapter 6 

(Hetényi, 1971). 
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Chapter 4 Effect of Discretization Length of 

Constraining Tape on Damping Ratio of a Cantilever 

Beam 
 

 

The effects of the length of the constraining tape on the damping ratio of cantilever beams are 

determined. The experimental setup and a description of the used cantilever beams and damping 

tapes are presented. Variations in the damping ratio with the discretized damping layer are 

determined. The Plunkett and Lee approach (Plunkett & Lee, 1970) and concepts of vibrations 

and strength of materials are used to compare experimental results with analytical predictions. 

 

4.1 Methodology for experimental calculation of damping ratio of cantilever beams 

In Chapter 3, the end effect that allows the constrained damping layer to dissipate more energy 

by means of additional shear deformation and the optimal discretization length to obtain 

maximum damping without adding extra damping layers were determined. This was done based 

on the analytical analysis of Plunkett and Lee (Plunkett & Lee, 1970). In this chapter we include 

an experimental comparison of this theory applied to several cantilever beams and different 

damping tapes geometries. In order to determine the damping ratio of cantilever beams, shown in 

Figure 4.1a, we use the logarithmic decrement of the free response as shown in Figure 4.1b.  
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(a) (b) 

Figure 4.1: a) Cantilever beam diagram. b) Free response of a cantilever beam. 

 

4.1.1 Logarithmic decrement method 

The logarithmic decrement method is used to measure damping in the time domain. In this 

method, the free vibration displacement amplitude history of a system subjected to an initial 

displacement is measured and recorded. A typical decay curve is shown in Figure 4.1b. The 

larger the damping, the greater the rate of decay is. The underdamped free response for the initial 

condition x (0) = x0 is given by: 

 

 x = Xe−ζωnt sin( 1−ζ 2ω nt +φ)   (4.1) 

 
where, X is the amplitude of the response, ωn is the natural frequency at the n-mode, and ζ is the 

damping ratio. The damping ratio ζ is defined as: 

 

 ζ = c
ccr

 (4.2) 

where, c is the viscous damping coefficient and ccr is the critical damping coefficient. And the 

phase angle, ϕ is defined as: 
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⎣ ⎦
 

 

(4.3) 

 

From this formulation, the logarithmic decrement is determined. It is defined as the natural 

logarithm of the ratio of any two successive amplitudes. The expression for the logarithmic 

decrement is: 

 

 
Δ = ln x(ti )

x(ti +Td )
= ln xi

xi+1
=

e−ζωnt1 sin( 1−ζ 2ω nt1 +φ)
e−ζωnt1+Td sin( 1−ζ 2ω n (t1 +Td )+φ)

  
(4.4) 

 

where Td is the damped period of the oscillation; and x(ti) = xi is the peak of the oscillation at a 

time ti as shown in Figure 4.2. Because the values of the sine are equal when time is increase by 

the same period Td, the preceding relation reduces to (Thomson, 1996):  

 

 
Δ = 2πζ

1−ζ 2
 

(4.5) 

 
Also, using the first undamped natural frequency of the system, ω1 , we calculate the linear 

damping for the first mode, which is given by: 

 

 µ1 = ζω1  (4.6) 
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Figure 4.2: Logarithmic decrement diagram of the current methodology. 

 

 

4.1.2 Experimental beams and damping tapes 

The damping tapes used in the thesis are commercial damping tapes produced by 3M. A 

summary of the geometry and composition of the tapes used in the samples is presented in Table 

4.1. All of these damping tapes reportedly have the same adhesive formula. Therefore, the 

following calculations considered the properties of 3M 425 damping tapes as obtained in Chapter 

2. 

 

Table 4.1: Characteristics of the damping tapes 

 3M 425 3M 431 3M 3369 

Backing Dead soft aluminum Dead soft aluminum Dead soft aluminum 

Adhesive Acrylic Acrylic Acrylic 

Backing thickness [mm] 0.07 0.05 0.028 

Adhesive thickness [mm] 0.05  0.03 0.033 

Total thickness [mm] 0.012 ± 0.001* 0.08 ± 0.008* 0.061 ± 0.004* 

Source: (3M, 2012a), * Experimentally measured with micrometer. 

time

y

x1 x2 x4x3

Td

xj

n= 1, 2, 3, 4... j
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We used several different geometries of the beams and damping tapes. These included different 

material, thicknesses, widths and materials of beams in order to have data over a broad range of 

damping layer lengths and beams’ frequencies. The geometric characteristics of the samples are 

presented in Table 4.2 

 

 

Table 4.2: Geometric and material properties of beams used for testing the damping tapes 

 Material 
Density 

[kg/m3] 

Young’s 

modulus 

[GPa] 

Total 

length 

[mm] 

Adhesive 

length 

[mm] 

Thickness 

[mm] 

Width 

[mm] 

Beam 1 6061 Aluminum 2700 69 207 180 1.5 13 

Beam 2 6061 Aluminum 2700 69 450 383 3.0 19 

Beam 3 1095 Carbon steel 7850 200 450 383 3.0 13 

Beam 4 1095 Carbon steel 7850 200 270 200 0.85 13 

 

4.1.3 Experiment test configuration 

The experimental setup is presented in Figure 4.3. Two strain gages mounted on both sides were 

used in order to measure the strain at the base of the beam. Once experimental data was taken 

from the beam without surface treatment, two constrained damping layers were bonded in place, 

one on each side of the beam. After testing with continuous length treatments these layers were 

then discretized into regular intervals in order to compare the damping ratio of different segment 

lengths. 
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Figure 4.3: Schematic of the position where the strain gages were bonded to the experimental 

cantilever beams. 

 
 
To measure the amplitude decay of beam’s vibration, we recorded the strain which is defined as 

the fractional change in length: 

 

ε = L − L0
L0

 

 

Figure 4.4 shows the concept of a strain gage: when the beam deforms, the foil of the gage 

experiences a change in resistance, which can be detected by the Wheatstone bridge. Then, using 

the gage factor (GF) of the strain gage and the differential voltage due to the change of 

resistance, we determine the strain of the beam. The gage factor, GF, is the dimensionless ratio 

of the fractional change in resistance to the fractional change in length along the axis of the strain 

gage. For our experimental samples, the magnitudes of the strains were very small; therefore, 

strain is expressed as microstrain (µε) or millistrain (me). We bonded the strain gages near the 
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clamped end in order to maximize sensitivity during the free vibrations tests (Hannah & Reed, 

1992). 

 

  

 
Figure 4.4: Representation of the working concept of a strain gage on a beam under bending. 

Source: Diagram by Izantux/CC0 1.0 URL: 

http://upload.wikimedia.org/wikipedia/en/4/40/StrainGaugeVisualization.png Used under fair 

use, 2014. 

 

Table 4.3: Strain gages used in the beams to record the strain amplitude decay.  

Model  Gage Factor Resistance Sample* 

EA-06-250AE-350 

 

2.095 350 Ω 1, 2, 3 

WK-06-125AD-350 

 

2.02 350 Ω 4, 5 

*See Table 4.2. Source: Micro-Measurements. "Precision Strain Gages and Sensors." edited by 

Vishay Precision Group, 2010. URL: http://www.vishaypg.com/docs/50003/precsg.pdf Used 

under fair use, 2014. (Micro-Measurements, 2010) 
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To bond the strain gages we used the M-Bond kit from Micro Measurements at the position 

showed in Figure 4.3. The procedure for gage application is given by the manufacturer (Micro-

Measurements, 2011) and includes the following steps: 

 

1. Thoroughly degrease the gaging area with the solvent, CSM-1 Degreaser. 

2. Proceed with dry abrading using a 320 grit silicon carbide paper, followed by wet 

abrading using a 400 grit silicon carbide paper wetted with M-Prep Conditioner A.  

3. Mark with a pencil the area where the strain gage will be placed and clean with more M-

Prep Conditioner A and M-Prep Neutralizer. The final chemical should be removed by a 

single wiping motion to avoid redepositing contaminants.  

4. Use tweezers to remove the gage from the mylar envelope and place the gage on the gage 

box surface with the bonding side down. 

5. Place 4 to 6 in of Micro measurements No. PCT-2A cellophane tape over the gage area 

and position the strain gage following the marks of step 3. 

6. Finally, carefully remove the tape with the strain gage and apply M-Bond 200 catalyst to 

the bonding surface and add a drop of the M-Bond 200 adhesive one centimeter from the 

edge of the bonding area.  

7. Apply pressure for 1 to 2 minutes until the M-Bond 200 adhesive cures. 

8. Remove the cellophane tape. 
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Front Back 

 

 
 

(a)                                 (b) 

Figure 4.5: Wiring configuration for the half bridge circuit on the beam type 2 with no 

constrained damping tapes applied.  

 

After the strain gage is bonded to the sample, the corresponding wires are connected to the data 

acquisition system (DAQ) to complete a half bridge circuit. As such, we are able to convert the 

analog signal obtained from the strain gages into digital values. The connection between the 

DAQ and the strain gages is shown in Figure 4.5. The numbers in Figure 4.5 correspond to the 

channel used in the DAQ and the LabVIEW software. For the half bridge circuit, two active 

strain gages are required, one is positioned in the direction of the bending strain on one side of 

the sample (front) and the other is positioned in the direction of the bending strain on the 

opposite side of the sample (back); the strain gages are expected to experience equal and 

opposite strains, which are effectively added when used in adjacent arms of the Wheatstone 

bridge. We calculate the strain from strain gage using the gage coefficient and the equation for a 

half bridge circuit, 

ε = −2Vr
GF

1+ RL

RS

⎛
⎝⎜

⎞
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where RL is the lead resistance; Rg  is the resistance of the strain gages; GF is the gage 

coefficient, Vr  is the relation between the excitation and measured voltage given by: 

Vr = VCH VEX( )strained − VCH VEX( )unstrained⎡⎣ ⎤⎦  

 

where, VCH  is the differential voltage detected due to the elongation of compression of the strain 

gage and VEX  is the exaction voltage. Both are shown in Figure 4.6. 

 

 
Figure 4.6: Wire diagram of the half bridge circuit used to detect the strain from the tested 

samples. (National-Instruments, 2006) 

 

 

 
Figure 4.7: DAQ set up for recording the strain amplitude decay of the samples 
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4.1.4 Experimental procedure for the cantilever beams  

This section includes the procedure for conducting free vibrations testing of the cantilever beams 

with and without the surface treatments. The first step was to mount the beam without the 

damping layers at the clamped end, as shown in Figure 4.8. We used a mounting plate with four 

screws to secure the beam. 

 

 
Figure 4.8: Beam 3 on the mounting plate ready for free vibration testing to measure the 

damping ratio. 

 

To carry out the free response tests of the beams, we applied an initial displacement of 0.5 cm at 

the tip of the beam and recorded the strain amplitude decay. Then, using equations (4.4) and 

(4.5) we calculated the damping ratio of the cantilever beams tested. After bare beams were 

tested, continuous layers of damping tapes were adhered to both sides of the beams, as shown in 

Figure 4.9a. Then, we discretized (cut) the damping tapes at regular intervals, as shown in Figure 

4.9. All discretization was performed such that the constrained damping tapes were symmetric 

!

Mounting plate 
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on both sides of the beams. With the free response recorded, the damping ratios for each 

discretized configuration were calculated. The results are shown in section 4.2. 

 

 

  
                               (a)                              (b) 

Figure 4.9: Schematic illustration of a cantilever beam with a: a) Continuous-damping layers. b) 

Discretized damping layers (2 segments are shown). 
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4.2 Results of damping ratio measurements for different beams and damping tape 

configurations 

Typical results obtained for cantilever beams during free vibration tests are shown in Figure 

4.10, showing that the log decrement stabilizes quickly to a consistent value. Then, from the 

experimentally determined log decrement values, we calculated values of damping ratio for the 

tested beams using equation (4.5). The results of the damping ratio for each configuration are 

shown in Figure 4.11 to Figure 4.14.  

 

 
Figure 4.10: Typical results obtained from free vibration tests of a cantilever beam with the 

damping layers. a) logarithm of the peak value vs. cycle number. b) logarithmic decrement vs. 

cycle number.   
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(a) 

 

(b) 

 

(c) 

 
Figure 4.11: Experimental damping ratio for beam 1 with: a) 3M 3369 damping tape b) 3M 431 damping tape c) 

3M 425 damping tape. Note: Dashed lines represent the damping ratio of the bare beam 1 without damping tapes 

and blue bars correspond to ζ measured for the continuous surface treatment. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.12: Experimental damping ratio for beam 2 with: a) 3M 3369 damping tape b) 3M 431 damping tape c) 

3M 425 damping tape. Note: Dashed lines represent the damping ratio beam 2 without damping tapes and blue bars 

correspond to ζ measured for the continuous surface treatment. 
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(a) 

 

(b) 

  

(c) 

 

Figure 4.13: Experimental damping ratio for beam 3 with: a) 3M 3369 damping tape b) 3M 431 damping tape c) 

3M 425 damping tape. Note: Dashed lines represent the damping ratio beam 3 without damping tapes and blue bars 

correspond to ζ measured for the continuous surface treatment. 
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Figure 4.14: Experimental damping ratio for beam 4 with 3M 425 damping tape. Note: Dashed 

line represents the damping ratio beam 4 without damping tapes and blue bar correspond to ζ 

measured for the continuous surface treatment. 

 
 

4.2.1 Percentage increase of the logarithmic decrement of discretized damping layers 

The experimental results presented in the previous section showed that discretized damping 

layers could increase the damping of the tested structures more effectively that the continuous 

configuration if the discretization length was near the optimal value predicted by Plunkett and 

Lee (Plunkett & Lee, 1970). Table 4.4 shows the percentage increase in log decrement for the 

tested samples and damping tapes. We obtained this percentage increment as: 

 
 

(4.7) 

 

where,  is the logarithmic decrement experimentally determined for the discretization length 

corresponding to the highest measured damping for each beam, and  is the logarithmic 

decrement experimentally determined for the continuous damping layer. We calculated the 

percentage increase of the logarithmic decrement for this discretization length for the different 

experimental samples using equation (4.7). 
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Table 4.4: Percentage increase of the logarithmic decrement of discretized damping layer. 

 

Damping tape 
Sample 1 Sample 2 Sample 3 Sample 4 

 t = 1.5 mm t = 3 mm t = 3 mm t = 0.85 mm 

3M 3369 
ta =0.033 

tb =0.028 
62% 50% 41% - 

3M 431 
ta =0.03 

tb =0.05 
45% 95% 94% - 

3M 425 
ta =0.05 

tb =0.07 
40% 88% 81% 23% 

t= thickness of the sample, ta = thickness of the adhesive layer, tb = thickness of the backing 

layer. 

 

The results presented in Table 4.4 show that the 3M 431 and 3M 425 damping tapes have the 

highest percentage of increase with respect to the continuous configuration. We would expect 

this because the energy dissipated per cycle is a function of the backing material thickness, as 

found from equation (3.11). For both, 3M 431 and 3M 425 damping tape, the backing material 

thickness is about two times greater that the thickness of the backing material of 3M 3369 

damping tape.  

 

Other material properties also influence the energy dissipated; the viscoelastic material tan δ for 

different beams changed as shown in Table 4.5. We would expect a significant change in the 

energy dissipation within different experimental specimens. Beam 4 had the lowest tan δ value, 

and therefore the percentage increase in log decrement recorded for this beam is the lowest. But, 

beam 1 had the highest tan δ value and showed a relatively smaller increase than beams 2 and 3. 

This can be explained because of the length of the initial continuous layer. For beam 1 the initial 

adhesive layer of adhesive 3M 425 was 183 mm compared to the 383 mm used initially on 

beams 2 and 3. Calculating the ratio r for samples 1 and 2 for 3M 425 damping tape yields: 
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r1 = 10.3  

r2 = 18.3 

 

Both ratios are well above the theoretically determined optimal value of 3.28, so an increase of 

the damping ratio was expected. But, the ratio r1 of beam 1 is smaller and closer to the 3.28 value 

than r2, we would expect that the increment for beam 2 would be slightly higher. These 

observations help us to explain the enhancement of the discretized damping layer in comparison 

of the continuous layer for the experimental samples.  

 

 

4.3 Comparison of experimental results and the analytical model to calculate damping 

ratio  

The dissipation in the constrained viscoelastic layer cannot be measured directly. We must find it 

by comparing the energy dissipation of the bare specimen without surface treatment and the 

energy dissipation of the beam with damping tapes. The energy dissipation of the VE layer is 

given by: 

 

 ΔWL = ΔWs − ΔWB  (4.8) 

 

where ΔWs  is the energy dissipation on the specimen with the damping tapes and ΔWB  is the 

energy dissipation of the bare beam. For a uniform cantilever beam undergoing steady state or 

decaying vibration, the damping of the structure can be related to the loss coefficient of the 

system, ηs by: 

  (4.9) 

 
where  is the maximum energy stored of the structure, and  is the energy dissipated per 

cycle within the VE layers. To relate the loss coefficient of the experimental beam and equation 

(3.14), Plunkett and Lee integrated the energy of the system over the length of a segment of the 

surface treatment (Plunkett & Lee, 1970): 
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Additionally, the maximum strain energy per cycle in the system is given by:  
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We consider the case of a cantilever beam subjected to sinusoidal flexural vibration with small 

deformations, so the strain at the surface of the beam structure is given by: 

 ε0 = − tb
2

d 2y
dx2

⎛
⎝⎜

⎞
⎠⎟

 

 

(4.12) 

 

where tb  is the thickness of the beam and d 2y dx2  is the curvature of the beam. The loss 

coefficient of the system is defined by the ratio of equations (4.10) to (4.11) 
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where ηd is the loss coefficient of the damping treatment, as defined in Chapter 3, E2 and t2 are 

the Young’s modulus and the thickness of the backing material of the damping tape, Eb and tb are 

the Young’s modulus and the thickness of the beam, d 2y dx2  is the curvature of the beam, and 

the values of a and L were defined in Figure 4.9a. Replacing the curvature of the beam by the 

fundamental mode shape and solving equation (4.13) for ηd, 
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(4.14) 

 

where, ηB is the loss coefficient for the beam without damping layers. 

 

4.3.1 Viscoelastic material properties at the experimental frequency and temperature. 

The theoretical values of the loss factor for each damping tape configuration and discretization 

length were determined from equation (3.14) using the master curve, Figure 2.19, of the loss 

tangent, tan δ. These values are listed in Table 4.5 for the damped natural frequency of the 

experimental beams from Table 4.2. Table 4.5 also contains the shear modulus of the PSA 

adhesive, also obtained from the master curve, Figure 2.17. We used these values to predict the 

shear lag distance (SL) and the optimal discretization length from equation (3.5). The room 

temperature was measured before each test.  

 
 
 

Table 4.5: Viscoelastic properties of the PSA tapes at the frequencies of the experimental 

samples, at the experimental temperature of 22 ± 2 oC. 

f [Hz] G*  [MPa] tan δ 

Shear lag distance, SL [mm] Optimum length [mm] 

3M 3369 3M 425 3M 431 3M 3369 3M 425 3M 431 

29.25 0.76 0.513 9.1 17.4 11.5 29.8 57.2 37.7 

12.25 0.56 0.430 10.6 20.6 13.5 34.9 67.6 44.0 

13.00 0.54 0.434 10.8 21.0 13.7 35.5 68.9 45.5 

9.79 0.45 0.416 12.4 23.9 15.7 40.5 78.4 51.5 
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4.3.2 Experimental and theoretical loss coefficient values. 

Using equation (4.14) we obtained experimental values for the loss coefficient of the system. The 

values of ηb, were obtained for each beam without the damping treatment, and ηs was calculated 

for the beam with damping tapes from the damping ratio for several discretization length used in 

this chapter. Finally, we used the material data from the characterization performed in Chapter 2 

for the damping tape 3M 425 and equation (3.14) to plot the theoretical values of the loss 

coefficient. A list of the properties used for the different beams is presented on Table 4.5. The 

red dashed lines in Figure 4.15 and Figure 4.16 represent the limit established by the values of 

the loss coefficients for the beams without damping tapes, and the blue dashed lines represent the 

theoretically determined loss coefficient below the bare beams’ loss coefficients. 
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(a) (d) 

  
(b) (e) 

  
(c) 

 
(f) 
 

Figure 4.15: Comparison of theoretical and experimental loss coefficient for: a) Beam 1 Tape 

3M 3369. b) Beam 1 Tape 3M 431. c) Beam 1 Tape 3M 425. d) Beam 2 Tape 3M 3369. b) Beam 

2 Tape 3M 431. c) Beam 2 Tape 3M 425. Note: Values below the red dashed line correspond to 

the loss coefficient below the loss coefficient the beam without damping tapes. 
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(a)   

  
(b) (d) 

 

  

(c) 
  

Figure 4.16: Comparison of theoretical and experimental loss coefficient for: a) Beam 3 Tape 

3M 3369. b) Beam 3 Tape 3M 431. c) Beam 3 Tape 3M 425. d) Beam 4 Tape 3M 425. Note: 

Values below the red dashed line correspond to the loss coefficient below the loss coefficient the 

beam without damping tapes. 
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Figure 4.15 and Figure 4.16 show that the experimental results are in agreement with theoretical 

predictions and with respect to the optimal length of the discretization segments. Notice that as 

the segment length is decreased, the loss coefficient values increase until this optimal length is 

reached. For beam 1, beam 2 and beam 3, the theoretical comparison shows a plateau as the 

length of the segments decreased away from the optimal length. We included in Figure 4.15 and 

Figure 4.16 values of the loss coefficient of the bare beam and observed that there is a gap 

between the plateau of the loss coefficients and the bare beams values. This gap may be 

attributed to the loss coefficient resulting from different experimental factors such as the air drag 

and structural damping of the beam, and that the expected dissipation is a combination of these 

mechanisms. Additionally, we explained in Chapter 3 that as the discretization length is 

decreased, the capability of the constraining layer to induce shear deformation to the viscoelastic 

layer decreased. Therefore, the damping treatment would be expected to act as an unconstrained 

viscoelastic layer and the above combination of damping mechanism will be more important as 

the effectiveness of the constraining layers decreased as shown in Figure 4.17. Unfortunately, the 

configuration available to test the damping tape with the cantilever beams does not allow us to 

measure the loss coefficient of the unconstrained damping layer to add this values as 

comparison. 

  

 

 
Figure 4.17: Expected experimental system's energy dissipation and VE theoretical energy 

dissipation. 
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It is observed that the plateau’s behavior is different for each damping tape. For example, Figure 

4.15a and Figure 4.15b show different points of separation between the theoretical and 

experimental values. We observed that the only difference between the damping layers used for 

these plots is the thickness of the adhesive but the difference it is not as significant, so we cannot 

attribute this behavior only to this characteristic; therefore, we were unable to analytically predict 

the separation point at which each damping tape will start varying from the theoretical values. 

This phenomenon needs to be analyzed more deeply in order to fully understand what causes the 

separation between the experimental and theoretical but we could observe that this combined 

effect is limited by the loss coefficient determined for the bare beam case.  

 

Additionally, we observed good agreement between the experimental and the theoretical values 

in Figure 4.15 and Figure 4.16. The properties used to validate the experimental values (shear 

modulus), were calculated from equation (2.11), and these properties are functions of the 

thickness of the damping tape. Many times due to storage conditions or manufacturing procedure 

variations, thickness may vary, thereby directly affecting the obtained values of damping tapes’ 

properties. The ratio r and the optimal discretization length could thus be affected, causing a shift 

between the experimental and theoretical values. With the aim to take this into account, in this 

work we used the manufacturer’s thickness specification for each damping tape but these values 

were also measured with a micrometer and compared to the manufacturer’s values. 

 

From Table 4.5, notice that properties of the viscoelastic material are frequency dependent and 

so, each data set of Figure 4.15 and Figure 4.16 was obtained using the data at the first natural 

frequency of the beam without damping tape. This was not considered when comparing 

theoretical and experimental data because of the small shift in the damped frequency recorded, 

so the error observed on Figure 4.15 and Figure 4.16 could be somehow attributed to this small 

frequency shift. Later, in section 4.4, we will comment on the effects of the damping tape to the 

first natural frequency of the beam with damping layers. 
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We can conclude from this section that the Plunkett and Lee approach offered an accurate 

method to predict damping of a given beam with discretized damping layers. Also, the Plunkett 

and Lee approach offered accurate theoretical tools regarding the optimal length at which the 

damping tapes should be discretized in order to optimize the damping.  

 

4.3.3 Optimization of damping layer length 

From results given in section 4.3.2 and considering the good agreement obtained from the 

Plunkett and Lee approach, the analysis of the discretized constrained damping layers was 

extended in this section. A theoretical analysis was carried out in order to consider optimization 

of the damping layer length and reduce the needed length, potentially obtaining an improved 

damping ratio compared to a continuous damping layer configuration, and with reduced added 

mass and cost.  

 

In this section our aim is to compare the case of a fully covered cantilever beam and a partially 

covered cantilever beam as shown in Figure 4.18a and Figure 4.18b, respectively. Notice from 

Figure 4.18a that the energy dissipated along the length of the beam is concentrated near the 

clamped end where the bending strains are largest. This was discussed earlier in Chapter 3. 

Knowing that most of the energy dissipation is happening near the clamped end, consider Figure 

4.18b with a shorter length of damping tape. Notice that the effect of the added end within the 

region of maximum strain could cause a higher damping than the obtained with a fully covered 

beam. Furthermore, if the selected length of is greater than the optimal discretization length, and 

this treatment is discretized as shown in Figure 4.18c, we could further increase the damping of 

the structure with less added mass than required for continuous treatment. 
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(a) 

 

(b) 

 

(c) 

Figure 4.18: Schematic illustration of cantilever beam showing only the upper damping layer: a) 

fully covered. b) continuous partially covered. c) discretized partially covered. 
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The theoretical analysis was performed over a cantilever beam with the same geometrical and 

material properties as beam 3.  Figure 4.19 illustrates the shear stress distribution of a cantilever 

beam with a continuous damping layer of 450 mm long. We observe that most of the shear stress 

is distributed near the clamped end, located at x = 0, within the first 100 mm of the beam. 

 

 
Figure 4.19:  Shear stress distribution of a cantilever beam at its fundamental vibration mode. 

 

 

Experimentally we determined the logarithmic decrement of the beam 3 without damping tapes, 

so we can predict the loss coefficient or the logarithmic decrement of additional configurations 

such as, La= 450 mm, La =100 mm, La =150 mm, and La =200 mm. Also we considered the 

discretized configurations for each of these partially covered configurations and the fully covered 

configuration. Table 4.6 shows estimates of the damping ratio from the Plunkett and Lee method.  
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Table 4.6: Optimization of damping layer length for 3M 425 damping tape. 

L
a
 [m] r = L

a
/SL ζ % ζ % Mass decreased 

*0.45 21.8 0.0040 - - 
0.1 4.9 0.0070 61.3% 

78% 0.05 2.4 0.0072 63.3% 
0.025 1.2 0.0048 10.7% 

 

La [m] r = La/SL ζ % ζ % Mass decreased 
*0.45 21.8 0.0040 - - 
0.15 7.3 0.0066 52.2% 

67% 0.075 3.6 0.0088 95.0% 
0.038 1.8 0.0072 66.5% 

 

L
a
 [m] r = L

a
/SL ζ % ζ % Mass decreased 

*0.45 21.8 0.0040 - - 
0.2 9.7 0.0060 38.7% 

56% 0.1 4.9 0.0088 95.0% 
0.05 2.4 0.0091 110.5% 

*Full length 
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Figure 4.20: Theoretical damping ratio comparison between a partial coverage configuration 

with continuous length (C) La and two and four segments (2, 4), and a full coverage 

configuration of 0.45 m (dashed line). 

 

 
 

Figure 4.21: Theoretical damping ratio/added mass comparison between a partial coverage 

configuration with continuous length (C) La and two and four segments (2, 4), and a full 

coverage configuration of 0.45 m (dashed line). 
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We observe that locating damping layers of 0.1 m from the clamped end over a 0.45 m long 

beam, provides an improvement of the damping ratio of 61.3% and discretizing the new layer 

into 0.05 m segments leads to 66% increase of the damping ratio compared to the 0.45 m layer. 

On the other hand, if we consider an adhesive layer, La = 0.15 m and discretized it to segments of 

0.075 m we obtain an increase of 95% with respect to the fully covered configuration. Similarly, 

if we consider a La = 0.2 m the effect of discretizing this new layer to 4 segments will lead to 

110% increase. Figure 4.20 shows that the optimal configuration would be a partially covered 

beam with La = 0.15 m and two segments, since this configuration provided a relatively higher 

damping ratio compared to the full coverage configuration and relatively large mass reduction. 

Figure 4.21 shows the damping ratio over the added mass for each configuration compared to the 

full covered beam (dashed line). We observed that for La = 0.1 m, and two segments we obtain 

the highest damping ratio/ added mass value. This configuration may reduce the added weight to 

the structure and save material and cost of the surface treatment. The theoretical enhancement 

found in this section could be of industrial interest since we observe a decrease in the amount of 

damping material needed to considerably increase the damping of the beams. 

 
 

4.4 Natural frequency shift due to the damping layer. 

Adding the surface treatment to the beam also caused the natural frequency to change slightly. 

This is reasonable since we are adding mass and stiffness to the system, in addition to damping. 

To quantify this shift we used the LabVIEW power spectrum function. The power spectrum is a 

measure the power distribution in the frequency domain, (Meirovitch, 2010). The frequency shift 

due to the added damping layer as shown in Figure 4.22, for beam 4 with continuous and 

discretized 3M 425 damping tape. It is observed that the higher frequencies correspond to 

configurations that introduce more stiffness to the system for the same added weight. As the 

damping layer was discretized into smaller segments, the stiffness added by the aluminum 

backing decreases, so for the same mass of the damping layer, the frequency tends to decrease.  
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Figure 4.22: Natural frequency shift on sample 4 using tape 3M 425 for different length of 

constraining layer and the bare beam 

 

 

This frequency shift slightly affects our previous experimental validations, since we have 

assumed that the first natural frequency of the system and the mode shapes were the same as the 

bare specimen. To have an idea of how critical the frequency could be, Figure 4.23 shows the 

loss coefficient predicted from the Plunkett and Lee approach, as a function of the frequency 

using tan δ of the master curve given in Figure 2.19. The frequency dependence of the VE 

material properties affects the loss coefficient of the structure with the damping layer. Note, that 

modifying the natural frequency of the structure could enhance or lower the damping properties 

of the surface treatment.  
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Figure 4.23: Frequency dependence of the loss coefficient maximum values at Tref  = 20 oC. 

 

4.5 Summary 

The optimal length of the discretization segments as related to the shear lag distance was 

experimentally observed. When the length of the segments is near the optimal value, the 

damping ratio obtained experimentally from the discretized damping treatment exhibited the 

highest measured value. The damping ratio percentage increase was obtained for different 

damping tapes and experimental beams. We considered the damping ratio increase between the 

continuous layer configuration and the maximum damping ratio obtained experimentally with 

discretized damping layers; results allowed us to observe that the thickness of the backing 

material of the tape affects the energy dissipation. Additionally, experimental loss coefficients 

for different discretization lengths and damping tapes were obtained from equation (4.14); 

theoretical loss coefficients were obtained from the Plunkett and Lee approach. With these 

experimental and theoretical values a comparison was performed and discussed. We found that 

as the discretization length decreased, the experimental values differed from the theoretical 

values. A theoretical analysis was performed to investigate configurations to optimize the 

damping layer length as an alternative to the added weight of more damping tape. To this end, 
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where the strain was higher. The theoretical results showed that applying a surface treatment of 

partial length might increase the beams’ damping and decrease the additional weight (and cost) 

compared to the full continuous damping layer configuration. Finally, the natural frequency 

shifts caused by the damping tapes were recorded and shown in Figure 4.22; Figure 4.23 showed 

that the loss coefficient obtained with a given damping treatment might change depending on the 

oscillatory motion frequency.  
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Chapter 5 Nonlinear Analysis of Cantilever Beam with 

Damping Treatment 

 
 
 
 

5.1 Methodology for studying beams undergoing parametric excitation 

In previous chapters we investigated the linear damping of a cantilever beam with discretized 

damping layers on each side. We also confirmed optimal values as predicted by Plunkett and Lee 

method, (Plunkett & Lee, 1970) for the length of damping layer segments that maximized the 

energy dissipation. Furthermore, using Plunkett and Lee formulation, we confirmed that optimal 

values are functions of the mechanical properties of the viscoelastic layer, which are functions of 

temperature and frequency, and the stiffness of the constraining layer.  

 

To expand the analysis of structures with damping layers, we focus in this chapter is focused on 

studying the problem of cantilever beams with damping tapes subjected to parametric excitation 

which will caused large deflections of the structure so the performance of the damping tapes 

under these conditions could be analyzed. When structural elements are subjected to large 

deflections, the linear models used to study the response due to different types of loadings may 

not be accurate. In general, as the amplitude of the oscillation increases, nonlinear effects 

become important. To accurately understand the dynamic response of a mechanical system under 

more general loading conditions, it is essential to consider nonlinearities present in the system in 

the analytical model (Malatkar, 2003).  

 

This chapter is divided into two components, the first stage is to carry out experiments with 

different adhesive segment length to shear lag distance ratios, r, as defined in Chapters 3 and 4. 

The second part corresponds to observations of an effective decrease of the deflection amplitudes 

with the damping tapes and the identification of nonlinear parameters such as the nonlinear 
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damping, cubic nonlinearities and parametric forcing parameters. These values are analytically 

validated for each configuration using the methodology given by Fung (Fung, 1998). 

 

5.1.1 Types of structural nonlinearities  

For structures where the nonlinear effects need to be considered, Nayfeh and Mook (Nayfeh & 

Mook, 2008) defined several sources of structural nonlinearities. This section briefly described 

nonlinearities expected in structural elements: 

 
1. Geometric nonlinearities are attributed to large deflections of structures or nonlinear 

stretching of the structure. In general, structures undergoing large deformations show 

nonlinear strain displacement and curvature-displacement relations. Geometric 

nonlinearities result from changes in the potential energy of the system. Some types of 

geometric nonlinearities are: 

 

a. Cubic geometric nonlinearities: equations of motion with cubic nonlinearities are 

associated with many physical systems such as the vibration of strings, beams, 

plates, etc.  

 
b. Quadratic geometric nonlinearities: may arise from initial static deflection of the 

structure. It is known that an initial deflection of nonlinear beams affects the 

natural frequencies. So, governing equations originally containing only cubic 

nonlinearities need to include quadratic nonlinearities when initial displacement 

of the structure is present. This would happen to slender structures that are very 

common in engineering design; in such cases considering quadratic nonlinearities 

become important. Sato, Saito and Otomi addressed the influence of gravitational 

forces on the parametric resonance of a vertical cantilever beam with a lumped 

mass. They proved analytically that the shift in the natural frequency of the 

structure was related to static deflection (Sato, Saito, & Otomi, 1978). 

 
2. Inertial nonlinearities, result from concentrated or distributed masses along the structure. 

Kinetic energy changes are the cause of these nonlinearities in the system. 
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3. Material nonlinearities are attributed to nonlinear stress-strain relationship of certain 

materials.  

 
4. Damping, velocity dependent forces are also called damping forces or just damping. 

Nayfeh and Mook defined nonlinear damping mechanisms of structural systems such as 

hysteretic damping, air damping, etc (Nayfeh & Mook, 2008).  

 
a. Air damping, when an immersed body moves though a fluid at high Reynolds 

numbers, the flow separates and the drag force is nearly proportional to the square of 

the velocity. For moderate Reynolds number (commonly used nondimesional number 

use in fluid mechanics related to the velocity of a body), the damping force lies 

between linear and quadratic forms. Baker, Woolam and Young considered air drag 

forces with the form (Baker, Woolam, & Young, 1967): 

 

FD = 1
2
ρairCDAV V   

 
where ρair  is the density of the air, CD  is a drag coefficient taken to be 1.28 for a 

rectangular cross section, A  is the area normal to the flow, and V is the instantaneous 

velocity at a point along the length of the beam.  

 
b. Structural damping, arises when materials are cyclically stressed, causing internal 

energy dissipation within the material itself due to internal mechanisms. In metals, 

dislocation slip may contribute to this internal dissipation. Researchers have found 

that for metals such as aluminum or steel, this internal energy dissipation is not 

function of frequency or strain rate. But, it is proportional to the square of the 

vibration amplitude. In the aim of obtaining approximate solutions of structural 

damping, it can be equated to an equivalent linear model using viscoelastic energy 

dissipation principles, (Thomson, 1996). 
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W
cycle

= βε 2

W
cycle

= πε 2E ''(ω o )

E ''(ω o ) =ω oceq

ceq =
β

πω o

  

 
where ω o  is the natural frequency and β  is a characteristic damping parameter for 

every specific material with units of force/displacement. A full list of this parameters 

was compiled by (Lee, 1966).  

 
 

5.1.2 Nonlinear analytical models 

As mentioned before, a linear model is sufficient when dealing with small deflections. But, as the 

amplitudes of the deflections increase, for accurate modeling, the analysis should include 

nonlinearities. Next, we consider a cantilever beam of length l subjected to a base excitation z (t) 

as shown in Figure 5.1.  

 

 
Figure 5.1: Schematic illustration of a cantilever beam subjected to base excitation, z (t). 

 

We will consider the solution for the nonlinear system when the excitation frequency, Ω ≈ 2ω1. 

Zavodney and Nayfeh developed the equation of motion of a cantilever beam with a lumped 

mass using Euler-Bernoulli theory (Zavodney & Nayfeh, 1989). Bordanaro also developed the 
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99 

equations of motion of a cantilever beam under parametric base excitation, but using energy 

methods. Bordanaro derived the potential and kinetic energy of the system considering the 

effects of the lumped mass and large deflections due to the parametric excitation with excitation 

frequency of Ω ≈ 2�1 (Bordonaro, 2009). In this work we will consider the solution for the 

model subjected to parametric excitation frequency, 

 

 Ω=2ω1 + Ψ2� (5.1) 

 

where σ is a frequency-detuning parameter, which is scaled with the parameter, Ψ2 to indicate 

the very small difference between the excitation frequency and twice the first natural frequency. 

Further, Nayfeh and Mook addressed cases where the excitation frequency Ω  is near other 

harmonics of the system, for example, Ω ≈ 2ω2 , Ω ≈ �1 + ω2 (Nayfeh & Mook, 2008).  

 

In general, for our experimental model, we will consider a variation of the Duffing and Mathieu 

oscillators that includes damping forces, geometric nonlinearities and parametric excitations 

parameters to model the strain amplitude of a cantilever beam subjected to base parametric 

excitation (Fung, 1998):  

 

 
 

(5.2) 

 

where ω1
2u  is the linear restoring force, ω1  is the first linear undamped natural frequency of the 

system and, the cubic geometric and inertial restoring forces are �3u3 and �(du/dt)2u, 

respectively. The linear and nonlinear damping forces are, �1du/dt and �2du/dt µ2 du dt du dt . The 

parameter �2 considers the harmonic parametric excitation. The parameters, f, �, and �e are 

the forcing amplitude, frequency and phase, respectively (Fung, 1998). Equation (5.2) is 

equivalent to the equations of motion found by Zavodney and Nayfeh, and Bordanaro (Zavodney 

& Nayfeh, 1989) (Bordonaro, 2009). Nayfeh and Mook, (Nayfeh & Mook, 2008) presented a full 

d 2u
dt 2

+ω1
2u + 2µ1

du
dt

+ µ2
du
dt

du
dt

+α 3u
3 +δ (du

dt
)2 =η2uf cos(Ωt +τ e )
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synthesis of other nonlinear models addressing other types of nonlinearities not considered in 

(5.2). 

 

5.1.3 Approximate solutions to nonlinear models 

Proper modeling of the response of nonlinear systems is important for the reliable prediction and 

control of that response. Common techniques for nonlinear systems modeling aim to identify 

relevant physical phenomena governing such response. There are two types of identification 

methods: nonparametric and parametric identification. Nonparametric identification is used to 

quantify the dynamics of a system without making any assumptions about the dynamics. 

Nonparametric identification seeks to determine the functional representation of the system to be 

identified. Some common nonparametric procedures are the Volterra series, the Wiener Kernel 

approach and the expansion of the restoring forces in a series of orthogonal sets of functions such 

as with Chebyshev polynomials (Nayfeh, 1985). On the other hand, parametric identification 

assumes a model for the dynamics and the goal is to identify the parameters in that model. This 

technique includes direct approaches, statistical quasilinearization, filtering, and estimation 

methods (Fung, 1998). 

 

In 1985, Nayfeh proposed an approach to exploit nonlinearities in structural elements. By 

observing the response of a parametrically excited system with � ≈ 2ωn, a model was proposed 

and an approximate solution was given through the method of multiple scales. The solution 

proposed by Nayfeh used the values of the excitation and response amplitude to obtain nonlinear 

parameters of the proposed model (Nayfeh, 1985). Approximate solutions were found for the 

case when � ≈ 2ω1. In 1998, Fung extended the methodology proposed by Nayfeh in 1985, and 

used experimental measurements of the response and excitation values along with the phase 

quantity, � to identify nonlinear parameters.  In this thesis it is not our attempt to include a 

careful description of the nonlinear identification methodology. On the other hand we are 

focused on the results of such identification, but we will briefly summarize the method in the 

next section. 
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5.1.4 Methodology of nonlinear identification 

Compared to the method proposed by Nayfeh (Nayfeh, 1985), the method given by Fung, (Fung, 

1998), included measurement of phase relations. In comparison with amplitude measurements, 

measuring phase is more complicated. Time and frequency domain analysis are often employed 

to quantify the phase characteristics of a system. In 1993, Hajj et al. used a higher order spectral 

moments, namely the bispectrum, to obtain a phase relations between different frequency 

components (Hajj, Miksad, & Powers, 1993). 

 

In this work we calculate the nonlinear phase quantity, γ, from the following phase relationship 

given by Fung: 

γ = Ψ2σt + τe - 2ψ  

  

where τ e , is the excitation phase, � is the phase of the response. As defined in equation (5.1), 

� is a parameter that indicates the relative contributions of the nonlinear effects to the response 

of the structure, and � is a frequency detuning parameter. The term �2�t carries a small time 

variation caused by how far the excitation frequency � is away from twice the first natural 

frequency, 2ω1. Considering this term as a very small quantity, we can assume that � is constant 

and is given by: 

  

γ = τ e − 2ψ = constant  

and,  

γ = τ e   when  ψ = 0  
 

We calculated values of γ from experimental steady state measurements through linear 

interpolation. Considering the superposition of the harmonic excitation and response, we located 

the point at which the amplitude of the response, a, is zero as shown by a red dashed line in 

Figure 5.2. The point p1 and p2 are taken to be known angles from the excitation harmonic 

waves. In this example, p1 = 0 and p2 = 90° and are used to complete the linear interpolation and 

determine the angle γ. 

 



 
 

102 

 
time  

Figure 5.2: Typical experimental results from parametric excitation test with Ω ≈ 2ω1, of 

cantilever beams and interpolation parameters to calculate the phase angle γ, to perform 

nonlinear parameter identification. 

 

From Figure 5.2 we can also obtain the amplitudes of the excitation and response time series for 

every steady state oscillation recorded during the experiments. By observing the steady state 

response and the methodology proposed by Fung (Fung, 1998), the multiple scales method leads 

to the following linear relationship between a and f sin γ. Also, linear relationship were obtained 

between a2 and f cos γ: 
 

 

 

(5.3) 

0

 

 

Response, a
Excitation, f

p1 a p2

a = ηe

4
3π

µ2ω n
2
f sinγ − µ1

4
3π

µ2ω n
2

a2 = − ηe

α e
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2
ω nσ
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These results are the key point from the method derived by Fung. As shown in Figure 5.3, plots 

of a vs. f sin γ and a2 vs. f cos γ result in linear relationships. Finally, through the least squares 

method, we obtain the values of the slope and intercept of the lines to calculate nonlinear 

parameters from equation (5.2). 

 
Figure 5.3: Typical plots of linear relationship between a) a vs. f sin γ and b) a2 vs. f cos γ. 

Notice that equations (5.3) contain linear parameters such the linear damping, µ1, and ω1, the 

undamped natural frequency. This methodology assumes that the linear damping is calculated 

from linear identifications techniques such as free response tests equivalent to the tests 

performed for Chapter 4. The free response of the system is dominated by linear parameters of 

the system; considering weak nonlinearities, the importance of linear restoring and damping 

forces allows for independent identification of the linear parameters.  

 

Summary of the steps for the nonlinear identification: 

 

1. Identify linear damping, µ1, through conventional linear system identification technique. 

2. Measure the excitation amplitude, f, and frequency. 

3. Measure the response amplitude, a, over a range of observed steady state oscillations. 

4. Obtain the nonlinear phase difference between the response and the excitation, γ. 

5. Plot the experimentally measured a vs. f sin γ. Carry out linear fitting to obtain the 

parameters of such linear equation. 

6. Plot the experimentally measured a2 vs. f cos γ. Carry out linear fitting to obtain the 

parameters of such linear equation. 
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7. Perform nonlinear system identification and obtain the parameters of the assumed 

nonlinear model. 

 

5.1.5 Experimental setup and procedure for nonlinear test of the parametrically 

excited cantilever beam 

The experimental sample considered for the nonlinear characterization consists of a 1095 HI 

steel beam attached to a steel-mounting clamp. The Young’s modulus of the beam is 200 GPa 

and the density is 7500 kg/m3. The width and thickness of the beam are 12.7 and 0.85 mm, 

respectively. The length of the beam is 270 mm between the tip of the beam and the top of the 

mounting clamp. Figure 5.4, shows the experimental set up. The base of the mounting plate is 

attached to a modal shaker that will induce the parametric excitations to the beam. 

 

 
Figure 5.4: Cantilever beam in the mounting plate over the shaker platform prior parametric 

excitation. 

The amplitude of the excitation is measured using an accelerometer attached to the top of the 

shaker platform, and the response is recorded using strain gages. The parameters of the 

accelerometer and strain gages are listed in Table 5.1. 3M 425 damping tapes was considered for 

these experiments, properties of this tapes are given in Table 4.1. 
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Table 5.1: Properties of the strain gage and accelerometer for nonlinear tests. 

 Strain gage Accelerometer 

Designation MM WK-06-125AB-350 PCB piezoelectronics 353B33 

Gage factor 2.02 ± 1% -- 

Resistance (�) 350 ± 0.3% -- 

Sensitivity (mV/g) -- 103.4 

 

 

The bare steel beam was firmly clamped to the mounting clamp as shown in Figure 5.5. We 

proceeded with the identification of linear parameters as described on section 5.1.4. Once the 

natural frequency and the damping ratio of the bare steel beam were obtained, the undamped 

natural frequency and linear damping were calculated using: 

 

  (5.4) 

 

 
Figure 5.5: Experimental sample attached to the mounting clamp. 

 

Once the undamped first natural frequency and the linear damping were obtained from the free 

vibration test and equations (5.4), we induced parametric excitation to the cantilever beam near 

twice its natural frequency in accordance with equations (5.1) and (5.2). Then we recorded the 

steady state oscillation of the bare beam for different excitations amplitudes. Once we saved the 

ω d1 =ω1 1−ζ
2

µ1 = ζω1
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data for the bare beam, we removed the cantilever beam from the mounting plate and bonded 

200 mm long layers of the damping tape 3M 425 on both sides of the beam as shown in Figure 

5.6. The excitation frequency was set to 19.4 Hz and the amplitude of the shaker was varied 

between 5 to 15 m/s2. Higher amplitudes were not possible for safety reasons, as the deflections 

of the beam became extremely large.  

 

 
Figure 5.6: Schematic of the steel cantilever beam with the continuous 200 mm layers of 3M 425 

damping tape. 

 

We repeated the procedure as with the bare beam and obtained the linear damping and the first 

undamped natural frequency of the steel beam with the damping tape on each side. As mentioned 

in Chapter 3, when we added the damping tapes to the structure, the damped first natural 

frequency changed slightly due to the effects of the added mass and stiffness. Therefore, the 

parametric excitation frequency will also change for the tests with the damping tape. It is 

important to take this into account because of the considerations made from equations (5.1) and 
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(5.2). For the beams with the surface treatment, the excitation frequency was set to 19.3 ± 3 Hz, 

and the excitation amplitude was set from 7 to 20 m/s2. Once the steady state oscillations were 

recorded for different forcing amplitudes, the damping tape layers were discretized into equal 

segments, as shown in Figure 5.7. 

 

 
Figure 5.7: Diagram of the cantilever beam with a discretized 3M 425 damping layer La=100 

mm.  

 

The first segment was made at 100 mm from the beginning of the damping tapes, or the middle 

of the damping layers; following cuts were made to obtain discretized length La, of 50 mm, 25 

mm, 12 mm, and finally 6 mm. The cuts were made after the steady state oscillating data were 

recorded for each case, similar to the procedure explained for the bare steel beam and the beam 

with continuous layers of 3M 425.  
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5.2 Results of parametric excitation for steel cantilever beam. 

In this section, we show the experimental results from the parametric excitation test explained in 

the prior section. This section is organized in two main components. First, we show the response 

amplitude versus excitation amplitude for the different La. Then, we show the results of the 

nonlinear identification performed for each case. We also explain the statistical method used to 

trace the propagation of the error coming from the least squares method and equations (5.3). 

 

5.2.1 Response amplitude and excitation amplitude behavior 

Experimental data obtained for different damping tape length ratios, r, are summarized in this 

section. Figure 5.8 and Figure 5.9 show the time histories recorded for each case of r. Figure 

5.10 shows a more general overview of results, plotting the amplitude of the excitation versus the 

amplitude of the response during the parametric excitation of the steel cantilever beam. We 

included the loss factor values measured experimentally and analytically compared with the 

Plunkett and Lee method (Plunkett & Lee, 1970). We observe that the response amplitude 

decreases for the r values with high loss factors with the exception of the case of r = 8.3 

corresponds to the value and La = 200 mm. For the same excitation amplitude, this configuration 

showed a higher amplitude than the configuration for r = 4.1 which is near the optimum value 

found with formulations given in Chapter 3. The other cases of r considered for the tests, showed 

smaller loss factor and therefore higher response amplitude. 
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Figure 5.8: Time histories of the excitation and response for: a) r = 8.3, b) r = 4.1, and c) r = 2.0, 

respectively. 

 

 
Figure 5.9: Time histories of the excitation and response for: a) r = 1.0, b) r = 0.5, and c) r = 0.2, 

respectively. 

0 0.1 0.2 0.3 0.4 0.5
ï20

ï10

0

10

20

f (
m

/s2 )

(a)
0 0.1 0.2 0.3 0.4 0.5

ï0.2

ï0.1

0

0.1

0.2

a 
(m

¡)

0 0.1 0.2 0.3 0.4 0.5
ï0.2

ï.1

0

0.1

0.2

a 
(m

¡)

(b)

0 0.1 0.2 0.3 0.4 0.5
ï20

ï10

0

10

20

f (
m

/s2 )

0 0.1 0.2 0.3 0.4 0.5
ï20

ï10

0

10

20

t(s)

f (
m

/s2 )

(c)

0 0.1 0.2 0.3 0.4 0.5
ï0.1

0

0.1

t(s)
a 

(m
¡)

0 0.1 0.2 0.3 0.4 0.5
ï20

ï10

0

10

20

f (
m

/s2 )

0 0.1 0.2 0.3 0.4 0.5
ï1

0

1

a 
(m

¡)

0 0.1 0.2 0.3 0.4 0.5
ï20

ï10

0

10

20

f (
m

/s2 )

(b)
0 0.1 0.2 0.3 0.4 0.5

ï1

0

1

a 
(m

¡)

0 0.1 0.2 0.3 0.4 0.5
ï20

ï10

0

10

20

t(s)

f (
m

/s2 )

(c)
0 0.1 0.2 0.3 0.4 0.5

ï1

0

1

t(s)

a 
(m

¡)

(a)



 
 

110 

 

 
Figure 5.10: Response amplitude  vs. forcing amplitude for different r using tape 3M 425. 

 

Each data set in Figure 5.10 correspond to the same damping layer discretized for the different r 

values. For the same forcing amplitude, data collected for r = 4.1 showed the lowest response 

amplitude; this is the same r value that gives the highest linear damping. The inset in Figure 5.10 

shows the experimental results of free vibration tests performed before each parametric 

excitation tests (red dots) and the loss coefficient predictions made from the analysis given in 

Chapter 3 (black line). As the linear damping assumes values that are close to the linear damping 

value of the bare beam, the effect of the damping layers decreased. We observe that the 

amplitude of the response increased to values near the response of the bare beam and higher than 

the response of optimal r value, as shown in Figure 5.11. 
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Figure 5.11: Response amplitude vs. r for forcing amplitude of 14.5 m/s2. 

 

5.2.2 Nonlinear parameters identification 

Adding damping layers to the structure helped to diminish the amplitude of the deflection, as 

expected. In this section we will study the effect of the damping tape to the nonlinear parameters 

governing the equation (5.2). 

 

Table 5.2: Summary of identified nonlinear parameters from the steel cantilever with different r 

of tape 3M 425 

 No damping layers 200 mm 100 mm 50 mm 25 mm 12 mm 6 mm 

Ω (Hz) 19.40 19.70 19.60 19.15 19.00 19.20 18.90 

µ1 (Hz) 0.0266 0.0626 0.0662 0.0473 0.0336 0.0288 0.0271 

η2 (mε-1) 10.422 9.034 16.477 16.734 7.978 10.124 7.555 

α3 (mε-2s-2) 8.874 188.904 1320.662 182.286 23.031 38.922 9.485 

µ2 (mε-1) 0.0102 0.0201 0.0294 0.0101 0.0108 0.0103 0.0043 

ω1 (Hz) 9.71 9.80 9.65 9.41 9.47 9.56 9.42 
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The parameters summarized in Table 5.2 were calculated from equations (5.3). Because this 

equations is based on the estimated slope and intercept of the a vs. f sin γ and, a2 vs. f cos γ 

found from the least squares fits, the error propagation is difficult to obtain through conventional 

statistics methods due to the fact that equations (5.3) are function of each of the estimated values. 

In 1979, Efron introduced the “bootstrapping” method in order to manually estimate confidence 

intervals and prediction of error of estimate values from such complicated functions. The 

methodology used in this thesis to obtain the 95% confidence intervals of the identified nonlinear 

parameters is based on this statistic technique. The “bootstrapping” method consist of: 

 

1. Resampling of the experimental data collected, in this case the values of a vs. f sin γ and 

a2 vs. f cos γ. Using the software RTM, we pick random pairs from the original 

experimental values and create a new array.  

2. Apply the least squares approach to obtain the slope and the intercept for each resample 

array. 

3. Use the equations (5.3) to obtain the nonlinear parameters for each resample. 

4. Manually obtain the 95% confidence interval for each nonlinear parameter from, 

 

where, x  and σ  are the average and the standard deviation of the nonlinear parameters 

calculated for each resampled x-y array respectively, and N is the number of resamples. 

 

This methodology was very helpful in the analysis of the identified parameter from the 

experimental measurements. In Figure 5.12, Figure 5.13, and Figure 5.14 we plot the mean 

values and their corresponding 95% confidence interval. Additionally, we show in Figure 5.13 

and Figure 5.14 the loss factor for the different r values experimental and analytically obtained in 

order to compare the effect of the increase of the linear damping with the damping tapes to the 

identified nonlinear parameters. 

 

95% Confidence interval = x ± 1.96σ
N
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Figure 5.12: Linear and nonlinear damping vs. r, ratio of adhesive cut length to shear length for 

steel cantilever with adhesive 3M 425. 

 
Figure 5.13: Cubic nonlinear parameter (α3) vs. r, ratio of adhesive cut length to shear length for 

steel cantilever with adhesive 3M 425. 
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Figure 5.14 Parametric forcing parameter (η2) vs. r, ratio of adhesive cut length to shear length 

for steel cantilever with adhesive 3M 425. 

 

From Figure 5.12, we observe an increase in the nonlinear damping for configurations near the 

optimal value of r that resulted in maximum values of the linear damping. For the values away 

from this r optimal value, the identified nonlinear damping showed values within the 95% 

confidence interval of the nonlinear damping calculated for the bare beam, meaning that the 

damping layer did not significantly affect the nonlinear response of the beam for these cases. The 

nonlinear damping is related to air drag and structural damping. As such, we would expect that 

as we discretized the damping layer obtaining responses amplitudes near the values of the bare 

beam as shown in Figure 5.10, the velocities reached by the beam are similar as for the bare 

beam the nonlinear damping mainly attributed to the air drag, eventually would reach the values 

of the bare beam. 

 

Figure 5.13 shows that, the cubic nonlinearities increased with the added layers compared to the 

bare beam. Since, cubic geometric nonlinearities arise from the potential energy of the structure, 

we would expect that the added mass and stiffness of the damping layer modified the potential 

energy of the beam so we observe a significant change with respect to the bare beam. Notice 

that, except for r = 0.2, the discretized damping layer showed an increased cubic nonlinearity. 

On the other hand, the parametric forcing parameter, that represents how effectively the 
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parametric excitation affected the dynamics of the beam, increased for r near the optimal value, 

and again, showed a drop when the beam had a continuous damping layer, similarly as for α3 and 

µ2, η2. 

 

5.2.3 Nonlinear parameter validation 

To validate the identified parameters, we integrated equation (5.2) and simulate the response due 

to different forcing amplitudes comparable to those used in the experiments. The simulation was 

performed using a MATLAB routine, specifically using ODE45 function, based on the Runge 

Kutta method. The integration time step was set at 0.000504 s and the total integration time was 

set from 0 to 100 s. As a qualitative measure of the agreement between the mathematical model 

and the experimental data, in Figure 5.15 we show the response of the steady-state response for 

different forcing amplitudes.  

 

 
Figure 5.15: Comparison of the steady state time histories obtained experimentally (solid line) 

and analytically (dashed line) for the steel cantilever for (a) r = 8.3, (b) r = 4.1, (c) r = 2.0, (d) r = 

1.0, (e) r = 0.5, (f) r = 0.2. 
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Figure 5.15, shows a relatively good agreement of the simulations using the identified 

parameters identified of Table 5.2 in equation (5.2) based on the procedure given by Fung (Fung, 

1998).  

 

5.3 Summary 

The main results for this chapter included the confirmation of the effectiveness of the surface 

treatment reducing the amplitude of the harmonic response of the cantilever beam with different 

discretization length as showed in Figure 5.11. Additionally, nonlinear identification was 

performed to study the effects of the damping layers to the nonlinear parameters such as 

nonlinear damping, cubic nonlinearities, and forcing parameters were obtained for different 

discretization length. We observe a noticeable increase in the value of the cubic nonlinearities of 

the damped structure compared to the beam without damping layer. The nonlinear damping 

obtained was maximum for the damping tape configuration with highest linear damping, r = 4.1 

except for the continuous damping layer. The nonlinear parameters were used with equation 

(5.2) to compare the simulated response and the experimental data, obtaining a good agreement 

as showed in Figure 5.15.  
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Chapter 6 Large Deflection Effects on Damping tape 

Response 

 

 

6.1 Methodology to study large deflections effects on damping tapes 

In this work, we focus on the effectiveness of discretized damping tapes and included a nonlinear 

analysis in order to investigate the effects of such damping layers on the nonlinear parameters of 

a structural element, but also to investigate the effects of large deformations on the damping 

tapes and on the dynamics of the beam undergoing such motion.  

 

6.1.1 Buckling of thin films over an elastic substrate. 

Constrained damping layers when used as a mechanism to damp vibrations can be as thought of 

as a thin stiff film over an elastic foundation. A problem arises when the axial forces experienced 

in the backing material of the tape reach a level where the instability of the film occurs, resulting 

in buckling as described by Parfitt and Lambeth (Parfitt & Lambeth, 1960). In such cases, the 

viscoelastic (PSA) layer experiences a different deformation regime. Before this regime the 

viscoelastic layer is subjected to shear deformation. Although there will always be peel stresses 

at terminus of the backing layers, but will be localized at the ends due to the rapid decay of BoEF 

stresses. When buckling occurs, the viscoelastic layer is also subjected to oscillatory out-of-plane 

strains throughout the buckled regions, which introduces another energy dissipation mechanism. 

As the axial load on the backing material reaches a critical value, the deformation of the stiff 

backing layer of the damping tapes could experience two types of deformation: wrinkling or 

buckle-delamination (Hetényi, 1971). 
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(a) (b) 

Figure 6.1: Schematic of the two considered buckling modes in thin films. a) buckling. b) 

delamination.  

 

Figure 6.1 shows the two buckling modes of a thin film over an elastic substrate. These two 

buckling modes, are often observable macroscopically. Yet, one of the common problems is to 

determine which mode will govern the deformation of different systems. Huang considered the 

kinetic wrinkling of an elastic film on a viscoelastic substrate. He made a classification based on 

critical conditions at the elastic limits of the film and the glassy and rubbery states of the 

viscoelastic substrate. Applying linear perturbation analysis, Huang studied the kinetics of 

wrinkling in films subjected to large compressive stresses, and showed that depending on the 

stress level, the growth of buckling can have different dynamics (Huang, 2005).  

 

Mei et al. observed that buckling delamination occurs often with relatively stiff substrates and 

wrinkling occurs only when the substrate is very soft. They presented a theoretical basis for 

predicting which deformation mode will prevail for different systems based on geometrical 

properties and mechanical properties of the substrate and the film (Mei, Huang, Chung, Stafford, 

PSA layer 

Buckling Buckle-delamination 

Film 

Beam 
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& Yu, 2007). Vella et al. studied the macroscopic delamination of thin films on elastic 

substrates. Performing controlled experiments at macroscopic scales to study the dimensions of 

these blisters (Figure 6.1b) in terms of material properties, they explained experimental results 

by using a combination of scaling and analytical methods. A method for determining the 

interfacial toughness was obtained and it was shown that, in order to avoid fatigue damage on the 

film, the thickness must be greater than a critical value, which was determined in the analysis 

(Vella, Bico, Boudaoud, Roman, & Reis, 2009). Audoly and Boudaoud studied different patterns 

that arise as a function of the biaxial residual stress in the film by considering appropriate 

boundary conditions used at the interface between the film and the substrate. A key point from 

their work included a linear analysis of the classical pattern consisting of straight stripes and 

identifying secondary instabilities leading to the formation of undulating stripes, or varicose, 

checkerboard or hexagonal patterns (Audoly & Boudaoud, 2008).  

 

We introduce the possibility of buckling to our work since the large deflections caused by 

nonlinear oscillations of the cantilever beam under parametric deformation reached sufficiently 

large amplitudes that buckling formation was observed during the experiments.  

 

6.1.2 Large deflection effect on the damping tapes stability. 

Consider a cantilever beam, with symmetric damping tapes applied, subjected to parametric 

excitation as described in Chapter 5. When the amplitude of the excitation is high enough, large 

deflections of the cantilever beam are obtained. As the deflection amplitude increases, higher 

axial stresses are induced in the backing material of the damping tapes. At sufficiently high 

levels of strain, the backing material tends to buckle, resulting in an additional energy dissipation 

mechanism. Using the formulation presented in section 3.5, the value for critical load and strain 

amplitude measured by the strain gage was obtained. From equation (3.30) the value of the 

critical strain was found to be 83 µε, and the buckle spacing frequency was 0.8 mm. From the 

time histories presented in Figure 5.8 and Figure 5.9, we observe that the recorded values of the 

strain amplitude are higher than the critical buckling strain. Above this level, we expect to 

observe buckling of the backing material of the 3M 425 damping tape. To investigate the effects 

of buckling of the damping tape, we performed additional free vibration tests subjected to 

different initial displacement conditions.  
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6.1.3 Free damped vibrations test with different initial displacement. 

Because the critical strain value calculated is quite small, most of the experimental 

measurements involved at least a portion of the beam straining above this strain value, we 

investigated the effect of buckling formation on damping response by performing additional free 

vibrations test. These tests involved subjecting a cantilever beam to successively larger initial 

displacements, xi, in order to induced buckling in the constraining layer of the damping 

treatment, as illustrated in Figure 6.2.  

 
 
 

 
Figure 6.2: Schematic illustration of the initial displacement applied to the tip of a cantilever 

beam for free damped vibrations tests. 
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6.2 Results of large deflection effects on the performance of damping tapes 

In Figure 6.3, the logarithmic decrement vs. strain amplitude is plotted. The cantilever beam is 

subjected to an initial displacement that results in increasing values of strain, but this plot allows 

for comparison of the damping as increasingly larger initial strains damp back to very small 

levels. Notice that as the initial displacement/strain increased, the value of the resulting 

logarithmic decrement also increased, suggesting permanent damage or change were occurring.  

The buckling effect could explain the notable increased energy dissipation remaining even when 

the vibration amplitudes had returned to lower amplitudes.  

 

 

 

 
Figure 6.3: Logarithmic decrement measured from different initial displacement for La=200 mm 

and 3M 425 damping tape. The vertical dashed line denotes that the strain at the base of the 

cantilever has reached the critical strain at which buckling is predicted to occur. 

 

The slight slope exhibited by a given measurements may be due to air and structural damping; 

but, as shown at a given strain amplitude, the logarithmic decrement remains higher when a 

specimen has been previously subjected to a higher strain amplitude. A possible explanation for 

this loading history effect is that the onset of buckling and the upward (from base to tip of 
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vibrating beam) expansion of the buckled regions with increasing tip displacement amplitude 

means larger affected areas of the constraining layers. Buckle patterns were evident in the beam 

at rest as shown in Figure 6.4. So permanent effects, perhaps due to very low yield stresses of the 

dead soft aluminum backing, may also affect the energy dissipation of the damping treatment. 

 

 
Figure 6.4: Buckling of backing material on 3M 425 damping tape. 
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Figure 6.5: Diagram of the unbuckled damping tape over the steel beam and the shear and peel 

stresses distribution along the length of the damping layer. 

 
 

Shear and axial stress distributions along the length of a damping layer segment when the strain 

level is below the critical buckling value are shown in Figure 6.5. In this case, the energy 

dissipation is often attributed to shear deformation of the viscoelastic layer, though localized peel 

stresses are also presented and the ends of the backing. Recovering from Chapter 3 the concept 

of a shear lag distance, as the characteristic distance associated with the transfer of axial load 

from one adherend to the other, implies that there is a spatial lag before the axial stress reaches 

equilibrium. From Figure 6.6, we notice that there appears to exist a length, x, above the lower 

edge of the damping tape where the beam surface strains are greatest, where buckles are not 

noticeable. Distance x (green) shown in Figure 6.6 can be related to the shear lag distance given 

in equation (3.5).  
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Figure 6.6: Buckling formation on experimental cantilevers related to the shear lag distance. 

 

 
In 1991, Curtin extended Volkersen’s shear lag model to fiber breakage in composites. This 

study is known as the “car-parking problem”. Curtin defined a “recovery length”, considering the 

characteristic length necessary to reintroduce stress into a cut adherend sufficient for failure to 

occur (Curtin, 1991). In this work we extended the analysis to discretized-damping layers. To 

this end, consider Figure 6.7a showing the shear lag distance (green), and the axial load (blue) in 

the constraining layer. For the regions where the axial load is higher than the critical buckling 

load (red), we can observe in Figure 6.7b the buckling zone, introducing an additional energy 

dissipation mechanism associated with out-of-phase stretching of the damping layer. Visual 

experimental results of the observed buckling zone are also shown in Figure 6.6. 
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(a) 

 
(b) 

Figure 6.7: Diagram of the cantilever beam with damping tapes: a) shear stress distribution and 

normal load experienced by the constraining layer. b) shear and peel stress distribution along the 

damping layer. 
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Furthermore, it was experimentally observed that as the excitation amplitude increased and the 

axial load supported by the constraining layer gradually increased, the length where buckling 

may occur also increased; this is schematically shown in Figure 6.8. 

 

 

 
Figure 6.8: Schematic of increasing strain to a cantilever beam with damping tapes. 

 
 
 
We extended the concept of “recovery length” (Curtin, 1991) to discretized-damping layers. 

Figure 6.9a shows a schematic illustration of such discretized damping layers with one cut, and 

Figure 6.9b shows the expected shear stress distribution, and the axial load to which the 

discretized constraining layer is subjected. Notice that discretizing a continuous layer into 

segments will reduce regions where axial load is above the critical buckling load thereby 

reducing the effective length where buckles are expected decreased. This may be caused by the 

increase in more lightly loaded ends with successive. This was confirmed through observation 

during experiments, and pictures were taken in order to illustrate the phenomena.  Figure 6.10a 

shows the buckling of the backing material of the 3M 425 damping tape with a discretization 

length of 50 mm, this picture was taken when the beam was subjected to a strain amplitude 

higher than the critical buckling strain of 83 µε. Figure 6.10b shows the buckling of the backing 

material of the 3M 425 damping tape with a discretization length of 25 mm, again this picture 

was taken when the beam was subjected to a strain amplitude higher than the critical buckling 

strain of 83 µε. 
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Figure 6.9: Schematic of experimental beam: a) discretized constrained damping layer with one 

cut. b) axial load and shear stress distribution for constrained damping layer with one cut. 

 

  
(a) (b) 

Figure 6.10: Experimental visual results for: a) discretization length of 50 mm. b) discretization 

length of 25 mm. 
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Finally, Figure 6.11, shows the response amplitude vs. excitation amplitude for the different 

discretized damping tapes considered in this section. The critical buckling strain was determined 

to be 83 µε. Notice the low value of the buckling strain compared to the strains measured during 

the experiments. This strain was experienced by the part of the beam near the clamped end and 

so, we may expect buckling there. Note that if plastically deformed buckles were present before 

the cuts were made, multiple effects could complicate this interpretation.   

 

 
Figure 6.11: Forcing amplitude vs. response amplitude for different r using tape 3M 425. 

 

6.3 Summary: 

The buckling of the damping tape problem was addressed because of the relatively low values of 

strain needed to cause buckles within the backing layer of the considered damping layers. We 

obtained experimental data in Figure 6.3 for a continuous damping layer and different initial 

release amplitudes. These results showed up to a 28% permanent increase in the logarithmic 

decrement of the system after release from larger initial amplitudes. The inset showed in Figure 

6.11 gives theoretical and experimental values of the loss coefficient of the beam for very small 

strains. Therefore, we did not expect an important difference between theoretical values found 

with the methods given in Chapter 3 and Chapter 4. Furthermore, we observed during forced 

vibration experiments that there was a characteristic length associated with the shear lag distance 
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where buckling of the backing layer was not expected but, as the loading during experiments 

increased, this length decreased allowing more buckling along the surface treatment as shown in 

Figure 6.8.  

 

Discretized damping layers were also studied in this chapter. A decrease in the length of the 

buckling zone was observed when the segments of discretized damping layers were small. We 

concluded that this may be caused by an increase portion in the surface treatment acting as 

“recovery length”, that we defined as a characteristics length of the damping layer needed to 

rebuild the stresses in a cut backing. The cuts then resulted in more lightly loaded ends as 

illustrated in Figure 6.9. Although we recognize that many experimental situations may 

complicate this interpretation, such as plastically deformed buckles before the new cuts were 

made, buckling appears to be a factor in damping tape behavior when sufficiently high strains are 

induced, suggesting the need for further study of this phenomenon.  
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Chapter 7 Conclusions 
 
 
The purpose of this work was to investigate analytically and experimentally the effectiveness of 

discretized constrained damping layers. The viscoelastic material of damping tapes was 

characterized using a multiple layer quad shear specimen designed to enhance the shear 

deformation within the layers of the PSA tape following the methodology given by Yang et al. 

(Yang et al., 2007). The specimens were setup in the tensile film clamp of the DMA and a 

frequency sweep (0.1 Hz to 100 Hz) and temperature step (0 to 50 °C) were performed. The 

shear storage and loss modulus were calculated by analyzing the free body diagram of Figure 

2.12 and the raw data of force and displacement recorded by the DMA results were obtained 

from equations (2.11). The values of tan δ were obtained directly from the DMA, and the master 

curves were constructed using the Time-Temperature Superposition Principle (TTSP) at a 

reference temperature of 20°C. 

 

In Chapter 3 we introduced analytical tools to analyze the edge effect that causes an increased 

damping of the system within discretized damping layers. In this chapter we confirmed earliest 

results found by Plunkett and Lee (Plunkett & Lee, 1970). Following the methodology given by 

Plunkett and Lee it was showed theoretically, that discretized damping layers enhanced the 

energy dissipation compared to continuous damping layers when the segments length was near 

the optimal value but, as the length of the segments decreased from this optimal length, the ends 

effects became less important, resulting again in lower damping. The relation of this 

phenomenon to the shear lag distance from Volkersen’s analysis was investigated and we 

confirmed that the optimal values of the length of segments were near 3.28 times the shear lag 

distance.  

 

The experimental results from Chapter 4 confirmed the effectiveness of the discretized damping 

layer. Increased damping ratios were obtained when the discretization lengths were near the 

optimal value confirmed in this thesis. It was also experimentally observed that, as the 
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discretization length decreased from the optimal value for each damping tape, the damping 

decreased. Theoretical loss coefficients were also obtained from the Plunkett and Lee 

formulation (Plunkett & Lee, 1970). A comparison between experimental data and theoretical 

results were performed. A plateau of experimental data was observed in Figure 4.15 and Figure 

4.16. We observed a relation of this plateau with the loss coefficient obtained for the bare beam. 

Also, the plateau might be related to a combined effect of air drag and structural damping during 

the motion of the beam. Additionally, in Chapter 3 we explained that, as the discretization length 

decreased, the capability of the constraining layer to induce shear deformation to viscoelastic 

layers decreased so the value of the plateau may be attributed to loss coefficient values of an 

unconstrained viscoelastic layer. Different behaviors of the plateau for different tapes and beams 

could be observed and the phenomenon could not be fully understood. We conclude that further 

investigation needs to be performed.  

 

In Chapter 4, we also performed a theoretical analysis of partially covered cantilever beams. An 

enhancement of the damping ratio was found for several partially covered beams. We considered 

different damping layer lengths located near the clamped end of cantilever beams, where the 

strain is higher. The theoretical results showed that applying a surface treatment with length near 

the optimal value permit an increase of damping and decrease of added mass compared to 

continuous damping layers configuration. We consider that this is an alternative to overcome the 

added weight of thick damping tapes. 

 

Chapter 5 introduced an analysis of structural elements with damping tapes undergoing large 

amplitude deflections. To this end, nonlinear resonance of a cantilever beam with damping tapes 

under parametric excitation was exploited. The objective was to study the effectiveness of such 

layers undergoing large amplitude conditions by comparing the time histories of the bare beam 

and the beam with the surface treatment. It was confirmed that viscoelastic layers successfully 

damped the amplitude of the response for the same amplitude of excitation. We also studied 

differences between nonlinear parameters of the undamped and damped beams. Identification of 

nonlinear parameters such as the nonlinear damping, cubic nonlinearity and the parametric 

forcing parameter for different discretization length was performed. We observed an increase in 

the nonlinear damping for the configurations near the optimal value of r that maximized the 
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linear damping. The cubic nonlinearities increased with the added layers and different r values 

compared to the bare beam. Additionally, we validated the identified nonlinear parameters by 

integrating the equation of motion for cantilever beams under parametric excitation near the first 

natural frequency of the beam.  

 

Chapter 6 included an analysis of the effect of large deflection on the backing material of the 

damping tapes. We observed that as the amplitude of the response increased buckles near the 

clamped end of cantilever beams might appear introducing an additional energy dissipation 

mechanism. To further analyze this phenomenon, we performed free damped vibrations test 

realizing the tip of the beam at different amplitudes each time. We observed up to a 28% increase 

of the logarithmic decrement compared to those tests performed with small initial amplitude. A 

possible explanation of these results was that the onset of buckling and the upward expansion of 

the buckled regions with increasing tip displacement amplitude means larger affected areas of 

the constraining layers. Buckle patterns were evident after the tests, so permanent effects, 

perhaps due to the very low yield stresses of backing, may also affect the energy dissipation of 

the damping treatment. 

 

We also observed less buckling as the damping layer was discretized. A possible explanation 

given was that each segment made to the surface treatment will discretize the shear stress 

distribution of the damping layer and therefore the axial load supported by the constraining layer. 

According to the analysis performed in this work, this results in more lightly axially loaded ends 

of damping tapes segments (Curtin, 1991), so less length of the surface treatment is available for 

buckling formation. The characteristic length at the ends of each surface treatment segment 

needed to build up stresses was defined as “recovery length”. 

 

In conclusion, this work had analyze the dynamics of cantilever beams that allowed to confirmed 

the enhancement of the linear damping as the damping layers were discretized near the optimal 

value as define by Plunkett and Lee. Also, the amplitude of the beam under parametric excitation 

also decreased when discretizing the damping layer near this value. Therefore, this work has 

shown successfully the effectiveness of discretized-damping layers subjected to these two 

regimes. 
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7.1 Future work 

Proposals for future improvements on the material characterization include the following: 

 

1. Use refined standards to build the quad shear experiment to achieve a better bonding 

between the aluminum plates and the damping tape layers. 

2. Test the quad shear sample at higher rates and lower temperatures to obtain complete 

master curves showing the transition zone for the adhesive. 

3. Compare data obtained through the DMA tests performed with available data for the 

same damping tape, in order to show the accuracy of the method. 

 

Future work in the field of the analytical model used to compared experimental and theoretical 

data include: 

 

1. Develop accurate mode shapes for the beam with the damping layer and the discretized 

layer. 

2. Develop finite element models of a cantilever beam with constrained damping layer to 

compare with experimental data. 

3. Investigate carefully what causes the disagreement between theoretical and experimental 

values of the loss coefficient as the segments length is decreased. 

 
 
The nonlinear study and the buckling investigation could be improved by: 

 

1. Consider a more detailed analysis of the surface treatment as a thin layer over a soft 

substrate to obtain the critical buckling load. 

2. Include surface analysis to accurately measure the size and frequency of the buckling 

zone. 
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