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ABSTRACT 

 

 

Extraordinary improvements in computing performance, density, and capacity have 

driven rapid increases in system energy consumption, motivating the need for energy-efficient 

performance. Harnessing the collective computational capacity of thousands of these systems can 

consume megawatts of electrical power, even though many systems may be underutilized for 

extended periods of time. At scale, powering and cooling unused or lightly loaded systems can 

waste millions of dollars annually.   

  To combat this inefficiency, we propose system software, control systems, and 

architectural techniques to improve the energy efficiency of high-capacity memory systems 

while preserving performance. We introduce and discuss several new application-transparent, 

memory management algorithms as well as a formal analytical model of a power-state control 

system rooted in classical control theory we developed to proportionally scale memory capacity 

with application demand. We present a prototype implementation of this control-theoretic 

runtime system that we evaluate on sequential memory systems. We also present and discuss 

why the traditional performance-motivated approach of maximizing interleaving within memory 

systems is problematic and should be revisited in terms of power and thermal efficiency.  We 

then present power-aware control techniques for improving the energy efficiency of 

symmetrically interleaved memory systems. Given the limitations of traditional interleaved 
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memory configurations, we propose and evaluate unorthodox, asymmetrically interleaved 

memory configurations. We show that when coupled with our control techniques, significant 

energy savings can be achieved without sacrificing application performance or memory 

bandwidth.  
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Chapter 1 
 

Introduction 
 

 

Rapid advances in computing performance and capacity over the past several decades have 

ushered in a new era of data-centric computing that is changing how we live, work, and 

communicate. To accommodate this trend, modern server designs are incorporating multi- as 

well as many-core processors and rapidly scaling memory capacity. However, increasing the 

computational capabilities of servers is not free since the additional capacity increases power 

consumption.  When deployed in aggregate at data-center scale, operating and cooling these 

servers can consume megawatts of electrical power even though applications may only utilize a 

fraction of the available capacity.  This inefficient gap between application demand and capacity 

availability amounts to millions of dollars of wasted operational expenditures annually.   

 Given the rapid increases in memory capacity and density, which are propelling power 

consumption higher, this dissertation proposes system software and architectural techniques to 

transparently improve the energy efficiency of high-performance, high-capacity memory 

systems.   We introduce new operating system memory management algorithms, memory power-

state control systems rooted in formal control theory, and unorthodox memory architecture 

adaptations that significantly improve memory energy efficiency while preserving application 

performance.   
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1.1 Current Challenges  

 
The power consumption of server-class systems has increased substantially in recent years. 

According to a 2007 survey funded by AMD, the power consumption of volume and mid-range 

servers increased 16% and 51% respectively from 2000 to 2005 [110]. These types of servers 

account for 99% of the more than 1.5 million servers sold in the United States annually. 

Increased server power density is cause for concern. Volume and mid-range servers 

consume from 100 to 200 watts per cubic foot and this number is growing. The IDC and others 

predict that the energy costs for servers will soon exceed hardware acquisition costs [51] . In the 

short term, the heat produced from increased power densities requires elaborate, costly cooling 

technologies both inside and outside the unit. In the long term, elevated average internal and 

ambient temperatures may reduce the mean-time-between-failure (MTBF) of these systems. 

High power system components can be replaced with low power equivalents from mobile 

devices. Unfortunately, microelectronic devices operating at lower power typically provide less 

functionality and speed. For example, Transmeta Crusoe processors operate at significantly 

lower power than Intel Xeon and AMD Opteron processors. However, both Xeon and Opteron 

processors outperform Crusoe on many server workloads [62]. 

An alternative approach is to provide high power (and performance) on demand. The 

basic approach is to intelligently schedule component power modes to meet performance and 

energy constraints. Various techniques to save energy have been proposed using power-aware 

processors [17, 25, 26, 35, 65, 67, 98, 107, 156, 165], disks [17, 118, 172], and interconnects 

[123]. Recent work has shown that workload determines the proportion of the power budget 

consumed by server components with CPU, memory, and disk accounting for the majority share 

in most cases [17, 25, 114, 115]. 
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Traditionally, server power has been dominated by the microprocessor. However, the 

trend towards multi-core has resulted in processor power leveling off close to 100 watts per 

CPU. Meanwhile, memory transistor density, functionality, and scalability have continued to 

increase. As a result, volume servers with 64Gbyte memory capacity composed of 4Gbyte 

DIMMs that consume 10 watts each are now commonplace. Figure 1.1 shows that should these 

trends continue, volume and mid-range servers may soon exceed 32Gbytes of main memory per 

processor core and memory power will dominate. 

Reducing memory power in server-class systems is challenging. For example, in mobile 

systems users may opt for lower performance for extended battery life. In server systems, 

reduced performance may cause a company to lose money, customers, or both. Hence, memory 

power reduction techniques in servers must control and limit performance loss. Ideally, instead 

of placing devices (i.e. memory) in a low power state, we would like to turn the memory 

completely off without losing data or performance. This is extremely challenging since 
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techniques that offline memory challenge traditional operating system assumptions about an 

unchanging physical address space and require significant changes to memory management 

structures and algorithms.  

There has been significant previous work to reduce memory power consumption by 

augmenting memory controllers with fine-grained, access-based policies [42-45, 48, 57-59, 80, 

87-90, 92, 113, 117, 131, 134, 173]. While such techniques have been shown to yield significant 

energy savings, we wanted to explore ways to conserve memory energy that leverage the 

capabilities of existing or upcoming server deployments and avoid the costs of silicon redesign 

and consequent validation. Previous software-based memory energy studies have avoided these 

costs [45, 82, 88]. However, the proposed techniques are not scalable to servers with large 

memories (>1Gbyte) and tens of thousands of processes, typical of large-scale server 

deployments.   

 

1.2 Research Objectives and Approaches 

 
 

The objective of this dissertation is to improve the power and performance efficiency of memory 

systems. Ideally, memory energy consumption should be proportional to workload memory 

demand, even though application memory demand may fluctuate significantly.  Server 

workloads often underutilize system resources over time resulting in system-level and 

component-level slack [12, 18, 107, 114]. For example, DVFS scheduling exploits slack during 

execution to reduce processor voltage and frequency to save power [25, 26, 59, 63, 67, 156, 

164]. Similarly, significant energy savings have been achieved by aligning memory device 

power-state transitions with process scheduling [43-45, 88, 90]. These savings were realized by 

exploiting slack between memory accesses for devices that did not contain pages referenced by 
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scheduled processes. Other research has shown that page allocation algorithms can have a direct 

effect on energy consumption [57, 59, 113, 155, 167, 168]. The common theme among these 

different approaches is the effectiveness of software-directed hardware component power-state 

transitions to exploit slack in demand for energy efficiency.  In this work, our approach is 

twofold. First, we develop and evaluate system software techniques to realize performance and 

energy efficiencies in today’s memory systems. Second, we propose  and evaluate architectural 

enhancements to improve the energy efficiency of future memory systems.  Thus, our work 

focuses on operating system memory management algorithms and techniques, device power-

state control systems, and adaptation of traditional, performance-motivated memory system 

architectural techniques to improve memory power and performance efficiency.   

Our first objective is to adapt system software to reduce the energy consumption of 

memory on currently available commodity hardware.  In earlier work, we extended the operating 

system to support hot-pluggable memory for fault resiliency [150].  We leverage this prototype 

system, but extend the page frame allocation and management algorithms for power-

management. This is challenging since techniques that change memory capacity and device 

power states are not supported by traditional operating systems.  Further, there has been limited 

previous work to develop or evaluate allocation-based techniques to reduce memory energy 

across the spectrum of available memory technologies.   

Given the underlying mechanisms to change memory device power states, our next 

objective is to develop an adaptive, stable control system to efficiently manage transitioning 

devices between multiple power states.  Systemic memory demand and utilization can vary 

significantly based on workload. Thus, naively switching memory devices between power states 

runs the risk of degrading application performance.  Previous work relied on a priori knowledge 
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of workloads, static policies, or workload-specific heuristics [43-45, 88, 90, 113, 117, 131]. 

However, these approaches lacked the scalability, flexibility, and resiliency to handle unexpected 

demand variations.  Our challenge is to formulate an analytically provable, stable control system 

to transition memory devices between multiple power states. Moreover, to minimize overhead 

and avoid application performance degradations, we need a control system with quantifiable 

transient response characteristics.   

Third, we profile and analyze the power, performance, and thermal efficiency of 

architectural techniques designed to increase bandwidth and reduce access latencies.  Server 

memory systems exploit architectural techniques such as interleaving, that distribute contiguous 

cache line accesses among multiple memory devices to improve bandwidth, and hence 

application performance. However, by altering memory device access patterns, memory 

interleaving changes the power and thermal characteristics of the memory system [13, 100, 106]. 

Our objective is to identify and characterize the power, performance, and thermal efficiency of 

these techniques within the memory system of a current system.  This is challenging since 

gleaning insight into the power and thermal characteristics of the memory system requires 

extensive board, memory controller, and memory device instrumentation as well as specialized 

firmware and monitoring software to correlate these effects to specific interleaving dimensions.   

Our final objective is to combine our power-aware memory management algorithms, 

control-theoretic system for managing device power state transitions, and our new-found insight 

into the power and performance effects of interleaving into a dynamic runtime control system 

capable of reducing the energy consumption of complex, highly-interleaved memory topologies. 

Previous work to improve the energy efficiency of memory has largely ignored the complexities 

of highly-interleaved memory systems.  Improving the energy efficiency of interleaved systems 
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is challenging as power-state transitions for memory regions must be coordinated across multiple 

devices and more importantly, not reduce achievable bandwidth. Reduced bandwidth can 

degrade application and system performance.  Our approach is to develop interleaving-aware 

algorithms and a control system that exploits the use of asymmetrically interleaved 

configurations to improve memory energy efficiency while preserving application performance 

and system bandwidth.   

 

 

1.3 Research Contributions 

 
This dissertation introduces system software, memory power-state control systems, and memory 

system architectural enhancements to improve the energy efficiency of memory systems.  More 

specifically: 

 We address the problem of extending the operating system to support onlining and 

offlining memory devices for systems with dense memory topologies.  Inspired by 

network traffic flow research, we propose several OS-level page allocation and 

management shaping techniques to proactively and reactively direct allocations to a 

minimal number of devices.  We extend the Linux operating system to support these 

shaping techniques and structural enhancements on real systems. Our experiments using 

a simple history-based heuristic for controlling memory device power-state transitions 

show our techniques yield up to 60% memory energy savings with less than 1% 

performance loss.    

 We develop an analytic model of a feedback control system rooted in formal control 

theory to dynamically scale online memory capacity while minimizing performance loss. 

We detail each of the control system components, formulate the system transfer function, 
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and then describe the derivation of control gains through stability analysis.  We develop 

an implementation of our control system model, which we integrate with our prototype 

operating system into a complete runtime system we call Memory Management 

Infrastructure for System Energy Reduction, or Memory MISER.  We then compare the 

energy and performance using our control system relative to several alternative policies.  

Experiments on an 8-node cluster of servers show our dynamic control system conserves 

memory energy up to 56.8% with no performance degradation for scientific codes that 

utilize the entire cluster. For multi-user workloads, we achieve memory energy savings of 

up to 67.94% with no performance degradation. Normalizing to total system energy 

consumption, our power-aware memory approach reduces energy between 18.81% and 

39.02%.  

 We profile and analyze why the performance-driven, “more is better” interleaved 

memory design assumption is problematic and should be revisited. Our results indicate 

that for bandwidth-sensitive benchmarks such as STREAM, memory interleaving in a 

single dimension yields up to 35% average bandwidth improvement and reduces energy 

consumption by 13%. However, this improved bandwidth results in higher memory 

device access frequency which results in a 25% increase in memory temperature. For the 

same benchmarks, further increases in interleaving dimensionality result in little to no 

performance or energy efficiency gains but still increase temperature nearly 25%. For 

other benchmarks less sensitive to memory bandwidth, we found interleaving 

dimensionality often does not significantly improve bandwidth or energy efficiency while 

temperatures increase nearly 25%. The additional heat resulting from higher component 

operating temperatures must be exhausted from the system chassis. This increases the 
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need for additional cooling, elevates the cost of the system and, in the case of powered 

cooling, can increase chassis energy consumption. We conclude that the effects of 

interleaving on energy and thermals must be considered in future memory designs. 

 We develop a control-theoretic runtime system to reduce the power of interleaved 

memory systems while preserving application performance and memory bandwidth.  We 

propose, develop, and evaluate new device power-state transition algorithms to reduce 

memory power within interleaved memory systems by tracking system-wide memory 

demand as well as bandwidth utilization. We propose and evaluate the power and 

performance impact of several novel asymmetric interleaving schemes that our runtime 

system exploits for energy efficiency while preserving application performance.  Our 

results show that combining our memory power-management techniques with 

asymmetrically interleaved memory system improves EDP by up to 58%.   

 

 

1.4 Organization of this Dissertation 
 

 

The organization of this dissertation is as follows. Chapter 2 presents background and discusses 

related work.  We first introduce the concepts of power-aware memory and then discuss 

previously proposed software and hardware techniques to reduce memory energy consumption. 

This is followed by an introduction to a range of previously developed control policies and how 

those policies have been used within a variety of disparate control systems. Finally, we review 

the mechanics of memory interleaving and discuss previous approaches to adapt interleaving 

schemes to improve memory system performance.   

 Chapter 3 presents the structural changes and page allocation shaping techniques we 

developed and implemented in our prototype operating system to improve memory energy 
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efficiency.  We introduce three alternative shaping techniques, reactive, proactive, and hybrid, 

and evaluate the performance and energy efficiency of each using a simple heuristic control 

policy on a server system.   

 Since our simple history-based heuristic policy missed many opportunities to transition 

memory devices into lower power states and required workload-specific tuning [151], we 

investigated alternative control policies.  Chapter 4 introduces an analytic model of a feedback 

control system rooted in classical control theory that we developed to improve memory energy 

efficiency.  We formally describe the elements of our control system, show the derivation of 

control gains through stability analysis, and describe the implementation we used in concert with 

our prototype operating system.  We describe the deployment and evaluation of our complete 

system on a single server as well as an 8-node cluster of servers.   

 Even though interleaving is a widely accepted technique for increasing peak theoretical 

bandwidth in servers, the energy and thermal efficiency of interleaving has not been 

characterized in previous work.  Chapter 5 quantifies the power, performance, and thermal 

effects of varying dimensionality within complex, highly-interleaved memory systems. This 

chapter illustrates that simply increasing interleaving does not automatically lead to performance 

improvements for many applications and in some memory configurations, may actually degrade 

power and thermal efficiency.  

Chapter 6 describes the control-theoretic runtime system we developed to reduce the 

energy consumption of interleaved memory systems. This chapter shows how our techniques 

improve the energy efficiency of traditional symmetrically-interleaved memory configurations.  

We also show that using our control system on unorthodox, asymmetrically interleaved memory 
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systems further improves energy efficiency over standard symmetric configurations while 

preserving application performance and memory bandwidth.  

 Finally, this dissertation concludes with Chapter 7, in which we summarize conclusions 

and discuss directions for future work. 
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Chapter 2 

 

Background and Literature Survey 

 

2.1 Power-Aware Memory 
 

A collection of memory devices (e.g. DIMMs) in a system is often referred to as main memory.  

The collective capacity of all devices refers to the capacity of main memory.  Typical high-end 

servers support many DIMMs of gigabyte capacities. Since DRAM densities continue to double 

every 18 to 24 months, future high-end systems in the next decade may support petabytes of 

memory capacity. 

In the absence of proprietary hardware, conventional memory DIMMs cannot usually be 

dynamically onlined or offlined at runtime [94].  There have been Memory technologies such as 

RDRAM [1] offer multiple power modes at various granularities yet have gained limited market 

share in the server community and additionally lack software support. Emerging technologies [72] 

integrated in the Intel, AMD, and Sun server roadmaps such as the Fully-Buffered memory 

architecture (FB-DIMMs) combine the benefits of commodity DDR DRAM with the power mode 

transitions and online and offline device control of RDRAM. 

The techniques proposed in this thesis do not rely on a specific memory technology.  Rather, 

the systems and methodologies we develop are intentionally general and may be used on any 

memory technology or architecture that supports multiple power states.  
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2.2 Techniques to Reduce Memory Power  

 

There have been numerous approaches to reduce the energy consumption of memory systems, 

which we classify into two categories.  One approach is to leverage the malleability and 

workload insight of system software to change how memory devices are accessed to improve 

energy efficiency. An alternative approach is to modify the underlying memory architecture to 

dynamically exploit intermediate power states, alleviating the need to modify system software or 

applications.  This section reviews previous work in both of these areas and discusses limitations 

that motivate our approach.   

 

2.2.1 Software Approaches 

 

There has been considerable recent research to improve the energy efficiency of systems using 

the operating system. The improvements demonstrated in previous work have included: 

efficiently adapting processor power modes to meet application computational requirements 

using minimal energy [14, 16, 17, 25, 26, 35, 59, 63, 65, 98, 107, 115, 147, 149, 156, 158, 164, 

165], adapting the power states of network interface adapters based on network traffic [120, 

121], tuning memory management algorithms to take advantage of power managed memory 

devices [44, 88, 113], optimizing storage-bound I/O accesses to minimize hard drive accesses 

[50, 86, 121, 172], and systemic approaches to elevate power-management to a first-class 

operational constraint [52, 135, 167, 168].   

Historically, processors have consumed the most total system power of the components 

within a system. So, there has been significant focus on reducing the energy consumption of 

processors.  However as previously discussed, over the past 5 years advances in process 

technology coupled with the widespread trend towards multi-core processors has resulted in 
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lower per-processor power consumption [20]. Meanwhile, system memory density and capacity 

has continued to increase to meet the performance needs of increasingly rich data-centric 

applications [11, 24]. These trends have driven recent memory management research to improve 

the operational efficiency of memory systems.   

Memory management has been an active area of research for decades.  Historically, the 

primary goal has been to efficiently utilize limited memory resources to improve application 

performance.  As memory power consumption has scaled proportionally with increases in 

capacity, energy consumption has emerged as an important factor in efficient memory 

management over the past ten years.  The remainder of this section highlights recent software-

based approaches to improve the energy efficiency of emergent, high-capacity memory systems. 

In Power-Aware Page Allocation, Lebeck et al studied the impact of static and dynamic 

memory controller policies coupled with page allocation algorithms for automatically 

transitioning memory into lower power states to reduce power consumption [113, 155].  Lebeck 

proposed and evaluated several virtual memory page allocation policies to identify the impact of 

different page allocation algorithms on various hardware power-state policies. They showed that 

using a sequential first-touch policy, their techniques effectively aggregated pages onto a 

minimal set of memory devices as they were accessed. This enabled unused devices to transition 

into lower power-states according to the embedded power-state transition policy. They also 

studied an allocation policy that clustered frequently accessed pages onto a minimal set of 

memory devices over time.  The idea was to use software placement of pages into frames to 

increase the probability that embedded power-state policies would transition devices into deeper 

power-states, thereby reducing wasted energy.  Interestingly, the best reported results were 

achieved using a combination of software and hardware techniques in concert, as the authors 
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found that hardware policies alone were insufficient to significantly improve energy efficiency as 

measured by Energy-Delay Product (EDP) [69].  Further, their results showed that using power-

aware page allocation with the simplest static power-state transition policies they were able to 

improve energy efficiency up to 30%, as measured by EDP. 

Rather than focusing on allocation techniques to reduce memory power consumption, an 

alternative approach proposed by Delaluz, et al, in Scheduler-Based DRAM Energy 

Management, directed the transition of memory device power states at context-switch granularity 

within the operating system scheduler [45].  They leveraged the OS-maintained knowledge of 

which page frames were mapped to each process to control the power-state transitions of 

memory banks.  During a context switch, memory banks that were not referenced by the process 

about to be scheduled would be turned off to save power.  Conversely, the memory banks for the 

next scheduled process would be turned on at context switch time to avoid latency-induced 

performance penalties.  Using these scheduling techniques, Delaluz et al realized up to 40% 

energy savings in the memory system for several applications. In a subsequent study, Delaluz 

proposed a runtime library to conserve energy in a single application environment by collocating 

or migrating frequently accessed data structures to the same bank within a multi-bank memory 

system [42].   

In Dynamic Tracking of Page Miss Ratio Curve for Memory Management, Zhou et al 

proposed a metric for analyzing the page demand of applications within an operating system that 

could be used to direct memory system energy management [171].  They developed a system to 

track page accesses within the OS, which they then used to determine how many pages to 

allocate to processes. Even though tracking at the granularity of page hits and misses incurred 

7% - 10% overhead, they were able to identify the minimal set of pages necessary to meet 
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application demand based on access frequency.  Consequently, unneeded memory devices were 

turned off to conserve energy.    Based on an evaluation of these techniques in simulation, Zhou 

realized EDP improvements of 27% to 58% over hardware-only power-management policies.   

One of the innovations borne out of classical memory management research was virtual 

memory [29, 30, 46, 47, 99].  Originally conceived for use on the Atlas machine in the 1950s, 

virtual memory is still widely supported by most modern microprocessors [39, 46, 99].  Virtual 

memory abstracts system memory details by providing a large, consistent address space. These 

virtual address spaces provide access protections and enable the data used by executing 

processes to reside across memory and secondary storage.  Despite the advantages, virtual 

memory is not free.  An access to a virtual address must first be translated to a physical address, 

typically through a lookup table.  Many modern processors have a memory management unit 

(MMU) that performs the translation of virtual to physical addresses via a finite-state machine.  

Advanced memory controllers then must translate the physical address to a device address within 

the memory system.  Depending on the topology of the memory system, this translation can 

require several levels of decoding which eventually map to Dynamic Random Access Memory 

(DRAM) cells [100].   Consequently, accessing memory within a virtual address space often 

requires several levels of translation before performing the hardware access.  Second, supporting 

separate virtual address spaces for every process imposes a spatial overhead to store the 

translation tables referenced by the MMU.  Third, context switching between processes requires 

the processor to flush the previous process’s page tables and translation look-aside buffer (TLB), 

which for some architectures, is an expensive operation [100, 133].  

Leveraging classical elements of virtual memory, Huang et al proposed an OS-centric 

approach that combined elements of Lebeck’s allocation scheme [113] and Delaluz’s DRAM 



 17 

scheduling techniques [45] in Design and Implementation of Power-Aware Virtual Memory [88].  

They designed and built a prototype power-aware virtual memory implementation that leveraged 

OS-level NUMA memory management infrastructure to reduce the energy footprint on a per-

process basis [88].  Using Linux support designed for NUMA architectures [70], Huang et al 

mapped the logical NUMA node abstraction traditionally used to articulate distance-based access 

latencies for memory regions [5, 19], to track allocations mapped to specific RDRAM memory 

devices [1].  For every process, they tracked which memory devices (or nodes) held page frames 

allocated by that process.  Similar to Delaluz [45], when a process was about to be scheduled, the 

memory devices that held page frames allocated to the process were brought into a high-power 

state to minimize access latency.  Memory devices that did not hold allocated page frames for the 

scheduled process were transitioned into lower-power states to conserve energy.  As an 

improvement over prior work, periodic page migration was used to further reduce the number of 

memory devices required by aggregating read-only shared libraries and reducing the number of 

devices required for individual processes.  Using this approach, Huang et al realized 34% to 89% 

energy savings on a 16-device RDRAM memory system.   

There are several common themes amongst all of these software approaches.  First, the 

inclusion of power-aware software techniques can have a dramatic impact on memory energy 

consumption.  Lebeck, and in a subsequent retrospective position paper by Vahdat, concluded 

that even with static hardware policies, software-approaches that change how memory is used 

can improve energy efficiency [14, 113, 155].  Second, the goal of all previous work was to 

maximize the time devices spend in low power states.  The primary differences between the 

approaches were the prediction and control mechanisms used to manage transitions between 

power states. Third, it has been shown that operating systems have a direct impact on memory 
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system performance [36];  So even though  complex mechanisms such as page migration may be 

used to improve energy efficiency, these techniques must be used carefully to avoid application 

performance penalties.   

 

2.2.2 Hardware Approaches 

 

As memory system capacity continues to scale, the increased memory power consumption has 

motivated the incorporation of power-aware techniques not just in software, but in hardware 

architectures. In contrast to software techniques, power-aware hardware approaches have the 

advantage of low-latency access to high-fidelity access frequency information and fine-grained 

control capabilities.  Additionally, power-aware mechanisms (e.g. those that realize energy 

efficiencies) implemented in hardware can lead to efficiency improvements that do not require 

costly changes to complex system software [127].  What these approaches generally lack is 

higher-level context and insight that limits their efficiency. For example, the mapping of 

accesses to applications could be used to predict future accesses and utilization. Despite this 

challenge, there has been considerable previous work within the architecture community to 

improve the energy efficiency of memory systems. Similar to processor-based DVFS scheduling, 

most of these approaches exploit memory devices that support intermediate power states.   

Lebeck et al compared the use of static memory controller thresholds and dynamic, 

predictive thresholds to determine when to transition memory devices into one of four power 

states (active, standby, nap, and power down) under several memory management algorithms 

[113]. In subsequent work, they developed an analytical model to predict the duration of idle 

periods, but found such prediction did not outperform simply transitioning devices to a lower 

power state immediately after detecting idleness [58]. 
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Li et al proposed several performance-guaranteeing control algorithms to bound 

performance losses caused by fluctuations in workload memory accesses and improve 

application performance over the memory power-state control heuristics proposed by Lebeck 

[113, 117, 118]. They proposed two sets of control algorithms, static and dynamic, which they 

applied to power-aware memory and disk storage systems. Their static algorithm avoided manual 

threshold identification and tuning by periodically adjusting thresholds online while guaranteeing 

performance by bounding degradation within a limit.  Motivated by formal optimization 

techniques, their dynamic control heuristic alleviated the epoch-based thresholds of their static 

scheme, instead specifying a single device power state configuration across an epoch. They were 

able to eliminate an 800% performance degradation they observed when reproducing Lebeck’s 

threshold-based techniques.  In terms of energy, their static policy outperformed Lebeck’s 

techniques for most workloads (although, in several cases their static policy consumed 36% to 

46% more energy) and their dynamic policy resulted in up to 68% energy savings.  Park et al 

later extended the performance-guaranteeing control algorithms from the realm of sequential 

applications and applied them to memory energy management under multithreaded applications 

on multiprocessor systems [132].  

Pandey et al employed similar performance-directed techniques to increase memory 

device utilization while the high-power active power-state by increasing concurrent DMA traffic 

on servers with data-centric, I/O intensive workloads [131].  Their approach was motivated by 

the disparity between I/O and memory speeds results in long DMA transfers. This wastes energy 

since devices are forced to remain in an active, high-power state for the duration of the DMA 

transfer.  They proposed two approaches. The first was a technique to direct DMA transfers 

originating from I/O devices on distinct buses to the same memory devices. Second, they 
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proposed a technique to align DMA transfers based on logarithmic page popularity.  Using these 

two approaches, they reduced memory energy by up to 38% for I/O intensive workloads.   

Huang et al proposed a combined hardware-software approach that involved augmenting 

the memory controller with a context-aware power management unit to track memory access 

behavior for every process in a system [90]. Using the OS to provide process context information 

(e.g. which process is currently running) the memory controller was designed to track memory 

access history for each process.  Using this information, the memory controller was able to 

transition previously unreferenced memory devices into lower power states to conserve energy.  

Huang subsequently proposed a more general technique to reshape DRAM-bound memory 

traffic within the memory controller to increase the duration of idle periods [87]. By lengthening 

idle periods, memory devices remained in lower power-states more often thereby reducing power 

consumption.  In their simulation environment, they saved an additional 35% to 38% energy.   

AbouGhazaleh et al proposed alleviating L3 processor caches and integrating smaller, 

high-speed SRAM caches into memory modules [4]. By changing the distribution of memory 

within the topology, they sought to reduce miss rates within the cache hierarchy, reduce the 

latency and power costs of large centralized L3 caches, and increase DRAM bank idle periods to 

save energy. Using this approach, AbouGhazaleh realized EDP improvements of up to 84%.   

Another approach being pursued by ZettaCore [141] as described by Venkatesan et al is 

to replace conventional DRAM capacitors with “charge-storage” molecules capable of 

functioning as a capacitor [157].  Due to the unique molecular composition, accesses can be 

performed at very low voltages.  Unlike traditional DRAM, ZettaRAM is designed to operate at 

multiple voltages, enabling power-savings to be traded off with performance.  Using a hybrid 

write policy where memory writes are performed at different voltages based on performance 
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requirements (fetches are performed at higher voltage resulting in lower-latency, while 

writebacks are completed more slowly, at a lower voltage), performance degradation is bound 

within 1% with up to 34% energy savings.   

Aggarwal et al proposed a mechanism to reduce speculative broadcasted DRAM accesses 

on shared-memory multiprocessor (MP) systems using region coherence arrays [6].  Motivated 

by the fact that many DRAM accesses constitute wasted energy in MP systems due to 

satisfaction by cache to cache transfers, the authors developed an extension to region coherence 

arrays to identify unnecessary accesses within cache-coherent topologies.  By reducing 

superfluous speculative DRAM accesses, they achieved a reduction of 16% to 21% in average 

EDP within the memory system.   

Ghogh and Lee proposed a policy to minimize wasted energy in the memory system by 

reducing the number of DRAM refresh operations issued by the memory controller [68].  DRAM 

cells need to be periodically read and rewritten to maintain the integrity of data in the storage 

capacitors due to access transistor leakage [100]. However, these refresh operations consume the 

same power as row accesses and limit achievable bandwidth.  Ghogh and Lee embedded timeout 

counters within the memory controller to track the last access or refresh operation for every row of 

each bank in a memory module.   

 

2.2.3 Limitations of Previous Work  

 

Even though techniques embedded in hardware have fine grained control and transaction 

granularity access information, the lack of system-level insight to correlate memory controller 

transactions to applications limits the effectiveness of these approaches. For example, a memory 

controller monitor can observe individual command and data transactions traversing the memory 
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system, but there is no way for it to predict if a memory intensive application has been invoked 

and is about to start inundating the system with memory accesses.  The lack of this insight leads 

to power-state transition mispredictions that impact performance. Second, many memory 

controller studies have focused on scheduling memory requests (or reordering of queued 

requests) within the memory controller. The idea is to exploit slack within memory banks, 

enabling more frequent transitions into lower power states.  While such scheduling approaches 

are important, these studies did not consider the applicability or impact of the policies in the 

context of interleaved memory topologies.  Since interleaving is commonly used to provide a 

significant boost in memory system bandwidth, evaluations must consider this important 

architectural feature.    

Previously proposed software approaches have several inherent limitations.  First, the 

system-software studies by Delaluz [45] and Huang [88] did not address the scalability of their 

approaches on highly parallel systems. Their systems used memory device tracking and control 

on a per-process basis.  While they were able to hide device power-state transition latencies 

within context switch latencies, this is not necessarily practical on multiple socket systems with 

many-core processors that are all executing multiple applications in parallel.  For this class of 

system, a runtime system that does not rely on per-process access characteristics is needed for 

scalability. Second, in Huang’s system, page migration was used to reduce the number of 

memory devices required to remain in a high-power state.  This incurs overhead that could be 

avoided by proactively allocating pages based on system-level memory demand. Finally, the 

prediction mechanisms used were heuristic based and would require costly retuning for different 

workloads.  While these techniques were shown to work well in their evaluation environment, it 
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is unclear how these might scale to more advanced memory topologies running complex server 

workloads.   

 

2.3 Power-State Control Systems 
 

The introduction of configurable dynamic power-states within hardware components enables the 

overall reduction of power consumed by computing systems.  In most cases, performance is 

proportional to power consumption, so reducing power consumption reduces performance.  In 

mobile systems users may opt for lower performance to realize extended battery life.  However, 

in commercial servers where throughput and latency are critical, performance degradations may 

cause a company to lose money, customers, or both.  Similarly, in high-performance clusters 

used in scientific research, reducing power naïvely at the expense of performance may 

significantly delay the time-to-completion of large-scale applications, resulting in reduced 

energy efficiency over the period of execution. 

Reducing runtime power consumption, while maintaining application performance, 

requires efficient and precise control systems to adeptly transition between multiple component 

power-states. Such control systems are often referred to as control policies [14]. The general goal 

of control policies is to accurately maximize the effectiveness of the system under control for 

specific objectives with minimal overhead [7, 9, 109, 116].  Numerous control policies have been 

proposed to manage the power-states of various hardware components including processors, 

memory, network interconnects, I/O devices, as well as combinations of such components [3, 4, 

12, 14-18, 21, 25, 26, 32-35, 38, 42-45, 48, 49, 52-54, 57-61, 63, 67, 68, 74, 80, 82, 83, 87-93, 

96-98, 105, 107, 114].   
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Among these approaches, the control policies used in previous studies can be generally 

classified as one of two types: heuristic-based and control-theoretic. Each of these two classes of 

control policies may be composed of different underlying constructs that trade-off operational 

overhead, effectiveness, predictability, stability, and consequent to these, complexity. This 

section discusses and contrasts previous work in applying different incantations of these two 

classes of control policies to conserve energy on systems with power-aware components, with a 

focus on memory systems.  

 

2.3.1 Heuristic-Based Policies 

 

Heuristic-based control policies are commonly used in control systems because they are 

intuitive, flexible, and hence simple to formulate and implement quickly.  Given a limited range 

of parameters, such policies are also usually easy to adapt or periodically retune to account for 

new conditions or environments.  Because heuristic-based policies are typically designed 

specifically for the system under control, they often yield good performance and control results 

under a bounded range of conditions. As a result, heuristic-based policies are commonly used in 

control systems across many engineering domains [9, 116].  

There are also numerous drawbacks of using heuristic-based control policies.  The most 

common problem is the need to retune control parameters for variations in environmental 

conditions [9, 116]. In many cases, changing the parameters of the system under control requires 

an extensive re-evaluation of new control parameters, such as timeout or threshold values, to 

achieve reasonable performance.  For example, while evaluating system shutdown methods, 

Hwang and Wu observed variance in energy savings using different threshold values due to 

differences in the actual shutdown overhead [93]. Li et al [117] found substantial performance 
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variance using the memory system control heuristics proposed by Lebeck et al [113] by simply 

executing a different set of applications.  Achieving energy and performance parity required 

extensive parameter retuning and eventually led to the design of a new heuristic [117].  Further, 

the improved heuristic control policy was subsequently retuned yet again to account for parallel 

execution [132].   

The underlying problem demonstrated by this evolution is that even slight changes in the 

parameter space of the controlled environment (such as executing different applications) can 

cause undesirable consequences, such as performance degradations.  Because most heuristic-

based policies lack mathematical rigor, the performance and stability effects are difficult to 

identify or quantify without extensive empirical verification and validation in different 

environments [7, 9, 14, 116, 128]. Still, due to the wide-spread use of heuristic-based control 

policies to improve the energy efficiency of computing systems in the literature, we review the 

use of both static and dynamic policies in the following sections.   

 

2.3.1.1 Static Heuristic Policies 

 

Heuristic-based polices are generally classified as one of two types, static or dynamic.  Static 

policies are usually simple and fixed over some interval.  A common example of a static 

heuristic-based policy used in power management is the timeout policy [14-16, 18, 25, 48, 63, 

64, 105, 114, 117, 131]. The timeout policy is used to transition components into lower power 

states after a predefined period of inactivity.  The benefit of static policies lies in the limited 

information necessary for control. Timeouts typically use a single input, such as time since last 

access, as the sole control point, ignoring other factors. This simplicity minimizes overhead 
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yielding good operational control system performance; however, this lack of predictive 

sophistication limits the flexibility of the policy to adapt to future changes.   

In the case of power management-oriented control systems, timeout policies save energy 

at the expense of performance.  More specifically, static policies do not predict future activities; 

they are constructed to blindly perform some action upon meeting a predefined condition.  As a 

result, substantial performance degradations may be incurred when workload characteristics 

change rapidly. In a power-aware system, a timeout control policy may be configured to 

automatically transition a hardware component into a lower-power, high-latency state after a 

certain time period [44, 58]. Should this transition be immediately followed by a period of high 

activity, a performance penalty proportional to the time necessary to return the component to the 

higher power state necessary to service the activity will be incurred.  Depending on the power-

state transition latency for a given hardware device, this may severely degrade performance.   

Numerous studies have employed static, heuristic-based policies to conserve energy. 

Lebeck used several variants of a simple access-based timeout control policy to control power-

state transitions for a Power-Aware DRAM model of memory devices [113].  The use of static 

policies was motivated by the need for low-overhead and simplicity given the proposed 

implementation in hardware.  In their evaluation, they realized significant power savings at the 

expense of increased delays in application time-to-completion. Fan et al showed that using a 

static policy of immediately transitioning memory devices into a lower power state were more 

effective on cache-based systems than using sophisticated prediction [58]. Similarly, Pisharath et 

al used a static policy to transition memory banks into the lower-power, standby mode after 

every memory access in non-cached systems [134]. In their evaluation using memory-intensive 

TPC-H database queries, memory bank energy consumption was reduced by 55% at the cost of 
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performance degrading by 28%.  Ghosh realized up to 25% energy savings  for DRAM systems 

using a timeout counter for each bank-row pair of memory devices, avoiding sending  

unnecessary refresh operations to DRAM that had been recently accessed [68].  

 

2.3.1.2 Dynamic Heuristic Policies 

 

Although static heuristic-based policies are conducive to hardware implementation due to low-

overhead and simplicity, the potentially severe performance impact motivates the use of dynamic 

heuristic-based control policies.  One of the differences between static and dynamic heuristic-

based control policies is prediction.  Dynamic heuristics often incorporate simple prediction 

mechanisms to estimate when to exert control signals.  Adding predictive capabilities improves 

control response and performance at the expense of additional spatial and execution-time 

overhead.   

Many predictors used to control hardware power-states are history-based [26, 44, 58, 85, 

93, 98, 123, 139, 148].  The basic idea is that past activity history provides insight into near-

future activity.  For example, off-cache memory accesses may occur at some detectable 

frequency throughout execution on workloads with strong memory access locality.  In such 

cases, a history-based predictor could detect the trend of the time between memory accesses and 

determine whether a sufficient period of inactivity is likely to occur that would benefit from a 

power-state transition. In contrast to simple timeout policies, a history-based predictor would 

avoid the performance penalty of one long period of inactivity occurring within a sequence of 

rapid accesses.  In this case, the timeout policy would cause a performance-degrading power-

state transition, whereas the history-based predictor would identify the periodic of inactivity as 
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an outlier within the sequence and avoid the transition. Thus, dynamic history-based prediction 

improves energy efficiency while mitigating performance penalties relative to static policies.   

A common problem with history-based predictors is mispredictions.  These occur when 

previous history does not correlate well to near future activity, such as workload fluctuations [26, 

44, 58, 85, 93, 98, 123, 139, 148]. Thus, dynamic history-based policies are often augmented 

with additional logic to mitigate the impact of mispredictions.  Many dynamic policies use 

thresholds to exert control decisions, where control signals are driven if some parameter exceeds 

a given threshold.  The threshold used in such control systems is critical to performance.  While 

fixed thresholds are generally easy to determine for a particular use case, they often perform 

poorly when the environment changes.  For example, Hwang and Wu found different shutdown 

threshold values impacted energy savings differently depending on the shutdown overhead [93].  

To achieve good performance, they had to choose thresholds based on offline analysis of 

application traces. 

To overcome this inflexibility, several schemes have been developed to improve 

adaptability.  Hembold  et al proposed a policy that kept a list of thresholds and assigned weights 

to each depending on the observed outcome using each threshold, which they derived through 

offline analysis [75]. Another approach used by Douglis et al, incremented or decremented a 

threshold based on how it was performing [50].  Within their threshold-based throttling control 

system, Felter et al proposed the adaptation of throttling thresholds for systems with insufficient 

decoupling capacitance to tolerate dI/dT fluctuations [60].   

For systems in which runtime parameters do not change, in contrast to workload fluctuations 

on power-aware systems, the simplicity of static heuristic-based policies motivates their widespread 

utilization in practice. The straightforward improvements offered by dynamic heuristic-based control 
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policies motivate their use when the spatial and computational overheads are tolerable. However, 

such polices still incur substantial verification and validation costs when environmental parameters 

change.  Since heuristic-based policies lack the mathematical foundation and rigor that yields 

analytical insight into control system performance and stability during runtime fluctuations. As a 

result, recent power-aware computing research has turned to formal control systems rooted in 

classical control theory.      

 

2.3.2 Control-Theoretic Policies 

 

Control theory provides a standard tool set for analytic formulation of robust and flexible control 

systems with discernable stability and performance characteristics [3, 7, 9, 116, 128].  

Techniques based on control theory are widely used across many disciplines ranging from 

aeronautical engineering to economics, but also in various applications in computing.  The 

widespread use of control theory is motivated by the capability to analytically reason and 

evaluate control system behavior in terms of performance and stability.  As such, when system 

parameters change, the impact on control response can be identified and quantified without 

having to resort to searching large parameters spaces for better heuristic values or expensive 

revalidation.   

Recently, it has been suggested that standard controllers, such as the PID, from control 

systems theory should be applied to control various aspects of computing systems [108]. 

Karamananolis argues that standard off-the-shelf controllers from control theory should be used 

instead of ad-hoc heuristics to control configurable system components, thus enabling system 

researchers and engineers to focus on designing robust, configurable computing systems.  
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Although the intuitive appeal of heuristics often motivate their use in software and even 

hardware control systems, formal feedback-driven control systems offer stability, predictability, 

efficiency, and in many cases implementation simplicity.  Consequently, there have been many 

recent efforts to incorporate models from control theory instead of resorting to the development 

of custom heuristics. The remainder of this section introduces a common controller that is used 

extensively in related work and then discusses approaches that have employed control-theoretic 

systems to manage system performance, power management, and even network traffic.   

 

2.3.2.1  Proportional-Integral-Derivative Controller 

 

Within the spectrum of dynamical control systems, feedback control systems adaptively track a 

changing variable by altering its response based on the error or difference between the set point 

and a process variable. A feedback control system transfer function can be expressed generically 

by the following equation: 
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The numerator reflects the feed-forward transformation of the input signal through the controller and 

plant transfer functions to the output signal, while the denominator relates the effect of the feedback 

loop to the output signal.  The term M(z) describes the system controller, while the term P(z) 

constitutes the plant function.  The controller regulates changes within the system by sending a 

control signal to the plant function, which is responsible for control actuation through domain-

specific mechanisms.   

A common controller used in dynamical feedback systems is the Proportional-Integral-

Derivative, or PID controller [3, 8, 9, 77, 112, 143]. Historically, the flexibility and simplicity of 

PID controllers have motivated their use in controlling industrial systems, particularly 
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mechanical systems [9]. A PID controller is generically described by the following equation in 

the continuous time domain: 
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m(t) is the output of the controller at time t based on the measured error within the system. As 

shown in equation 2, the output of the PID controller is the algebraic superposition of three 

terms: 

 KP e(t): The first term is proportional to the error.  This causes the system to respond to 

the error value and direction.   

 KI ∫e(t)dt: The second term is proportional to the integral of the error. This aggregates 

error over an interval to eliminate the steady-state error.  

 KD e(t)d/dt: The third term is proportional to the rate of change in the error, which is used 

to reduce overshoot by directionally damping the response.  

The terms KP, KI, and KD are control gains that are analytically determined through stability analysis 

[8, 9, 116]. Poor selection of these parameters can cause system instability manifested as output 

signal oscillation – which for performance-constrained systems can lead to catastrophic performance 

losses. Careful selection of control gains results in a controller with desirable convergent, 

performance properties. 

 

2.3.2.2 Network Power & Performance Control Systems 

 

Abdelzaher et al used a control-theoretic feedback control model to manage relative delay 

guarantees between different quality of service levels on web servers [3]. They also proposed the 
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use of middleware, which they called ControlWare, to express various quality-of-service 

guarantees as feedback control problems. 

Hollot et al used formal feedback control design methodologies to analyze parameter 

identification for a model of TCP traffic active queue management control systems (using the 

random early detection scheme) in terms of performance and stability [79].  Through this 

analysis, they found they increased stability in terms of response behavior at the cost of 

performance; moreover, they found several limitations of the random early detection scheme.  

One such limitation manifested as a performance penalty resultant to the loading of queue levels 

that caused decreased bandwidth per flow.  This analysis prompted the investigation of other 

active queue management control systems [78].   

 

2.3.2.3 Micro-architectural Control Systems 

 

Joseph et al proposed a micro-architectural mechanism to prevent wide variations in supply 

voltage supply consequent to changes in current-draw (the dI/dt problem) during invocation of 

power saving modes using a second order linear control model [103].   

Motivated by the need to alleviate hot-spots on modern high-performance 

microprocessors [144], Skadron et al proposed the use of a PID controller to adaptively actuate 

instruction fetch regulation [143]. By throttling the rate at which instructions are fetched from 

memory, localized elevated temperatures within on-die functional units were avoided or in the 

case of emergencies, mitigated. Using a formal feedback control system instead of the ad-hoc 

heuristics that had been previously proposed [22], they reduced the performance impact of 

thermal management by 65%.   
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Lin et al also employed a PID controller to improve the efficiency of dynamically 

managing thermal emergencies in memory systems [119]. This work sought to alleviate the 

performance degradations of thermal emergency induced DRAM shutdowns.  Using a PID 

controller, they were able to efficiently regulate memory temperature within an acceptable bound 

by actuating DVFS power-performance state transitions at the CPU to reduce the traffic at the 

memory controller.  Using simple heuristics, they found very conservative thresholds were 

required to avoid thermally-induced memory shutdowns, causing premature throttling.  By using 

a PID controller, they were able to regulate memory temperature near the silicon limit, 

maximizing memory traffic and hence performance.   

 

2.3.2.4 Processor Power-Performance Control 

 

Varma et al developed an online DVFS algorithm based on a variation of the PID controller to 

reduce power consumption by exploiting ACPI performance states [2] while minimizing 

performance loss [156]. They achieved up to 75% reduction in power using an implementation 

of their controller in an operating system, which constituted an improvement of 10% to 50% 

relative to a heuristic-based DVFS control policy.   

Lefurgy et al employed a firmware implementation of a proportional or P-controller to 

track and adjust processor performance state transitions to control peak power consumption on 

IBM blade-servers [115]. Since their goal was to control peak power, they evaluated their P-

controller relative to an enhanced open-loop controller and an ad-hoc controller, which are 

claimed to be commonly used to regulate power consumption in industry.  They found that 

application performance improved by 31% to 82% over using the open-loop controller and 17% 

over the ad-hoc controller.  Although the performance of the ad-hoc controller was close in 



 34 

several cases, performance using the P-controller was consistently higher due to the minimal 

settling time.   

Wu et al employed a Proportional-Integral (PI) controller to control DVFS transitions 

within separate clock domains of a multiple clock domain processor [164, 165]. Modeled as a 

queue domain network, their online controller tracked and adapted the local domain frequency to 

service performance demand, using interface queue occupancy as feedback.  Relative to 

heuristic-based controllers, their control-theoretic DVFS controller guaranteed stability and 

achieved 146% improvement in EDP.   

Wang et al modeled the coordination of component-specific, power-performance control 

systems as an optimal control problem [162, 163].  They constructed a power-performance 

management framework to adaptively control quality of service goals, as measured by web 

server response times, across a distributed four server cluster.  Despite server failures, Wang 

realized up to a 55% reduction in power consumption while maintaining consistent response 

times.  Similarly, Rachavendra et al proposed a power management control architecture rooted in 

control theory to coordinate multiple nested, domain-specific, power-aware feedback control 

systems specifically to reconcile competing domain policy objectives with system-level 

objectives [138].   

 

2.3.2.5 Limitations of Previous Work 

 

Although elements of formal feedback control theory have been proposed in many power-

management studies, previous memory power management research has used various forms of 

heuristics to control device state transitions.  Because heuristics often require extensive retuning 

due to minor system changes, this limits the applicability of these approaches for controlling 



 35 

power-state transitions in future memory systems.  For example, are the scheduling-based control 

heuristics proposed by Delaluz [45] and Huang [88] applicable in multi-core or many-core 

platforms designed to support the execution of thousands of threads with a memory system 

composed of potentially hundreds of DRAM banks?  A definitive answer would require an 

extensive study since it is difficult to quantitatively reason about the stability and performance of 

those control systems.   

Much of the work discussed in this section demonstrates the benefits of using standard 

controllers, which have been applied extensively in other engineering disciplines, to adaptively 

manage power as a function of load. As suggested by Karamanolis, using off-the-shelf 

controllers alleviates the need to design custom adaptive controllers and permits the systems 

community to focus on designing and developing configurable systems that benefit from such 

control [108].  As shown by the previous work described in this section, researchers have 

successfully incorporated feedback control systems form formal control theory to achieve 

efficiencies in dynamic hardware management.  However, the application of control theoretic 

systems to realize efficiencies within the memory system remains largely unexplored.   

 

2.4 Memory System Architecture 
 

Despite the rapid advances in processor speed, memory access latencies have not scaled 

proportionally [102, 133].  In the mid nineties, Wulf and McKee described the system 

performance limitations caused by this difference as the memory wall [166].  There has been 

extensive hardware architectural research to mitigate the effects of the memory wall. The most 

common approach has been to integrate additional caches into the memory hierarchy [104, 133, 

145], although many additional techniques have also been proposed.  Some of these include: 

embedding the processor in memory [111, 160, 169], enabling architecture-specific application 
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optimizations [31, 104, 122, 125, 159, 161, 169, 174], prefetching data from the memory system 

into caches [6, 27, 28, 37, 41, 66, 130, 145, 154], and interleaving accesses amongst multiple 

memory banks [13, 40, 41, 84, 100, 129, 170].  

Of these approaches, the increased capacity of modern memory systems and need for low-

latency and high-bandwidth has resulted in the widespread deployment of memory interleaving 

in current systems, particularly in servers. Given this trend, this section reviews the taxonomy 

and mechanisms of interleaving followed by previou approaches to improve system memory 

performance using various memory interleaving schemes.   

 

2.4.1 Memory Interleaving  

 

Memory interleaving refers to the mapping of the contiguous physical address space across 

multiple memory devices within a system. When a cache miss occurs at the last level within the 

CPU cache hierarchy, a memory request for the address is sent to the memory controller. As 

shown in figure 2.1, the memory controller translates the physical address into memory 

controller, channel, rank, bank, and eventually row and column offsets to determine which 

memory devices should be activated.  The memory request is subsequently queued, scheduled, 

fetched, and returned to the processor cache in the case of a read or written to the corresponding 

DRAM cells in the case of a write.  The physical address space may be interleaved at different 

granularities within a memory topology depending on the system board and memory device 

configuration. We refer to each of these granularities as interleaving dimensions. This section 

reviews the interleaving dimensions commonly used in DRAM-based memory systems.   

 

2.4.1.1 Bank Interleaving 
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DRAM forms the basic building block of current memory technologies.  At the most primitive 

level, DRAM consists of a collection of cells, each consisting of a transistor-capacitor pair.  Cells 

are aggregated into two dimensional DRAM arrays, and are accessed using row and column 

indices.  As part of an access, a row access strobe (RAS) signal is driven by the DRAM 

controller. This causes an entire row (or page in DRAM parlance) of the DRAM array to be 

brought into the sense amplifiers.  The column access strobe (CAS) signal is then decoded, 

which determines which columns within the sense amplifiers should be driven onto the data bus. 

Sets of DRAM banks are aggregated to form a DRAM device.  Since banks within a DRAM 

device operate independently, multiple banks may be accessed in parallel. Thus, bank 

interleaving maps addresses across banks to maximize parallelism within DRAM devices and 

minimize latency of row buffer conflicts. 

 

2.4.1.2 Rank Interleaving 

 

A set of DRAM devices connected in parallel and operating in lockstep comprise a rank.  For 

each rank, the collective width of DRAM bank rows (e.g. sense amplifiers) constitutes the row 

size from the perspective of the DRAM controller.  Thus when the memory controller issues a 

command to access a specific row within a rank, the same rows within constituent DRAM 

devices are accessed in parallel.   

Rank interleaving maps contiguous cache lines across multiple ranks to reduce row buffer 

conflicts and minimize the impact of turnaround latencies. This enables rank-level accesses to be 

parallelized as long as the ranks are not on the same device.  A rank-sequential configuration 

maps cache lines to ranks up to the capacity of available ranks serially.  When ranks are 

interleaved, multiple cache lines may be accessed concurrently.   
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2.4.1.3 Channel Interleaving 

 

The bus connecting memory controllers with memory devices is referred to as a memory 

channel. Most channels consist of a multi-drop bus which connects devices that support specific 

DRAM technologies, such as DDR, DDR2, and DDR3 DRAMs. The capacities of multi-drop 

bus channels are limited by the number of impedance discontinuities as parallel memory bus 

speeds increase.  Thus, increasing overall system memory capacity requires the costly addition of 

more memory channels.  Other architectures such as fully-buffered DIMMs (FBDIMMs) and 

RamBus alleviate the multi-drop bus design in favor of narrow, high-speed channels, which 

allow for greater per-channel capacity.  Even using serial, high speed channels, many board 

designs include multiple channels to mitigate latencies caused by increased distances between 

the controller and DRAMs. 

Channel interleaving exploits the parallelism of multiple channels by mapping contiguous 

cache lines across the channels. Similar to bank and rank interleaving, this reduces row buffer 

conflicts and increases parallelism. Coupled with bank and rank interleaving, channel 

interleaving increases the number of outstanding transactions that may occur in parallel within 

the memory system.   

 

Figure 2.1. Topological view of memory system. Interleaving exploits parallelism at 
multiple granularities, including DRAM bank, rank, channel, and branch/controller. 
Figure 2.1 Topological view of memory system 
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2.4.1.4 Controller/Branch Interleaving 

 

The need for increased memory bandwidth is driving the incorporation of multiple memory 

controllers in server designs. Including multiple controllers increases the available parallelism 

within the memory system as controllers may operate independently. So, transactions targeting 

memory residing behind each controller may be accessed in parallel further reducing latency.   

One such design is the memory controller hub (MCH) within the Intel 5000 series chipset  [137].  

The MCH incorporates common request queuing and transaction handling logic that may be 

scheduled across two controllers, which are referred to as branches.  The physical address space 

is distributed across branches based on the DIMM population within the system. When 

configured in sequential mode, the addressable memory of one branch constitutes the lower part 

of the physical address range while the second branch contains the upper range.  Lower-level 

interleaving may still be used within each branch to increase parallelism at the bank, rank, and 

channel levels. Branch interleaving maps contiguous cache lines across multiple branches or 

controllers. In a two branch configuration, contiguous cache lines are mapped to unique branches 

such that even cache lines are mapped to branch 0 and odd cache lines are mapped to branch 1, 

enabling more cache lines to be accessed in parallel. 

 

2.4.2 Interleaving Approaches in the Literature 

 

Numerous memory system interleaving algorithms have been proposed and evaluated in the 

literature. As an example of a commercial system, Hotchkiss et al describes the memory 

topology of an HP commercial server and workstation developed during the mid-1990s [81]. The 

memory topology uses hierarchical controllers, one master controller and multiple slave 
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controllers.  Each slave memory controller may be configured to interleave accesses across 

multiple banks using a low-order address interleaving scheme.   

Zhang et al proposed the use of a permutation-based interleaving scheme to improve 

performance by reducing row-buffer conflicts and exploiting row-buffer locality [170].  Using 

their scheme, they reduced processor memory stall time for TPC-C and SPEC 95 floating point 

benchmarks by 21% to 68% compared to traditional cache line interleaving schemes and 16% to 

50% compared to page interleaving schemes.  Because they did not use a power or thermal 

model in their simulations, they did not report the energy or thermal impact of the performance 

improvements.   

Kaplan described the memory interleave scheme used in the BBN TC2000 parallel 

computer designed and sold by BBN Advanced Computers Incorporated [106]. Unlike previous 

schemes that imposed platform restrictions, such as requiring power of two banks to interleave 

sub-block accesses across all banks, Kaplan’s method supported a highly configurable 

interleaving scheme across any number of banks and even partial interleaving within the memory 

system using simple lookup tables in small SRAMs.    

Hsu and Smith studied the impact of several cache line interleaving schemes to increase 

data locality on vector supercomputers using cached DRAM [84]. They found that interleaving 

schemes that increase data locality have the side effect of creating hot banks since data used in 

short computational loops did not have the benefit of residing in processor data caches.   They 

also found that using cached DRAM did not yield a performance benefit when low-order address 

interleaving was used due to the reduction in spatial locality.  In contrast, sequential block 

interleaving schemes improved performance in their system, at the cost of increased contention 

on hot banks.   
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Baskett and Smith developed a model based on a Markov chain to predict access 

contention within interleaved memory topologies in multiprocessor systems without caches [13]. 

They showed their model compared well with memory contention observed on synchronous 

memory access machines at the time, which included the GE 645 and Honeywell 6000 series.   

 

2.4.3 Limitations of Previous Work 

 

Memory interleaving increases performance by exploiting parallelism within the memory 

system.  Although interleaving is a widely accepted technique for improving memory bandwidth 

and reducing access latencies, it is unclear how interleaving dimensionality or different 

interleaving schemes impact the power consumption or thermal dissipation of the memory 

system.  In this work, we isolate several interleaving dimensions on real systems and characterize 

each in terms of power, performance, and thermal efficiency.   

Moreover, given the complexity and limited control over interleaving dimensionality, 

there has been limited previous work to reduce the energy consumption of highly-interleaved 

memory configurations.  
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Chapter 3 

 

Memory Management Algorithms for Energy Efficiency 
 

 

In this chapter, we introduce several operating system page allocation and management shaping 

techniques to direct allocations to a minimal memory device set.  We propose three shaping 

techniques: proactive shaping which directs pages to frames at allocation time, reactive shaping 

which periodically changes page to frame mappings, and hybrid shaping which combines 

elements of both proactive and reactive shaping techniques. We describe the mechanics of these 

three techniques as well as structural enhancements we made to the Linux operating system to 

enable memory devices to be transitioned between multiple power states.  Finally, we evaluate 

the efficiency of these techniques by evaluating our power-aware operating system using a 

simple heuristic-based power-state controller.   

 

3.1 Introduction 
 

Scientific computing platforms are rapidly approaching petascale. Such systems consist of server 

systems may have thousands or tens of thousands of processors, tens or hundreds of terabytes of 

memory, and hundreds of petabytes of disk space [10]. The power consumption of petascale 

systems, therefore, will likely be tens to hundreds of megawatts, requiring specially designed 

facilities to house, cool, and power these systems. Power and cooling budgets may soon rival the 

cost of the hardware. 
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A key design challenge for these emergent server systems is to reduce power 

consumption while maintaining stringent performance constraints at reasonable cost. Processors 

typically account for the largest amount of power in a high-performance cluster, yet memory 

power is significant [17, 114]. For example, the IBM Bluegene at LLNL uses 32 terabytes of 

main memory that consume approximately 70 kilowatts of peak power. That’s a maximum of 

$1200 per week for memory energy alone excluding cooling costs. 

Several methods for reducing the power consumption of processors have been proposed, 

such as DVS, DFS, and clock gating, [16]. These techniques all rely on the concept of slack in 

processor utilization for a given workload. When processor demand decreases, during I/O or 

network traffic for instance, the supply voltage or frequency is decreased to conserve power. 

Numerous studies have shown that clever scheduling of low power modes during 

computationally slack periods results in reduced energy consumption with minimal performance 

loss. 

As in processor utilization, slack in system memory demand provides opportunities for 

energy savings in the memory subsystem through power-mode scheduling. The key to 

conserving energy in memory is to offline memory devices whenever possible without impacting 

performance.  During slack periods, if we minimize the number of online memory devices we 

reduce the total energy consumption of the system.  However, to avoid degrading performance 

we must be able to adapt to increasing demand by quickly turning on additional memory.  

Therefore, by dynamically adapting the amount of online system memory according to workload 

demand, we can minimize the energy consumption of memory.   

Previous mechanisms for decreasing the power consumption of the memory subsystem 

have been hardware-centric and focused primarily on mobile devices [58, 113].  Other 
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approaches have extended the operating system scheduler to manage power state transitions 

through per-process memory reference accounting [44]. Huang et al. leveraged NUMA memory 

management infrastructure to reduce memory energy consumption on a per-process basis [88]. 

Li et al. proposed control algorithms to reduce the energy consumption without hurting 

performance in memory hierarchies and disks [117]. 

Emergent memory technology provide systems with the ability to dynamically turn-on 

(onlining) and completely turn-off (offlining) memory devices at runtime [72]. Unfortunately, 

direct application of previous power-aware memory approaches to onlining and offlining 

memory devices are problematic. First, a device can only be powered off if it contains no 

allocations. Since many operating systems do not support transparent page migration, this is not 

typically possible. Second, even with support for directed page migration, the performance-

driven allocation policies of the OS may stripe data across devices making offlining impractical 

since performance penalties will be severe. Third, monitoring memory usage per process to 

schedule device transitions is not scalable to large-scale server deployments with tens of 

thousands of processes. 

In this chapter, we address the problems of extending the operating system to support 

onlining and offlining memory devices for systems with dense memory topologies.  Inspired by 

network traffic flow research, we propose several OS-level page allocation and management 

shaping techniques to proactively and reactively direct allocations to a minimal number of 

devices.  We also review the structural changes necessary to enable memory to be onlined and 

offlined at runtime.  We extend the Linux operating system to support these shaping techniques 

and structural enhancements.  Using our kernel implementation on real systems, we evaluate the 

performance impact of our modifications against an unmodified kernel.  Experiments using a 
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simple history-based heuristic for controlling the power state transitions of memory devices, our 

techniques yield up to 60% energy savings in memory with less than 1% performance loss.     

 

3.2 Structural Changes  
 

Collectively, the set of memory devices in a system forms the usable physical address space 

managed by operating systems.  Due to electrical constraints, memory devices (e.g. DIMMs) are 

usually only added or removed when a system is powered off.  So from the OS perspective, the 

size of the physical address space or aggregate capacity of all memory devices is fixed at boot 

time.  Accordingly, memory related data structures within the kernel have been traditionally 

designed to manage a fixed memory device set at runtime.  To reduce power consumption, we 

modified these data structures to cope with transient memory devices, enabling devices to be 

easily onlined or offlined with minimal overhead.  This section highlights these changes.    

 

3.2.1 Traditional Page Frame Accounting 

 

Most operating systems use a frame table to track the state of usable page frames within the 

physical address space.  The frame table is generally organized as a contiguous linear array such 

as the cmap in BSD [136], the Ram Tab in Nemesis [73], the resident page structure in Mach 

[140], and the memory map in Linux [70].  Because memory capacity is not expected to change 

at runtime, a statically sized frame table is used that covers the usable physical address space 

[19].  This simplifies the implementation of frame state lookup logic as the page frame number 

can be used as an index within the frame table.   

 

3.2.2 Mapping Page Frame Sets to Devices 
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To effectively manage the power states of memory devices we need to track and manage page 

frame allocations by device.   Since devices are mapped into the physical address space and 

frame tables are used to track frame state, we partition the traditional frame table into sets of 

frame tables, one for each power-manageable, memory device.   For example, in a system that 

has 8Gbytes of system memory with a power-managed memory granularity of 1Gbyte (i.e. 

memory device size), the system-level frame table would be composed of eight 1Gbyte page 

frame sets.   

By partitioning the frame table into discrete sets, we accomplish several objectives.  First, we 

gain the capability of tracking page utilization of each memory device capable of being power 

managed; that is, we can easily discern how many frames are currently allocated or free by 

simply scanning individual frame tables.  Second, we do not waste memory on structures for 

memory devices that are offline.  If we offline a memory device, we can easily free the memory 

consumed by the associated frame table.  Since large frame tables can have a significant memory 

footprint [70], we minimize the spatial overhead of managing offline memory devices by only 

allocating sufficient space for online memory devices.  This maximizes the memory available for 

applications in any given memory configuration.  Third, each frame table may be dynamically 

sized to account for memory devices of any capacity or even multiple memory devices with 

interdependent power states.     

 

3.3 Page Allocation Shaping  
 

To minimize the energy consumption of dense memory topologies, we need to be able to 

transition memory devices into lower power states.  However, devices that satisfy page 

allocations may not be transitioned into lower power states without incurring significant latencies 
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upon subsequent accesses.  Because lower power states cause higher access latencies, the 

mapping of pages to frames becomes critical to performance.   

In this section, we first briefly discuss page frame allocation in several operating systems 

and identify the challenges involved in transitioning memory devices into low power states.  We 

then propose and compare three approaches to aggregate page allocations to a minimal set of 

memory devices.     

 

3.3.1 Current Allocation Policies 

 

Most operating systems maintain several lists to track page frame state as memory demand 

changes. For example, BSD variants use active, inactive, cached, and free lists [136], Solaris 

uses free and cache lists [124], and Linux uses active, inactive, and free lists [70]. Page frames 

traverse the lists according to their state and reference frequency. Using multiple lists for 

currently allocated page frames allows for further delineation between allocated types and has 

been the focus of memory management research for decades [23, 30, 39, 73, 101, 140, 171]. As 

evidenced by the lists used in these operating systems, page frames are fundamentally either 

allocated or free; thus for the purposes of our discussion we shall refer to page frames as being in 

one of these two states.   

Allocated page frames are those that are currently in use. These could include frames 

mapped into the address space of processes as a result of malloc allocations, frames used for 

I/O transfers or to hold file system data, or even those used for device drivers or kernel data 

structures. Once a frame is allocated it is removed from the pool of free frames and placed onto a 

list that tracks its state.  Allocated frames are returned to the free pool once explicitly freed or 

remain unreferenced for some interval.   
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Frames are often not immediately moved to the free list based on the prediction the page 

will be referenced again in the future. For example, the buffer and page caches retain previously 

referenced pages in memory rather than flushing data and returning frames to the free lists.  By 

retaining pages in memory, future references are satisfied quickly by simply mapping the frame 

into the address space of the requesting process. Such in-memory caches improve performance 

for workloads that read or modify pages repeatedly. However, workloads with minimal file 

system I/O interaction, such as computationally-intensive scientific codes, do not tax these 

caches. For these workloads, these caches often consume significant memory and do not yield 

significant performance benefits.   

Controlling the allocation of all free page frames in the system is the responsibility of a 

frames allocator [73].  When a page frame allocation request arrives, the frames allocator 

determines which page frame shall satisfy the request.  As page frames are continually allocated 

and freed by the frames allocator, a new allocation request may be satisfied from any valid 

region in the physical address space.   Since the location of each allocation is based on the 

dynamic memory allocation characteristics of all applications executing on the system preceding 

the arrival of the request, two back-to-back requests may be mapped to different memory 

devices.    

This behavior is evidenced by the binary buddy allocator used in Linux [70].  The buddy 

allocator maintains blocks of contiguous page frames by power-of-two size.  Several lists are 

used to aggregate blocks of increasingly larger contiguous page frames.  When an allocation 

request arrives, the request size determines which lists will be searched to satisfy the request.  If 

the list with the optimal order is empty the next list of higher order is searched.  Assuming the 

next list is not empty, a free block (e.g. set of frames) is extracted from the list and split in half.  
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One half is used to satisfy the allocation request and the other half is moved to the next lower 

order list.  As blocks are continuously allocated, partitioned, freed, and moved between lists, 

contiguous memory regions become fragmented.  Since each list is unordered with respect to the 

address space, allocated frames are selected based solely on request arrival relative to previous 

allocation and free operations.  The effect of this system is that allocated pages are scattered 

throughout the physical address space.  In the worst-case, all memory devices must be retained in 

a high power state even though only the capacity of a few devices is necessary to satisfy page 

demand.   

Figure 3.1a illustrates this scattering effect.  There are 8 memory devices in this system, 

each containing 2 pages for a total of 16 pages. Consider an application that allocates a total of 8 

pages.  As a result of page faults, page frames are allocated individually at regular intervals, 

resulting in the total allocation of 8 frames by the frames allocator.  In the pathological case the 

memory allocated to the application is scattered across the entire physical address space as 

depicted by the gray page frames.  Because of the distributed allocation pattern, all memory 

Figure 3.1. The default allocation policy often results in pages distributed throughout 
all devices as shown in a).  After migration, pages are compacted into a minimal 
device set enabling devices to be transitioned into lower power states as shown in b). 
After migration, actual page demand (50% of capacity) is satisfied from the minimal 
set of memory devices.   
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devices must be retained online even though page demand requires only half of the system’s 

capacity.   

Given this worst case page frame allocation pattern, we observe several potential solutions: 

1) we could migrate pages from frames in sparsely populated memory devices to frames in more 

densely populated devices.  By consolidating frame allocation to a subset of memory devices, 

unused devices could be transitioned into low power states or even offlined.  In our above 

example, this would reduce the energy consumption of memory by 50% and preserve the 

existing performance without adding complexity to the frames allocator.  However, on real 

systems we must consider allocation requests that may not be easily migrated, such as those used 

by device drivers for DMA operations.  2) We could dynamically direct page frame allocation 

requests to specific regions of physical memory based on the intended use of the page frame.  

For example, if we knew a set of frames were going to be used for DMA, we could allocate 

frames from a memory device that we will never try to remove.  Similarly, we could direct user-

level, dynamically allocated application page frames to regions that are more likely to be 

removed.  3) We could combine the two approaches and proactively direct page frame allocation 

to specific regions as well as reactively migrate or swap out currently allocated pages in sparsely 

allocated devices.  The remainder of this section discusses each of these alternatives.   

 

3.3.2 Reactive Shaping 

 

One approach to the allocation scattering problem is to preserve the allocation characteristics of 

the frames allocator, but reactively compact allocated page frames into a subset of memory 

devices.  Figure 3.1 illustrates this approach.  Recall the upper half of the figure (3.1a) shows the 

worst case frame allocation scheme where pages are scattered throughout devices.  Figure 3.1b 
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shows page placement after migration.   Prior to migration all devices were required to remain in 

a high-power state; however, after migration four devices (half of system capacity) may be 

offlined or transitioned into a lower power state.      

Migrating pages between devices is achieved through several steps.  First, a new page 

frame is allocated.  Then the page to be migrated is locked to prevent further access during 

migration.  The page is then copied to the new frame and all references to the old frame are 

adjusted to point to the new frame.  For example, for pages allocated by an application, the page 

table entry pointing to the old frame is updated to point to the new frame.  The page is then 

unlocked and the old frame is freed.   

Randomly moving pages between devices can be costly when devices contain many 

allocated page frames.  For example, consider a system with two devices, each containing 1000 

frames.  If 900 frames are currently allocated on device 1 and only 50 frames are allocated in 

device 2, migrating pages from device 1 to device 2 would be suboptimal.  To minimize 

migration costs the pages on device 2 should be migrated to device 1.  Consequently, judicious 

control of page migration is required to minimize overhead.       

To avoid this scenario, we scan each memory device to determine how many allocated 

frames each device contains.  We then sort the devices to form two sets.  The first set is 

composed of devices that contain the fewest allocated frames.  We migrate pages from these 

devices to devices in the second set, composed of devices with the most allocated page frames.     

Although theoretically, any page can be simply migrated to a different frame on other 

device, real-system constraints may prevent some pages from being migrated.  For example, 

pages used for DMA operations or performance-centric regions such as those that contain kernel 

text may incur significant performance penalties to migrate.  Considering the first example, 
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frames allocated by a device driver for DMA operations could be freed by temporarily disabling 

and subsequently restarting the device.  However, if the system or application depends on the 

device for proper operation, such as a storage controller or network interface card, performance 

could be severely impacted while the device is being reinitialized.  Although migration may be 

possible for all page frames, performance and reliability constraints often limit whether a page 

may be pragmatically migrated.   

In light of these real-world constraints, we further classify pages in terms of their 

potential for migration.  Many operating systems maintain per-page state information that 

indicates how the page is currently used.  We exploit this information to classify pages in terms 

of those that are pinned (P) and others that are easy to move (E).   Pages classified as easy-to-

move can almost always be moved on demand while pinned pages may never be movable.  

Generally, pinned pages reduce the opportunity to minimize the number of online memory 

devices.  These classifications also affect our groupings of memory devices as devices that 

contain pages that may not be moved will not be targets for page migration.   

After determining if the set of allocated pages residing on a memory device can be 

moved, we migrate sets of pages to other areas of the physical address space that map to other 

memory devices.  In essence, we dynamically compact page utilization to a subset of the total 

number of devices when the number of allocated page frames is less than the total number of 

page frames.   

Figure 3.2a shows how this approach works using the same memory device configuration 

as figure 3.1.  In this example, the frame allocator has allocated page frames across 6 of the 8 

devices. Gray frames contain allocated pages and white frames are unused. Allocated pages are 

further marked as P and E, for pinned and easy to move respectively.  While the frames allocator 
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distributed page frame allocations across several memory devices, two memory devices, d1 and 

d7, have not been used to satisfy any allocations and can be immediately transitioned into a low 

power state.  However, since only 8 of 16 frames are currently allocated, we could optimally turn 

off 4 of the eight memory devices.   We use migration to move the page at frame 7 (an E page) to 

frame 11 as shown by the solid-line arrow, enabling us to turn off device d3.  Similarly, we 

migrate the page at frame 9 to frame 1 (a P page) also shown by the solid-line arrow enabling us 

to turn off device d4.  Although we could have migrated our two example pages to any of the 

available free frames we attempt to move them to devices that have similar allocations.  This 

increases the chance of removing the device later.  However, because our approach only moves 

pages in a reactive manner and does not change how frames are allocated within the physical 

address space, collocating pages by type may be reversed at the next allocation.  For example, if 

after migrating the page in frame 7 to frame 11, frame 6 is allocated to an E page, the page in 

Figure 3.2. Comparison of three shaping approaches.  Reactive shaping uses page 
migration to aggregate pages onto the minimal device set.  Proactive shaping avoids 
migration costs by placing pages on the minimal number of devices at allocation 
time.  Hybrid shaping combines allocation time placement with page migration to 

aggregate pages onto the minimal device set.   
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frame 10 is freed and then populated with a P page, then collocating the E page in frame 7 

wouldn’t have been productive.    

Instead of migrating pages, we could also free frames by paging pages to disk.   As shown 

in figure 3.2a rather than migrating the page at frame 7 we could have paged it out to disk.  We 

plan to explore that alternative in future work.    

 

3.3.3 Proactive Shaping 

 

An alternative approach to page migration is to proactively direct the allocation of frames from 

specific devices based on the characteristics of the occupying page.  To direct allocations, we 

modify the frames allocator to manage frames in pools according to page type.  As before, we 

differentiate between P and E pages, and loosely divide the online device set into two sets; one 

for E pages and one for P pages.  We also add flags to the allocation call interface to distinguish 

between the page types.  By requiring the requester to specify the page type, the frames allocator 

can direct the allocation to specific devices.  For example, when an allocation request for a P 

page arrives, the frames allocator will allocate a frame from the P device set.  Similarly, when a 

request for an E page arrives, a frame from the E device set will be selected.   

An example using proactive shaping is shown in Figure 3.3.  We divide the available set of 

frames into two sets, one for P pages and one for E pages.  As in previous examples, page 

demand is 50% of capacity, but we determine that only two pages are classified as P pages, 

while the remaining 6 allocation requests are for E pages.  We aggregate the allocated pages into 

the two frame sets when they are allocated, such that only the minimal device set is consumed by 

all allocation requests.  As a result, half of the memory capacity in the system may be 
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transitioned into lower power states.  Since we performed the delineation at allocation time, page 

migration is not required.   

Limitations. Although proactive shaping avoids the overhead of migration, it does have 

limitations.  For example, when unused devices are transitioned into lower power states (such as 

offline), the number of frames for each type of allocation is reduced. Since we segregate P pages 

from E pages and offlining devices creates artificial memory limitations, subsequent allocation 

requests for P pages may be satisfied from the E device set.  This condition can lead to 

fragmentation similar to that originally depicted in Figure 3.1(a).   

Figure 3.2(b) shows how this effect manifests.  Unlike Figure 3.2(a), we see the P pages 

and E pages are aggregated similar to Figure 3.3.  However, we also see that device d2 contains a 

page that would be better placed on device d1; similarly, we observe that there is only a single E 

page on devices d3 and d6.  If all these pages were migrated onto common devices, two 

additional devices could be transitioned into lower power states.   

Implementation Details. For historical reasons, physical memory is coarsely grouped by zone in 

Linux [70]. However, many supporting architectures use only a subset of the available zones. 

Consequently, for this discussion we consider an architecture that primarily uses a single zone.  

Each zone uses a buddy system as the frame allocator to manage free page frames. To direct 

Figure 3.3. Proactive shaping aggregates pages onto a minimal number of devices at 
allocation time, avoiding migration overhead. Using proactive shaping, actual page 

demand (50% of capacity) is satisfied from a minimal set of memory devices.  
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page frame allocation requests to specific memory devices by allocation type, we use two buddy 

systems: one for backing E pages and one for P pages. The free area list from which a frame is 

allocated is determined by checking a flag bit passed into the allocation request. Because this 

requires only one additional bit-wise comparison and branch instruction, the overhead is trivial. 

We incorporated this allocation-time direction within the interface functions for allocating and 

freeing sets of page frames. All other aspects of the buddy allocation algorithm remain 

unchanged. 

Even though this approach minimizes the probability pinned pages will prevent memory 

removal, it does introduce the possibility of a balancing problem between allocation types. For 

example, if the number of free frames of either type becomes scarce, this could cause allocation 

failures for the requested type. To prevent this scenario, we allow for large contiguous areas to 

be transitioned from one buddy system to the depleted buddy system. If a page frame set is 

transitioned from buddy system for the E frame set to the P frame set, the capability of turning 

off the memory device may be compromised due to pinned pages. However, transferring frame 

sets between the two systems prevents artificial memory shortages solely because of the 

delineation between memory request types.   A side effect of this approach is a lower bound on 

the amount of memory that may be de-allocated. However, immovable kernel pages account for 

a small amount of total physical memory and at least one memory device must remain powered 

on to maintain reasonable performance on any static or dynamic memory system. 

 

3.3.4 Hybrid Shaping 

 

To maximize energy efficiency we propose a third approach called hybrid shaping.  Hybrid 

shaping combines the allocation-time page placement of proactive shaping with the migration 
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capability of reactive shaping.  Since proactive shaping directs allocations to devices with 

minimal overhead, the need for migration is minimized. However, as previously discussed, 

relying solely on proactive shaping can result in suboptimal allocations across devices over time.  

Hybrid shaping uses reactive shaping to avoid these inefficiencies by periodically aggregating 

pages onto a minimal device set.   

Figure 3.2(c) shows how hybrid shaping work relative proactive and reactive shaping.  In this 

example, page demand is again 50% of system capacity (8 pages, 16 frames).  We observe that 

allocation time placement has aggregated pages by type onto common devices with the exception 

of device d7.  Pragmatically, only the P page in device d1 and the E page resident in device d3 

are candidates for migration.  Because E pages are by definition easier to migrate than P pages, 

the page in frame 7 is moved to frame 2 on device d1.  Optionally, the page in frame 7 may also 

be paged out to disk; however, this may incur a performance penalty if the page is in active use.  

After migration half of system capacity may be transitioned into a lower power state.   

 

3.4 Experimental Results  
 

We implemented all of the extensions discussed in the previous section in a 2.6 x86-64 version 

of the Linux kernel on a recent Intel 64-bit SMP Xeon processor system with various amounts of 

memory.  For some of the experiments our system contained 3Gbytes.  In later experiments we 

populated the system with 8Gbytes of memory.  To evaluate our approach, we modified our 

operating system extensions slightly to emulate memory topologies by partitioning the physical 

address space into logical devices.  In this way, we can experiment using memory devices of any 

granularity, within the limits of actual system memory capacity. Using emulation, we can 
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evaluate the impact of dynamically adjusting memory device states using the actual, real-time 

memory demand of various workloads. 

In this section, we present energy and performance results using our hybrid approach.  

Because hybrid shaping is a combination of proactive and reactive shaping techniques, the 

proactive page placement is integrated into the page allocation process.  However, in our 

implementation page migration is only triggered when a device is offlined by a system-level 

controller.  So, we implemented a root-privileged, application-level daemon using a simple 

history-based heuristic to monitor page demand and control the power state of all memory 

devices.  

 

 3.4.1 lmbench Results 
 

For our first evaluation we configured lmbench to run the OS-centric set of benchmarks, 

including the memory-intensive bandwidth codes, to stress our page allocation and migration 

modifications.  Each run was configured to execute the same codes with the same amount of 

memory.  Additionally, we configured lmbench to use a subset of total memory in the system.  

We ensure the page demand of lmbench is in-core to evaluate page migration.   

Our controller uses observed page demand to predict the number of online memory devices 

required.  Specifically, we retain a configurable number of prior observations (10-20) and use 

those to predict when to offline devices.  To ensure a sufficient number of devices were available 

to satisfy sudden increases in demand, we retained additional devices online beyond the optimal 

number of devices.  Consequently, the control application aggressively on-lines additional 

devices when demand increases and off-lines devices only when the number of online devices is 

greater than any of the observations retained in the recent history buffer.   
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Figure 3.4 plots memory demand and online memory as directed by the controller.  For this 

experiment, we first started the controller, after which we started lmbench. At the beginning of 

the run all memory devices are online and available.  After starting the controller, devices are 

incrementally off-lined to conserve energy due to low memory demand.  When lmbench starts 

there is a spike in memory demand which causes the controller to online additional memory 

devices quickly, preventing paging.  During the initial execution phase, memory demand remains 

near constant, but then oscillates towards the end.  However, because we are using a simplistic 

history-based heuristic to control power state transitions, some efficiency is lost as noted by the 
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gap between online memory and actual memory demand.  We propose and evaluate control 

policies in the next chapter.  Despite this efficiency gap, retaining additional memory online 

preserves performance and still reduces energy consumption. For this experiment, using the 

hybrid shaping, the controller achieved 56.26% energy savings within the memory subsystem, 

largely attributable to the limited memory demand of lmbench.   

We also ran lmbench against an unmodified base kernel to characterize the performance 

implications of our changes.  For nearly all of the specific codes, there was no discernable 

difference.  The only observable differences were in the memory bandwidth codes.  Figure 3.5 

compares the bandwidth results of the memory intensive lmbench codes of our kernel modified 

to include hybrid shaping and a base kernel. There was less than a 1% difference as a result of 

our changes.   

 

3.4.2 SPEC CPU2000 Results 
 

We also experimented using the SPEC CPU2000 benchmarks.  In this case, our system was 

populated with 8Gbytes of memory.  Figure 3.6 shows how memory devices are dynamically 

scaled to meet memory demand of the SPEC benchmarks using our history-based heuristic.  

Initially, the full 8Gbytes of memory capacity was online and available for use; however, 

because the SPEC benchmarks do not require significant memory, the controller offlined most of 

the unnecessary memory devices as also shown in Figure 3.4.  Thus, we have omitted the first 5 

minutes of the trace in Figure 3.6.   
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As shown, systemic memory demand increases when SPEC is started and additional devices 

are onlined to meet the demand.  The memory demand of the benchmarks oscillates slightly 

while executing but never exceeds about 400Mbytes.  In this case, a total of about 512Mbytes is 

more than sufficient to satisfy the demand of all the SPEC benchmarks while executing. Once 

the benchmarks complete executing, the number of online memory devices is further minimized.   

This resulted in 81.25% energy savings within the memory subsystem.   Our energy savings are 

significant using SPEC codes due to the low memory demand relative to system capacity.  As 
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before, we also ran the SPEC benchmarks on an unmodified base kernel to characterize the 

performance implications of our changes. Figure 3.7 shows the performance of several SPEC 

codes using our kernel with hybrid shaping normalized to the base kernel. The performance loss 

for these codes is maximally about 1%.   

 

3.5 Chapter Summary 
 

In this chapter we quantified the performance and energy for several workloads using a 

kernel with page allocation shaping techniques and shown that there are significant opportunities 

to minimize energy consumption on large systems by taking advantage of variable slack in 

system memory demand. We proposed three page shaping techniques: proactive, reactive, and a 

hybrid variant that combines elements of both. By combining proactive page placement at 

allocation time and reactive page migration on demand, we achieved significant energy savings 

(56% for lmbench and 81% for SPEC) with less than 1% performance penalty. We show that 

applying these techniques in operating systems managing large memory-dense systems can yield 

significant cost savings by dynamically scaling online memory based on actual memory demand. 
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Chapter 4 
 

Formal Control Systems for Improving the Energy Efficiency of 

Sequential Memory Systems 
 

 

In this chapter we present an analytic model of a feedback control system rooted in formal 

control theory to dynamically scale online memory capacity while minimizing performance loss. 

We introduce several models of memory demand that motivates the need for an adaptive, yet 

stable control system.  We then compare our approach with several alternative control policies.  

We formally describe the control system components; derive the system transfer function, and 

finally identify control gains through stability analysis. An implementation of our control system 

that we combined with our previously introduced page allocation shaping techniques to form 

Memory Management Infrastructure for System Energy Reduction, or Memory MISER is 

described. We conclude by evaluating Memory MISER in terms of memory energy and 

application performance under multiple workloads using an individual server as well as an 8-

node server cluster.    

 

4.1 Systemic Memory Demand 
 

 

Systemic memory demand can fluctuate significantly depending on workload.  To better 

understand how applications affect systemic memory demand, we ran commonly used 

benchmarks in isolation and monitored the ratio of allocated and free memory during execution.  

Figures 4.1 plots memory demand over time for select codes from the SPEC CPU2000, 

BioBench, and lmbench benchmark suites; recent studies have similarly characterized the 
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memory footprints of the SPEC CPU2006 benchmarks by monitoring the resident set size of 

each code at runtime [76, 146].   

Three distinct patterns emerge in these traces in terms of the rate of change in memory 

demand which we classify as   memory demand signatures. First, we observe some applications 

cause high volatility in memory demand over short intervals.  For example, in the latter half of the 

lmbench trace (Figure 4.1(c)) memory is repeatedly allocated and freed. We characterize these 

signatures as pulsed, as they cause instantaneous spikes or pulses in demand.  In contrast, 

computationally-intensive applications, such as those used in scientific computing often operate on 

large, in-core data sets for long periods. Many such applications cause rapid spikes in memory 

demand upon invocation, but stabilize to steady-state demand at runtime.  Such applications retain 

allocated memory during execution to maximize performance, but rapidly free memory upon 

completion, such as large-scale applications that handle memory management internally. We define 

these applications as having stepped memory demand signatures. In Figures 4.1(a) and 4.1(b) the 

memory demand of BioBench and SPEC’s mcf exhibit stepped signatures.  Other applications have a 

seemingly random impact on system memory demand. For example, many web-based applications 

allocate memory proportional to the number of active sessions. Such runtime allocations manifest as 

Figure 4.1. Memory demand traces of select (a) SPEC CPU2000, (b) BioBench, and (c) 
lmbench benchmarks. 
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random perturbations in memory demand. Accordingly, we classify these applications as having 

random memory demand signatures. Running applications with different memory demands 

concurrently, as is typical on multicore systems, often results in random memory demand signatures.  

 

4.2 Scaling Online Memory Capacity 
 

If we could proportionally scale the online memory capacity of systems to meet the memory 

demands of applications at runtime, we could increase the energy efficiency of memory while 

maintaining performance. However, this is a challenging problem. First, demand is often 

unpredictable and fluctuates significantly. Memory scaling techniques must be robust and 

flexible to cope with disparate demand signatures. Second, transitioning memory devices 

between multiple power states at runtime is not free.  There is overhead, so memory scaling 

techniques must avoid or minimize the overhead so performance is not sacrificed. Third, 

historically memory demand has been serviced transparently by the operating system. We do not 

want to introduce techniques that reduce or remove this transparency.  These three challenges 

motivate the need for flexible control techniques that maintain transparency with minimal 

overhead. 

 

4.3 Control System Policies 
 

The high variance in memory demand requires a flexible control policy capable of responding to 

rapid changes in demand. Figure 4.2 contrasts the impact of three control policies for balancing 

performance and energy consumption using a sample workload on a system with 10 memory 

devices.  We identify the first approach shown in Figure 4.2(a) as the default control policy. This 
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policy simply keeps all devices in a high-power state to ensure optimal performance. Since 

demand peaks at 90% of the available capacity, performance penalties are avoided.  However, 

because memory demand is less than half of system capacity most of the time, several devices go 

unused. Without the flexibility to offline unused devices, the default control policy wastes 

energy when demand is less than total capacity.   

Unlike the default approach, static control policies can reduce system energy 

consumption. These preserve transparency and minimize control overhead for workloads with 

static demand, but are often inefficient when demand fluctuates due to inflexibility.  Figure 

4.2(b) illustrates a static control policy tuned for a specific workload.  This policy reduces the 

online device set to 6 devices, achieving a 40% reduction in memory energy over the default 

policy. For a workload that requires fewer than six devices, such a policy would yield savings 

without a significant performance penalty. However, significant performance loss results when 

demand spikes, causing in-core workloads to execute out-of-core. For example, in Figure 4.2(b) 

Figure 4.2. Policy comparison for managing memory power and performance.  The white 
area constitutes page demand, the solid gray area is wasted energy, and the hatched 
area represents conserved energy. The default policy (a) retains all devices online to 
maximize performance, but wastes significant energy when memory demand is less 
than full capacity.  The static control policy (b) retains a subset of devices online 
realizing energy savings relative to the default policy, but suffers performance penalties 
when demand spikes.  The dynamic policy (c) tracks memory demand and scales the 
online memory device set to meet demand, preserving performance and minimizing 
wasted energy. 
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demand exceeds the capacity of the online device set for about 4 minutes, or 20% of the default 

approaches execution time. This causes in-memory pages to be swapped out to free sufficient 

frames for new allocations, increasing access latencies and degrading application performance.  

For such static control policies, workload-specific tuning is often required to ensure performance 

is preserved. This means that the policy must be updated whenever the application set changes.   

The inflexibility of default and static control policies motivates our approach of 

dynamically scaling the online device set to match memory demand. Figure 4.2(c) illustrates the 

flexibility of a dynamic control system; the online device set is scaled to satisfy demand within 

memory device granularity. By scaling memory capacity, the performance penalty of causing in-

core workloads to execute out-of-core is avoided and wasted energy is minimized. To quantify 

the differences in this simple example, dynamic scaling achieves 54% memory energy savings 

relative to the default policy, as well as a 14% improvement over the static control system 

without any performance penalty. 

Dynamic control systems often employ different controllers. Simple, heuristic-based 

controllers have been effectively integrated into dynamic control systems in various domains [9, 45, 

117]. However, after initial attempts using heuristics for memory control, we found this approach 

required time-consuming, iterative, and application-specific tuning to achieve desired performance 

and stability. In some cases, changing application parameters requires retuning the heuristic, 

increasing verification and validation costs. Moreover, unexpected application behavior can lead to 

instability and poor performance. In contrast, control theory provides a standard tool set for analytic 

formulation of robust and flexible control systems with discernable stability and performance 

characteristics [7-9, 109, 116].  
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4.4 Analytic Model of memory device control 

 

4.4.1 Formal Feedback Control Systems 

 

 

Feedback control systems adaptively track a changing variable by altering its response based on 

the error or difference between the set point and a process variable. A common controller used in 

feedback systems is the Proportional-Integral-Derivative, or PID controller. Historically, PID 

controllers have been used to control industrial systems [7, 9].  More recently, PID variants have 

been effectively applied to control TCP traffic flows [79, 126], dynamic voltage and frequency 

scaling between multiple clock domains within processors [164], and processor thermal 

dissipation via instruction fetch regulation [143]. Motivated by the performance characteristics 

and stability properties of PID controllers, we use a PID controller in our control system to 

manage memory device power state transitions. 

In this section we introduce an analytical model of a control system for dynamically 

scaling online memory capacity to meet memory demand. We describe each of the control 

system components, derive the system transfer function, and then describe selection of control 

gains.  Readers familiar with control theory are invited to skim the equations in this section and 

proceed to Section 4.5. 

 

4.4.2 Memory Device Control System Model 

 

 

Figure 4.3 presents a block diagram of the analytic feedback control system model we developed 

to dynamically scale online memory while minimizing performance loss. 

The input signal to our control system is current memory demand. We model memory 

demand using a page demand signal generator that samples systemic page demand and outputs 
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the memory demand signal (r).  This signal constitutes the set point tracked by the control 

system. Memory demand is discussed in detail in section 4.4.3.   

We model the control system as a single-input, single-output system with feedback. 

Because the control system includes a feedback loop, the output signal is continually compared 

with the set point. The difference between the input signal (memory demand) and the feedback 

signal (online memory capacity) constitutes the error signal, used as input by the controller. 

When the error is negative, online memory capacity exceeds demand, indicating the system 

should offline devices. When the error is positive, demand exceeds online memory capacity and 

additional memory should be onlined to avoid paging.  

The controller (C) adjusts the rate at which the memory device set changes occur in 

response to the error signal. Because we sample memory demand in our system, we use a 

discrete form of the Proportional-Integral-Derivative (PID) controller. PID controllers include 

several key parameters, known as control gains which provide design flexibility, but must be 

carefully selected through stability analysis. The controller derivation and parameters used in this 

study are discussed in section 3.4. 

Figure 4.3. Control system model for managing memory power states. 
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Within the feedback control system, the plant function (P) models the controlled system; 

in our case the controlled system is the OS memory manager. The plant is a single-input, single 

output function that uses the controller output signal to manage and modify the state of all 

system memory devices. The output signal of the plant function is online memory capacity, 

which also serves as the feedback signal in the control loop. As previously mentioned, the 

difference between the feedback signal and set point forms the error signal used in the next 

iteration of the control system.   

 

4.4.3 Modeling Page Demand 

 

 

We use a simple signal generator structure to model memory demand as shown in Figure 4.3. At 

the core of the generator is the page demand sensor, which discretely samples page demand at a 

configurable frequency. The page demand sensor determines the number of allocated pages 

within the system; these include resident pages (when demand is less than the capacity of online 

devices) or a combination of in-core pages and out-of-core pages (when demand exceeds the 

capacity of online devices). We track memory demand at page granularity even though most 

memory devices are typically larger than a single frame. To account for the disparity between 

coarse, device-level control and high resolution tracking we transform the page demand signal 

from the high-resolution signal l to device-granular signal l’ via a simple filter (block g in Figure 

4.3), where l’ = ceiling( l/# pages per DIMM).   

 

4.4.4 Controller Model and Derivation 
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Formal control theory provides a mathematical foundation for designing robust and stable 

feedback systems with discernable performance properties.  One common controller used in 

control-theoretic, feedback systems is the Proportional Integral Derivative, or PID controller. A 

PID controller is generically described by the following equation in the continuous time domain: 

               
dt

tde
KdtteKteKtm DIP

)(
)()()(     (4.1)

 
m(t) is the output of the controller at time t based on the measured error within the system. For 

our system, this amounts to the number of memory devices that should be onlined or offlined to 

satisfy memory demand in the next interval. As shown in equation 4.1, the output of the PID 

controller is the algebraic superposition of three terms: 

 KP e(t): The first term is proportional to the error.  This causes the system to respond to 

the error value and direction.  Since our system controls memory capacity at device 

granularity, we define error in terms of number of devices. 

 KI ∫e(t)dt: The second term is proportional to the integral of the error. This aggregates 

error over an interval to eliminate the steady-state error.  

 KD e(t)d/dt: The third term is proportional to the rate of change in the error, reducing 

overshoot by directionally damping the response.  

The terms KP, KI, and KD are control gains that are analytically determined through stability 

analysis. Poor selection of these parameters can cause system instability manifested as output signal 

oscillation – which in our case would cause main memory device thrashing and catastrophic 

performance losses. Careful selection of control gains results in a controller with desirable 

convergent, performance properties. The first step in determining these parameters is to identify the 

controller transfer function.  Since we sample system memory demand at a configurable frequency, 
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our system is inherently discrete, thus we use the discrete form of equation 1.  The z-transform of the 

discretized PID controller transfer function is:  

   

               (4.2) 

          

Although the controller transfer function is a constituent of the system transfer function, the 

complete control system transfer function is necessary to analyze the stability of the control 

gains. In other words, the controller parameters are determined by considering the interaction of 

the controller function and the plant function. Having determined the controller transfer function, 

the next step is to analytically model the controlled system. Relating the transfer functions of the 

plant model and the controller, we can select and analyze control gains for stability. 

 

4.4.5 Controlled System  

 

In our system, the OS memory manager controls the power state of all memory devices in the 

system, so we model the memory manager as the plant function. We assume each memory 

device is capable of transitioning into at least two power states, which we generically classify as 

either online or offline. These constitute the boundary power states for a given technology. 

Pragmatically, devices in an offline state may be electrically offline (consuming zero power) or 

electrically idle (consuming minimal power from a standby well). We characterize online 

devices as those in a high-power, low-latency state that may be activated quickly to satisfy 

memory accesses. We avoid modeling restrictions that preclude including additional power states 

as we plan to explore optimizations to exploit intermediate states in future work.   

)1(

)2()(
)(

2






zz

KzKKzKKK
zM

ddpdip



 73 

Within our control system, the output signal of the PID controller constitutes the input 

signal to the plant.  The plant input signal specifies desired changes in online memory capacity at 

device granularity. Based on the input signal, the plant transitions memory device states (online 

or offline), resulting in an updated online device set. The size of the new online device set forms 

the output signal of the plant. We model this change using the following first-order difference 

equation in the time domain:   

                           11)(   ttt mddtP     (4.3) 

In this equation, dt is the size of the online device set at time t and is calculated based on the size 

of the online device set in the previous interval dt-1 plus the change specified by the controller. 

Realistically, dt has an upper bound, based on the number of memory devices in the system. For 

this study we assume at least one device must remain online at any time, further bounding dt 

such that, 1 ≤ dt ≤ dmax, where dmax is the maximum number of devices in the system.  Applying 

the z-transform to equation 3 results in the following transfer function for the plant function in 

the z-domain: 

                                         
1

)(



z

z
zP       (4.4) 

Using equation 4.4 for the plant transfer function, we proceed with identification of the control 

system transfer function by relating the plant transfer function with the controller transfer 

function.   

4.4.6 Control System Transfer Function 

 

A feedback control system transfer function can be expressed generically by the following 

equation: 
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The numerator reflects the feed-forward transformation of the input signal through the controller and 

plant transfer functions to the output signal, while the denominator relates the effect of the feedback 

loop to the output signal.  Substituting equations 2 and 5, for M(z) (the full PID controller) and P(z) 

(the plant) respectively, results in the following transfer function for our feedback control system 

after algebraic simplification: 
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Given the transfer function for the full control system, we evaluate control gains using stability 

analysis.  Solving the polynomial in the numerator for zero identifies the zeroes of the transfer 

function; these characterize the relative excitation of each term [8, 9, 116]. The denominator of a 

transfer function, also known as the characteristic equation, determines the stability of the control 

system. From our transfer function, (equation 4.6) we can analyze the stability characteristics by 

solving the characteristic equation for zero, specifically: 

       01)22()1( 2  ddpdip KzKKzKKK     (4.7)

 
The roots of the characteristic equation constitute the poles of the system. To be stable, each of the 

poles must reside within the unit circle, or region of convergence.  Parameters that result in pole 

placement outside the region of convergence lead to system instability. In this case, changes in the set 

point or disturbance signal will cause signal oscillations or non-convergent response behavior. In 

contrast, careful selection of control gains results in poles that reside within the region of 

convergence, so the system will eventually converge despite set point changes or variations in the 

disturbance signal.   
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For our study, we experimented with numerous parameter sets, four of which are outlined in 

Table 4.1.  Substituting these parameters into the characteristic polynomial (equation 4.7) and 

applying the quadratic formula to find the roots, we find the poles are clearly within the unit circle.  

These are also plotted in the complex domain in Figure 4.4. 

Although the parameter values in Table 4.1 result in system stability, each parameter set 

affects performance and transient response differently. As shown in equation 4.1, each term (KP, KI, 

and KD) weights the respective term which collectively determines controller output. For the 

experimental results reported in this paper, we used the values in parameter set I in Table 4.1 

(KP=KI=KD=0.015625) for the control gains.  

Figure 4.4. Pole placement of parameter sets in table 1 plotted in the complex domain.  
As shown, the poles using the four parameter sets reside within the unit circle, ensuring 
control system stability. 
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Parameter Set IV

yes0.33+0.23i,

0.33-0.23i

0.52+0.36i
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KI=1.2
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IV
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0.56-0.16i

0.69+0.23i

0.69-0.23i
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0.59+0.30i

0.59-0.30i
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KI=0.8

KP=0.4

II
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0.97+0.12i

0.97-0.12i

KP=0.015625

KI=0.015625

KP=0.015625

I

Stable?ZeroesPolesControl GainsSet

yes0.33+0.23i,

0.33-0.23i

0.52+0.36i

0.52-0.36i

KP=0.8

KI=1.2

KD=0.4

IV

yes0.56+0.16i,

0.56-0.16i

0.69+0.23i

0.69-0.23i

KP=1

KI=0.5

KD=0.8

III

yes0.4+0.16i,

0.4-0.16i

0.59+0.30i

0.59-0.30i

KP=0.9

KI=0.8

KP=0.4

II

yes0.58,

0.084

0.97+0.12i

0.97-0.12i

KP=0.015625

KI=0.015625

KP=0.015625

I

Stable?ZeroesPolesControl GainsSet

Table 4.1. PID Controller parameter sets 
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4.5 Memory Miser Implementation 
 

Memory MISER consists of two primary components: a user-level daemon implementation of a 

PID controller for controlling memory power state transitions and a modified Linux kernel.  The 

implementation and changes to the Linux kernel are real and portable across system architectures. 

Memory devices capable of transitioning to a fully offline state at DIMM granularity were not 

available at the time of this work. So we ran our modified kernel and controller implementation on a 

real system with standard DDR2 SDRAM. We then modified our kernel to emulate devices of 

various sizes to evaluate our kernel and controller as well as to study the effects of varying the device 

sizes that can be offlined.  Though we have other results, in this paper we report emulated results for 

512Mbyte and 128Mbyte DIMMs on systems with between 6Gbytes (cluster nodes) and 8Gbytes 

(stand-alone system) capacity.  

 

4.5.1 Controller Implementation 

 

For the controller, we initially implemented a history-based heuristic-driven controller in a root-

privileged, application-level daemon as described in chapter 3 [151]. Although we designed the 

heuristic to avoid adversely impacting performance, it missed many opportunities to turn off 

memory devices. Even after expanding on the heuristic to consider additional information, it still 

missed opportunities. This led us to investigate other controllers including the PID. 

Consequently, we modified the daemon to use a PID controller. This reduced the overhead of the 

control daemon and simplified the implementation, reducing the primary control function code 

size by nearly 80%.   



 77 

We experimented with various sets of PID controller parameters, including the four 

described in Table 4.1.  For the experiments reported in the next section, we used parameter set I 

from Table 4.1; that is, KP=KI=KD=0.015625 or (1/DMAX), where DMAX is the maximum number 

of memory devices available in the system.  The control system was stable under all workloads 

and exhibited reasonable transient response using these parameters. 

As previously discussed, we use a discrete PID controller in our daemon implementation 

as systemic memory demand is sampled at a configurable frequency.  To minimize overhead, our 

initial implementation sampled demand every 5 seconds; however, when demand changed 

rapidly (such as the case with pulsed demand signatures), this limited the effectiveness of the 

controller and resulted in paging. To more closely track demand we changed the sampling 

frequency to 0.5 seconds.   

To further minimize the possibility that demand spikes caused paging, we added a filter 

(w parameter) to the page demand signal generator. This filter dynamically adjusts the set point 

signal and serves as our primary mechanism for weighting performance or energy efficiency.  In 

an ideal system, the weighting parameter is set to zero (w=0) which balances performance with 

energy efficiency.  In this case, the input signal to the control system is exactly memory demand 

and only the minimal set of devices necessary to satisfy demand will be retained online. For 

example, if measured memory demand requires 4 devices (l’=4), w is set to 0, and 6 out of a 

total of 8 devices are currently online but free, the resultant error signal sent to the controller 

would be -2 (e=6-8).  This indicates two additional devices beyond the optimal are online. 

Increasing the w parameter weights performance over energy efficiency. The system still tracks 

demand, but retains additional devices online, relative to the set point. Assuming the same 

example scenario, where memory demand requires 4 devices and 6 out of 8 devices are online, if 
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we set w=2, the input signal to the controller would be 0 (e=6-8+2=0) indicating equilibrium 

from the controller’s perspective. Similarly, setting w to less than zero weights energy efficiency 

over performance.  In this case, the control system continues to track demand, but retains 

proportionally fewer devices online than necessary to satisfy demand.  

After shortening the sampling interval to 0.5 seconds and increasing w to 4 (the 

maximum number of devices the system is capable of allocating during 0.5 second sampling 

interval), we were able to eliminate paging for in-core workloads, even with pulsed demand 

signatures. 

 

4.5.2 Operating System Implementation 

 

As described in Chapter 3, we modified a 2.6 x86-64 version of the Linux kernel with the 

capability to transparently online and offline physical memory devices while preserving 

application integrity. This is an extension of earlier work [150] where we modified the Linux 

kernel to support hot-pluggable memory devices. In that study we focused on preserving system 

uptime by dynamically changing page to frame mappings in response to physically changing 

memory capacity.  

Building on the same online and offline capabilities, we implemented and evaluated 

several page allocation shaping policies to reduce memory energy consumption.  We first 

investigated reactive page shaping, which used migration to periodically consolidated pages 

from frames scattered through the physical address space to a minimal device set.  To reduce 

migration overhead we developed proactive page shaping to always allocate frames from a 

minimal device set. Proactive shaping also reduced the complications associated with DMA-

intensive workloads, since we can direct DMA transactions to memory regions backed by 
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devices that we always keep online. However, workloads that rapidly allocate and free memory 

resulted in fragmentation across devices, wasting energy.  In the MISER implementation we 

incorporated a combination of both approaches, which we call hybrid page shaping.  Hybrid page 

shaping enables power-state driven device selection at allocation time with periodic migration to 

minimize fragmentation across devices.  We found hybrid shaping yielded significant energy 

improvements [151, 152].  

Modifying an OS memory manager can impact runtime performance. We measured page 

faults and execution time running SPEC benchmarks, LMBench, and the NAS Parallel 

Benchmarks using our MISER-enabled kernel as well as using an unmodified kernel.  For 

consistency we disabled the controller daemon so memory remained online during the 

comparison. We observed less than 1% performance variation between kernel implementations 

over a number of runs for all codes. 

 

4.6 Experimental Results 
 

4.6.1 Serial Results 

 

For our single-server evaluation, we used a dual-processor Intel® system with 8 gigabytes of 

DDR2-400 memory. We emulate a dense memory topology by logically partitioning physical 

memory into 64 128MB logical DIMMs. Although most server systems use higher capacity 

DIMMs, we chose 128MB to evaluate the scalability and controllability of our implementation 

despite the limited capacity of our test system. Further, this degree of controllability reflects the 

number of devices (albeit at lower density) used in real systems with large-scale memory 

topologies [71].   
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Onlining DIMMs is not instantaneous.  Through instrumentation we found that BIOS 

code for initializing four 4Gbyte DIMMs took approximately 600-700ms.  To conservatively 

account for hardware delay in onlining DIMMs, we used a fixed delay of 500ms for each online 

operation.  Because off lining does not require re-initialization, only the dropping of delivered 

power and signals to a slot, we added a fixed delay of 50 ms for each offline operation. These 

delays are included in all of our evaluation results.     

We selected benchmark applications from well-known suites, including SPEC CPU2000, 

NAS, BioBench, and lmbench as well as several synthetic codes, to evaluate Memory-MISER on 

a single system. We ran all of these benchmark applications individually, iteratively, and 

concurrently to further characterize systemic memory demand in terms of the pulsed, stepped, 

and random signatures described in section 4.1. Though we have additional results, in this paper 

we present benchmarks that exhibited each of the signatures to compare the performance and 

energy impact of the three control policies. Since most machines retain all memory devices 

online at runtime, we use the default policy discussed in section 4.1 as the baseline for 

comparing performance and energy results.  Consequently, all energy improvements presented in 

this section are normalized to the default control policy. 

 

4.6.1.1 LMBENCH 

 

The lmbench suite includes benchmarks for evaluating various aspects of system performance. 

However, many of the codes test specific processor and network latencies and are not 

significantly impacted by memory capacity. We ran lmbench using all three control policies and 

found the only significant differences were in the memory bandwidth benchmarks. We 

subsequently focused our lmbench evaluation to use the memory bandwidth codes including: a) 
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libc version of bcopy b) hand-tuned version of bcopy c) memory read and d) memory write 

benchmarks. These benchmarks may be configured to maximally use a significant percentage of 

online memory capacity; however, each allocates and accesses memory differently. For each run, 

we used the standard lmbench start-up scripts, which configures and runs selected benchmarks 

after detecting available memory. For all presented results, lmbench used 5638Mbytes of the 

total 8Gbyte capacity. We found the collective memory demand of these codes exhibited all 

three demand signatures when the benchmarks were run serially. To maximize the memory used 

by lmbench, we started the controller daemon after memory was detected by the start-up scripts. 

For the tuned static control policy, we retained sufficient memory to satisfy demand. For the 

untuned static control policy, we offlined half of the memory devices after lmbench started to 

show the effect of an unexpected change in demand. 

Figure 4.5 shows memory demand of the lmbench memory bandwidth codes run serially 

and how memory capacity was scaled by Memory-MISER. Initially all memory (8Gbytes) is 

online and memory demand is low (less than 1Gbyte). Once the controller is started, devices are 

Figure 4.5. Memory MISER dynamically scales online memory to meet demand while 
running lmbench.  The white area shows memory demand, the gray area shows online 
memory as directed by the PID controller, and the hatched area shows offline devices 
constituting energy savings.   
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incrementally off-lined due to the low memory demand.  As the controller offlines devices, 

demand rapidly increases as the benchmarks start executing. We identify the initial demand pulse 

in Figure 4.5 as phase 1. Memory-MISER detects the change in demand signal, which 

propagates to the PID controller as a change in set point. The change in the set point manifests as 

error relative to the feedback signal (online memory capacity in the last interval) and additional 

devices are quickly onlined. Because we use a full PID controller, sufficient memory is brought 

online to meet the increased demand without paging.   

In the second phase of Figure 4.5, memory demand plateaus and remains near-constant 

while the memory bandwidth tests run. Since demand is static, only a minimal number of devices 

are kept online to precisely satisfy demand. Once the bandwidth tests complete, memory is freed 

bas shown by the precipitous decline in demand.  

Figure 4.6. (a)  Memory bandwidth of default, dynamic (Memory-MISER), and tuned as 
well as untuned static control policies normalized to default control policy.  For all 
memory-intensive lmbench codes, there is less than 1% difference while using Memory-
MISER. Using a static control policy tailored for the workload does not impact bandwidth 
but severely degrades achievable bandwidth if workload requirements change. (b) Time-
to-solution performance of default, static, and dynamic (Memory-MISER) control policies 
normalized to default control policy under lmbench.  Memory-MISER performance is 
within 0.8% of the default policy.  (c) Memory energy consumption of default, dynamic 
(Memory-MISER), and tuned as well as untuned static control policies normalized to the 
default control policy.  Ideal energy consumption necessary to meet memory demand is 
38% of total.  Memory-MISER is within 10% of ideal energy consumption with less than 
1% performance loss (d) Energy-Delay Product (EDP) results for default, dynamic 
(Memory-MISER), tuned and untuned static control policies normalized to the default 
control policy. Relating energy savings with performance loss shows Memory-MISER all 
of the policies 
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In the third phase, memory demand exhibits the random signature. There are significant 

spikes in demand, often followed by short steady states as shown by the second plateau. Because 

demand is volatile during this phase the set point changes frequently, yet the system remains 

stable and converges towards the updated set points. This is because controller parameter 

selection was driven by stability analysis. 

Performance Results and Analysis: The default control policy ensures optimal performance by 

retaining all devices online in a high-power state. Since our lmbench workload remains in-core 

when all devices are online, the default control policy results in optimal performance. 

Lmbench reports achieved memory bandwidth upon completion. Figure 4.6(a) compares 

the memory bandwidth achieved for specific codes using the four control policies.  The 

bandwidth figures are normalized to the default control policy. Using Memory-MISER and the 

program normalized, or tuned static control policy memory bandwidth remained within 1% of 

the default control policy. Expectedly, bandwidth was severely reduced using the untuned static 

control policy since demand was higher than the online capacity and the system was forced to 

page. Executing lmbench out-of-core, memory bandwidth was reduced to less than 5% of the 

default, untuned static or Memory-MISER policies due to paging overhead.  

We also measured total lmbench execution time, or time-to-solution (TTS), for the three 

control policies. Figure 4.6(b) compares the average TTS over 10 runs for each of the control 

policies normalized to the default control policy. The average TTS for the default control policy 

was 40.58 minutes, the highest performance among the three control policies. The average time-

to-solution for Memory-MISER was 40.9 minutes, an increase of 0.8% relative to the default 

control policy. The averge TTS for the program normalized static control policy was 40.68 

minutes. In contrast, the average TTS for the untuned static control policy was 499.76 minutes - 
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over an order of magnitude longer than both the default control policy and Memory-MISER. 

Again, this was due to the extensive paging resultant to executing lmbench out-of-core. The page 

demand traces recorded during all of the runs revealed that paging was avoided using the default, 

tuned static, and Memory-MISER control policies. 

Energy Results and Analysis: Figure 4.6(c) compares the energy consumption of the three 

control policies, normalized to the default control policy. By tracking memory demand and 

offlining unneeded devices, Memory-MISER only consumed 47.12% of the energy consumed by 

the default control policy, realizing 52.88% energy savings.  These savings were achieved while 

preserving performance – recall memory bandwidth and TTS were within 1% of the default 

control policy.   

Because the tuned static control policy minimized the number of online devices based on 

highest-workload demand, 30% energy savings were achieved over the default control policy.   

Similarly, the untuned static control policy reduces power by naïvely halving online capacity 

based on the requirements of a different application set.  As a result, bandwidth and time-to-

solution performance were severely degraded because memory demand exceeded online 

capacity, causing the workload to execute out-of-core.   

To relate achieved energy savings to performance, Figure 4.6(d) presents the energy-

delay product (EDP) for the four policies normalized to the default control policy. The 

normalized EDP of the untuned static control policy is over 6 times worse (6.155) than the 

default control policy.  This is because the performance degradations outweigh the energy saved. 

In contrast, because Memory-MISER minimized performance loss (0.8%) and reduced energy 

consumption by 52.88%, the normalized EDP of the dynamic policy is less than half of the 

default control policy (0.474).   
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4.6.1.2 SPEC CPU2000 

 

We also ran the SPEC CPU2000 benchmarks individually and serially to evaluate Memory-

MISER. Figure 4.7(a) shows how memory devices are dynamically scaled to meet the memory 

demand of the SPEC benchmarks when run serially. Initially, all devices are online, but after 

starting the controller, devices are incrementally offlined based on low demand. Memory 

demand rises when the SPEC benchmarks start executing and two additional devices are onlined 

to meet the increased demand. Although demand fluctuates, the variations are sufficiently small 

that Memory-MISER simply retains 512Mbytes online until demand drops dramatically. 

Because we retained 8 devices (1Gbyte) to account for pinned pages and Memory-MISER 

retained 4 devices (512Mbytes) for easy-to-move pages [151], only 18.75% of system memory 

was kept online. This resulted in 81.25% power savings over the time period SPEC was running. 

Figure 4.7. (a) Online memory scaling using Memory-MISER while running SPEC 
CPU2000 benchmarks.  The lower line shows memory demand.  The upper line 
constitutes the online memory as controlled by memory-MISER.  Note the system has a 
total capacity of 8Gbytes, but we have omitted the initial phase in this graph during 
which devices were offlined by the controller to show demand and device scaling in 
greater detail.   (b) Comparison of performance results for SPEC CPU2000 benchmarks 
using Memory-MISER and an unmodified base kernel.  For all codes, there is less than 
1% difference in performance. 
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The energy savings achieved running these benchmarks are significant because the page demand 

of the SPEC CPU2000 benchmarks is low. 

Unlike lmbench, the SPEC benchmarks only require limited memory, so there is not a 

significant variation in memory demand relative to the capacity of our test system. To induce 

higher-variance in demand, we ran the SPEC mcf benchmark and two instances of a synthetic, 

memory-intensive application concurrently. Each synthetic application executes a loop that 

allocates a configurable amount of memory (in this case 1Gbyte), writes into the newly allocated 

memory (to ensure frame allocation within the OS), and then frees the memory. 

Figure 4.8(a) shows the memory demand of mcf and the synthetic application (lower 

curve) and the number of online devices as controlled by Memory-MISER. The controller 

precisely meets demand early in the run and onlines additional devices as demand increases. 

Throughout the trace, the controller continually minimizes the online device set. Because 

demand is highly volatile, Memory-MISER fails to optimally meet demand by missing 

Figure 4.8. (a) Online memory scaling while concurrently running SPEC CPU2000 
benchmarks and synthetic, memory-intensive applications.  The lower line is memory 
demand. The upper line constitutes the online memory device set.  Memory demand has 
a random signature due to timing of application memory allocations. (b) Energy Delay 
Product for Memory-MISER normalized to the default control policy while running SPEC 
CPU2000 benchmarks and synthetic, memory-intensive application. Ideally, the energy 
consumption of memory demand is 13.02%.  Compared to the default control policy, 
memory energy consumption is minimized to 17.88% by Memory-MISER. 
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opportunities (shown as the gray areas) to offline devices when demand quickly decreases. 

However, relative to system memory capacity, we achieve significant energy savings. Further, 

performance is preserved for all applications. As a result, Figure 4.8(b) shows the energy-delay 

product for the application set (mcf and synthetic application) was 0.1788 normalized to the 

default control policy.   

 

4.6.1.3 NAS Serial Benchmarks 

 

We also ran several experiments using the serial versions of the NAS benchmarks. The NAS 

benchmarks are used to approximate the characteristics of scientific applications. We recorded 

the memory demand of all NAS serial codes and found they all exhibited stepped memory 

demand signatures, but similar to the SPEC benchmarks, they did not allocate significant 

memory relative to our test system.  
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Figure 4.9. (a) Online memory scaling while running the serial version of cg.C NAS 
benchmark. The lower line shows memory demand. The upper line shows the online 
memory as controlled by Memory-MISER. The system has a total capacity of 8Gbytes, 
but we have omitted the initial phase in this graph during which devices were offlined 
by the controller. We have also omitted the middle of the trace to show how the 
memory was scaled when demand changed in greater detail. (b) Energy Delay Product 
for Memory-MISER normalized to the default control policy while running the serial 
version of the NAS cg.C benchmark. We show the results for cg.C since it s memory 
demand is characteristic of the serial NAS benchmarks in our experiments. Due to the 
limited memory demand, we achieved normalized EDP of 0.2193. 
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Figure 4.9(a)e shows memory demand (lower line) and online device scaling (upper line) as 

controlled by Memory-MISER while running the cg.C benchmark.  Memory demand increases 

rapidly upon invocation and remains steady for the duration of execution. Once the benchmark 

completes, demand drops as allocated memory is freed.  Despite the rapid increase and decrease in 

demand, Memory-MISER precisely scaled the online device set. As a result, the performance 

difference between the default control policy and Memory-MISER was less than 0.2% over 10 runs. 

Since memory demand was low, we achieved energy savings of 78.07%. Because the performance 

impact was neglible and online capacity was minimized, Figure 4.9(b) shows Memory-MISER 

achieved EDP of 0.2193 normalized to the default control policy. 

 

4.6.2 Parallel Results 

 

For our clustered system experiments, we used an 8 node cluster of dual AMD Opteron servers. 

Each node was populated with 6Gbytes of PC-3200 registered ECC RAM. For parity between 

results obtained using the cluster and single server, we used the same memory topology 

emulation scheme by logically partitioning physical memory into 128Mbyte logical DIMMs. We 

also used the same fixed delays for online (500ms) and offline (50ms) operations. The only 

difference between the emulated topologies was the memory capacity of the systems.  

Servers used for scientific computational analysis often operate on large in-core data sets, 

requiring a static memory device set over a long time period. On a shared system with a batch 

scheduler, the memory usage of each of two nodes may be correlated for jobs in which both nodes 

are involved, and completely unrelated for intervals during which each node executes a different job. 

Accordingly, we examine workloads from both categories. First, we examine the 

performance of Memory MISER under jobs that use the entire system, with the individual nodes 
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allocating memory at the beginning of execution and freeing it upon termination. Specifically, we 

examine the energy savings during a run of the Parallel Ocean Program (POP). Second, we examine 

the performance of the system under workloads that also utilize the entire cluster, but allocate data 

according to a runtime pattern. Specifically, we examine the performance during a run of the FLASH 

AMR hydrodynamics code. Third, we examine the performance of the system while running 

independent jobs that utilize nodes in a way similar to a binary tree with synchronizations between 

scheduling. Specifically, we run random (yet repeatable) instances of the NAS parallel benchmarks, 

with a single program using 8 nodes, then 2 programs using 4 nodes each, followed by 4 programs 

using 2 nodes each, and finally 8 single-node instances, with a synchronization point in between each 

run. This creates results that can be easily correlated between nodes while still providing interesting 

and asymmetric results between nodes. Fourth, we examine the performance of the system using 

randomly scheduled workloads with random processor assignments. Specifically, we proceed as in 

the third workload except we eliminate the synchronization points and schedule the nodes as they 

become available. This emulates the workload of a batch-scheduled shared cluster; correlating data 

between nodes is correspondingly difficult. The processor configurations and memory footprints of 

each of the workloads is given in Table 4.2. These constitute the pool of codes from which the 

schedulers draw. We chose these codes and combinations for their similarity to workloads observed 

on the System X supercomputer at Virginia Tech (a cluster of servers) and to exhibit a wide range of 

memory demand to test the scalability, performance, and robustness of our techniques.  

 

4.6.2.1 Parallel Result Evaluation 

 

Similar to our single-server evaluation, we compare our dynamic control policy to the default 

control policy. We compute two metrics based on the default control policy. First, we consider 
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program normalized (PN) energy savings. For the PN version of the default policy, we assume 

the maximum amount of memory used at any point in the program was powered on during code 

execution. We then normalize the energy used by our power-aware memory approach to the PN 

computed value. Basically, this compares our results to the energy that would be used if 

available physical memory matched maximum memory demand. 

Second, we consider system normalized (SN) energy savings. For the SN version of the 

naïve case, we assume the maximum amount of available memory (3Gbytes per processor) is 

powered on during code execution. We then normalize the energy used by our power-aware 

memory approach to the SN computed value. Despite the fact that the additional physical 

memory seems “free,” which would allow it to be put in a lower power state, in reality systems 

will allocate across all of the available devices. This lowers the probability of these devices being 

able to change state. 

To convert these memory-centric results to system-wide energy savings, see Figure 4.1 to 

obtain the memory budget percentage for various memory and processor configurations and 

Table 4.2. Workload Configurations 

 
Processor 

configurations

Memory footprint 

in MB (max, per 

processor)

POP 8 1052

FLASH 8 2906

1 1569

4 429

1 1113

2 567

4 308

1 11

2 11

4 11

8 11

2 204

4 114

8 65

1 712

2 106

4 195

8 40

2 1742

4 891

1 1338

4 114

is.C

bt.C

cg.C

Name

Static 

workloads

Scheduled 

workloads

sp.C

mg.C

lu.C

ep.C
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multiply by the PN or SN savings. Table 4.3 provides a summary of PN, SN, and total systems 

energy savings for a system with 8 processors and 32Gbytes SDRAM per processor or a 44% 

memory power budget. 

 

4.6.2.2 Cluster-wide Static Workloads 

 

We first examine the performance of Memory MISER in cluster-wide workloads with static 

memory demand. Many scientific codes fall into this category. Specifically, we examine the 

performance of our system during a run of the Parallel Ocean Program (POP). This code 

computes ocean circulation according to 3-dimesional hydrodynamics on a sphere. It maps the 

surface of the earth to an orthogonal grid and parallelizes the grid across processors. Since the 

dimensions of the grid are known at runtime and the dimensions do not change over the course 

of the run, the primary memory footprint of the program is allocated at the beginning of the run 

and freed at the end of the run. Maximum memory allocations being equal, static allocation 

offers the least potential for energy savings compared to the other types of codes studied. 

Savings can still be achieved, however, if the memory demand of the code is less than the 

memory capacity of the system.  

Figure 4.10 presents the results on a single processor from a run of POP on 8 processors. 

The other processors have identical profiles. If we normalize to the maximum memory used in 

Table 4.3. Cluster Energy Savings Summary 

 

Workload PN SN PN SN

Cluster-wide Static (POP) 0.10% 55.97% 0.04% 24.63%

Cluster-wide Dynamic (Flash) 9.33% 56.08% 4.11% 24.68%

Synch Scheduled 34.49% 67.54% 15.18% 29.72%

Unsynch Scheduled 32.29% 67.94% 14.21% 29.89%

(32GB/proc, 8 proc)
% of mem power

% total system power
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the run, roughly 1Gbyte, achievable savings are realized before the initial allocation and after the 

final deallocation, accounting for only 0.1% PN energy savings. However, if we examine the SN 

energy savings, we see that the system saves 55.97% energy. Many static workloads do not use 

the entire memory capacity of the system; therefore, even for static workloads Memory MISER 

can achieve considerable savings.  

 

4.6.2.3 Cluster-wide Dynamic Workloads 

 

While many scientific codes use a static allocation policy, others allocate data in a tiered or 

cyclic pattern during execution. These codes offer further potential for energy savings by 

minimizing online capacity during periods of low demand. We examine the performance of 

Memory MISER in the context of one such code, FLASH, a hydrodynamics code that utilizes 

adaptive mesh refinement (AMR). FLASH allocates data in a tiered pattern, increasing the 

memory footprint when necessary. Additionally, within each tier it dynamically allocates and 

frees memory cyclically with a high frequency.  

Figure 4.11 presents the results from a run of FLASH for a single processor. Again, the 

other processors have identical profiles. The tiers and cycles mentioned above are highlighted, 

Figure 4.10. Results of Memory MISER for the POP code. 
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with online memory climbing up to a maximum of around 2.9Gbytes from an initial set point of 

2.1Gbytes. t0, t1, and t2 are the locations of the tiers. This difference over the course of the 

execution yields a PN energy savings of 9.33%, a significant improvement over the static case. It 

also gives a SN energy savings of 56.08%. This constitutes an improvement over the static case, 

even though maximum demand is higher. The slow offlining at point t4 is due to the long 

running time of the code; pages have gotten pinned, an artifact of OS page usage that makes 

migration difficult. Another point of interest is the lack of response to the high-frequency 

memory demand fluctuations between t2 and t4, even though the fluctuations are large enough at 

t3 to cross device boundaries. This is a feature of the conservative offlining techniques 

mentioned in Section 4.4. 

 

4.6.2.4 Synchronized Scheduled Workloads 

 

While single codes that utilize an entire cluster are interesting, even greater energy savings can 

be achieved in a shared system, where the workloads of individual nodes can be independent. 

First we consider the case where the system is synchronized between scheduled jobs. This is 

similar to a pipelined, coupled model, where the next code in the pipeline is dependent on the 

Figure 4.11. Results of Memory MISER during a run of the FLASH code. 
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results from the previous code. It is also  a single cluster-wide job, using the NAS Parallel 

benchmarks, as given by Table 4.2. Initially after scheduling a level of the tree, all processors are 

busy; since the codes are selected randomly, though, the processors may finish at different times. 

The system waits until the entire processor pool is free before scheduling the next set of jobs. 

similar to the case where a system-wide job has to be scheduled while other jobs are running on 

smaller processor configurations. We created a tree-like synthetic scheduler that cyclically 

schedules jobs from 8 single-node jobs down to a single cluster-wide job, using the NAS 

benchmarks, as given by Table 4.2. Initially, after scheduling a level of the tree, all of the 

processors are busy; since the codes are selected randomly, though, the processors may finish at 

different times. The system waits until the entire processor pool is free before scheduling the 

next set of jobs.  

Figure 4.12(a) presents the results from a run of the synchronized scheduler for 4 

processors with important times highlighted. At time t0, the first set of jobs gets scheduled and 

demand increases accordingly. At time t1, nodes n02 and n03 have finished, and online memory 

capacity is reduced as they wait to synchronize.  

Figure 4.12. Results of Memory MISER during a run of the (a) synchronized scheduler 
and (b) unsynchronized scheduler. 
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At time t2, synchronization has completed and the next set of jobs has been scheduled. 

The synchronization offers potential for normalized energy savings; the run depicted in Figure 

4.12(a) achieved PN energy savings of 34.49% cluster-wide, with per-processor PN energy 

savings of up to 70.23%. Accordingly, the SN energy savings are larger, 67.54% cluster-wide. 

 

4.6.2.5 Unsynchronized Scheduled Workloads 

 

By relaxing the condition that the nodes must be synchronized between different code 

distribution and execution, we arrive at a system very similar to a multi-user scheduled cluster. 

This reflects the distribution of jobs on many large-scale systems. The system is partitioned into 

several smaller logical clusters; users submit jobs to an appropriate queue based on processor 

configuration and runtime. These jobs are then scheduled on the appropriate logical cluster by a 

scheduling system like PBS. The random nature and imbalance of the jobs on this type of system 

offers a high probability for slack in memory demand. Memory MISER converts this slack into 

energy savings. We use a synthetic scheduler similar to the one described previously, except we 

remove the synchronization requirements and do not constrain the number of processors for a 

given job. Jobs are chosen from the pool of codes presented in Table 4.2 and scheduled 

randomly. 

Figure 4.12(b) presents the results from a portion of a run of this random scheduler for 4 

processors. The memory demand for each processor is highly featured; these fluctuations in 

demand allow devices to be offlined. As above, interesting time points have been highlighted. At 

time t0, nodes n01 and n02 are engaged in a 2-processor memory intensive application, node n03 

is engaged in a long-term, memory demand-intensive application, but node n04 is engaged in a 

computation-bound low memory demand application. It can therefore reduce memory capacity to 
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save energy. At time t1, the situation is the opposite: nodes n01, n02, n03 have completed their 

memory-intensive applications and started low-memory demand codes, while n04 has begun a 

new memory demand-intensive application. The online capacities follow this trend perfectly; 

these are the types of imbalances in scheduled workloads that Memory MISER exploits for 

energy savings. 

The cluster-wide PN energy savings for this application are large, 32.29%, with per-node 

PN energy savings as low as 18.81% and as high as 39.02%. The cluster-wide SN energy savings 

are also large, 67.94%. Other points of interest are the sharp spikes near the middle of the 

execution for 3 of the processors. These rapid jumps in memory demand are the reason for the 

conservative use of the w parameter; without this, the system would likely have to page to disk, 

resulting in severe performance loss. By increasing w, no performance loss is incurred. 

 

4.7 Chapter Summary 
 

We have quantified the performance and energy for serial and parallel workloads on several 

machine configurations and shown that there are significant opportunities to minimize energy 

consumption on large systems due to variable slack in memory demand. By offlining memory 

devices using an adaptive PID controller at runtime, we achieved as high as 70% energy savings.  

Despite these savings, this chapter has evaluated our control system on sequential 

memory systems.  Modern server systems typically use advanced architectural techniques to 

exploit inherent parallelism within high-capacity memory systems for performance.  Based on 

this evaluation, it’s unclear whether our control system can reduce power and energy on 

machines with dense, interleaved memory topologies. More generally, it is unclear how 
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interleaving affects memory power and heat production. Given the complexities of interleaving, 

it is unclear whether our approaches can be scaled to interleaved memory systems.  . 

While the control-theoretic runtime system proposed in this chapter improves the energy 

efficiency of sequential memory systems, to be generally useful for high-performance server 

memory architectures our techniques must consider complex, highly-interleaved memory 

architectures.   
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Chapter 5 
 

Evaluating the Power, Performance, and Thermal Efficiency of 

Interleaved Memory Systems 
 

 

Memory interleaving, the distribution of data across multiple DRAM chips, is widely accepted as 

a technique that improves the performance of systems and applications by increasing the 

bandwidth between processors and main memory. Multi-core architectures demand greater 

memory bandwidth since the number of data transfers to and from main memory can increase 

dramatically with an increase in cores per die. For these reasons, traditional memory designs 

assume a performance-driven, “more is better” approach to memory interleaving design which 

results in memory architectures with many levels of interleaving (i.e. high dimensionality) 

designed primarily to increase peak bandwidth.  

In this chapter, we demonstrate why the performance-driven, “more is better” interleaved 

memory design assumption is problematic and should be revisited. Our results indicate that for 

bandwidth-sensitive benchmarks such as STREAM memory interleaving in a single dimension 

yields up to 35% average bandwidth improvement and reduces energy consumption by 13%. 

However, this improved bandwidth results in higher memory device access frequency which 

results in a 25% increase in memory temperature. For the same benchmarks, further increases in 

interleaving dimensionality result in little to no performance or energy efficiency gains but still 

increase temperature nearly 25%. For other benchmarks less sensitive to memory bandwidth, we 
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found interleaving dimensionality often does not significantly improve bandwidth or energy 

efficiency, but still increase nearly 25%. The additional heat resulting from higher operating 

temperatures must be exhausted from the system chassis. This increases the need for additional 

cooling, elevates the cost of the system and, in the case of powered cooling, can increase chassis 

energy consumption. We conclude that the impact of interleaving on energy and heat production 

must be considered in future memory designs. 

 

5.1 Introduction 
 

To meet the growing throughput demands of Chip Multiprocessor (CMP) systems, highly 

interleaved memory topologies have been designed to increase the parallelism within the 

memory system.  These memory systems interleave cache lines across DRAM banks, but also 

across sets of DRAM banks (e.g. ranks), DIMMs, channels, and memory controllers.  Such 

interleaving is used to reduce access conflicts such as row buffer conflicts within DRAMs, 

minimize the impact of rank turn-around time penalties, enable concurrent device accesses, and 

improve memory bus utilization [95, 100, 137, 142, 170].  Reducing memory access latencies 

translates into lower processor stall latencies, thereby improving application performance. 

The traditional approach of simply using an interleaving configuration designed for a 

theoretical maximum throughput may not be power or thermally efficient for all workloads.  For 

example, previous work to improve processor power-efficiency has shown that for many 

workloads, using clock frequencies lower than the maximum often does not significantly impact  

performance, but can save significant energy. In contrast, the power, performance, and thermal 

impact of different types of interleaving in current server memory systems are not well 

understood. Consequently, it is difficult to reason about the pros and cons of different 

interleaving dimensions and schemes in future memory systems. 
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There has been significant previous work to reduce memory power consumption [42-45, 

48, 57-59, 68, 87-90, 100, 113, 117, 119], which has been shown to yield significant energy 

savings. However, most of this work has focused on exploiting intermediate dynamic random 

access memory (DRAM) power states and have largely ignored the effects of interleaving. 

Interleaving at DRAM bank granularity has been well studied [100, 142, 170]  and incorporated 

in numerous commercial memory controllers [95, 137]. However, prior work has not addressed 

interleaving at other granularities despite the widespread use of these techniques in modern 

server systems. As far as we are aware, there has not been significant previous work to contrast 

the power or thermal efficiency with the bandwidth advantages of memory interleaving; nor has 

there been work to identify the impact of varying the dimensionality of interleaving.   

In this chapter, we revisit memory interleaving to determine the energy and thermal 

efficiency of the traditional, performance-driven practice of maximizing interleaving for 

increased peak theoretical bandwidth within the memory system. We review the underlying 

mechanics of complex interleaving schemes, identify and isolate the effects of the different 

interleaving dimensions on application performance, energy, and heat, and compare the results to 

determine which yield the best efficiency. To sample a wide-spectrum of application types, we 

analyze the power, performance, and thermal impact of different interleaving levels using the 

STREAM, SPEC CPU2006, and the NAS benchmarks.  Based our evaluation, this chapter offers 

the following contributions: 

 We show that for memory bandwidth sensitive applications, interleaving yields up to 

35% improvement in bandwidth and a 13% reduction in memory energy, but increases 

mean memory system temperature by 25%.  
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 Increasing available bandwidth for bandwidth-insensitive applications does not 

automatically improve performance.  We found that although the peak achievable 

bandwidth was up to 35% higher, application bandwidth for several SPEC CPU2006 

benchmarks remained within 3% - 4% of sequential memory systems. 

 Interleaving yields up to 56.5% EDP improvement and up to 30% higher memory system 

temperatures for the NAS benchmark suite.  The increased bandwidth decreases per-

application memory energy costs by reducing execution time, however, the resultant heat 

reduces reliability. 

 Increasing the dimensional complexity of interleaving improved bandwidth or energy 

consumption less than 2%, while consistently increasing temperature by 25% in our 

measurements.  For the NAS benchmarks, the most complex multi-dimensional 

interleaving scheme yielded up to 33% EDP improvement normalized compared to 

56.5% EDP improvement for an interleaved configuration of lower dimensionality.   

 The efficiency of interleaving is highly dependent on application-specific memory access 

characteristics. For the SPEC CPU2006 codes, interleaving improved EDP by up to 

45.7% for some codes, while decreasing EDP up to 60% for others.  

5.2 Evaluation Methodology 
 

Evaluating the effects of varying interleaving dimensionality on application power, performance, 

and heat dissipation is challenging. First, it is often difficult to discern how cache lines are 

interleaved within the memory system.  Even though the configuration registers are often 

available and accessible in memory mapped I/O space, memory controllers are often not well 

documented. This makes simulations difficult to implement and validate. Second, using real 

systems alleviates some of the simulation challenges but does not permit the specification or 
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tuning of interleaving parameters. Once memory devices are detected, firmware initializes 

memory controllers using a predetermined interleave configuration. So to evaluate different 

mapping configurations on a real system, the memory controller initialization sequence must be 

modified for different mapping schemes.  

We used Intel and AMD dual-processor (DP) servers that include controllers with 

interleaving capabilities designed to maximize bandwidth for multi-core processors to evaluate 

the power, performance, and thermal efficiency of different memory interleaving configurations. 

We elected to use real systems instead of simulation to gain empirical power, thermal, and 

performance insight into current, state-of-the-art memory interleaving schemes. Rather than 

extrapolating dynamic power estimates from DRAM datasheets, tracking and correlating DRAM 

accesses during application execution, and having to validate our aggregate estimates are within 

expected real estimates, using real systems enabled us to collect actual memory power rail 

measurements. Additionally, our temperature measurements are not based on resistance-

capacitance temperature models, but actual thermal readings collected via thermocouple probes 

as well as diodes embedded in silicon components. While simulation would have enabled us to 

exhaustively explore the efficiency of myriad alternative interleaving schemes on unorthodox 

topologies, we wanted our baseline efficiency work to be rooted in actual system measurements.  

Still, we plan further investigation of unorthodox and emergent memory systems through 

simulation in future work.  

We chose DP servers instead of larger systems with higher-density memory systems for 

several reasons.  First, a 2007 survey funded by AMD revealed the power consumption of 

volume and mid-range servers increased 16% and 51% respectively from 2000 to 2005 [110]. 

Since these types of servers account for 99% of the more than 1.5 million servers sold in the 
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United States annually, the energy efficiency of this class of systems is critical to operational 

costs. Second, although the capacity of DP servers is generally limited compared to larger 

multiprocessor systems, the memory systems in DP servers often incorporate multiple 

interleaving options.   

 

5.2.1 Interleaving Configurations 

 

On many recent processors and chipsets, DRAM bank-interleaving is supported by default and 

may not be disabled. The AMD Opteron 265 processor, which includes an integrated memory 

controller, supports bank and node interleaving.  We found that channel interleaving is supported 

in recently released Intel i7 processors, which also include an integrated, on-die memory 

controller; however, these were not commercially available at the time of our evaluation.  The 

Intel 5000 chipset includes several degrees of rank interleaving as well as branch interleaving 

To determine the impact of interleaving power and performance, we iterated through the 

available interleaving schemes in each system in isolation. On the AMD system, we evaluated 

bank interleaving.  On the Intel system, 3 rank interleave configurations and 2 branch interleave 

configurations were supported for a total of 6 configurations. However, since we had limited 

access to dual-rank DIMMs, we evaluated all codes on 4 of the 6 available combinations using 

single-rank 512MB DIMMs on the Intel system.  Our evaluations of the 2 remaining interleave 

configurations that included 4:1 rank interleaving was limited to STREAM and select SPEC 

benchmarks.   

 

5.2.2 Power Measurements 
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To determine the energy impact of different interleaving schemes we measured memory system 

power for each benchmark. We instrumented the voltage regulators on the system board with 

power taps as shown in Figure 5.1. We hooked up the power leads to a break out board, which 

we then connected to an Agilent Data Acquisition Meter and Logic Analyzer.  We used National 

Instruments LabView software to collect power measurements for each of the power rails, 

including the memory controller and DIMMs..  This enabled us to compare the power impact of 

the different interleaving dimensions in isolation. Thus, our energy measurements are not 

affected by other devices such as CPUs, I/O devices, etc.  

  

5.2.3 Thermal Measurements 

 

To measure the thermal impact of interleaving, we attached thermocouple probes to individual 

DIMMs. On our AMD system we connected thermocouple probes to Berkeley mote-based 

wireless environmental sensors, which we then polled periodically. Since two of our evaluation 

systems used fully-buffered DIMMs, we also developed a custom OS device driver to read the 

Figure 5.1. Aerial view of evaluation system showing leads and breakout boards for 
monitoring component power consumption. The logic analyzer (not pictured) is 
connected to the breakout board and the host system. 

Break-out boards

Power Sensors

Memory 

DIMMs
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embedded thermal diodes within the Advanced Memory Buffer (AMB) on each of the 

FBDIMMs.  This enabled us to monitor the temperature of all DIMMs within the system in real-

time while running workloads. We verified the temperatures reported by the thermal diodes were 

consistent with temperatures we collected using thermocouple probes with a Fluke NETDAQ 

analyzer.  Our driver exported the temperatures of all DIMMs via the Linux sysfs interface. This 

enabled our test harness to simply poll the temperature of each DIMM at 1 second granularity 

while each benchmark executed.  

  

5.2.4 Workloads 

 

To account for varied memory utilization loads, we evaluated several benchmarks across the 

interleaving schemes supported by each of our test systems. We used codes from the SPEC 

CPU2006 suite as well as STREAM. We also used the class C versions of codes from the NAS 

3.0 suite. We built the SPEC CPU2006 and NAS codes using gcc version 4.1.2 using –O3 

optimizations. For the base operating system, we used the 2.6.25 kernel rebuilt with support for 

hardware performance counters.   

 

5.2.5 Experiments 

 

For each of the supported memory configurations, we ran all of the benchmark codes in isolation 

5 times. For each code, we recorded memory power and thermal measurements. During all 

experiments, the ambient air temperature of the laboratory was near constant and the air flow 

across the DIMMs was held constant to ensure temperature fluctuations were only related to the 

interleaving configuration.  After each run, the performance results for each code were archived 

along with the power and temperature measurements. This enabled us to analyze the effects of 
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each interleaving dimension and configuration for each code in isolation. All of the results 

reported in this paper are normalized to the sequential configuration.   

 

5.3 Experimental Results 

 

5.3.1 AMD Server Results 

 

5.3.1.1 System Details  

 

In our initial evaluation, we used a dual-processor, AMD Opteron system with 8Gbytes of 

single-rank PC-3200 registered ECC DDR DRAM. Figure 5.2 shows the layout of the memory 

system for this platform.  Since each Opteron processor has an integrated memory controller, the 

system has two dual-channel DDR memory controllers each connected to 4 DIMMs. The system 

supported two interleaving options configurable through BIOS options: bank interleaving and 

node interleaving.  We used a NUMA-aware 2.6.25 Linux kernel, and enabled the node 

interleaving option within the BIOS to maximize performance on each node. As previously 

discussed, we did not evaluate nodal interleaving, limiting our evaluation on this system to bank 

interleaving. When identical DIMMs are used in adjacent slots, the two 64-bit channels can be 

logically combined to form a single 128-bit channel.  Thus the four DIMMs in our system 

Figure 5.2. Block diagram illustrating bank-level interleaving on the AMD system. 
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constitute two banks. In Figure 5.2, DIMM 0 and DIMM 1 are paired to form a single bank and 

DIMM 2 and DIMM3 are paired to form a second bank. When bank interleaving is enabled, the 

controller interleaves accesses across these two logical banks. Our experimental results evaluate 

the performance impact of enabling and disabling this form of bank interleaving across 

benchmarks.  

 

5.3.1.2 Results 

 

We ran the STREAM, SPEC CPU2006, and NAS codes on the AMD machine while measuring 

memory power and temperature.  We used the STREAM benchmark to measure bandwidth 

configured STREAM to use 2Gbytes of memory to minimize cache effects.  We ran all codes on 

the sequential and bank-interleaved configurations 5 times and calculated the mean bandwidth 

and performance. For the bandwidth and performance results presented here, the coefficient of 

variance was less than 0.0612.  Given the physical distance between the memory controllers and 

DIMM sets, our temperature results only compare the DIMM temperatures for the memory 

directly attached to CPU socket 0.  Although we measured the temperature of the memory 

directly attached to CPU socket 1, we found there was only minimal variance.  

On the AMD system, bank interleaving yielded a 7.9% increase in bandwidth, an 8.3% 

decrease in energy consumption, and less than 1% difference in temperature using STREAM. 

The improvement was due to the increased channel width. Using the SPEC CPU2006 codes we 

observed performance improvements for several codes, including lbm (10.4%), GemsFDTD 

(9.6%), and milc (5.7%).  The performance of other codes such as bzip2, gcc, and libquantum 

improved less than 5%, while other bandwidth-insensitive codes exhibited less than 2% variance.  

However, we observed that the increased channel width resulted in fewer L2 cache misses 
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reducing memory energy.  Temperature differentials caused by using bank interleaving were 

minimal.  For most codes, mean memory system temperature was within 5%.  The only form of 

interleaving available in this system did not have a significant impact on application 

performance, memory energy or heat.   

 

5.3.2 Intel Server Results 

 

We also used a recent Intel Xeon DP server in our evaluation.  This system contained two Dual-

core Xeon processors coupled with the Intel 5000 chipset [137] via multiple dedicated front-side 

bus connections as shown in Figure 5.3. This system supports up to eight fully-buffered memory 

DIMMs across two memory branches within the memory controller hub; each branch has two 

channels for a total of four channels, although the channels of each branch operate in lockstep. 

DRAM bank interleaving was not a configurable option within the BIOS for this memory 

controller; rather it is always enabled. Finally, the memory controller uses a closed-page mode 

DRAM page policy.  

 

5.3.2.1 System Details  

 

Branch Interleaving: As discussed in Chapter 2, branch interleaving distributes the physical 

address space across both memory controller branches.  In an interleaved configuration even 

cache lines are mapped to one branch and odd cache lines to the second branch as illustrated in 

Figure 5.3. In a sequential configuration, cache lines are sequentially mapped to branch 0 up to 

the capacity of memory residing behind branch 0; the cache lines that constitute the remaining 

physical address space are mapped to branch 1.   

Rank Interleaving: Within each branch the two channels operate in lockstep such that cache 

lines are mapped to two physical DIMM ranks on separate channels, which collectively form a 
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logical rank. In Figure 5.3, DIMM 0 resides on channel 0 and DIMM 1 resides on channel 1.  

These two single-rank DIMMs constitute a logical rank from the perspective of the memory 

controller.   

Rank interleaving distributes cache lines within the address space of each branch across 

logical ranks.  Three rank-level mapping schemes are supported by the memory controller: 1:1, 

2:1, and 4:1.   Figure 5.3 illustrates the 1:1 mapping with single rank DIMMs. Since 1:1 is rank 

sequential, cache lines 0 to 14 (which are contiguous within the branch address space) are 

mapped to logical rank 0.  Subsequent cache lines are mapped to the next logical rank, rank 1, 

composed of physical DIMMs 2 and 3.  Given there are two logical ranks in Figure 5.3, the 

memory controller could also be set up to use a 2:1 rank interleave scheme.  In this case, a 2:1 

rank interleaving scheme would map branch-contiguous cache lines (0, 2, 4, etc.) across the two 

logical ranks such that cache line 0 would reside on rank 0, cache line 2 would reside on rank 1, 

cache line 4 would map to rank 1, and so on.   

Figure 5.3. Block diagram illustrating branch interleaving with rank sequential (rank 

1:1) mapping on Intel Xeon platform. 
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Using DIMMs with multiple physical ranks can change the rank interleaving mapping.  

For example, using single-rank DIMMs as in Figure 5.3, the maximum rank interleave scheme 

supported is 2:1.  A 4:1 rank interleave scheme can not be used since there are only two logical 

ranks.  However, replacing the single-rank DIMMs with dual-rank yields four logical ranks.  

Figure 5.3 illustrate how DIMM 0 rank 0 would be paired with DIMM 1 rank 0, DIMM 0 rank 1 

would be paired with DIMM 1 rank 1, DIMM 2 rank 0 would be paired with DIMM3 rank 0, and 

DIMM 2 rank 1 would be paired with DIMM 3 rank 1, resulting in 4 logical ranks.  A 4:1 rank 

interleave scheme maps four contiguous cache lines within the branch address space across these 

4 logical ranks.  However, directly mapping cache line 0 to rank 0, cache line 1 to rank 1, and so 

on is suboptimal since this would incur an additional rank-to-rank turnaround time penalty. To 

mitigate this latency, the 4:1 rank interleave algorithm maps branch-contiguous cache lines 

amongst the logical ranks that are not physically located on ranks of the same physical DIMMs.  

For example, rather than mapping contiguous cache lines 0, 1, 2, 3, to logical ranks 0, 1, 2, 3, the 

4:1 interleave would be achieved by mapping contiguous cache lines 0, 1, 2, 3 to logical ranks 0, 

2, 1, 3.    

System Configuration: We found the production BIOS automatically configured the memory 

system to always use the maximum rank interleaving possible based on detected ranks and to 

always interleave across the two branches. We modified the BIOS to allow user specification of 

the interleaving configurations used by the memory controller.  Additionally, the system board 

was instrumented with voltage regulator power taps through extensive rework. Although the 

number of DIMM slots in this system was limited to two per memory channel, we were able to 

collect limited results using the 4:1 rank interleave scheme by interleaving across the ranks of 

dual-rank DIMMs.  However, the majority of the results presented here were collected using 8 
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single-rank 512 MB DIMMs, where the maximum supported rank interleave was 2:1. The results 

presented in this section compare power, performance, and temperature for the four 

configurations using the following shorthand: Branch-Sequential with 1:1 Rank (BS-R11), 

Branch Sequential with 2:1 Rank (BS-R21), Branch-Sequential with 4:1 Rank (BS-R41), 

Branch-Interleave with 1:1 Rank (BI-R11), Branch-Interleave with 2:1 Rank Interleave (BI-

R21), Branch-Interleave with 4:1 Rank Interleave (BI-R41).   

 

5.3.2.2 Memory Bandwidth 

 

We used STREAM to measure memory system bandwidth for all of the memory configurations. 

Using performance monitors, we observed L2 cache hits were limited to 9% during each 

STREAM run. We ran STREAM on each memory configuration 10 times and calculated the 

mean bandwidth across the four tests for each run. For all STREAM results, the coefficient of 

variance was less than 0.002.   

Figure 5.4 compares mean memory bandwidth as well as energy and mean temperature for 

all six memory configurations normalized to Branch-Sequential with 1:1 Rank Interleave (BS-

R11). BS-R11 maps the lower and upper halves of the address space to branches 0 and 1 

Figure 5.4. STREAM memory bandwidth, energy, and mean temperature comparison 

of interleaved memory configurations normalized to BS-R11. 
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respectively.  Until memory is allocated by the operating system that spans the physical address 

space, accesses are serialized to a single branch. Within each branch, contiguous cache lines are 

mapped to the same rank up to capacity boundaries. This increases DRAM bank row-buffer 

conflicts within each rank, incurring activation penalties on successive accesses, although 

precharge penalties are amortized due to using closed-page mode. Collectively, these delays 

increase access latency and degrade bandwidth.  BS-R21 increases the degree of rank 

interleaving from 1:1 to 2:1 yielding an average of 24.8% higher memory bandwidth, 11.1% 

reduction in energy, and 10.3% higher mean temperature than BS-R11.  Similar to BS-R11, the 

address space is still divided across the two branches, and STREAM accesses are primarily 

mapped to a single branch.  However, branch-contiguous cache lines are mapped across ranks 

within each branch, which may be accessed in parallel. BS-R41 exploits the two physical ranks 

on each DIMM yielding a 25.15% increase in bandwidth, 13% reduction in energy, at a cost of 

25% higher memory system temperature.  BI-R11 shows that interleaving across branches and 

not interleaving at rank granularity yields an average of 33.8% higher bandwidth and 10.7% 

reduction in energy, which increases mean temperature by 13.7% relative to BS-R11. Notably, 

using Scale on BI-R11 yielded a 45.12% bandwidth improvement over BS-R11 and 20.6% 

improvement over BS-R21. BI-R21 combines branch interleaving with 2:1 rank interleaving 

yielding an average 35.85% increase in bandwidth and an 8.8% decrease in energy consumption, 

but increased mean temperature by 24.13% over BI-R11. Interleaving across both branches and 

interleaving across ranks all four ranks led to a 35.7% bandwidth improvement and 10.3% 

reduction in energy, but increased mean memory system temperature by 40% relative to BS-R11.  

Figure 5.5 shows the STREAM results isolated by effect.  Figure 5.5(a) shows the bandwidth, 

energy, and temperature impact of varying rank interleaving from 1:1 to 2:1 to 4:1 in Branch 
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Sequential configurations (BS-R11, BS-R21, BS-R41). This shows that increasing rank 

interleaving in memory systems with a single controller (without coarse-grained controller-

granularity interleaving) can provide a significant bandwidth improvement for bandwidth-

sensitive codes. However, for the dual-branch controller in our test system, this resulted in 

limited utilization of the second branch until external fragmentation occurred within the OS 

memory allocator. In contrast, Figure 5.5(b) shows the bandwidth, energy, and temperature 

impact of varying rank interleaving in Branch Interleave configurations (BI-R11, BI-R21, BI-

R41).  In contrast to Figure 5.5(b), increasing rank-interleaving in branch-interleaved 

configurations only provides up to 1.5% improvement in bandwidth while mean temperature 

increased by nearly 25% compared to BI-R11.  This shows that systems using coarse-granularity 

interleaving do not necessarily benefit from lower-level interleaving. Unlike Figures 5.5(a) and 

5.5(b), where branch interleaving was held constant while varying rank interleaving, figure 

5.5(c) shows the effect of varying branch interleaving for each degree of rank-interleaving.  In 

this graph, the data points show bandwidth, energy, and temperature for the three branch-

interleaved configurations (BI-R11, BI-R21, and BI-R41) normalized to branch-sequential 

configurations (BS-R11, BS-R21, BS-R41).  Increasing both branch and rank interleaving in 

concert reduces memory bandwidth and increases energy, while reducing mean memory 

temperature by 2.1% (albeit 11.6% higher than the Branch-Sequential configuration).  On closer 

inspection, we found the reduction in temperature was caused by the spatial distribution of 

memory accesses across the memory system resultant to the BI-R41 scheme.  
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5.3.2.3 SPEC CPU2006 

 

We also ran SPEC CPU2006 integer and floating point benchmarks to further characterize the 

performance, energy, and thermal impact of the four memory configurations.  We did not run all 

of the SPEC codes on BS-R41 and BI-R21 due to limited memory device availability.  The 

highest coefficient of variance for performance and energy across all of the codes was 0.1087 

and 0.1521 respectively.   

Performance Sensitivity: As shown in Figure 5.6(a), the effects of the interleaving schemes on 

benchmark performance varied across the different SPEC codes.  Several benchmarks realized 

improvements in time-to-completion due to interleaving relative to BS-R11, including milc 

(9.1%), mcf (9.7%), bwaves (10.6%), libquantum (21.1%), gobmk (24.6%), hmmer (33.4%).  

There were also differences between the different levels of interleaving.  For example, the time-

to-completion of the gene sequence database search benchmark hmmer was reduced 33.4% using 

BI-R21 relative to BS-R11, but was also reduced by 32.8% using BS-R22.  Similarly, using BI-

R21 yielded a 23.9% reduction in time-to-completion relative to BS-R11 using the gobmk 

benchmark, while BI-R11 improved execution time by 24.6%.  Thus, increasing interleaving 

dimensionality (in this case BI-R21) did not always provide the best performance improvement.  

Rather, similar to STREAM, interleaving at one level (branch) while using a sequential mapping 

at another level (rank) improved performance.   

Several benchmarks were adversely impacted by interleaving. For example, the computational 

fluid dynamics benchmark lbm took 10.4% longer to complete for BS-R21, 6.05% longer for BI-

R11, and 9.46% longer for BI-R21 relative to BS-R11. We also observed degradations for 

omnetpp (-3.7%), astar (-6.03%), xalancbmk (-2.8%), zeusmp (-3.83%), cactusADM (-3.47%), 

and Gems-FDTD (-2.8%).   



 115 

Many of the computation-bound SPEC codes have a limited working set size.  Larger on-

chip caches reduce L2 misses which reduces application performance sensitivity to interleaving. 

Consequently, we found that games (0.7%), gromacs (0.006%), namd (0.005%), calculix 

(0.0001%), and tonto (0.005%) exhibited less than 1% variance across the four interleaving 

schemes.  Given the bandwidth improvements observed using STREAM, we expected the 

performance of the SPEC codes to improve as the level of interleaving was increased within the 

memory system.  While this was demonstrated by several codes, most did not substantially 

benefit from the increased memory bandwidth in isolation.   

Energy: Figure 5.6(b) shows memory system EDP for the SPEC benchmarks.  The EDP results 

largely align with the performance results.  For example, the performance improvements using 

gobmk, hmmer, sjeng, and libquantum led to significant EDP improvements.  However, the EDP 

of these codes was also affected by the interleaving configuration.  For example, BI-R11 yielded 

a 33% performance improvement for the hmmer benchmark, which contributed to a 45.7% EDP 

improvement relative to BS-R11.   Increasing the degree of interleaving led to higher EDP (e.g. 

worse power-performance efficiency) for many of the computation-bound codes. Such codes did 

not benefit from the increased available bandwidth made available by interleaving. So the 

additional power required to activate more DIMMs more frequently was wasted, leading to 

higher per-code energy costs.  Unless this higher energy cost is offset by reduced execution time, 

we observe that interleaving can decrease the energy efficiency of compute-intensive 

applications within the memory system as measured by EDP. Figure 5.6(b) shows that sequential 

memory systems can be up to 20% more efficient than highly interleaved systems for 

applications that do not exploit memory bandwidth; and in some cases, such as tonto, up to 60% 

more efficient.  
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Thermal Impact: Figure 5.6(c) shows the mean DIMM temperatures running the SPEC 

benchmarks on all four memory system configurations.  The temperatures of the BI-R11 and BI-

R21 configurations were 17% to 31% higher than the Branch Sequential configurations, while 

the mean temperature using BS-R21 was 2% to 15% lower. We attribute the higher mean 

temperatures of BI-R11 and BI-R21 to two factors.  First, the distribution of transactions across 

the memory system increased the activity load, and hence thermal load, on DIMMs behind both 

branches in the system.  Second, elevated temperatures across all DIMMs increased the overall 

thermal capacitance of the memory system.   

In contrast, the Branch Sequential configurations resulted in lower mean system 

temperatures, but created hot spots within the memory system. The maximum observed 

temperature difference between DIMM pairs operating in lockstep was 24°C using BS-R11.  

Although the temperature difference using BS-R21 was lower since transactions were spread 

across ranks within each branch, we still observed up to 12°C difference between DIMMs of 

each branch.  In contrast, we found that the temperature difference between DIMMs for BI-R11 

Figure 5.5. Memory bandwidth, energy, and mean temperature of STREAM showing 
(a) rank interleaving normalized to rank 1:1 under Branch Sequential, (b) rank 
interleaving normalized to rank 1:1 under Branch Interleave, and (c) Branch-
Interleave normalized to Branch-Sequential for each of the rank interleave 

configurations.  
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was within 6°C and 4°C for BI-R21.  Consequently, interleaving distributed the thermal load was 

spread more evenly across the memory system.  

 

 

Figure 5.6. (a) Time-to-completion, (b) EDP, and (c) memory system temperature 
results of interleaved memory configurations normalized to the sequential 

configuration for the SPEC CPU2006 codes. 
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5.3.2.4 NAS Serial Benchmarks 

 

We ran each NAS code on each memory configuration 10 times.  The highest coefficient of 

variance for performance and energy across all of the codes was 0.1201 and 0.1508 respectively.  

Performance Sensitivity: Interleaving consistently improved the performance of the NAS 

benchmarks.  Figure 5.7(a) shows the NAS code performance of the interleaved memory 

configurations normalized to BS-R11.  Relative to the sequential configuration, time-to-

completion for bt was reduced by 9.45% using BS-R21 while BI-R11 and BI-R21 yielded 

10.6% and 10.7% improvements respectively. Increasing rank interleaving within the 

sequentially mapped branches improved the performance of the cg code by 14.2%, while branch 

interleaving yields up to a 7.3% improvement relative to BS-R11. The ep code realized the 

highest performance improvement (33%) of the NAS codes we tested.  The time-to-completion 

of the other NAS codes, is, lu, and sp, decreased as the degree of interleaving was increased. 

The increased performance realized across all of the NAS benchmarks demonstrates the benefits 

of increased parallelism within the memory system for highly parallelized applications.  

Energy: Figure 5.7(b) compares memory system EDP for the interleaved memory configurations 

normalized to BS-R11 while running the NAS benchmarks.  With the exception of cg and sp 

codes running on BI-R21 where EDP was within 2.17%, the reduction in time-to-completion 

coupled with interleaved memory configurations improved memory system EDP by up to 60%. 

Relative to BI-R11, increasing rank interleaving yielded between 6.5% to 56.5% reduction in 

EDP.  Increasing branch-interleaving instead of rank interleaving (BI-R11 vs. BS-R21) reduced 

EDP for is (24.6% vs. 17.9%), lu (19.6% vs. 10.7%) and sp (9.9% vs. 6.5%), although the 

EDP reduction was lower for cg (8.6% vs. 17.7%). The use of rank or branch interleaving led to 

EDP reductions that were within 1% for ep and bt, for BI-R11 and BS-R21 respectively. 
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Combining branch and rank interleaving reduced EDP relative to the sequential configuration for 

4 of the 6 benchmarks (bt, ep, is, and lu) and was within 2.17% for cg and sp.  However, in all 

cases, the EDP reduction using BI-R21 was lower than using rank (BS-R21) or branch (BI-R11) 

interleaving in isolation. This was due to the higher power costs of interleaving across all devices 

in the system.  Similar to several of the SPEC codes, the NAS benchmarks did not take 

advantage of the higher available bandwidth to offset the cost of interleaving.   

Thermal Impact: Figure 5.7(c) shows the mean DIMM temperatures running the NAS 

Figure 5.7. (a) Time-to-completion, (b) EDP, and (c) memory system temperature 
results of interleaved memory configurations normalized to the sequential 
configuration for the NAS benchmarks. 
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benchmarks on all four memory system configurations normalized to BS-R11. For all of the 

NAS codes, BS-R21 reduced the mean memory system temperature by 6.5% to 12.5% relative to 

BS-R11. Although this configuration did not interleave across branches, the 2:1 rank interleaving 

distributed accesses across the DIMMs of each branch. Similar to the SPEC results, the mean 

temperature was lower due to the traffic imbalance between the two branches. The traffic pattern 

translated directly into a temperature disparity between the hot DIMMs and the cooler DIMMs 

that led to the lower overall mean temperature. The temperatures of the branch interleaved 

configurations, BI-R11 and BI-R21, were 17.8% to 30.7% higher than the Branch Sequential 

configurations. As expected, the higher temperatures were a direct result of increased parallelism 

within the memory system.   

 

5.4 Chapter Summary  
 

 

Interleaving exploits inherent parallelism within the memory system to increase bandwidth.  Our 

STREAM results showed that interleaving delivers up to 35% more bandwidth than sequential 

schemes using the same hardware configuration. However, we’ve also shown that many 

applications, such as the SPEC CPU2006 codes, are bandwidth-insensitive and do not 

significantly benefit from the additional memory bandwidth. Across the spectrum of benchmarks 

we used, memory energy consumption increased as interleaving dimensionality was scaled; 

although for a number of applications, our EDP results showed the additional energy costs were 

offset by performance improvements. Unlike energy, temperature consistently scaled as 

interleaving dimensionality was increased.  The elevated temperatures are cause for concern 

given that higher temperatures reduce reliability over time.   
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Given the continuing use of DRAM-based memory systems, multi-core CPUs will 

continue to drive the need for low-latency high memory bandwidth.  However, as we’ve shown, 

simply maximizing the dimensionality of interleaving does not automatically result in scalable 

bandwidth and can reduce reliability due to high operating temperatures.   

One approach might include partitioning the traditional monolithic memory system and 

using single dimensional interleaving schemes within memory regions might also improve 

memory power, performance, and thermal efficiency. As flash technologies yield devices with 

lower access latencies, hybrid memory systems that combine new nonvolatile memory with 

traditional DRAM-based memory may reduce the need for interleaving as well. Further 

evaluation of such architectures constitutes an area of our future work.   
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Chapter 6 
 

Improving the Energy Efficiency of Interleaved Memory Systems 
 

 

In this chapter, we propose combining asymmetrically interleaved memory configuration with an 

OS-based control system for reducing the energy consumption of complex, highly-interleaved 

memory systems. We introduce new management and bandwidth-sensitive algorithms that 

extend our earlier control-theoretic runtime system designed for sequential memory systems to 

interleaved systems.  We show these interleaving-aware techniques reduce memory energy 

consumption while preserving performance and bandwidth on traditional symmetrically 

interleaved memory topologies. We then propose using our system on asymmetrically 

interleaved memory system, in which devices within the topology are interleaved at multiple 

dimensions. We show that combining our power-aware management techniques on unorthodox 

memory configurations further improves energy efficiency while maintaining application 

performance and system bandwidth. These results demonstrate that adept software management 

can exploit non-traditionally interleaved memory systems to improve memory energy efficiency.  

Moreover, our results suggest future memory architectures should reevaluate traditional, 

performance-motivated approaches for power and energy efficiency.   

 

6.1 Introduction 
 

The power consumption of server-class systems has increased substantially in recent years. 

According to an EPA report to Congress, servers and data centers consumed an estimated 61 
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billion kilowatt-hours in 2006 at a cost of more than $4.5 billion [55]. Over 68% of the energy 

consumed was attributed to volume servers, which doubled between 2000 and 2006. This class 

of servers account for 99% of the more than 1.5 million servers sold in the United States 

annually.  Further, the heat produced requires elaborate, costly cooling technologies internally 

and across the data center. In the long term, elevated average internal and ambient temperatures 

may reduce the mean-time-between-failure of these systems. Left unchecked, the power costs of 

operating servers is expected to double again within the next five years.   

Numerous power-aware techniques have been proposed to adaptively schedule 

component power mode transitions to provide performance (and power) on demand within 

desired energy constraints. These techniques have been used to reduce the power consumption of 

processors [17, 25, 26, 35, 67, 107, 164], disks [17, 118, 172], high-speed interconnects [123], 

and memory [42-45, 48, 58, 59, 68, 87-90, 92, 117, 131, 132, 153, 171]. Recent increases in 

memory density and capacity have led to the emergence of memory as a significant consumer of 

system power [114]. This has driven the development of numerous power-aware techniques to 

reduce memory system power consumption. However, most of the techniques proposed to date 

have been designed for sequential memory systems, where device power state transitions are 

unencumbered by the complexities of interleaved address mapping schemes.  This is problematic 

for servers since many chip-multiprocessor servers incorporate multi-dimensional interleaving to 

maximize memory bandwidth. Given interleaving is a widely accepted technique to improve the 

performance of systems and applications, previously proposed power-aware memory 

management techniques may not be practical for servers.   

Reducing the energy consumption of highly-interleaved memory systems is challenging. 

Server memory architectures use complex, multi-dimensional interleaved designs that distribute 
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the cache lines of a contiguous physical address space across multiple memory devices to 

increase peak theoretical bandwidth.  This distribution causes dependencies between devices that 

limit the effectiveness of memory power-management techniques. In the worst case, these 

dependencies may prevent devices from being transitioned into lower power states without 

significantly degrading performance even though only a fraction of memory is being used. 

Second, reducing interleaving dimensionality within the memory system can improve the power-

manageability of the memory system, but can degrade application performance by reducing 

bandwidth. To avoid performance degradations for bandwidth-sensitive applications, power-

aware techniques must balance device bandwidth characteristics with systemic bandwidth 

utilization during power-state transitions. Third, most systems are configured to use symmetric 

interleaving schemes in which the level of interleaving throughout the memory system is fixed. 

The performance and energy of asymmetrically interleaved memory systems has been largely 

unexplored.  Finally, although many operating systems are designed to accommodate regions 

with non-uniform memory latency characteristics, few are designed to account for regions with 

varying bandwidth properties.  

In this chapter, we address the problem of reducing power and energy in highly 

interleaved memory systems while preserving application performance and bandwidth.  We have 

extended the control-theoretic, power-aware runtime system we developed for sequential 

memory systems to proportionally scale memory capacity with application demand to conserve 

energy within interleaved memory systems [153]. Since interleaving dimensionality changes 

peak bandwidth, naively transitioning device power states can degrade system and application 

performance.  To avoid these penalties, we developed and incorporated new power-aware 

algorithms in Memory-MISER to account for the bandwidth implications of transitioning 
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interleaved devices between multiple power states.  More specifically, this chapter offers the 

following contributions: 

 We extend our earlier power-aware runtime system to support the detection, onlining, and 

offlining of memory devices interleaved at multiple granularities.  

 We propose, implement, and evaluate new device power-state transition algorithms to 

reduce memory power within interleaved memory systems by tracking system-wide 

memory demand and bandwidth utilization.  

 We propose and evaluate our interleaving-aware control system on traditional, 

symmetrically interleaved memory systems.  Our results show that we reduced memory 

energy consumption by up to 50 percent.   

 We find that combining our memory power-management techniques with asymmetrically 

interleaved memory systems improved EDP by up to 58 percent. 

 

This chapter is organized as follows. Section 2 discusses prior work to reduce memory power 

consumption.  Section 6.2 describes the OS and control system changes we made to Memory 

MISER to reduce the power of interleaved memory systems.  Section 6.3 discusses our 

evaluation methodology. In section 6.4 we discuss energy and performance results on symmetric 

and asymmetric interleaved memory systems using several control policies.  We conclude with a 

discussion of the implications of our observations in this work on future memory system designs 

as well as future work.   
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6.2 Interleaving-Aware Memory Miser Implementation 
 

Interleaved memory systems map contiguous cache lines to multiple devices, breaking the one to 

one relationship between devices and physical address space used in our earlier implementation. 

Consider the earlier example memory system composed of 8 devices each with 1Gbyte capacity 

under interleaving.   Even though the physical devices have the same capacity, the mapping of 

devices into the physical address space is different.  Whereas a 1Gbyte device is mapped to a 

specific 1Gbyte region within the physical address space in a sequentially mapped system, two 

or more different memory devices may be mapped to the same 1Gbyte region in an interleaved 

system.  Since independently transitioning a device involved in an interleaved range would have 

dire performance and system stability implications, our previous sequential-oriented approach 

was impractical for interleaved memory systems.  We subsequently extended the operating 

system and control system within Memory MISER to overcome sequential-oriented design 

limitations to reduce the power and energy of interleaved memory systems.  This section 

highlights the changes we made to the firmware, OS, and control system to reduce the energy 

consumption of interleaved memory systems.  

 

6.2.1 System Firmware 

 

System firmware is typically used to initialize the mapping of memory devices to the physical 

address space within the memory controller after detecting the number and capacity of memory 

devices populated in a system.   On production-quality systems, this firmware maximizes 

interleaving dimensionality across populated memory systems to improve bandwidth and 

performance.  However, since we wanted to understand the power and performance implications 
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of reducing the level of interleaving within the memory system, we needed to be able to change 

how memory was interleaved. This led us to modify the memory controller initialization 

sequence that defines how devices map into the physical address space.   

We changed system firmware to allow each interleaving dimension to be varied independently 

within a topology. Since our evaluation system supported two configurable interleaving 

dimensions, there were a total of six distinct configuration possibilities. Thus our firmware was 

designed to configure the memory system to interleave across devices within the same topology 

at multiple granularities.  For example, in our eight device topology we could configure several 

devices to use a branch-sequential, 4:1 rank interleaving scheme, while mapping the remaining 

devices sequentially.  Alternatively, we could configure two devices to use branch-interleaving, 

but not interleaved at rank granularity, while interleaving the remaining six devices using a 2:1 

rank-interleaving scheme.  As a result, we were able to fully control interleaving for each device 

in the system simply by updating several parameters that we maintained in non-volatile memory.  

 

6.2.2 Operating System Implementation 

 

A key component of Memory MISER is a 2.6 x86-64 version of the Linux kernel modified with 

the capability to transparently online and offline physical memory devices while preserving 

application integrity. The earlier Memory MISER implementation was designed for sequential 

memory systems, where each device could be onlined or offlined independently. However, 

contiguous cache lines may be mapped across multiple devices for large regions of the physical 

address space within interleaved memory systems, creating dependencies between devices. 

Although we were able to leverage the power-state transition interfaces and page allocation 

shaping techniques proposed in previous work, we had to dynamically repartition the power-state 
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transition logic, allocation mapping and tracking mechanisms, and add bandwidth monitoring 

logic within the operating system specifically for interleaved memory systems.  Moreover, we 

had to further modify each of these areas to dynamically accommodate a range of 

asymmetrically interleaved memory topologies and differentiate between devices based on 

bandwidth characteristics.  This section introduces the key new OS changes we developed to 

efficiently power-manage interleaved memory systems.   

First, we updated the initialization sequence to parse the interleave configuration registers 

within the memory controller to detect the underlying device mapping scheme used for the physical 

address space. The mapping scheme details how ranks, channels, and controllers are aggregated to 

form interleaved regions.  We also extracted device sizes as well as where interleaved regions 

mapped into the physical address space. This enabled our system to determine how interleaved 

devices mapped to the physical address space as well as the interleaving level for each region.    

Second, we created logical memory devices to manage the power state transitions of the 

underlying physical devices involved in an interleaved region of the physical address space.  

Memory systems may use multiple levels of interleaving which creates dependencies between 

devices.  The dependencies are a function of the level of dimensionality applied across a set of 

devices. Figure 6.1 depicts an eight device memory system that uses three levels of interleaving. The 

lower half of the address space (region I) is mapped to devices A, B, C, and D, which is interleaved 

using a 4:1 rank scheme. Since this scheme distributes contiguous cache lines for the address range 0 

to x-1 across all four devices as shown in Figure 6.1(c), devices A, B, C, and D must be transitioned 

between power states in aggregate. Region II is mapped to devices E and F, which is configured 

using 2:1 rank interleaving.  Similarly, because cache lines for region II are distributed across both 

devices, these two devices must be transitioned between power states together as well.  Region III is 
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mapped to devices G and H; however, since they are sequentially mapped, there are no dependencies 

between the two devices and each may be transitioned between power states independently. In 

contrast, due to interleaving, offlining a single physical device within region I or II would cause 

cache line accesses to be aborted, resulting in severe performance penalties due to stalls or worse, 

system faults.   

To avoid such degradations, we abstracted dependent physical devices into logical superset 

memory devices that correspond to sets of interleaved physical devices. We then constrain device 

power-state transitions at the granularity of logical devices.  In other words, onlining or offlining the 

logical device associated with region I would transition all four underlying devices A, B, C, and D in 

aggregate.  This ensures that inadvertent cache line accesses to offline devices involved in an 

interleaved region do not cause system instability. More pragmatically, the memory controller in our 

system initializes the device interleaving configuration during the boot-strap sequence and cannot be 

modified at runtime.  If the memory controller supported dynamically changing the interleaving 

configuration during normal operation, we could simply update the device mapping scheme to 

 

 
 
 

Figure 6.1. (a) Example two-branch, eight device memory system that supports two 
configurable levels of interleaving: branch and rank. (b) Physical address space showing 
three memory regions, I, II, and II.  (c) Cache line to device mapping for the three memory 
regions.  Region I interleaves cache lines across the ranks of devices A, B, C, and D. 
Region II interleaves cache lines across devices E  and F, and Region III sequentially 
maps cache lines to devices G and H.  

 

 

 

 

 

 

 

 

 

 

Figure X 

(a) (b) (c) 



 130 

reduce interleaving dimensionality for the other devices. However, this would likely introduce 

additional performance penalties since memory traffic for the affected devices would have to be 

halted to prevent faults.   

In addition to device dependencies, we also modified the kernel to use the interleaving 

dimensionality to predict the relative bandwidth of logical memory devices.  To enable the control 

system to measure and monitor bandwidth, we integrated kernel support for accessing hardware 

performance counters into the kernel.  We then categorized each logical device by one of three 

bandwidth characteristics: low, medium, and high.  Highly interleaved logical device sets are 

identified as high bandwidth devices, whereas sequentially mapped devices are identified as low 

bandwidth devices and those logical devices using intermediate interleaving schemes are labeled as 

providing medium bandwidth.  This simplistic scheme enables the control system to quickly 

differentiate logical devices by bandwidth characteristics. 

 

6.2.3 Control System Implementation 

 

For controlling the power-state transitions of interleaved memory devices, we used the same 

control system model as the one previously proposed for sequential memory systems [153].   Our 

control system model consists of two parts: a controller and the plant function.  For the 

controller, we use a standard PID controller [8, 9] implemented in a root-privileged, application-

level daemon. The plant function models the OS-based device online/offline actuation logic 

described in the previous section. In the sequential control system, the plant function was 

modeled as a step function, as the plant would either online or offline physical memory devices 

based on the input received from the PID controller.  In this work, we have modified our control 

system model to track and control logical memory devices.  Although the granularity of tracking 
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and control is different, this amounts to an implementation constraint and does not impact the 

control system model.  Thus, we leverage the control system model from the sequential domain 

for interleaved memory systems.   

In earlier work, the control gains for the PID controller were analytically determined 

through stability analysis after the control system transfer function was derived [153].  In this 

study, because we leverage same the control system model from the sequential domain for 

interleaved memory systems, the mathematical formulation of our control system model remains 

unchanged.   Thus, we used the same control gains as in previous work; that is, 

KP=KI=KD=0.015625.   

We initially configured our control system to sample memory demand and bandwidth 

every 500 milliseconds.  However, we found that since the smallest granularity of power-

managed memory devices was 1Gbyte, we were able to reduce this frequency to as much as 2 

seconds. However, for the results presented in this paper, we used a sample frequency of 1 

second to minimize control system response during rapid fluctuations in demand and bandwidth. 

Throughout all experiments, the control system was stable (e.g. convergent) under all workloads 

and exhibited reasonable transient response using these control gains and a 1 second sampling 

frequency.  

In sequential and symmetrically interleaved memory systems, all logical devices have the 

same peak theoretical bandwidth.  In these memory systems, selecting which devices to online is 

simply based on memory demand, while offline operations select devices with the fewest allocated 

frames to minimize migration costs. However, in asymmetrically interleaved configurations, the 

bandwidth of logical devices may differ.  In such systems, offlining a high-bandwidth logical device 

when system bandwidth utilization is high may degrade application performance, even though page 



 132 

demand can be satisfied with lower-bandwidth devices.  Conversely, offlining a high-bandwidth 

logical device when system bandwidth is low saves more power than offlining a lower bandwidth 

logical device since higher bandwidth logical devices include more underlying physical devices. 

Similarly, onlining a low-bandwidth logical device when bandwidth is high might meet increased 

page demand, but limit achievable bandwidth, unnecessarily penalizing performance.  

We subsequently modified the power state transition logic within our control system to 

evaluate the trade-off between bandwidth and power when transitioning devices between power 

states.   Using hardware performance counters, we monitored system-level memory bandwidth by 

regularly aggregating bus transactions for all cores and translating from transaction counts to 

bandwidth. We retained recent bandwidth observations within a history buffer and changed the 

device power state transition algorithm to predict the bandwidth impact of changing device power 

states.  On each pass, we assigned weights to devices after evaluating the fitness of onlining or 

offlining logical devices given recent bandwidth utilization. The algorithm then selected devices with 

the highest weights for the power-state operation. While the control system continued to track 

memory demand, this alleviated the previously described cases in which device state changes limit 

bandwidth.  These changes ensure that the memory devices with bandwidth characteristics necessary 

for the workload remain online to satisfy page demand.  

  

6.3 Evaluation Methodology 
 

We used an Intel Xeon dual-core, dual-processor (DP) with an Intel 5000 chipset-based server 

system in our evaluation.  We chose DP servers instead of larger systems with higher-density 

memory configurations for several reasons.  First, a 2007 survey funded by AMD revealed the 

power consumption of volume and mid-range servers increased 16% and 51% respectively from 
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2000 to 2005 [110]. Since these types of servers account for 99% of the more than 1.5 million 

servers sold in the United States annually, the energy efficiency of this class of systems is critical 

to operational costs. Second, although the capacity of DP servers is generally limited compared 

to larger multiprocessor systems, the memory systems often use multiple levels of interleaving.   

Our test system supported two levels of interleaving that were configurable by firmware - 

branch and rank.  DRAM bank interleaving was also supported, but was always enabled in 

hardware and thus not configurable.  The memory system consisted of four physical memory 

channels, two per branch; Paired channels operated in lockstep creating one logical channel per 

memory branch. Since the branch and rank interleaving configuration controls were separate, we 

were able to vary each variant in isolation. For rank interleaving, the memory controller 

supported up to a 4:1 interleave; however, we limited our evaluation to maximally using 2:1 rank 

interleave due to the limited DIMM slots and to experiment with unorthodox, mixed interleaving 

configurations.   

 

6.3.1 Memory System Emulation 

 

Since platforms with memory devices capable of transitioning to a fully offline state at DIMM 

granularity were not available at the time of this work, we ran our modified kernel and controller 

implementation on a system that supported multiple levels of interleaving and emulated power-

state transitions.  This section discusses the two forms of emulation we used to evaluate our 

approach.   

Power-State Emulation: Transitioning memory devices online is not instantaneous. To ensure 

our emulation techniques account for the cost of power-state transitions, we instrumented our 

firmware found the time to initialize four 4Gbyte DIMMs took approximately 600-700ms.  To be 
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conservative, in this evaluation we used a fixed delay of 500ms for each device online operation 

to account for hardware delays. We also added a 50ms delay for each offline operation to 

account for the cost of dropping power and related signals from affected devices.   

Memory Configuration Emulation: Our evaluation system was populated with eight 2Gbyte 

DIMMs for a total capacity of 16Gbytes. However, even with eight DIMMs, the number of 

interleave configurations we could evaluate was limited due to layout constraints of the memory 

topology in our platform. To avoid constraining our experiments and biasing our results due to 

the limitations of our evaluation system, we also emulated interleaved memory topologies.   

We emulated an 8Gbyte capacity memory system consisting of eight 1Gbyte memory 

devices.  For each experiment, we would first configure firmware to physically interleave the 

eight 2Gbyte DIMMs using a specified experimental configuration.  We would then limit the 

amount of memory the OS could use to 8Gbytes, which we would partition into eight 1Gbyte 

devices.  Based on the experimental configuration used, we would map these eight 1Gbyte 

devices to regions of the physical address space that used the matching interleaving scheme at 

the level of physical devices.  This ensured that the bandwidth characteristics of interleaved 

devices managed by our control system were real. The remaining 8Gbytes of physical memory 

capacity was not used by the OS.  This multi-level emulation enabled us to evaluate the real 

bandwidth and implications of transitioning interleaved memory devices between power states, 

but provided the flexibility to consider the effects of unorthodox, asymmetrically interleaved 

memory systems.   We ensured performance and bandwidth correctness in our emulated 

topologies by verifying memory bandwidth and application performance for each of the  logical 

devices was consistent with the emulated level of interleaving using STREAM, several micro-

benchmarks, and hardware performance counters.   
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For the symmetric configuration evaluation we emulated four standard configurations, 

branch-sequential,1:1 rank-interleave (BS-R11), branch-sequential, 2:1 rank-interleave (BS-

R21), branch-interleave, 1:1 rank-interleave (BI-R11), and branch-interleave, 2:1 rank-interleave 

(BI-R21) , the specifics of which were described in section 2. For the asymmetric evaluation, we 

emulated six asymmetrically interleaved configurations and compared those to two of the 

symmetric configurations. Highly interleaved configurations, such as BI-R21, maximize peak 

theoretical bandwidth but limit the number of devices that can be effectively power-managed.  In 

contrast, sequential memory systems such as BS-R11 increase the number of devices that can be 

power-managed at the expense of lower peak bandwidth.  The six intermediate configurations 

constitute the spectrum of unorthodox mapping schemes between these two extremes. 

 

6.3.2 Workloads 

 

To account for varied memory utilization loads, we evaluated several benchmarks across the 

interleaving schemes supported by each of our test systems. We used benchmarks from SPECint 

(perlbench, bzip2, gcc, mcf, gobmk, hmmer, sjeng, libquantum, h264ref, omnetpp, astar, and 

xalancbmk) and SPECfp (bwaves, games, milc, zeusmp, gromacs, cactusADM, leslie3d, namd, 

dealll, soplex, povray, calculix, GemsFDTD, tonto, lmb, and sphinx3) from the SPEC CPU2006 

suite. To measure the impact of interleaving on memory bandwidth, we used the STREAM 

benchmark built using the GNU gfortran compiler. We also used the class C versions of codes 

from the NAS 3.0 suite (bt.C, cg.C, ep.C, is.C, lu.C, and sp.C) to analyze the power-performance 

effects of interleaving. We built the SPEC CPU2006 and NAS codes using gcc version 4.1.2 

using –O3 optimizations.   
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6.3.3 Experiments and Metrics 

 

We ran the SPEC and NAS codes on the eight emulated memory configurations using our 

interleave-aware Memory MISER. For each experiment, we executed the SPEC and NAS codes 

serially on each memory configuration 5 times with our control system disengaged followed by 5 

runs with the control system engaged.  We measured and recorded memory demand, online 

memory capacity as controlled by Memory MISER, as well as memory bandwidth.  For the 

results presented in this chapter, the results compare the average of the 5 runs using our control 

system.   

Throughout our evaluation, we use the following metrics: total memory system energy, 

memory bandwidth, and the energy-delay product [56, 69]. For each of the configurations, the 

results reported in this paper are normalized to the same memory configuration without our 

power management control system.    

To ensure our OS memory manager changes did not impact runtime performance, we 

measured page faults and execution time running SPEC benchmarks, LMBench, and the NAS 

Parallel Benchmarks using our modified kernel as well as using an unmodified kernel.  For 

consistency we disabled the controller daemon so memory remained online during the 

comparison. We observed less than 1% performance variation between kernel implementations 

for all codes across a number of runs. 

 

6.4 Experimental Results  

 

We evaluated our interleave-aware Memory MISER using SPEC and NAS benchmark 

applications on a total of 10 different interleaved memory configurations, 4 symmetric and 6 
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asymmetric configurations. For each configuration, we ran all of the benchmarks serially to 

characterize memory demand and bandwidth utilization.  We then compared the energy delay 

product (EDP) of our techniques relative to the default control policy and a static control policy 

for each memory configuration. We also evaluated the performance and energy impact of 

asymmetric configurations relative to symmetric configurations using our power-aware 

techniques.    

Figure 6.2 shows memory demand and memory bandwidth during a run of all 

benchmarks on one of the highly-interleaved (BI-R21) configurations. The white area shows 

memory demand, the gray area shows how Memory MISER scaled online device capacity, and 

the black line shows memory bandwidth.  Running these codes serially resulted in a wide 

variance in both memory demand and bandwidth utilization.  We have identified several points 

within the trace that exhibit notable memory allocation and utilization patterns.  For example, 

point 1 in Figure 6.2 highlights the execution of the SPEC benchmark mcf.  Memory demand 

increases rapidly when mcf starts, remains near constant for the duration of execution, and then 

Figure 6.2. Memory MISER scales online memory capacity to meet demand while 
running SPEC and NAS benchmarks using the highly-interleaved BI-R21 configuration. 
The white area shows memory demand, the gray area shows online memory, and the 

black line shows memory bandwidth.  
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subsides after allocated memory is freed.  Memory bandwidth varies significantly, ranging from 

1.6Gbytes/second to as high as 4Gbytes/second.  Because demand never exceeds 3Gbytes and 

4Gbytes is kept online by our control system, the additional memory capacity (1Gbyte) that is 

online while the benchmark is running is not needed.  However, since the minimal logical device 

granularity for this configuration is 4Gbytes, the excess 1Gbyte is kept online to avoid 

performance penalties. In a lesser-interleaved configuration, the additional capacity may have 

been offlined to save additional energy, at the cost of bandwidth.  In this case, since bandwidth 

utilization is high, performance and stability are preserved even though the achievable energy 

savings is at most 50 percent.   

The second point in Figure 6.2 highlights the importance of tracking bandwidth in 

addition to demand in interleaved configurations.  For this benchmark (libquantum), systemic 

demand is only 1Gbyte, which could be minimally met with a single device in a sequential 

memory system.  However, given the high bandwidth utilization of this application, offlining 

devices based solely on memory demand would cause only a single device with lower realizable 

bandwidth to be online. This would restrict available bandwidth and degrade application 

performance.  

In contrast, the third point in Figure 6.2 illustrates an application with moderate memory 

demand, but low bandwidth utilization. In this case, the bandwidth insensitivity of this 

application indicates 2 sequentially mapped 1Gbyte devices could be used to meet demand 

without adversely impacting performance.  However, in this case transitioning interleaved 

devices into low power states and onlining sequentially mapped devices is cost prohibitive. This 

also constrains realizable energy savings, but ensures application performance is not degraded.  
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6.4.1 Symmetric Interleaving Configurations 

 

We initially evaluated our interleave-aware Memory MISER on memory configurations that 

symmetrically interleaved cache lines across the memory system. Since interleaving 

dimensionality decreases the number of devices available to transition into lower power states, 

we varied the level of interleaving used across the memory system to measure the efficiency of 

our power-aware techniques when interleaving dimensionality is relaxed. Using our customized 

firmware, we tuned NVRAM parameters to evaluate up to six memory interleave configurations, 

including BS-R11, BS-R21, BS-R41, BI-R11, BI-R21, BI-R41. However, because our system 

only had 8 DIMMs it was impractical to offline devices at runtime using the fully interleaved 

configurations. Consequently, we limited our evaluation to configurations with at least two 

logical devices. The results here used the following configurations: BS-R11, BS-R21, BI-R11, 

and BI-R21.   

Control Policy Analysis: For each of the interleave configurations, we ran all of the SPEC and 

NAS benchmarks using three different control policies: a default control policy, a statically-

tuned, oracle control policy, and Memory MISER. The default control policy keeps all devices 

online to maximize performance and bandwidth for a given configuration, but wastes energy 

when demand is less than total capacity.  The statically tuned control policy uses a priori 

knowledge of workload memory demand and bandwidth characteristics to optimize power-state 

transitions for performance and energy efficiency on each memory configuration.  Because the 

oracle policy is specifically tuned for the workload, it should yield the best EDP results for each 

of the configurations. Finally, we use our dynamic control system, Memory MISER to 

dynamically scale memory capacity based on memory demand and bandwidth utilization.   
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 Figure 6.3 compares the Energy-Delay Product of the three control policies normalized to 

the default control policy for the SPEC and NAS benchmark suites on each of the interleaved 

memory configurations.  The performance of the oracle policy was within 1 percent of the 

default policy.  By tuning for the memory demand and bandwidth characteristics of each 

workload, the oracle control policy reduced memory energy consumption significantly.  Relative 

to the default control policy, the energy consumption using the oracle control policy on the BS-

R11 configuration was reduced by 73.4 percent for SPEC and 48.1 percent for NAS. The energy 

consumption of the other configurations was also reduced: 71.8 percent for SPEC and 59.1 

percent for NAS on the BS-R21 configuration, 71.3 percent for SPEC and 50 percent for NAS on 

the BI-R21 configuration, and 50 percent for both SPEC and NAS on the BI-R21 configuration.  

However, these savings constituted the best-case reductions using extensive tuning of device 

power-state transitions for each application within the respective execution sequences.  We 

found that simply changing the order benchmarks were executed caused significant performance 

degradations, leading to up to 22 percent worse EDP for SPEC and 11 percent than the default 

policy.   

Figure 6.3. EDP results for default, static tuned, and dynamic (Memory MISER) control 
polices normalized to the default policy for the four symmetric configurations using the 

(a) SPEC and (b) NAS benchmark suites. 
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By dynamically tracking memory demand and bandwidth and offlining unneeded devices 

Memory MISER reduced EDP of the SPEC and NAS suites on all of the memory configurations 

by up to 50 percent.  For the sequential configuration (BS-R11), our dynamic control system 

reduced energy consumption for SPEC by 40.1 percent with less than 0.2 percent performance 

impact relative to the default configuration. Similarly, for NAS, Memory MISER reduced energy 

consumption by 48.1 percent with only 0.4 percent performance degradation.  However, when 

interleaving dimensionality was increased, the number of logical devices decreased, reducing the 

effectiveness of our power-aware control system.  This was evident using the BS-R21 

configuration, in which the level of rank interleaving was increased relative to BS-R11.  This 

reduced the number of logical devices to four, limiting how closely our system could track 

memory demand. As a result, the energy savings realized using Memory MISER were not as 

significant as the oracle policy, but still reduced memory energy for SPEC by 50.1 percent 

relative to the default control policy with less than 0.53 percent impact on performance. 

Similarly, using the NAS codes, our system reduced memory energy to 48.1 percent of the 

default control policy with less than 0.35 percent impact on performance. The BI-R11 

configuration uses branch interleaving but not rank interleaving. For this configuration, Memory 

MISER reduced memory energy for SPEC to 40.48 percent and NAS to 47.6 percent relative to 

the default control policy; the performance impact was limited to 0.89 percent and 0.69 percent 

for SPEC and NAS suites respectively.  Because the BS-R21 configuration uses branch and rank 

interleaving only two logical memory devices were available for power-management. So for our 

test system, any workload with sustained memory demand greater than 4Gbytes, or half of total 

capacity, would not likely benefit from using our power-aware techniques.  Because the memory 

demand of the SPEC and NAS benchmarks did not exceed the granularity of the high-capacity 
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logical devices in the BS-R21 configuration, Memory MISER reduced energy consumption to 

50.2 percent of the default configuration for SPEC and 51.2 percent for NAS, with only a 0.53 

percent and 0.29 percent impact on performance respectively. 

Symmetric Configuration Analysis: Increasing interleaving dimensionality improves peak 

theoretical bandwidth, and hence application performance at the cost of higher memory energy 

consumption.  Figure 6.4(a) compares the performance, energy consumption, and EDP of SPEC 

for the four memory configurations normalized to the sequential configuration, BS-R11.  Due to 

the overall bandwidth insensitivity of the SPEC benchmarks in aggregate, increasing interleaving 

dimensionality did not significantly improve performance. For example, the mean performance 

of all runs on BS-R21 was within 2 percent of the sequential BS-R11 configuration, while using 

both BI-R11 and BI-R21 led to performance improvements of less than 5 percent. Additionally, 

energy consumption was up to 23.5 percent higher for the interleaved configurations than the 

sequential configuration for the SPEC benchmarks.  This was because of the additional devices 

that were kept online to avoid degradations or faults due to interleaving. Combining the minimal 

Figure 6.4. Performance, Energy, and EDP results for the four symmetric configurations 
using Memory MISER for the (a) SPEC and (b) NAS benchmark suites normalized to the 

sequential configuration.    
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performance improvements of SPEC with the higher memory energy led to higher EDP for 

interleaved configurations when normalized to the sequential configuration.  

 Figure 6.4(b) compares the performance, energy consumption, and EDP of the NAS 

benchmarks for the four memory configurations normalized to BS-R11.  The additional 

bandwidth realized by increasing interleaving dimensionality improved the performance of the 

NAS codes.  Using the BS-R21 configuration reduced NAS execution time by 9.7 percent by 

increasing rank interleaving.  Similarly, using branch interleaving reduced execution time by 

11.8 percent compared to the sequential configuration, and by 13.3 percent when combined with 

rank interleaving.  The energy savings achieved using the interleaved configurations were within 

5 percent of the sequential configuration.  Memory energy for BS-R21 and BI-R11 using 

Memory MISER was within 1 percent of the sequential configuration, while the BI-R21 

configuration consumed 3.76 percent more energy.  In this case, the performance improvements 

of interleaving outweighed the minimized energy costs realized by Memory MISER as 

evidenced by the normalized EDP results. The EDP of BS-R21 was reduced by 9.7 percent 

relative to the sequential configuration, while the EDP of the two branch-interleaved 

configurations was reduced by 11.8 percent and 10 percent respectively.  These improvements 

were a direct result of improvements in application performance due to increased memory 

bandwidth.   

Based on these initial experiments, we made two observations.  First, the device dependencies 

caused by high dimensionality limit the effectiveness of our power-management techniques.  For 

example, since our system only had 8 DIMMs, a fully-interleaved configuration made it 

impractical to offline any devices at runtime. Further, even though demand was well below the 

capacity of the highly interleaved devices, energy was still wasted since dependent devices could 
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not be offlined.  Second, we found that increasing interleaving dimensionality does not 

automatically improve application performance. Based on our SPEC evaluation, we found that 

performance for bandwidth-insensitive applications varied less than five percent between 

interleaved and sequential configurations. Even using sophisticated power-aware techniques, 

highly-interleaved configurations can reduce the energy efficiency of the memory system.  These 

two observations led us to explore using our power-aware techniques on asymmetrically 

interleaved memory configurations.   

 

6.4.2 Asymmetric Interleaving Configurations 

 

Instead of simply using a single symmetric interleaving scheme to uniformly distribute cache 

lines across the memory system we configured the memory controller to interleave devices 

within the memory system at multiple granularities. This improved the power-manageability of 

memory devices in the system by increasing the number of logical devices. However, it also 

created memory regions with different bandwidth characteristics. In our experiments with 

symmetrically interleaved configurations, the control system tracked page demand, but did not 

have to consider the bandwidth implications of device power state transitions.  This section 

discusses the impact of using our power-aware techniques on eight interleaved memory 

configurations listed in Table 6.1, two symmetric and six asymmetric configurations. Config-1 

provides the highest memory bandwidth since it is interleaved across branch and rank 

dimensions, whereas Config-8 is sequentially mapped with the lowest bandwidth characteristics. 

Control Policy Analysis: We ran the SPEC and NAS benchmarks on all eight interleave 

configurations using the same three control policies we used in the symmetric configuration 

experiments: a default control policy, a statically-tuned, oracle control policy, and Memory 
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MISER. For the oracle control policy, we tuned the power-state transitions for the SPEC and 

NAS code execution sequence on each of the configurations. For Memory MISER we used the 

same control gains within our control system to dynamically scale memory capacity based on 

demand.  However, since the realizable bandwidth of the logical devices varied, we engaged the 

capability to evaluate the bandwidth impact of device power state transitions.  

 Figure 6.5 compares the EDP of using the three control policies normalized to the default 

policy while running the SPEC and NAS suites.  For Config-1 and Config-8 we expected and 

observed similar results as outlined in the previous section since the configurations were 

symmetrically interleaved. We compared the asymmetric results against these two configurations 

since they constituted the boundary cases for interleaved configurations – Config-1 uses the 

highest degree of interleaving while Config-8 is a sequential configuration.  For asymmetric 

configurations Config-2 and Config-3, we found the EDP of the oracle and our dynamic control 

policy was near 50 percent of the default policy.  This was because we constrained the two 

control policies to retain at least one device online at all times.  Further, to maximize bandwidth 

for OS use, we ensured that we always kept the logical device with the highest level of 

interleaving online at all times.  For Config-1, Config-2, and Config-3, this meant that the logical 

device using the BI-R21 scheme was kept online, limiting achievable energy savings to 50 

percent.  For the other configurations, logical devices used either branch or rank interleaving 

schemes (but not both) which increased realizable energy savings.  For SPEC, the EDP for the 

oracle policy was only 26.5 percent to 30.1 percent of the default control policy for Config-4, 

Config-5, Config-6, Config-7, and Config-8.  In contrast, the EDP realized using the oracle 

control policy for the NAS codes ranged from 42.3 percent to 51.2 percent normalized to default 

control policy.  EDP using the NAS benchmarks on the asymmetric configurations was lower 
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than the symmetric configuration.  This was because when we tuned the oracle policy, we 

ensured logical devices with the necessary bandwidth were used during power-state transitions.   

The EDP improvements using the oracle control policy was a consequence of three things:  the 

increased number of logical devices that could be transitioned into lower power states, the 

performance insensitivity of the SPEC benchmarks to memory bandwidth, and for the NAS 

codes our predictions of which devices to use for applications that require high memory 

bandwidth.  

 Figure 6.5 also shows that Memory MISER scaled memory capacity to reduce memory 

energy consumption by 42 percent to 54 percent relative to the default policy for the SPEC and 

the NAS benchmarks.  While the EDP improvements were significant, EDP did not improve as 

much as the oracle control policy for several of the asymmetric configurations.  We found this 

gap in efficiency was caused by our bandwidth tracking algorithm.  Comparing the traces of two 

runs for the oracle policy and Memory MISER, we discovered several cases in which Memory 

MISER selected logical devices with higher interleaving dimensionality to online than the oracle 

Figure 6.5. EDP results for default, static tuned, and dynamic (Memory MISER) control 
polices normalized to the default policy for the 2 symmetric configurations (Config-1 
and Config-8) and the six asymmetric configurations (Config-2 through Config-7) using 

the (a) SPEC and (b) NAS benchmark suites. 
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policy.  Similarly, there were several points where our system offlined sequentially mapped 

devices instead of interleaved logical devices, whereas the oracle policy offlined interleaved 

devices.  After reviewing the bandwidth traces before these transitions we found that our system 

had predicted that memory bandwidth would remain steady or increase.  This prediction led to 

our conservative, performance-centric policy to select lower-bandwidth sequentially mapped 

devices to be offlined instead of interleaved devices. Similarly, when transitioning devices into 

the online state, Memory MISER selected devices with higher levels of interleaving, sacrificing 

energy for bandwidth to avoid performance penalties.  In contrast, because the oracle policy had 

a priori knowledge of the memory demand and bandwidth characteristics for the workload, more 

aggressive power-down transitions were used.  However, this required extensive tuning, whereas 

Memory MISER did not require any tuning and still improved EDP within 1 percent to 12 

percent of the best case oracle policy.   

Asymmetric Configuration Analysis: We also wanted to understand the efficiency of 

alternative asymmetric configurations using our interleaving-aware Memory MISER system.  

Figure 6.6 compares the performance, energy consumption, and EDP of the SPEC and NAS 

suites for the eight memory configurations described in Table 6.1 normalized to Config-1, the 

configuration with the highest level of interleaving.  For the SPEC benchmarks, we found that 

using BI-R21 (which used 4 physical devices) and then varying interleaving dimensionality for 

the remaining four physical devices in the topology did not yield significant improvements since 

only half of the memory capacity was needed.  As a result, the four devices with varied 

dimensionality were kept offline most of the time, yielding similar energy characteristics.  

However, the results for Config-4, Config-5, and Config-6 illustrate the energy benefits of 

reducing interleaving dimensionality for applications with modest bandwidth requirements, such 
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as the SPEC benchmarks.   Energy consumption was reduced by 17.8 percent using Config-4, 

17.6 percent Config-5, and 17.5 percent for Config-6.  These energy reductions coupled with 

limited performance degradations improved EDP for these asymmetrically interleaved 

configurations relative to Config-1. Since the differences in performance were minimal, these 

improvements were a consequence of increasing the number of logical devices that could be 

transitioned into lower power states by our control system.  After combining the performance 

impact with energy savings, we found that using Memory MISER on asymmetric configurations 

realized up to 19.51 percent lower EDP than the just using a standard highly-interleaved 

symmetric configuration.   

 Given the insensitivity of the SPEC suite to memory bandwidth, we also ran the serial 

NAS benchmarks suite on the eight configurations described in Table 6.1.  Figure 6.6(b) 

compares the performance, energy, and EDP of the eight configurations normalized to the highly 

interleaved configuration, Config-1.  We found that performance was degraded less than 0.12 

Figure 6.6. Performance, Energy, and EDP results for the 2 symmetric configurations 
(Config-1 and Config-8) and the six asymmetric configurations (Config-2 through Config-
7) using Memory MISER while running the (a) SPEC and (b) NAS benchmark suites 

normalized to the symmetrically interleaved Config-1.    
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percent by the variations introduced in Config-2 and Config-3. Reducing rank interleaving for 

the devices mapped to the lower half of the address space, but still interleaving across branches 

(from BI-R21 to BI-R11) reduced overall NAS code performance by 1.6 percent for Config-4 

and 1.7 percent for Config-7.  Increasing rank interleaving and alleviating branch interleaving for 

devices mapped to the lower half of the address space in Config-5 and Config-6 degraded 

performance by 4.1 percent and 4.6 percent respectively. Since Config-8 is sequentially mapped 

and does use interleaving, the performance of the NAS benchmarks was collectively reduced by 

15.26 percent. 

Using Memory MISER, the total memory energy consumption for the eight memory 

configurations was with 4 percent normalized to Config-1.  This was because the memory 

demand of the NAS benchmarks did not fluctuate significantly during execution.  Consequently, 

even though there were more devices available to transition into lower power states, the low 

variance in demand over time limited the opportunities to save additional energy.  Because of 

this, the energy consumption benefit of using asymmetric memory configurations was limited.   

Figure 6.6 also shows the Energy Delay Product of the asymmetric configurations relative to 

Config-1.  Combining the limited energy savings with performance, the EDP results illustrate the 

benefits of using our dynamic control system on asymmetrically interleaved memory 

configurations.  For example, the EDP realized for the six asymmetric configurations was 

decreased by up to 5 percent for the NAS codes over a standard symmetric configuration.  

Although this improvement (5 percent) is not as significant as the improvements observed 

running SPEC (up to 19.51 percent), using Memory MISER on asymmetric configurations 

further improved EDP over standard, symmetric configurations despite variations in workload 

memory demand and bandwidth utilization.    
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Table 6.1. Memory configurations emulated for asymmetric evaluation 

Configuration Type
Physical
Address 
Regions

Interleave
Type

Contiguous
Cache Line 
Mapping

Logical 
Devices

Config-1 Symmetric 0 – 4GB
4– 8GB

BI-R21
BI-R21

A, E, B, F
C, G, D, H

2

Config-2 Asymmetric
0 – 4GB
4 – 6GB
6 – 8GB

BI-R21
BI-R11
BI-R11

A, E, B, F
C, G 
D, H

3

Config-3 Asymmetric
0 – 4GB
4 – 6GB
6 – 7GB
7 – 8GG

BI-R21
BI-R11
BS-R11
BS-R11

A, E, B, F
C, G

D
H

4

Config-4 Asymmetric
0 – 2GB
2 – 4GB
4 – 6GB
6 – 8GB

BI-R11
BI-R11
BS-R21
BS-R21

A, E
B, F
C, D
G, H

4

Config-5 Asymmetric
0 – 2GB
2 – 4GB
4 – 6GB
6 – 8GB

BS-R21
BS-R21
BS-R21
BS-R21

A, B
C, D
E, F
G, H

4

Config-6 Asymmetric

0 – 2GB
2 – 3GB
3 – 4 GB
4– 6GB
6 – 7GB
7 – 8GB

BS-R21
BS-R11
BS-R11
BS-R21
BS-R11
BS-R11

A, B
C
D

E, F
G
H

6

Config-7 Asymmetric

0 – 2GB
2 – 4GB
4 – 5GB
5 – 6GB
6 – 7GB
7 – 8GB

BI-R21
BI-R21
BS-R11
BS-R11
BS-R11
BS-R11

A, E
B, F

C
D
G
H

6

Config-8 Symmetric

0 – 1 GB
1 – 2GB
2 – 3GB
3 – 4GB
4 – 5GB
5 – 6GB
6 – 7GB
7 – 8 GB

BS-R11
BS-R11
BS-R11
BS-R11
BS-R11
BS-R11
BS-R11
BS-R11

A
B
C
D
E
F
G
H

8
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6.5 Chapter Summary 
 

We have quantified the performance and energy for several workloads on four symmetric and six 

asymmetric, interleaved memory configurations and shown that there are significant 

opportunities to minimize energy consumption on server systems due to variable slack in 

memory demand.  By transitioning asymmetrically interleaved memory devices into low power 

states using an adaptive PID controller, we achieved as high as 58 percent energy savings.  We 

found that using power-aware techniques on asymmetrically interleaved memory systems 

increases the energy efficiency of the memory system across a wide spectrum of application 

types.  
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Chapter 7 
 

 

Conclusions and Future Work 
 

 

7.1 Conclusions 
 

In this thesis, we have presented new memory management algorithms and techniques, advanced 

power-state control systems, and proposed memory system architectural adaptations that 

improve the energy efficiency of high-capacity memory systems commonly used in high-

performance computing systems.  The goal of our work has been to dynamically scale memory 

capacity with application demand to reduce operational costs and improve reliability.  However, 

given the complexities of system software and intricacies of high-performance memory 

architectures, this is a challenging proposition. Our approach has been to weave power-aware 

techniques into traditional operating system memory management to enable memory devices to 

transition between multiple power states without impacting application integrity or performance. 

Building on these mechanisms, we then proposed and incorporated sophisticated control logic 

from formal control theory to efficiently manage device power-state transitions. After 

demonstrating the effectiveness of our techniques in sequential memory systems, we then 

extended our work to highly-complex interleaved memory systems.  More specifically, the 

contributions and findings in this thesis include: 

1. Memory management algorithms for energy efficiency. To reduce power 

consumption we extend the operating system to enable memory device power-state 

transitions without impacting application integrity or performance. We propose 
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several OS-level page allocation and management shaping techniques to proactively 

and reactively direct allocations to a minimal number of devices.  We implement 

these shaping techniques into a prototype Linux-based operating system and evaluate 

them on real systems. Using a simple heuristic to direct memory device power-state 

transitions we observe that our techniques yield up to 60% memory energy savings 

with less than 1% performance loss.    

2. Formal control systems for improving memory energy efficiency . Efficiently 

scaling online memory capacity requires a responsive, yet stable control system 

capable of quickly adapting to rapid changes in memory demand. Our early 

experiments used inefficient heuristics that required constant retuning. This led us to 

develop a provably stable, analytic model of a feedback control system from formal 

control theory.   We formally discuss the details of our control-theoretic system as 

well as an implementation of our control system model. We combine our control 

system with our prototype operating system into a complete runtime system and 

compare the energy and performance of a spectrum of workloads using our control 

system relative to several alternative policies.  We found that using our dynamic 

control system on an 8-node cluster of servers reduced memory energy up to 56.8% 

with no performance degradation for scientific codes. We achieved memory energy 

savings of up to 67.94% with no performance degradation for multi-user workloads. 

Normalizing to total system energy consumption, our power-aware memory approach 

reduces energy between 18.81% and 39.02%.  

3. Evaluating the power, performance, and thermal efficiency of interleaved 

memory systems. Memory interleaving exploits parallelism in the memory system to 
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improve memory bandwidth and reduce latency.  Since interleaving changes memory 

access patterns, the power and thermal impact on the memory system was unclear.  

Through extensive experimentation and analysis, we present why the performance-

driven, “more is better” interleaved memory design assumption is problematic and 

should be revisited in future memory designs. Our results indicate that for bandwidth-

sensitive benchmarks such as STREAM, memory interleaving in a single dimension 

improves average bandwidth by 35% and reduces energy consumption by 13% but 

increases memory temperature by 25%. We also found that further increases in 

interleaving dimensionality result in little to no performance or energy efficiency 

gains but still increase temperature nearly 25% for the same codes. For other 

bandwidth-insensitive benchmarks, we found increasing interleaving dimensionality 

often does not significantly improve bandwidth or energy efficiency while 

temperatures increase nearly 25%. The additional heat requires additional cooling, 

which elevates the cost of the system and can increase chassis energy consumption. 

Based on our experiments, the effects of interleaving on energy and thermals must be 

considered in future memory designs. 

4. Improving the energy efficiency of interleaved memory systems. To improve the 

energy efficiency of highly-interleaved memory systems, we developed an 

interleaving-aware control system to dynamically scale memory capacity based on 

demand and memory bandwidth. We propose new device power-state transition 

algorithms to reduce memory power within interleaved memory systems by tracking 

system-wide memory demand as well as bandwidth utilization. We also evaluate the 

power and performance impact of several novel asymmetric interleaving schemes that 
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when exploited by our dynamic control system improves Energy Delay Product by up 

to 58%.   

As the memory capacities of systems continue to scale, the need for energy efficient 

memory systems will become more pronounced.  We have shown that our novel techniques can 

effectively realize significant energy efficiencies with little or no application performance 

impact, even in complex memory systems.  

   
7.2 Future Work 
 

Although we have presented complete runtime systems that we have evaluated across simple and 

complex memory topologies, there is still significant work to be completed.  Since our system is 

allocation-based, there may be allocated pages that may not be used for long periods. We plan to 

study algorithms for identifying and reclaiming allocated, but infrequently accessed pages to 

further improve energy efficiency.  We also plan to study the use of intermediate power states to 

reduce the overhead of onlining and offlining memory devices and further increase the energy 

efficient utilization of memory.  

Traditionally, memory systems have been aggregated behind a memory controller 

connected to one or more processors.  However, the integration of memory controllers into the 

processor package has already transformed traditional SMP systems into NUMA systems.  

Moreover, the proliferation of multi- and many-core processor designs is likely to exacerbate 

memory access latencies due to on-die interconnect coherency requirements and congestion. In 

highly integrated, dense many-core systems, the optimal composition and location of the 

memory system is unclear.  We plan to explore the trade-offs in memory system architectures for 

such many-core processor designs.   
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The memory systems used in commodity systems have been based on variants of DRAM 

for a long time.  As the access latencies of non-volatile, flash-based storage technologies 

decrease, this opens the door for multi-level, hybrid memory architectures.   The introduction of 

such hybrid memory systems could have a dramatic impact on the energy efficiency of memory 

as well as change the face of memory management algorithms.  We plan to explore the 

architectural trade-offs of such hybrid memory systems as well as how memory management 

could be evolved to take advantage of low-latency persistent storage working in concert with 

more traditional memory technologies.    
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