

HTTP Live Streaming as a Secure
Streaming Method

Bobby Kania
Luke Gusukuma

Client: Keith Gilbertson
VT CS 4624 Semester Project

4/29/12

Table of Contents
Abstract ... 3

What is HTTP Live Streaming? .. 4

Users’ Guide ... 5

Requirements .. 5

How to Play Music.. 5

Developer’s Guide to Using HTTP Live Streaming ... 6

Downloading HTTP Live Streaming .. 6

Using HTTP Live Streaming to Convert File ... 8

Setting up the Web Interface ... 12

Testing... 13

Lessons Learned.. 14

Timeline/Schedule .. 14

Problems ... 14

Solutions ... 15

For our final solution we decided to use Apple's HTTP Live Streaming. 15

Requirements Addressed: ... 15

Acknowledgements ... 16

Client ... 16

Other ... 16

References ... 17

Abstract

The main purpose of this project was to find a secure streaming solution for audio files

within the VT Library, specifically regarding the recital collection audio files that were donated

by the Department of Music. Within the context of this project, the definition of secure

streaming is a method of online streaming that ensures that copyrighted audio files are streamed

while respecting copyright law.

 The practical application of solving this problem has partially to do with advancement in

mobile and internet technology as well as copyright issues (as stated above). In regards to

mobile technology, many mobile devices currently being used are able to stream internet content

such as audio and video, provided that the content is streamed efficiently. With regards to the

internet technology, there has been increasing push towards using HTML5. Also with regards to

internet technology, there has been a push for going away from Real Time Streaming Protocol

(RTSP) due to internet security issues.

 After researching several methods that are used for streaming media content on the web,

including things such as URL hashing, Kaltura, a Linux implementation of HTTP Live

Streaming, etc, we decided to use Apple’s HTTP Live Streaming.

 Apple’s HTTP Live Streaming, which favors Apple products over other products, is both

a practical and easy to implement solution for the library staff. In this document, we will go over

three main points. The first point is the implementation of HTTP Live Streaming which includes

the use of HTTP Live Streaming with regards to client side use, server side use, and the

installation utility software. The second point is our procedure and project timeline. The third

point will be the main problems that we confronted regarding both inherent issues (such as

copyright issues, efficiency, etc) as well as implementation and research issues (such as system

requirements and false leads in research).

What is HTTP Live Streaming?

HTTP Live Streaming lets you stream audio and video using the http protocol. The way HTTP

Live Streaming works is it first takes your audio or video and sends it through a media encoder,

and then sends it through a stream segmenter which gives you a set of TS (AAC files if

converting an AAC file) files and a corresponding index which you can store on your server to

distribute to users.

The media encoder takes your audio or video file and essentially turns it into the audio file

format that you want to use for delivery. Once that’s done, the stream segmenter chops your

audio file into several segments that are saved as TS files (transport stream files) with an index

file which dictates the order of the TS files. The TS files and the index file is what you put on

your server to distribute for streaming.

The client software begins by fetching the index file based on an identifying URL for the stream.

Then the client software uses the index file to process a TS files into a single continuous stream

for the user to listen to/watch.

Users’ Guide

Requirements

If you are building a server that uses HTTP Live Streaming, you need to be running Mac

OS X 10.6 or later.

Users who are trying to stream content on your server using HTTP Live Streaming via a

computer will need to use Mac OS X 10.6 as their operating system and Safari as their web

browser.

Users of the mobile devices iPhone, iPod Touch, and iPad can also stream content using HTTP

Live Streaming.

 Server side requirements (to use Apple’s HTTP Live Streaming tools)

o Mac running Mac OS X 10.6 or later

 Distribution server

o Tested successfully on Apache

 User side requirements

o Computer requirements

 Mac running Mac OS X 10.6 or later

o Web browser

 Safari

o Mobile devices

 iPhone, iPod Touch, ipad

How to Play Music

Open your Safari browser and navigate to the site where your audio is hosted and press the play

button (circled in red).

Developer’s Guide to Using HTTP Live Streaming

Requirements: You must be using a Mac running Mac OS X 10.6 or later.

Downloading HTTP Live Streaming

1. Go to https://developer.apple.com/resources/http-streaming/

2. Click on “Download the latest HTTP Live Streaming Tools” on the right sidebar

3. Log in with your Apple Developer ID

4. If you have the correct permissions, you should be able to see “HTTP Live

Streaming Tools” as a download option.

https://developer.apple.com/resources/http-streaming/

5. Click on the link on the right hand side labeled “HTTP Live Streaming Tools.”

6. This will download the HTTP Live Streaming toolkit to your computer. You will

now need to open this download and install the .pkg file. At the time of this writing

this was labeled “Streaming Tools Beta – 138.pkg”

Using HTTP Live Streaming to Convert File

First obtain a video or audio file to convert. These instructions only cover how to convert

an audio file, but the process is fairly similar for video files. The specifications for video

and audios is as follows:

 Video: H.264 Baseline Level 3.0, Baseline Level 3.1, and Main Level 3.1.

 Audio:

 HE-AAC or AAC-LC up to 48 kHz, stereo audio

 MP3 (MPEG-1 Audio Layer 3) 8 kHz to 48 kHz, stereo audio

For audio, this means the file must be an mp3 file or an AAC file. The following

demonstration uses an AAC file.

1. Obtain audio file.

2. Place this audio file into a folder you know the location of. To keep it simple, you

might want to put it under you “Documents” folder. Remember where you placed

this file.

3. Open up a terminal window in Mac by opening “Finder” and going to

“Applications” on left side. After this, scroll to “Utilities” and double-click. In this

folder, click on “Terminal.”

4. Once the terminal is open, navigate to the location of the audio file. This can be

done by typing “cd /path/to/file/”. For example, if you put the audio file under your

“Documents” folder as suggested above, the text you would type into the Terminal

would be “cd ~/Documents/”. After you type this, press Enter.

“cd” in this case stands for “Change Directory.” It is essentially the same action as

clicking on a folder to navigate around your computer. It allows you to enter the

location of a folder and navigate to it. Here we navigated to the “Documents”

folder. The “~” stands for your home folder. If you have multiple people who use

your computer, this ensures you go to your “Documents” folder and not theirs. You

can check your current location by typing “pwd” then Enter.

5. Now you need to create a new folder called “stream”. This folder will hold all of the

“.ts” files. To make this folder, type “mkdir stream” and Enter. You can confirm

that this folder was created by running “ls” which will show you the contents of the

current folder.

6. Now you are ready to begin converting the audio file. In this case, This example will

be converting the file “Separate_Ways.aac”. Enter the following text, making sure it

is all on one line, and press Enter, replacing “FILE_NAME” with the name of the

file, in this case “Separate_Ways.aac”. Also, replace “URL” with the url of the

website you will be hosting the streaming service from. Make sure the url points to

the folder where the “.ts” files will be stored. In the following example, the host

website I host the streaming at is “http://fun.rkania.com/hypertext/” and the folder

storing the “.ts” files under is “stream”. Therefore the example url is

“http://fun.rkania.com/hypertext/stream/”.

mediafilesegmenter --audio-only –b URL -I –f ./stream

FILE_NAME

7. This command created a list of files in the folder “stream”. In this case, since the file

was an “aac” file, the list of files is also “aac”. If you were converting a video, they

would be “.ts” files. It also created an index file that ends in “.m3u8” which is a list

of the smaller files in the order to be played.

8. Next type the following and press Enter again, replacing URL with the url used

above (http://fun.rkania.com/hypertext/stream/, making sure to include the “/” at

the end). Replace NEW_NAME with the name you want the playlist to have and

OLD_NAME with the audio file name excluding the “.aac” at the end.

variantplaylistcreator –o NEW_NAME.m3u8

URL/prog_index.m3u8 ./OLD_NAME.plist

9. Now you should have a new “.m3u8” file in the folder you’ve been working in. You

should have a similar set of files as seen below.

Setting up the Web Interface

1. Now that you have the files you need for the audio, create a new HTML file within

the same folder name whatever you want. This example uses “SeparateWays.html”.

You can either open up a text editor and save the file in this folder or enter the

command “touch” as shown below.

2. Now open this file in a text editor and enter the following text, replacing

“separate.m3u8” with the “.m3u8” file you created with the NEW_NAME above:

3. Save this file.

4. Upload all of the files in this folder to the url you included above. In this example all

the files were uploaded to “http://fun.rkania.com/hypertext/”. This can be done

using FTP or any other way you access your server.

<html>

<head>

 <title>HTTP Live Streaming Example</title>

</head>

<body>

 <video src="separate.m3u8" height="50" width="400" controls autoplay>

 </video>

</body>

</html>

Testing

HTTP Live Streaming from .m3u8 playlist files will only work on Mac OS X with Safari or

iOS devices, such as iPod Touch, iPhone, and iPad.

1. Open a Safari browser on one of the above devices.

2. Enter the url to the “.html” file you created in the previous section.

3. Click the triangle “Play” button to see if the file plays. If everything works correctly,

you should be able to hear the music playing.

Lessons Learned

Timeline/Schedule

February

Summary: Meeting with the client Keith Gilbertson and with Michael Dunston from

Music Department; Researched HTML5 streaming, file formats, and audio conversion

February 3: Met with Keith Gilbertson to discuss starting the project

February 14: Met with Keith Gilbertson and Michael Dunston to discuss the specifics of

the project.

March

Summary: Changed topic of research to focus on streaming. Researched Apple’s HTTP

Live Streaming, Kaltura, Linux HTTP Live Streaming variant.

April

Summary: Implemented Apple’s HTTP Live Streaming and showcased our work to Keith

Gilbertson

Problems

Requirements:

 Secure Streaming (Legal Issues)

o When streaming copyrighted material, a requirement for the streaming is

that the entirety of the file is not accessible to the user. The typical

streaming protocol up to date that follows copyright law is known as

RTSP (Real Time Streaming Protocol). However, due to current firewall

technology, RTSP is becoming more or less out of date due to its

implementation of using multiple ports.

 HTML5

o HTML4 is slowly being phased out to the more current HTML5. This

actually poses its own copyright issues due to the addition of audio and

video tags because these tags enable users to access the files on your

server directly.

 Mobile Device Functionality

o Due to advances in mobile technology, the music department wanted to

make the streaming content accessible to mobile devices as well. Since

the music department's hardware of choice is of the Apple variety, our

target devices are Apple products. Also, this bars Flash because Flash is

too slow and CPU intensive for mobile devices and not available on most

devices.

Unexpected Obstacles:

Based on the original project specification we thought that the focus of the project was on

converting the audio files in the recital collection. However, after we discovered what

was actually expected of us, we set off on the right track.

Solutions

For our final solution we decided to use Apple's HTTP Live Streaming.
Requirements Addressed:

 Secure Streaming (Legal Issues)

o Like RTSP protocol, HTTP Live Streaming also chops the media into

small bits before sending it to users. However, it is different from RTSP

in that it uses http protocol to stream rather than its own unique procedure

that isn't friendly with firewalls.

 HTML 5

o HTTP live streaming was developed by Apple for use with HTML5.

 Mobile Device Functionality

o Because http live streaming was developed by Apple, it is compatible with

Apple devices. HTTP Live Streaming is also more efficient than Flash

because it requires no extra software.

Possible Improvements to Solution:

While HTTP Live Streaming works with Safari on Mac and Apple mobile devices, it

does not work with other web browsers (such as Firefox, Chrome, and Opera) and other

operating systems (such as Linux and Windows). So a possible alternative for other

operating systems and web browsers would be to use Flash. However, this doesn't cover

mobile devices that aren't Apple products.

Acknowledgements

Client

Keith Gilbertson

Email: keith.gilbertson@vt.edu

Phone: (540) 231-904

Address:

University Libraries

Virginia Tech

Blacksburg, VA 24060

Other

Contact info about:

Nathan Hall

Email: nfhall@vt.edu

Number: (540) 231-1751

Address:

University Libraries

Digital Library and Archives

Blacksburg, VA 24062

United States

Michael Dunston

Email: mdunston@vt.edu

Number: (540) 231-9942

Address:

Music Recording Studio

Blacksburg, VA 24061

References

"Deploying Apples HTTP Live Streaming in a GNU Linux Environment." Blog.kyri0s.org. Web.

29 Apr. 2012. <http://blog.kyri0s.org/post/271121944/deploying-apples-http-live-

streaming-in-a-gnu-linux>.

"HTTP Live Streaming." HTTP Live Streaming. Apple Developer. Web. 28 Apr. 2012.

<https://developer.apple.com/resources/http-streaming/>.

Schulzrinne, Henning. "Real Time Streaming Protocol." Internet Engineering Task Force.

Columbia University, 4 May 1998. Web. 28 Apr. 2012.

<http://www.ietf.org/rfc/rfc2326.txt>.

http://blog.kyri0s.org/post/271121944/deploying-apples-http-live-streaming-in-a-gnu-linux
http://blog.kyri0s.org/post/271121944/deploying-apples-http-live-streaming-in-a-gnu-linux
https://developer.apple.com/resources/http-streaming/
http://www.ietf.org/rfc/rfc2326.txt

