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Abstract 
 

 

A new N-dimensional digital modulation technique is proposed as a bandwidth 

efficient method for the transmission of digital data.  The technique uses an antipodal 

scheme in which parallel binary data signs baseband orthogonal waveforms derived from 

Hermite polynomials.  Orthogonality guarantees recoverability of the data from N 

simultaneously transmitted Hermite waveforms. The signed Hermite waveform is 

transmitted over a radio link using either amplitude or frequency modulation.  The 

bandwidth efficiency of the amplitude Hermite method is found to be as good as filtered 

BPSK in practice, while the bit error rates for both modulations are identical.  Hermite 

Keying (HK), the FM modulation version of the N-dimensional Hermite transmission, 

outperforms constant envelope FSK in terms of spectrum efficiency.  With a simple FM 

detector, the bit error rate of HK is as good as that of non-coherent FSK.  In a frequency 

selective fading channel, the simulation results suggest that specific data bits of HK are 

relatively secure from errors, which is beneficial in some applications. Symbol 

synchronization is critical to the system.  An optimal synchronization method for the N-

dimensional antipodal scheme in additive white Gaussian noise channel is derived.  

Simulation results confirm that the synchronizer can operate successfully at E/No of 3 dB.  
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Chapter 1  
  Introduction  

 

 

Radio communications at the beginning focused on transmission of audio signals.  

Transmission of audio signals over radio links has been implemented by using the signals 

to modulate the carrier amplitude (amplitude modulation, AM) or carrier frequency 

(frequency modulation, FM).  Analog transmission was natural for such a signal.  Audio 

signals are not the only information that needs to be transmitted over radio links.  

Transmission of digital data, with finite valued form of information, has become 

important.  Digital transmission allows many features which are not easy to implement in 

analog transmission, for example data encryption.  In fact, any analog signals can be 

represented in digital format.  Digital modulation techniques have been proposed and 

developed.  One aim is to increase the data rate as much as possible with limited transmit 

power and limited bandwidth.  There is a bound on the data rate that can be transmitted 

over a channel without error which is set by the bandwidth of the channel and the signal 

to noise ratio. [SHA48]. 

 

The digital data rate successfully transmitted over a radio communication channel is 

limited either by the allowed channel bandwidth or by the available transmit power.  

Generally, a higher data rate requires more transmit bandwidth and power.  Speaking of 

bandwidth, an ideal transmission technique maximizes the ratio of the transmit bit rate 

and the transmit bandwidth.  The ratio is known as bandwidth efficiency.  Since 

bandwidth is limited and always expensive, maximizing bandwidth efficiency is one of 

the key goals of digital communication system design. 

 

In digital radio communications, a modulation technique describes how the digital 

data is carried by the transmit carrier.  Generally, the digital data are used to modulate the 

carrier’s amplitude or phase, or both.  Each particular modulation technique comes with a 

specific bandwidth efficiency and characteristics in the presence of noise.  An ideal 

modulation technique must be bandwidth efficient and tolerate noise well.  Unfortunately, 
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there is always a trade-off between the two efficiencies.  A modulation technique is 

proposed in this dissertation aiming to exploit both efficiencies.  

 

Theoretically, if the information rate in bits/second (bps) is less than the channel 

capacity, the error rate could approach zero [SHA48].  The channel capacity is 

determined by the channel bandwidth and signal to noise ratio.  Modulation techniques 

alone are unlikely to achieve the theoretical channel capacity.  For instance, spectral 

efficiency of Binary Phase Shift Keying (BPSK) can reach 1 Hz/bps by using a raised 

cosine filter with zero roll-off factor.  However, the signal to noise ratio (S/N) must be 

about 12 dB in practice to have the communication link considered error free.  At a 

spectral efficiency of 1 Hz/bps, the S/N of BPSK exceeds the Shannon limit by more than 

10 dB.  Improvement is dramatically achieved by adding redundant bits to correct errors.  

The BCH (1023, 688) error correcting code  [BOS60], which encodes 688 data bits into 

1023 total bits, can lower the error-free S/N to about 6 dB.  Recently, turbo codes 

[BER93] further reduce the minimum S/N required for near-error free operation to very 

close to Shannon limit, leaving little room of further improvement. 

 

Nevertheless, the Shannon limit applies only to the case of additive white Gaussian 

noise (AWGN).  In practice, interference is not restricted to thermal noise.  In indoor 

communications, for example, the channel is modeled as a heavy multipath channel 

[SAL87].  Delayed multipath components play a key role in received signal distortion.  

The received signal is frequency-selective faded.  The simulation results in [CHU87] 

show significant degradation due to multipath.  Thus, modulation techniques designed to 

combat AWGN are not guaranteed to be robust in such an environment.   

 

Spread spectrum is a technique used to mitigate the effects of multipath of the 

received signal [SKL97b], although spread spectrum implies inefficient use of the 

bandwidth.  Although a number of users can share the spread spectrum, the bit error rate 

increases as the number of the users increases [PIC82].  As a result, there is a need to 

design a modulation technique that tolerates multipath impairment without sacrificing 

bandwidth.  
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This dissertation proposes a modulation technique that aims to combat such a 

multipath impairment.  The new design is constrained by efficient use of the bandwidth.  

Additionally, the bit error rate (BER) performance of the proposed technique must be at 

least as good as existing modulation techniques in an AWGN environment.  Its superior 

performance in the delayed multipath environment is expected.  Performance 

improvement achieved by using channel coding is beyond the scope of this dissertation. 

 

 

1.1 Proposed Modulation Scheme 
 

The proposed digital modulation technique makes use of signal orthogonality.  The 

orthogonality allows transmission of multiple orthogonal signals simultaneously.  At the 

receiver, the orthogonality of the signal guarantees the capability to recover the original 

data transmitted.  If M orthogonal signals are used, the system can be viewed as an M 

dimensional system. 

 

In an already available M-ary orthogonal system, one symbol is sent at a time.  Each 

symbol carries log2(M) data bits.  It is shown in [PRO95] that communication systems 

with M orthogonal symbols can reach the Shannon S/N ratio limit of –1.6 dB when the 

number of the orthogonal symbols approaches infinity.  The drawback is that the 

bandwidth approaches infinity as well.  Bandwidth usage becomes inefficient.  As a 

result, this system is disqualified when bandwidth becomes a constraint.   

 

In fact, orthogonality of M symbols allows simultaneous transmission of M 

orthogonal pulses.  This research proposes a method of carrying M data bits on the signs 

of the M orthogonal symbols (pulses).  First, M serial data bits are fed into a serial to 

parallel converter.  The parallel M data bits are used to sign the M orthogonal pulses.  The 

signed orthogonal pulses are then combined and transmitted.  The signed M orthogonal 

symbols then form 2M distinct symbols.  Therefore, in one symbol (pulse) period, M bits 

of data are sent simultaneously.  The system is titled N-dimensional antipodal.  Since M 
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data bits are transmitted simultaneously, the antipodal system can be viewed as a parallel 

transmission system.   

 

The antipodal scheme of M-orthogonal pulses, even when approaching an infinite 

number of pulses, would fail to reach the Shannon power limit.  Questions of spectral 

efficiency and power performance along with implementation aspects then arise.  An aim 

of this dissertation is to evaluate the bandwidth efficiency of the antipodal orthogonal 

system.  Throughout the thesis, results are obtained by simulation using Matlab 

[MAT99], a widely used software package. 

 

Generally, the orthogonal waveforms are baseband signals.  Radio communications need 

to re-allocate the spectrum about DC of the orthogonal waveforms to a radio band.  Two 

methods are proposed to carry the combination of the signed orthogonal pulses over the 

radio link.  The first method keeps the combined orthogonal waveforms on the carrier’s 

amplitude, i.e., amplitude modulation (AM).  The other method lets the baseband 

orthogonal waveform modulate the carrier’s frequency, i.e., frequency modulation (FM).  

The two methods require different occupied bandwidths and their immunities to channel 

impairments are distinct.  The bandwidths of both methods are investigated in this 

research as well as the BER performances in both AWGN and frequency selective fading 

channels.   

 

 

1.2 Selected Orthogonal Pulse Sets 
 

Because of their spectral efficiency, in this research, Hermite waveforms are chosen 

over other orthogonal pulse sets.  Hermite waveforms are developed from Hermite 

polynomials.  The Hermite polynomials are not orthogonal and their values approach 

infinity when their argument gets large.  However, multiplying the Hermite polynomials 

with a proper exponential term results in a set of orthogonal functions.  The resultant 

functions are called Hermite waveforms.  The Hermite waveforms are time-infinite but 



Chapter 1 

 

5

their values are packed in some period.  Outside the symbol period, the values decay 

quickly to zero.  Essentially, they are finite energy pulses.   

 

Hermite waveforms have already been used in many applications.  Recently, an 

ultra wide band (UWB) system proposed in [MIT03] invokes the orthogonality of 

Hermite waveforms to increase data rate and to add error correction code to achieve 

reliable communication.  The UWB system is becoming of interest since it has useful 

properties for short-range communication in a dense multipath environment [WIN98].  

Typical UWB uses a time hopping pattern as a multiple access technique.  Its 

performance is analyzed in [CRA99].  Another application of the Hermite waveform set 

is proposed in [WAL93].  There, Hermite wavelets are used to replace sinusoid waves in 

multicarrier system in a high-rate digital subscriber loop (DSL).  Applications of Hermite 

waveforms include image processing [MAR90].   

 

Hermite waveforms are quite complex.  Generation of the pulses for UWB use is 

discussed in [MIC02].  A special property of Hermite waveforms is that the time 

waveforms and their Fourier transforms have the same shapes [MAR90].  The property 

allows simultaneous extrapolation in both time and frequency domains [RAO99].  

Invoking an additional pulse requires little extra bandwidth.  This characteristic supports 

the claim that Hermite waveforms are the most bandwidth efficient orthogonal pulse 

[HAR72].  Discussion on Hermite waveforms is detailed in Chapter 2. 

 

 

1.3 Survey of Similar Parallel Schemes 
 

The concept of parallel transmission has been introduced in the 1950’s.  In this 

system, the available bandwidth is divided into narrower sub-channels by a number of 

independently modulated subcarriers (tones) modulated by rectangular pulses.  The 

spectra of the sub-channels in the multitone system are overlapping and sin(x)/x shaped.  

An improved system proposed in [CHA66] replaces the modulating rectangular pulses by 

bandlimited raised cosine pulses.  According to the system, each channel carries a binary 



Chapter 1 

 

6

data rate of Rb and the channels are spaced by Rb/2.  Large numbers of channels allow 

transmission speeds close to the Nyquist rate with no resultant intersymbol interference 

or interchannel interference.  The system performance is evaluated in [SAL67] and 

[CHA68].   

 

In a multitone system with a larger number of carriers, the coherent demodulators 

required by the subcarriers become unreasonably expensive and complex.  The system 

can be implemented indirectly through the discrete Fourier transform [WEI71].  Later, an 

orthogonal QAM using fast Fourier transform (FFT) was explored [HIR81].  Advances in 

Digital Signal Processing (DSP) technology have eased implementation of the FFTs 

required in these systems.  Orthogonal Frequency Division Multiplexing (OFDM), a form 

of multi-carrier modulation that makes use of the FFT, has been developed and is now 

widely used.  For instance, OFDM has been adopted by Europe for digital terrestrial 

broadcasting [EUR94].  The analysis in [CIM85] shows that OFDM provides a large 

improvement in bursty Rayleigh fading channels.  In addition, advantages of OFDM 

include bandwidth efficiency, robustness to impulse interference, sampling time shift and 

implementation complexity.  However, the down side is that OFDM suffers from a high 

peak-to-average power ratio, sensitivity to carrier frequency offset and proneness to tone 

interference [WU95].  

 

Carrying baseband OFDM from a FFT processor over a radio channel can be done 

in many ways.  In [CIM95], the baseband signal modulates an RF carrier.  Optionally, 

frequency modulation (FM) is used in a system proposed and analyzed in [CAS91].  This 

system allows implementation of OFDM on existing low cost FM radio equipments.  

Additionally, FM is a constant envelope RF signal.  The peak and average power are 

identical.  In this research, FM is one choice of the newly proposed parallel transmission 

using M orthogonal pulses.  
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1.4 Result Summary 
 

It is shown by simulation results that bandwidth occupied by the baseband Hermite 

antipodal scheme is practically efficient.  The Hermite system requires a baseband 

bandwidth of 0.625Rb Hertz to transmit a bit rate of Rb bits per second.  Ninety nine 

percent of the signal energy is guaranteed to lie in the band.  The occupied bandwidth is 

equivalent to that of a raised cosine pulse with a roll off factor of 0.25.  

 

The bit error rate performance of AM Hermite antipodal modulation is identical to 

that of binary phase shift keying (BPSK).  Erroneous bits distribute uniformly over the 

Hermite waveforms used.  In Hermite Keying, a modulation technique that carries the 

Hermite waveforms in the frequency of the transmit carrier, the power spectral density is 

monotonically decreasing.  No side lobe is observed.  The bandwidth efficiency of 

Hermite Keying is better than that of minimum shift keying (MSK).  With a non-coherent 

FM receiver equipped with simple preemphasis/deemphasis, Hermite Keying performs as 

well as a non-coherent frequency shift keying (FSK).  Identical signal power after the 

non-coherent demodulator is assumed.  

 

In a frequency-selective fading channel, the long symbol period of Hermite Keying 

does not help improving the average BER.  However, the data bits carried by the low 

order Hermite pulses are relatively secure.  It might be useful in some applications. 

 

 

1.5 Chapter Organization 
 

Chapter 2 describes the proposed Hermite orthogonal antipodal system.  This 

chapter focuses on bandwidth efficiency.  A method to determine the power spectral 

density of an arbitrary N-dimensional antipodal system is developed.  Then, the 

bandwidth of the system is evaluated numerically and compared with the bandwidth of 
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the classical raised cosine pulse.  The bandwidth efficiency is either reported in a format 

of the bandwidth and transmit bit period (BT) or normalized by the transmit bit rate (Rb).   

 

Chapter 3 discusses N-dimensional direct detectors for the antipodal system and 

theirs alternatives.  Highlights of this chapter are the derivation of an optimum 

synchronizer for general N-dimensional orthogonal systems.  Construction of the detector 

and synchronizer are introduced.  Performance of the synchronizer and its limitation are 

investigated.  

 

Chapter 4 evaluates the power efficiency of the system.  Complex envelope 

representation is briefly reviewed and used in the simulation of bandpass radio signals.  

The chapter is closed with a discussion of peak to average power ratio.   

 

Chapter 5 reports an investigation of an FM orthogonal N-dimensional system.  FM 

bandwidth and BER of the system are simulated.  This chapter reviews FM noise and 

explains its effects on the dimensional bit error rate.  The effects of preemphasis and 

deemphasis are examined.  Chapters 3-5 restrict the channel disturbance to additive white 

Gaussian noise (AWGN) only. 

 

Chapter 6 takes signal fading into account.  A satellite mobile channel is reviewed.  

Performance of the FM antipodal system in a mobile satellite channel is simulated.  

Finally, Chapter 7 draws the dissertation to a conclusion.  Chapter summaries are 

provided at the end of each chapter.  
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Chapter 2   
Hermite Orthogonal Waveforms 

 

 

In typical digital transmission, data bits are sent serially.  A higher bit rate can be 

achieved by shortening the bit/symbol period.  As long as the ratio of bit energy and the 

noise power spectral density is maintained constant, the bit error rate (BER) is 

unchanged.  However, in multipath environments, multiple copies of delayed transmitted 

signal are received.  Noise is not the only interference.  In such an environment, the BER 

dramatically increases as either the ratio of the delay and the bit period or the power of 

the unwanted copies increases [FUN93].  As a result, in high-speed transmission, in 

which the bit period is narrow, BER is affected by the delayed signal directly. 

 

An approach to mitigate the multipath effects is to extend the symbol period.  A 

basic method to extend the symbol period is that the input data stream is first serial-to-

parallel converted to N parallel data streams.  The effective bit rate for each parallel 

stream is 1/N of the original serial data stream.  As a result, the parallel bit period is N 

times wider than the bit period of the original serial stream.  Then, N different waveforms 

(symbols) are assigned to each of the N parallel streams.  The N resulting waveforms are 

combined to be a composite transmit waveform.  As long as the N symbols are 

orthogonal, detection of the presence of a participating symbol on the composite 

waveform is possible.  The parallel transmission system can be viewed as an N-

dimensional system.   

 

There are a number of candidate orthogonal waveforms.  One important criterion in 

communications is that a good set of the orthogonal waveforms must consume as little 

bandwidth as possible.  Hermite orthogonal waveforms, which are derived from Hermite 

polynomials, are said to be the best bandwidth-wise [HAR72].  The derivation of the 

Hermite waveforms and their bandwidth consumption are investigated in this chapter.   
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2.1 Review of Orthogonal Functions 
 

A set of functions, {f0(t), f1(t), f2(t), … } is said to be orthogonal over an interval  

[t1, t2]  if  

 





=
≠

=∫ nm
nm

dttftf
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t

t
nm ,

,0
)()(

2

1
δ

    (2.1) 

where δmm is the energy of the function fm(t). 

 

Let s(t) be a signal composed from a linear combination of fp(t) with coefficients bp 

 

∑
−

=

=
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)()(
n

p
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The coefficients bp can be decomposed by 

 

∫=
2

1

)()(
t

t
pp dttftsb      (2.3) 

 

In digital communications, bp is used to carry the digital data.  The capability to 

extract bp from the composite signal s(t) allows us to transmit n independent data sets 

simultaneously.  However, the added basis orthogonal functions always cost extra 

bandwidth.  We will refer to the orthogonal functions fk(t) as the kth orthogonal basis 

pulses.  The energy of s(t) can be computed by  
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Clearly, the energy of s(t) is equal to the sum of the energy of the individual waveforms 

bpfp(t).   

 

Because the data carried by one basis orthogonal pulse does not interfere with the 

data on the other carrying pulses and pulses are well separated in terms of energy, the 

parallel transmission scheme is recognized as an n-dimensional system. 

 

 

2.2 Hermite Orthogonal Functions 
 

 There are a number of candidates for orthogonal function sets used in the n-

dimensional system.  A good one must exploit the bandwidth efficiently.  Some 

functions, e.g., Legendre polynomial, are orthogonal but are not appropriate for parallel 

transmission.  The Legendre polynomials, defined by [FOL92] 

 

n
n

n

nn x
dx
d

n
xp )1(

!2
1)( 2 −= ,    (2.6) 

 
forms an orthogonal set of functions on the argument interval x ∈[-1, 1].  However, the 

values at the pulse boundaries do not decay to zero, i.e., Pn( ±1 ) is either 1 or –1.  This 

causes discontinuity at the adjacent pulse boundaries.  Because of the boundary 

transition, the Legendre polynomial waveform is not a good choice for binary 

transmission.   
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Note that another class of orthogonality is defined over binary space.  The Walsh 

function, for example, consists of step functions [BEA84].  Since, its values are either 

high or low, it can be completely described by a binary sequence.  Consequently, the 

Walsh function can be viewed as a binary orthogonal code.  In fact, Walsh code can be 

generated by using the Hamadard matrix [LIN73].  Unusually, the direct sequence (DS) 

spreading codes used in spread spectrum communications are only near orthogonal.  The 

aim of spreading codes is to have well-behaved periodic cross-correlation properties 

between the member codes.  A good code should look like a random sequence (pseudo 

noise).  Well known Gold codes satisfy the property.  Detailed discussion on them can be 

found in [SAR80].  IS-95, a cellular communication standard, makes use of both 

orthogonal and near orthogonal codes.  A Walsh code is used to denote a particular user 

channel while a near orthogonal long code is adopted as a DS spreading code [TIA93]. 

 

The functions of choice for the parallel transmission system are the functions of a 

parabolic cylinder, ψj(x), which are developed from Hermite polynomials.  The functions 

of a parabolic cylinder form an orthogonal set in (-∞ ,∞ ) said to be theoretical best in the 

time-frequency domain [HAR72].  Because of the difficulty of generating their 

complicated waveforms, applications of the Hermite functions have been few in the past.  

Today’s technology, for example, Digital Signal Processing (DSP), allows us to produce 

arbitrary waveforms.  Thus, complexity is no longer a problem. 

 

 The jth function of a parabolic cylinder, ψj(x), is defined by 
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where Hej(x) is Hermite polynomial defined by 
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The jth function of the parabolic cylinder is identified as the jth Hermite orthogonal 

function.  Extracting the polynomial defined in (2.8) results in 

 

He0(x)  = 1 

He1(x) = x 

He2(x) = x2 – 1 

He3(x) = x3 – 3x 

He4(x) = x4 – 6x2 + 3           (2.9) 

   M   

 

Recursively, the (j+1)th Hermite polynomial can be generated from 

 

)()()( 11 xjHexxHexHe jjj −+ −=     (2.10) 

 

Similarly,  

 

)(
1

)(
1

)( 11 x
j

jx
j
xx jjj −+ +

−
+

= ψψψ    (2.11) 

 

Figure 2.1 shows first five Hermite orthogonal functions (pulses).   

 

According to Figure 2.1, the pulse widths of higher orders are always greater.  

However, all Hermite functions, interestingly, contain identical unity energy.   

 

1)()( 22 =⋅=⋅ ∫∫
∞

∞−

∞

∞−
dxxdxx nm ψψ     (2.12) 

 

for any m and n.  This nice property guarantees energy equality in all dimensions.   
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Figure 2.1  First five Hermite orthogonal functions. 

 

 
 

2.3 Modification of Hermite Orthogonal Waveforms for a Specific 
Transmission Rate on an N-dimensional System 
 

The Hermite orthogonal functions discussed in the previous section are not finite 

time functions.  However, their values decay fast and monotonically for larger values of 

the arguments.  Because the Hermite functions are orthogonal in (-∞ ,∞ ), it is obvious 

that intersymbol interference (ISI) cannot be completely avoided.  To be used as 

communication symbols, the Hermite functions need to be scaled to fit into a designated 

symbol period.  A sufficient amount of pulse energy must be contained in the symbol 
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period.  ISI will be automatically controlled to an acceptable level.  This section deals 

with modifying the Hermite basis functions for an n-dimensional system. 

 

Let us consider the comparability of the serial transmission and the proposed 

parallel transmission.  Let Tb be the bit period of the original serial transmission.  A total 

of n bits are completed in transmission duration of n×Tb.  In order to be comparable to the 

original serial system, all n basis pulses of the n-dimensional system must fit into the 

n×Tb as well.  Thus, n×Tb is the symbol period of the n-dimensional system.   

 

Given an n-dimensional system and transmit bit rate of Rb = 1/Tb, the goal is to 

determine an expression for the transmit basic pulse, fp(t) from the original form Hermite 

orthogonal function ψp(t).  Since ψp(t) is a time-infinite waveform with unity energy, it is 

impossible to scale ψp(t) to fit into the desired symbol period n×Tb with 100% of bit 

energy.  Thus, a percentage of the pulse energy that is required to be within the symbol 

period must be specified.   

 

Let fp(t) be the pth transmit basis pulse.  The transmit pulse is then 

fp(t) = ψp(t/Tn-scale), where ψp(t) is the original form of the Hermite orthogonal function 

and Tn-scale is the to-be-determined scaling factor that forces sufficient energy of fp(t) to lie 

within the symbol period.  As noted, a high order waveform width is always greater than 

that of the lower order waveforms.  As a result, successfully fitting the largest order basis 

pulse ψn-1(t), into n×Tb guarantees that all lower basis pulses have sufficient energy in the 

n×Tb designated period.  Thus, the energy criterion is satisfied for all pulses.  In 

summary, it is obvious that the scaling factor Tn-scale depends on the dimension of the 

system n, the bit rate Rb and the constraint on the energy percentage in the symbol period 

ρ.   

 

To determine Tn-scale, a criterion on energy is introduced.  First, consider a 

truncated version of the basis function ψn (t).  The pulse width Wn of the nth Hermite 
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orthogonal function, which guarantees ρ percent of energy in [-Wn/2 , Wn/2] satisfies the 

condition: 
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For the same ρ, Wn is always greater than Wm for n > m.  Unfortunately, Hermite 

functions are in the form of an exponential of negative x squared.  Analytical solutions 

for Wn are not available in practice.  Consequently, a numerical method is an appropriate 

approach to evaluate Wn.  The pulse widths Wn for the first 40 Hermite orthogonal pulses 

at different energy percentage criteria are depicted in Figure 2.2. 
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Figure 2.2  Pulse widths of the original Hermite pulses ψj(t).  Hermite pulse widths are, in fact, 
infinite.  The criteria of 95%, 99% and 99.9% of pulse energy are used to define the pulse widths. 
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 By scaling the Hermite functions by the pulse width Wn, the ρ% of pulse energy 

of Hermite pulses ψp (t×Wn) for p ≤ n lies in t ∈ [-0.5, 0.5], a unity interval on the time 

axis.  Our goal is to have n orthogonal pulses fit into [-0.5nTb, 0.5nTb], the symbol period.  

Therefore the transmit basis pulse becomes 

 









= n

b
pp W

nT
ttf ψ)(      (2.14) 

 

Therefore, the scaling factor 
b

n
scalen nT

W
T =− . 

 

It is convenient to express the basic pulses using a normalized time.  Let τ be 

normalized time defined by τ = t/Tb, where t and Tb are the actual transmit time and the 

bit period, respectively.  On the normalized time axis, n orthogonal pulses fit into the 

interval [-0.5n, 0.5n].  The interval represents n bit periods, which is the symbol period of 

the n-dimensional system.   

 

Figure 2.3 shows the first four basis pulses on the normalized time axis when a 

99% pulse energy criterion is used.  The pth pulse is generated by  

 







=

4
)( 4Wf pp τψτ      (2.15) 

 

where W4 is the original Hermite function pulse width obtained from the numerical 

method in (2.13).  Very little intersymbol interference is observed from the tails of the 

basis pulses outside the interval [-2, 2]. 
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Figure 2.3  Illustration of first four Hermite basis pulses on the normalized time axis.  Four 
waveforms are scaled to fit into four bit periods.  All pulses have at least 99.9% of energy within 
the four bit periods of [-2, 2]. 

 
 

 

The derivation of the energy in the transmit pulse fp(t) is based on the pulse width 

criteria.  The original ψp(x) is a unity energy waveform but fp(t), its time scaled version, 

no longer preserves the property.  Energy contained in fp(t) can be determined as follows. 
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where n
W

b

n

T
tz = .  Using the unity energy property of Hermite functions, (2.17) is 

simplified to 
nW

T

n

b

/
.  Therefore, the unity energy basis pulse )(ˆ tf p becomes 
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T
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where 0 ≤ p ≤ n. 

 

 

2.4 Fourier Transform of Hermite Pulses 
 

It can be shown that the Fourier Transforms of the functions also form an 

orthogonal set.  Invariance of orthogonality to the Fourier transform is discussed in 

[HAR72].  It is interesting that Hermite functions and their Fourier transforms have the 

same shape [WIE72].  This property implies that infinite time Hermite waveforms are not 

band-limited signals.  However, the identical shape of the time functions and their Fourier 

transforms allows us to use the numerical results for the pulse width to calculate the 

bandwidth occupied by these Hermite pulses.  

 

Let fp(θ ) = ψp(θ ), where θ = t/T, is a Hermite time function scaled by a positive 

time constant T.  Its Fourier transform is gp(ν), where ν = f T, has the same shape and is 

related by [WIE72] 

 

         )(0 vg   =  )4(0 vπψ  

        )(2 vg i   =  )4()1( 2 vi
i πψ−  

              )(12 vg i−   =  )4()1( 12 vi
i πψ −−−       (2.19) 

where i = 1, 2, … 
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It is commonly known that Fourier transform of a Gaussian function preserves its 

original shape.  The f0(θ ) is indeed a Gaussian shaped function.  Its Fourier transform 

found in (2.19) agrees with that statement.  For other orders, the Fourier transforms are 

signed Hermite functions scaled by 4π.  The preserved shapes in the spectral domain 

allow us to use the results associated with pulse width in the time domain to estimate the 

pulse bandwidths.   

 

Let us define simultaneous transmission of n orthogonal waveforms as an  

n-dimensional transmission system.  Assume Hermite pulses are adopted as the 

orthogonal waveforms in the n-dimensional system.  The Hermite pulse of the highest 

order has the widest pulse width and also occupies the widest spectrum.  As a result, the 

bandwidth of the highest order pulse implies the required bandwidth for the baseband 

transmission.   

 

In a Hermite (n+1)-dimensional system, the basis pulse is defined in (2.14).  

Using the relationships found in (2.19), the Fourier transform of the nth pulse can be 

written as 

 

[ ] ( )[ ] 
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nFfF φπψτψτ 411)(    (2.20) 

 

where τ = t/Tb and φ = fTb are the normalized (specifically by the bit period) time and 

frequency, respectively.  Note that Hermite pulse indexing starts from 0.   

 

 The bandwidth of the (n+1)-dimensional system on an fTb scale can be determined 

as follows.  The nth order original Hermite function ψn(φ ) needs a pulse width of Wn to 

keep a designated amount of energy (ρ %) in the truncated pulse, i.e., ρ % of the energy 

lies in φ ∈ [-0.5Wn, 0.5Wn].  Thus, the scaled function as in (2.20) will need a pulse 

width on the φ axis of  
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to maintain the same energy level in the spectrum.  Note that the semi-analytical result 

requires Wn, which is obtained from a numerical method.  Therefore, the bandwidth of the 

(n+1)-dimensional system becomes 
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For example, the energy spectral density (ESD) of Hermite pulses used in a 

3-dimensional system is shown in Figure 2.4.  All pulses have the same energy but the 

ESD of the 2nd pulse, the highest order, spreads out the most.  Hence, its bandwidth 

reasonably defines the system bandwidth.  W2 is numerically 9.22.  Substituting in (2.22), 

the bandwidth on an fTb axis is (9.222)/(8π×3) = 1.13.  The bandwidth on the fTb scale 

reflects directly the efficiency of using the bandwidth.  The normalized bandwidth on the 

fTb axis is actually frequency per bit rate.  Transmission of a bit rate of Rb bit per second 

(bps), of which bit period Tb = 1/Rb, using the normalized bandwidth of 1.13 requires a 

de-normalized bandwidth of 1.13Rb Hertz (Hz).  Thus, bandwidth efficiency can be 

measured by the ratio of the occupied bandwidth and the transmit bit rate.  It is the same 

value as the bandwidth on the fTb scale and the unit is in Hz/bps.  Figure 2.5 summarizes 

the bandwidth efficiency (or bandwidth in the normalized scale, fTb).  The calculated 

bandwidth of the 3-dimensional transmission system is consistent with the plot in the 

figure.  Nulls are observed on the individual energy spectral density.  Nevertheless, the 

overall system ESD does not show nulls.  Detailed discussion on the overall system ESD 

will be made in the next section.   

 

 As concluded in (2.22), the relationship between the dimension number and the 

normalized bandwidth at different energy constraints is illustrated in Figure 2.5.  Square 

waves have the normalized bandwidth (first null) of 1.  With a band-limited waveform 

like a raised cosine pulse, the first null becomes absolute normalized bandwidth.  
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Theoretically, a zero ISI Nyquist pulse, of which the raised cosine impulse response with 

a roll-off factor of 0 is one example, can lower the bandwidth down to 0.5 on an f⋅Tb 

normalized spectrum [ZIE90].  

 

The normalized bandwidths of the Hermite n-dimensional system improve as the 

system dimension gets large.  The asymptotes depend on the percentage of the pulse 

energy that is selected to lie within the available transmission bandwidth.  For 95%, 99% 

and 99.9% constraints, the normalized bandwidths approach 0.62, 0.66 and 0.71, 

respectively.  Low pass raised cosine filters offer normalized bandwidth of (1+r)/2, where 

r is the roll-off factor.  As a consequence, the equivalent roll-off factors for large 

dimensional Hermite systems with the pulse energy criteria given above are 0.24, 0.33 

and 0.42, respectively.  A roll-off factor of 0.25 is a practical value.  Its occupied 

bandwidth lies between the bandwidths of the Hermite pulses with the 95% and 99% 

criteria.  Therefore, an n-dimensional Hermite system is not disadvantageous in terms of 

bandwidth. 
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Figure 2.4  Two-sided energy spectral density of the pulses in a 3-dimensional system.  A 99.9% 
energy criterion is used.  
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Figure 2.5  Normalized bandwidth of the nth Hermite pulse on fTb scale versus the system 
dimension (number of basis pulses used) at the energy criteria of 95%, 99% and 99.9%.  It is 
assumed that the bandwidth of the Hermite pulse of largest order represents the transmit 
waveform bandwidth.  The bandwidth of raised cosine pulse with a practical roll-off factor r = 0.25 
lies slightly above the 95% bandwidths. 
 
 

2.5 Analysis of Power Spectral Density of n-Orthogonal Waveforms 
 
 

In communication systems, transmit signals are always random.  The power 

spectral density (PSD) for a random process x(t) is given by [COU97] 
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where XT(f) is Fourier transform of the truncated waveform x(t). 
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 Our goal is to determine the PSD of the signal x(t) formed by a linear combination 

of hp(t) Hermite basis functions for an n-orthogonal system expressed by 
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where ap,k is a random number whose value is either –1 or 1 and Ts is the symbol period.  

X(f), the Fourier transform of x(t), is then  
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The absolute value squared of X(f) is equal to the product of X(f) and its complex 

conjugate. 
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In (2.26) k and l represent the time indexing while p and q identify the Hermite function 

numbers.  Thus, the PSD for x(t) becomes 
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Since ap,k and aq,l are random variables concerned with the averaging operator, (2.27) 

reduces to 



Chapter 2 

 

25

 

( )∑∑ ∑ ∑
−

=

−

= −= −=

−−

∞→
=

1

0

1

0

*)(
,, )()(1lim)(

n

p

n

q
qp

N

Nk

N

Nl

Tslkj
lqkpTx fHfHeaa

T
fP ω   (2.28) 

 

Consider the random variables ap,k and aq,l.  The data for different Hermite basis 

functions (p and q) are independent.  As a result,  

 

qpaaaa lqkplqkp ≠⋅= ,,,,,      (2.29) 

 

Assuming the transmission is symmetric, ap,k and aq,l have an equal probability of being –

1 and +1.  Their expectations are  
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Therefore  

 

qpaa lqkp ≠= ,0,,        (2.31) 

 

Moreover, data bits on the same basis function at different times, k and l, are 

independent causing 0,,,, =⋅= lpkplpkp aaaa  for k ≠ l.  In the case of  p = q and k = l, the 

expectation similarly becomes  
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By removing all zero terms from (2.28), the PSD simplifies to  
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Total time required to transmit 2N+1 symbols is Ts(2N+1) and the transmit time 

approaches infinity if an infinite number of bits are transmitted.  The limit can be 

rewritten as 
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Therefore the PSD is as simple as 
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If it is a one-dimensional system, the PSD in (2.35) is the PSD of an antipodal 

signal.  Therefore the result in (2.35) concludes that the PSD of n-dimensional antipodal 

signal as defined in (2.24) is just the sum of the PSDs of the individual one-dimensional 

signals.  The PSD of a one-dimensional system shows nulls but the composite PSD will 

have the nulls removed.  Figure 2.6 illustrates the absence of the nulls.  

 

The PSD for a set of Hermite pulses shows excellent utilization of the available 

bandwidth.  The PSD goes below 30 dB from the maximum PSD by f = 0.65Rb.  It is 

very similar to the PSD for a raised cosine pulse with r = 0.25.  Previously, the predicted 

transmit bandwidth using the bandwidth of the Hermite pulse of the largest order yields a 

99.9% bandwidth of 0.71Rb, which is equivalent to the bandwidth of raised cosine pulse 

with r = 0.42.  Obviously, the prediction method overestimates the transmit bandwidth.  

The phenomen can be explained by the fact that the PSD of the Hermite pulses of the low 
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orders are packed near DC.  When multiple pulses are transmitted, the effective PSD 

shifts toward DC.  As a consequence, the bandwidth of the multiple-pulse signal is lower 

than the bandwidth of the highest order Hermite pulse.   

 

In a practical system, instead of a regular raised cosine filter, identical square root 

raised cosine filters are equipped at the transmitter and receiver ends to perform matched 

filtering with zero-ISI, effectively.  The bandwidths of the output signals from the square 

root raised cosine filters and regular raised cosine filters are identical.  Therefore, the 

spectral performance using the Hermite pulses as a transmit signal is also comparable to 

that of the practical square root raised cosine filters with r = 0.25.  
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Figure 2.6  PSD of a 40-dimensional Hermite composite waveform.  A 99.9% pulse energy 
criterion is used.  The monotonically decreasing PSD is about 30 dB down from the top by fTb > 
0.65.  The bandwidth of the 40-dimensional waveform is close to the bandwidth of a raised cosine 
pulse with roll-off factor of 0.25.   
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2.6 Chapter Summary  
 

 In this chapter, infinite Hermite functions are investigated.  Derived from the 

Hermite polynomial, Hermite functions can be generated using recursion.  Then, Hermite 

basis pulses are developed from the Hermite functions using criteria for the fraction of 

the total energy in the pulse that is transmitted by a truncated version.  Numerical 

methods were used to help determine the pulse energy.  

 

The bandwidth of the individual pulses is predicted from a semi-analytical 

method, which uses the result from the numerical method together with an analytical 

approach.  For ease of comparison, bandwidth is plotted on a normalized fTb scale.  It is 

found that to maintain 99.9% of pulse energy in the normalized bit period, the asymptotic 

bandwidth efficiency of the n-dimensional system is equivalent to using raised cosine 

pulse with roll-off factor of 0.42. 

 

An analysis of the power spectral density of the n-dimensional orthogonal system 

is carried out.  Assuming an antipodal scheme is assigned, the system PSD is just the sum 

of the PSDs of the individual one-dimensional antipodal signals.  As the dimension gets 

larger, the PSD tends to be smoothed.  It is found that the bandwidth of the Hermite  

n-dimensional waveform is roughly the same as the bandwidth of a raised cosine pulse 

with roll-off factor of 0.25.  The prediction method using the bandwidth of the highest 

order pulse overestimates the transmit bandwidth.   
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Chapter 3  
N-Dimensional Baseband Transmission and Detection 

 
 

In this chapter, implementation of the transmission using Hermite orthogonal 

basis pulses and optimal receivers for the system are discussed.  On the transmission end, 

each bit of binary data either maintains or inverts the transmit pulses forming an 

antipodal system.  The transmit pulse used for each data bit is one of a set of m 

orthogonal Hermite pulses.  Since the m Hermite pulses are orthogonal, the magnitude 

and sign of each pulse can be recovered from the additive combined waveform.  

Therefore, m independent bits can be sent at the same time.  Therefore, the transmission 

is viewed as a parallel system.   

 

With the antipodal scheme, m Hermite pulses compose 2m distinct symbols.  The 

transmitter keeps sending symbols after symbols.  The receiver needs to know the 

beginning of the symbols to employ the orthogonality.  Symbol synchronization is 

discussed and a technique for an n-dimensional system is developed.  Its performance is 

then evaluated. 

 

 

3.1 Transmission System 
 

As discussed in the previous chapter, infinite Hermite pulses can be constrained to 

be sufficiently orthogonal in a designated period.  Thus, a set of orthogonal waveforms 

for an n-dimensional transmission is formed.  Without presence of noise or other 

interference, the binary data carried on the basis pulses can be perfectly recovered.   

 

 In n-dimensional systems, n independent data streams are transmitted 

simultaneously.  Typically, the data stream is fed to the modulator on a bit by bit basis.  

As a result, it is likely that an n-dimensional system will have a serial to parallel data 
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converter.  The implementation block diagram of transmission system is shown in Figure 

3.1.  

 

 According to Figure 3.1, on the transmitter side, the binary data (value is either 1 

or –1) changes its basis waveform’s polarity.  The transmit waveform is a combination of 

the individual signed waveforms.  Let hi(t) for i = 0,1,…, n-1, be the basis Hermite 

waveforms.  The transmit waveform in one symbol period is then written as  

 

∑
−

=

=
1

0
1 )()(

n

i
ii thats      (3.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Direct implementation of one-symbol transmission in an N-dimensional system.  N, 
the dimension of the transmit signal in this illustration, is 4.  The hi(t) are the Hermite waveforms 
spanning from t0 to t4.   
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Since Hermite waveforms are complicated, generation of the transmit signal is 

likely to be implemented using an array of discrete time waveform generators as shown 

in Figure 3.2.  According to Figure 3.2, a signed input data pulse train with a rate of Rb is 

converted to N parallel pulse trains at a slower rate of Rb/N.  Each pulse train is then 

passed through a corresponding discrete-time waveform generator which responds to the 

pulse train by outputting a sequence hi[k], where k = 0, 1, … , (Nfir – 1).  The output 

sequence of length Nfir is a discrete-time version (or sampled version) of the ith Hermite 

pulse.  The output sequence can be viewed as a finite impulse response (FIR) of a digital 

signal processing system.   

 

Such a discrete-time waveform generator can be implemented using a Finite 

Impulse Response (FIR) digital filter.  An FIR filter of order Nfir consists of an array of 

the coefficients, bk for k = 0, 1, … , (Nfir-1).  Its impulse response is exactly the filter 

coefficients, bk.  Let us set the FIR coefficient with hi[k], the sampled values of the 

Hermite waveform.  The impulse response of the digital filter will be exactly the discrete-

time Hermite waveform.  FIR filters are commonly known and widely used in Digital 

Signal Processing.  The desired continuous transmit Hermite waveform can be obtained 

by using a digital to analog converter (DAC) followed by a proper lowpass filter.  

Therefore, the complicated Hermite waveforms are practically realizable. 

 

The discrete-time representation of an analog signal can be converted to a 

continuous waveform without aliasing if the sampling rate is greater twice bandwidth of 

the analog signal.  Let Tsample be the sampling time of the waveform generator or the time 

space between the adjacent samples.  The value of the nth sample of the sequence hi[k] is 

set to hi(t)|t = kTsample.  Thus, the last sample of the sequence, h[Nfir-1], represents the value 

of Hermite pulse at t = (Nfir –1)×Tsample.  Since the Hermite symbol of an N-dimensional 

system lasts NTb, where Tb = 1/Rb, the number of sequence samples Nfir can be 

determined from 

 

sample

b
fir T

NT
N =       (3.2) 
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The results from Chapter 2 conclude that the power spectral density of the Hermite 

waveform lies within 0.625Rb, where Rb is the transmit data rate.  The minimum sampling 

rate that prevents aliasing is twice the bit rate [OPP89].  In this case the minimum 

sampling rate becomes 1.25Rb and the maximum sampling time Tsample is Tb/1.25.  

Therefore, the theoretical minimum length of the output sequence, Nfir = 1.25N, where N 

is the dimension of the composite Hermite waveform.  Since Nfir is the order of the FIR 

generators, it reflects the complexity of digital FIR generator.  Thus, the complexity of 

the Hermite waveform generation using digital approach increases linearly with the 

dimension N of the transmit Hermite signal. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

      

 

 
 

Figure 3.2  Block diagram of a practical implementation using digital FIR filters.  Hermite 
waveforms are generated in discrete time domain.  Digital to analog converter and a lowpass filter 
produce the continuous waveform for the transmission.  
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3.2 Simple Detector 
 

Theoretically, the binary data carried on the mth basis waveform can be recovered 

by using a correlation detector with integrate and dump.  The method is validated as the 

follows.  Assuming perfect synchronization, the composite signal s(t) is multiplied by 

hm(t).  Then the product is integrated over the symbol period.  Polarity of the integrator 

output is used to determine which binary data symbol was sent.  The integrator output is 

cleared (dumped) for the next symbol detection.  The implementation can be expressed as 
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where δkk is a positive constant.   

 

The orthogonality removes all terms whose i ≠ k from the summation.  Thus, 

binary data carried on one basis pulse does not interfere with the detection of the binary 

data carried on the others.   

 

 

3.3 Equivalent Receiving System 
 

The integrate-and-dump detector is a powerful tool in data recovery.  However, it 

requires perfect pulse synchronization.  Losing the pulse alignment results in inter symbol 

interference (ISI).  Locating the beginning of the symbol on the composite signals of the 

n-dimensional system is difficult because of the large number of transmit waveform 

patterns.  The number of the patterns increases exponentially as the dimension of the 
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system grows.  As a consequence, integrate and dump receivers are not practical for an  

n-dimensional system. 

 

An alternative way to indirectly implement the integrate-and-dump receiver is to 

make use of convolution.  Consider a linear system with impulse response hs(t).  The 

response y(t) when the system is driven by a signal s(t) is given by 

 

τττ dthsty s ⋅−= ∫
∞

∞−

)()()(      (3.5) 

 
 Assume the input hk(t) is a time infinite signal whose values are zero outside an 

interval [0, Ts].  The indefinite integral above becomes a definite integral bounded by 

lower and upper limits of 0 and Ts, respectively.  Let us define the impulse response by  

 

)()( sms Tthth +−=      (3.6) 

 
The output of the system becomes 

 

τττ dTthsty s

T

m

s
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    (3.7) 

 
Thus, at t = Ts, the output yields exactly the same results as of the integrate-and-

dump receiver. 
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Figure 3.3  Straightforward implementation block diagram of transmitter and receiver.  The 
receivers invokes a correlation detector with an integrate-and-dump (I&D).  The received signal is 
multiplied by Hermite pulses.  Then, the resultant waveforms are integrated.  The multiplication 
operation requires that the local Hermite pulses must be synchronized to the transmitted pulses. 

 
 Therefore, the integrate-and-dump receiver can be implemented indirectly by 

passing the signal through a linear time invariant system.  The necessary synchronization 

is only on the output sampling.  A straightforward implementation block diagram of the 

transceiving system using a correlator detector is shown in Figure 3.3.  Figure 3.4 

illustrates an alternative implementation in continuous time domain of the receiver using 

matched filters and sampler.    

 

 In practice, filters that can produce a Hermite waveform shaped impulse response 

are unlikely to exist.  Again, implementation of the matched filter detector should be 

done in discrete time domain.  The received signal s(t) is first digitized to a sequence s[k] 

and then digital-filtered by an FIR filter whose discrete impulse response h[k] is the 

sampled Hermite waveform.  Proper sampling of the output sequence yields the same 

results as using the correlation detector with integrate and dump.  For convenience, 

continuous time notation is used.  
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Figure 3.4  An alternative receiver makes use of the matched filters and the samplers.  The 
received signal is passed to the filters for which the impulse responses are Hermite waveforms.  
Properly sampled filter outputs yield the same values as the synchronized I&D.  The illustration is 
based on continuous time waveform.  Practical implementation of the matched filter detector can 
be realized using discrete-time domain.  The transmit signal is digitized first and the matched 
filters are in fact digital FIR filters.  

 

 A demonstration of output invariance of the two receivers is done in the following 

example.  Let [ -1 -1 1,  1 1 –1,  1 1 1,  1 –1 –1] be a sequence of 12 data bits to be 

transmitted using a 3-dimensional Hermite system.  The transmission requires 12 bit 

periods, Tb, to transmit the data sequence.  Each 3-dimensional Hermite symbol lasts 3 bit 

periods, e.g., Ts = 3Tb.  Figure 3.5 shows the waveforms of each dimension and the 

combined waveform. 

 

The received signal is detected by both integrate-and-dump (I&D) and filter-and-

sample (F&S) receivers.  The output waveforms associated with the 1st dimension are 

shown in Figure 3.6.  The I&D dumps the output every 3Tb while the F&S takes samples 

every 3Tb as well.  The outputs at the multiple of 3Tb of both receivers are identical.  

Hence, the invariance of results of the different approaches is shown. 
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Figure 3.5  Waveforms at the output of each dimension filter and the combined (transmit) 
waveform of a 3-dimensional system.  The 12-bit data sequence is  
[-1 –1 1, 1 1 –1 1 1 1, 1 –1 1].  The symbol period lasts 3Tb.  

 
 

The advantages and disadvantages of the two receivers are as the follows.  The 

integrate-and-dump receiver requires a precise symbol synchronization to multiply the 

local Hermite pulses with the received waveform.  The simulation result shown in Figure 

3.6 suggests that the output waveform of the I&D tends to move away from the threshold 

(zero) before dumping.  Therefore, once synchronized, jittering on output sampling is not 

as critical. 

 

On the other hand, the convolution method is more prone to suffering from 

sampling jitter because of its relatively high waveform fluctuation.  As illustrated in 

Figure 3.6, both methods yield the same values at the times of sampling.  However, slight 

sampling jitter is more serious with the fluctuating output waveforms of the F&S 

receiver.  Synchronization is an important issue and detailed discussion is in the next 

section. 
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Figure 3.6  Output waveforms corresponding to the 1st dimension of the integrate-and-dump 
(I&D) and filter-and-sample (F&S) receivers.  The I&D dumps the output every symbol period, 3Tb 
while the F&S samples the output every 3Tb.  The transmit data [-1 1 1 -1] is correctly detected. 

 

3.4 Derivation of Synchronization in N-dimensional System 
 

 

Generally, bit synchronization in a receiver for digital signals can be done by one of 

the following methods [ZIE90]  

 

1. The transmitter and the receiver share a standard timing. 

2. A separate pilot signal is transmitted along with the data signal. 

3. Clock is derived from the transmit waveform itself or by self synchronization  

 

Unlike the first two methods, self synchronization does not require additional 

information.  In the case of a one-dimensional system, an implementation of self 



Chapter 3 

 

39

synchronization employing a maximum a posteriori (MAP) estimation is intensively 

investigated in [LIN73].  Our goal is to extract a synchronization signal from the  

N-dimensional transmit waveform.  Therefore a MAP based self-synchronizer extended 

for the N-dimensional system is derived.  Simplification of implementation is also 

developed. 

 

Let s(t) be a transmit signal composed from n signed Hermite pulses (an  

N-dimensional system).  The signal s(t) is corrupted by the channel additive white 

Gaussian noise (AWGN).  At the receiver, all possible 2n expected symbols are known 

and can be locally generated.  However, the local symbol clock is misaligned with the 

received signal by an epoch εo.  The unknown epoch εo is assumed to be uniformly 

distributed over the symbol period, (0, Ts).  The symbol synchronizer observes the 

received signal over an interval of K symbol periods and estimates the unknown εo.  One 

approach of estimating an unknown parameter in Gaussian noise is using the theory of 

maximum a posteriori (MAP) estimation [VAN67].  

 

 Let hn(t) be the truncated nth Hermite pulses whose values are non-zero only in the 

symbol interval [0, Ts], where Ts is the symbol period.  The N-dimensional transmit 

signal corresponding to kth symbol period is the sum of the signed Hermite pulses and can 

be written as 
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where an,k ∈ {-1, 1}is the binary data contained on the nth dimension of the kth pulse. 
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Figure 3.7  Received signal with random delay ε.  Symbol synchronization determines ε for the 
received signal from an observed interval of KTs.   

 

 

Let the receiver observe the incoming signal for KTs.  The observed signal y(t) is 

the transmit signal delayed by εo plus the noise, n(t).  The delay is actually the 

misalignment between the locally generated symbol and the received symbols.  Observed 

in the interval [0, KTs], the received y(t) is characterized by  
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where t ∈ (0, KT). 
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In (3.11), y(t) is partitioned then expressed in the form of a (K+1)-fold 

summation.  Indeed, because of the delay, there are K+1 symbols appearing in 

 [0, KTs].  The interval associated with k = 0 lasting from 0 to εo represents the tail from 

the previous unwanted data bits.  Meanwhile, the Kth (the last) interval occupies only a 

fraction of Ts.  The incomplete symbol lies in the interval of [(K-1)Ts+εo, KTs].  Let us 

define Tk(ε), the kth subinterval, by Tk(ε) = (k-1)Ts+ε ≤ t ≤ kTs+ε.  Note that with the 

constraint that t is further limited to be in the observation time, i.e., t ∈ (0, KT), T0(ε) and 

TK(ε) are truncated to length of ε and Ts-ε, respectively.  Figure 3.7 depicts the definition 

of the subintervals.   

 

The MAP symbol synthesizer determines the epoch εo from the received signal 

y(t) by choosing εo from  the epoch under test, ε,  that maximizes the conditional 

probability, p(ε|y(t)).  More specifically, ε = εo does maximize the conditional probability.  

Strategically, it is more convenient to decompose y(t) to a linear combination of signed 

orthogonal time signals, keep the coefficients and   maximize the associated probabilities 

which, as a consequence, are not expressed in terms of  a time variable. 

  

Let yk(t; ε) be the truncated y(t) where t ∈ Tk(ε).  Thus, for t ∈ (0, KT), the 

observed signal y(t) can be written as 
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Moreover, each yk(t; ε) is decomposed into a linear combination of an arbitrary set of 

orthogonal functions, {ψi(t)}.  Note that {ψi(t)} are not necessarily Hermite pulses and 

the dimension M is not the same as N, the dimension of the transmit signal. 
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Therefore, specifying an orthogonal set {ψi(t)}, y(t) can be completely represented in a 

matrix form as  
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The matrix representation implies that the time subinterval k travels horizontally.  

Meanwhile, the entries that lined up vertically reflect the coefficients of ψi(t). 

 

Thus, the probability p(ε|y(t)) can be alternatively represented by p(ε|Y).  The 

entries in Y are random variables due to the added noise and also the random data bits, 

an,k.  Note that the set of orthogonal {ψi(t)} does not need to be related to the Hermite 

basis pulses, hn(t).  In fact, hn(t) can be decomposed to a linear combination of {ψi(t)}. 

 

It is not obvious to directly manifest p(ε|Y).  In contrast, the probability of Y can 

be statistically formed if ε and an,k are given.  As a consequence, compared with p(ε|Y), 

the probability p(Y| ε,an,k) is easier to determine.  The relationship between p(ε|Y) and 

p(Y|ε) is obtained from Baye’s rule [PAP65]  
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The goal is to find ε that maximizes the probability defined in (3.16).  Since the epoch is 

assumed to be uniformly distributed over the interval (0,Ts), the probability p(ε) is a 

constant and thus independent of ε.  Furthermore, P(Y) reflects the decomposition of the 
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received signal y(t) onto a orthogonal set.  Its entries yij are, of course, a function of ε, an,k 

and noise statistics.  However, the probability P(Y) is statistically independent of ε.  

Therefore, ε that maximizes p(Y|ε) is the same ε that maximizes p(ε|y(t)).  In conclusion, 

the probability to be maximized moves to p(Y|ε).   

 

To determine p(Y|ε), let us first model the Y.  Assuming the epoch ε is known and 

no noise is present, the received signal is randomized only by the binary data an,k.  Let 

wn,i,k(ε) be a weighing metric reflecting the projection of nth Hermite pulse delayed by 

ε+(k-1)Ts onto ith dimension of {ψi(t)}.   
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The expected value of the kth subinterval of the transmit signal on the ith dimension for a 

given ε and a data vector a′k = [a0,k a1,k … aN-1,k]T is then  
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The data an,k ∈ {-1,1} is assumed to be equiprobable.  Note that  

A = [a′0  a′1 … a′K-1 a′K], an N×(K+1) matrix, represents the entire data transmitted in the 

interval of observation.   

 

Noise n(t) can also be partitioned and decomposed into the space of {ψi(t)}.   
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The ni,k is now a random variable.  It is still Gaussian distributed with mean and variance 

preserved under the decomposition onto the orthonormal basis set, {ψi(t)}. 
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For a given epoch ε and a vector of transmit data a′k, the probability of an entry of Y 

associated with the kth subinterval can be written as  
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where σ2 is the noise power associated with the ith dimension.  If {ψi(t)} is orthonormal, 

it can be shown that σ2 is identical to No/2, the two-sided power spectral density (PSD) of 

the white noise.   

 

Since p(yi,k|ε,a′k) and p(yj,k|ε,a′k), for all i≠j, represent the probabilities in different 

dimension, their added noise is independent.  Thus, the joint probability of the received 

signal at the kth subinterval, p(yk|ε,a′k) can be written in a product form of the individual 

probabilities, p(yi,k|ε,a′k). 
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Furthermore, the joint probability in the entire observed period becomes 
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Integrating over A, the conditional probability on both ε and an,k as in (3.24) reduces to be 

conditioned by ε only. 
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Since the data vectors corresponding to the kth subinterval, a′k , are independent of the 

data in other subintervals, (3.26) can be written in a product form as  
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Now let us evaluate the final form of P(Y|ε) by expanding each term one at a time.  

Substituting p(yi,k|ε,a′k) defined by (3.22) in (3.23), the probability p(yk|ε,a′k) in (3.27) can 

be expanded to 
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Averaging (3.28) over the pdf of a′k yields p(yk|ε).   
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Note that the integral with respect to a′k is, in fact, a summation since the entries of a′k, 

an,k , are an independent discrete random variable of which possible values are either –1 
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or 1.  Additionally, an,k is equiprobable, i.e., p(an,k = 1) = p(an,k = -1) = 1/2.  However, for 

ease of notation, the integral form is preserved. 
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The squared 2
,kna is unity and p(an,k) is constant and independent of an,k.  Hence, all terms 

independent of an,k are factored out as in (3.30).  Moreover, the terms ∑∑
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reflect the sum of the energy of Hermite pulses decomposed to the orthogonal function 

{ψi(t)}.  The epoch ε does not affect the pulse energy.  Hence, the summation is 

independent of ε.  Therefore, all terms in front of the integral appear as a constant.   
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The an,k term is either –1 or 1 with identical probability.   Evaluating the integral in (3.31) 

results in 
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Substituting (3.33) in (3.27) gives P(Y|ε) in the final form 
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Therefore ε̂ , the maximum a posteriori estimate of ε, is the value of ε that maximizes 

(3.34).  Since the logarithm is a monotonic function of its arguments, alternatively, the 

value of ε that maximizes the function, 
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is also ε̂ .   

 

Let us consider the integral of the product of yk(t) and hn,k(t;ε) over [0, KTs]. 
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Since yk(t) is a truncated version of y(t) and is zero outside the interval  

[(k-1)Ts+ε, kTs+ε], the expression becomes 
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The orthonormal property of {ψi(t)} eliminates all i ≠ j terms.  Substituting the integral 

form of )(
1

,,, ε∑
=

M

i
kinki wy  into (3.35) transforms the function to be maximized, Λ(Y|ε), to a 

realizable form, 
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For each subinterval, the final form multiplies the received signal yk(t) by a flipped and 

delayed (by ε) version of a Hermite pulse and integrates the product over the subinterval.  

The procedure is repeated for all Hermite pulses.  Then the outputs of all dimensions are 

summed up.  The final quantity Λ(Y|ε) is obtained from accumulation over K symbols 

periods of the logarithm of the hyperbolic cosine of the sum. 

 

The block diagram depicted in Figure 3.8 shows the big picture of the 

straightforward implementation of the MAP synchronizer.  Figure 3.9 details the 

functional block to evaluate the quantity Λ(Y|ε) for the hypotheses {ε1, ε2, ε3, ... , εp}.  

The ε which maximizes Λ(Y|ε) is said to be the best estimate out of the candidate ε. 

 

The limitation of the straightforward implementation is that only a finite number 

of the hypotheses {ε1, ε2, ε3, ... , εp} can be the candidates.  A more accurate solution 

comes at cost of computational complexity increased by a larger number of hypotheses.  

Although numerous candidates are allowed, they are theoretically still quantized 

hypotheses.  An improved version in terms of continuity is discussed in the next section. 
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Figure 3.8  Realization of the maximum a posteriori probability (MAP) symbol detector.  The 
maximum likelihood is tested among p hypotheses, {ε1, ε2, ε3, ... , εp}.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9  Inside each hypothesis block in Figure 3.8.  The output of the implementation block is 
the quantity to be maximized, Λ(Y|ε). 
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3.5 Implementation of MAP Synchronization 
 

 

As discussed earlier, the integrate-and-dump detector can be replaced by a 

matched filter and a proper sampler.  The relationship is re-expressed by 
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where hn(t) = 0 for t ∉ (0,Ts) and ⊗ denotes convolution.  As a consequence, the desired 

metric )(
1
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kinki wy  can be continuously produced for arbitrary kth subintervals and ε 

from the output of the matched filter.  The desired metric is then represented by the 

convolution output at t = (k-1)Ts+ε. 
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Furthermore, ln cosh(x) is approximated by 
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This approximation suggests replacing the ln cosh( ) function block by either a square 

law or absolute device.  A block diagram of the synchronizer with the simplification of 

the ln cosh( ) function is shown in Figure 3.10.  Fortunately, the Hermite matched filters 

are already available as a functional block in the detector.  The synchronizer can make 

use of the existing filter banks.  The complete receiving system is shown in Figure 3.11.  

Since no extra information is needed to generate the synchronization signal, the system is 

categorized as a self-synchronized system. 
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Figure 3.10  A stepless implementation of MAP synchronizer.  Note that the matched filters can 
be shared with the Hermite detector.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11  The flow of the signal in the overall system.  The outputs of the Hermite matched 
filters are fed to the synchornizer and the detector.  Points A and B locate the associated signals 
in Figure 3.10. 
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3.6 Effects of Basic Pulse Cross Correlation on the MAP Synchronizer 
 

 The MAP synchronizer observes the received signal for K symbol periods and 

estimates the epoch ε by maximizing the probability of the received signal for given 

hypothetical epochs.  Based on the limited observation of the signal corrupted by AWGN, 

the estimate is the best.  However, the MAP synchronizer suggests neither the minimum 

observation symbol periods nor the probability of false estimation. 

 

 Let us select a counterexample for synchronization failure.  Let an alternating 

sequence [1 1 1 1, -1 1 -1 1, 1 1 1 1, -1 1 -1 1] be the data bits transmitted by the Hermite 

system.  In this demonstration, noise is assumed to be absent.  The MAP synchronizer is 

supposed to be capable of accurately estimating the epoch.  Assume the transmit signal 

s(t) arrives at the receiver exactly at a multiple of the symbol period.  A successful 

synchronizers will produce peaks at t = kTs, where k is an integer.   

 

The received signal y(t) is passed to the filter bank as in Figure 3.10.  The 

received signal y(t) and the outputs of the matched filter bank vn(t) = y(t)⊗hn(T-t) versus 

normalized time are graphed in Figure 3.12.  Let the MAP synchronizer observe the 

received signal over only one symbol period (K = 1) before generating the metric Λ(Y|ε).  

The outputs of the synchronizer versus the time are shown in Figure 3.13.  For ease of 

locating the correct sync time, the time axis is normalized by the pulse period Ts, which is 

4 times the bit period Tb in the 4-dimensional system.   

 

 According to Figure 3.13, with K = 1, the MAP synchronizer produces maxima in 

the middle of the correct sync times (multiples of Ts).  Evidently, the synchronizer fails to 

detect the epoch by using such a short observation period when the particular sequence is 

transmitted.   
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Figure 3.12  A 4-dimensional received signal y(t) for the bit sequence  
[1 1 1 1, -1 1 -1 1, 1 1 1 1, -1 1 -1 1] and the waveforms at the outputs of the matched filters vn(t).  
In absence of interference, the output of the matched filters at t = kTs , vn(kTs) ∈ {-1, 1}. 
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Figure 3.13  The estimation metric Λ(ε|Y) at the output of the synchronizer for the bit sequence  
[1 1 1 1, -1 1 -1 1, 1 1 1 1, -1 1 -1 1], as in Figure 3.12, versus time.  The signal is assumed to 
arrive exactly at the multiple of symbol period Ts.  Maxima detected are in the middle of pulse 
period.  The synchronizer fails to detect the epoch. 
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An explanation of this phenomenon is as follows.  The estimation metric Λ(Y|ε) is 

computed by multiplying y(t) by hm,k(t;ε), m = 0, 1, … , N-1 and integrating the product 

over the interval of the Hermite pulses, Ts = NTb.  The values associated with all m are 

then added.  Since the received signal y(t) is a delayed (by εo) version of a linear 

combination of signed Hermite pulses, the computation on each hm(t) is equivalent to 

evaluating the sum of cross correlation functions of mth Hermite pulse and the nth pulse, n 

= 0, 1, … , N-1. 
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where Rmn( ) is the cross correlation of mth and nth Hermite pulses.  Assuming ε = εo, the 

cross correlation function becomes Rmn(0).  For m ≠ n, there is no guarantee that Rmn(0) is 

maximum.  Therefore, there possibly exists Rmn(ε-εo) greater than Rmn(0).  With proper 

signs of an,k, )(
1

0
, o

N

n
mnkn Ra εε −∑

−

=

, at some ε not equal to εo, becomes a maximum.  As a 

consequence, the MAP synchronizer fails.  It is interesting that in one-dimensional 

systems, the MAP synchronizer does not encounter this kind of problem.  Since only one 

pulse is signed, the cross correlation does not exist.  Auto-correlation function, Rxx(τ) 

always has a maximum at τ = 0. 

 

 Nevertheless, the usability of the derived MAP synchronizer is not lost by this 

counterexample.  From the counterexample, it can be concluded that observing the 

received signal for only one single symbol period does not guarantee synchronization 

success even though noise is not present.  Now, let us observe the signal longer.  For K = 

2 and K = 3, the outputs of the synchronizer are shown in Figure 3.14.  The longer 

observation times eliminate the unwanted peaks as found in the counter example (K = 1).  
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However, as shown in Figure 3.14, longer observation time is a tradeoff of improved 

accuracy and speed of acquisition.   
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Figure 3.14  Outputs of the synchronizer when longer observation times are used.  With K = 1, 
the synchronizer fails to estimate the epoch.  Observing longer symbol periods (K = 2 and K = 3) 
improves the estimation accuracy.  However, the outputs are ready by t = 2Ts and  
t = 3Ts, respectively.  The reliablity comes at cost of speed of acquistion time. 
 

 

3.7 Performance of MAP Synchronizer in Low Signal to Noise Ratio  
 
 

The derivation of the MAP estimator shows an optimal method to generate 

synchronization from a limited observation of noise-corrupted received signal.  

Nevertheless, the theory does not suggest noise immunity performance of the 

synchronization technique at all.  This section investigates the performance of the MAP 

synchronizer at low signal to noise ratio (SNR). 
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Lost synchronization or false epoch estimation occurs when the output of the 

synchronizer produces peaks in between the symbol period or in the interval  

[εo+(k-1)Ts , εo+kTs], where εo is the correct epoch.  An example of the missed 

synchronization is the early illustration with K = 1.  An analytical result of the probability 

of false estimation is complicated since full knowledge of all Hermite pulse cross 

correlation functions must be known along with their probabilities of occurrence.  As a 

consequence, simulation is an alternative if the relationship between the probability of 

false detection and the SNR is needed. 

 

Assuming synchronization is perfect, typical communication systems with a bit 

energy to noise power spectral density ratio (Eb/No) less than 3 dB suffer from 

unacceptable BER.  Although BER performance of Hermite system has not yet been 

discussed, let us assume that at Eb/No = 3 dB, the Hermite transmission system cannot 

deliver an acceptable BER.  Therefore as long as the MAP synchronizer survives an 

Eb/No of 3 dB, the overall system performance is bounded by the BER, not the 

synchronization.   

 

The investigation is carried out through simulation.  The simulation invokes a 

random sequence of 48 bits.  The data bits modulate the signs of Hermite pulses in a  

4-dimensional system.  As a result, the transmit duration spans 12 symbol periods.  The 

receiver observes the transmit signal plus white noise at an Eb/No of 3 dB.  The transmit 

signal and the noisy received signal (before any filters) are shown in Figure 3.15.  Figure 

3.16 shows the outputs of the first two matched filters on the receiver side.  The 

waveforms are at Point A in Figure 3.10.  Because of the added noise, the absolute values 

of the output waveforms sampled at t = kTs are not unity.   
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Figure 3.15  A 4-dimensional Hemite transmit signal.  A total of 4x12 = 48 data bits are carried on 
the waveform.  The received signal is corrupted by wideband AWGN which causes an effective 
Eb/No of 3 dB.  The plot shows the received signal before any filtering.   
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Figure 3.16  First two outputs (out of four) of the Hermite filter bank.  The absolute values of 
output waveforms at t = kTs, where k is an interger, deviate from unity because of the noise. 
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If noise is removed, as illustrated in Figure 3.17, the tested sequence does not 

introduce false synchronization for an observation period of three symbol periods  

(K = 3).  For the same observation period, the added noise causes a false synchronization.  

The incorrectly generated output waveform of the MAP synchronizer for the Eb/No of      

3 dB is illustrated in Figure 3.18.  According to Figure 3.18, a peak shows up in the 

interval of 8th and 9th symbol periods.  The false peak on the output waveform fails the 

MAP synchronizer. 

 

The false synchronization is eliminated by lengthening the observation period.  

Figure 3.19 shows the output of the MAP synchronizer with K = 6.  The unwanted peak is 

eliminated.  Thus, better synchronization is achieved by the longer observation time.  

However, the drawback is that the first synchronization pulse is completed after 6 symbol 

periods.  The speed of acquisition is lowered. 

 

The number of symbols used by the MAP synchronizer to acquire symbol 

synchronization as shown in Figure 3.19 is not considered excessive.  In transmission of 

data bursts in Time Division Multiple Access (TDMA) system, information bits are 

preceded by a group of bits known as preamble.  The first portion of the preamble is a 

Carrier and Bit timing Recovery (CBR) sequence which is used to lock the receive station 

to the carrier frequency and also recover bit timing of the burst.  A typical structure of 

TDMA satellite bursts, as shown in [CAM83], consists of a 176-bit CBR sequence.  If 

three quarters of the CBR time are used for carrier recovery, there are 42 bits for the bit 

timing.  Moreover, high-bit-rate TDMA, e.g., 120 Mbps, requires a longer CBR sequence 

of 300-400 bits [HA90].  Therefore, six symbol periods of the 4-dimensional Hermite 

system, which are equivalent to 24 bit periods, is comparable.   

 

It is beyond the scope of this thesis to finalize or reshape the output of the 

synchronizer for practical use.  Also, its performance in terms of false synchronization 

rate for various K and Eb/No is outside the area of interest since the MAP synchronizer 

shows promise to survive in such a low Eb/No.  In conclusion, the Hermite transmission 

system is not limited by the capability to synchronize the symbol at such a low Eb/No.   
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Figure 3.17  The output of the sychronizer without the presence of noise.  The test data bits do 
not introduce the effects of Hermite pulse cross-correlation with an observation interval of 3Ts  
(K = 3). 
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Figure 3.18  In presence of noise at an Eb/No of 3 dB, output of the synchronizer with an 
observation period of 3Ts culminates at wrong times.  A false maximum is found in the interval of 
(8Ts, 9Ts). 
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Figure 3.19  Output of the synchronizer with a longer observation period of 6Ts (K = 6).  The false 
maximum found earlier in the interval of (8Ts, 9Ts) with K = 3 disappears.  The drawback is on the 
speed of acquisition.  The synchronization is not ready until t = 6Ts. 

   

 

3.8 Chapter Summary 
 
 This chapter first proposes a method to generate N-dimensional transmit 

waveforms.  The generation is implemented by passing a signed impulse train to a 

discrete waveform generator with impulse responses that are sampled Hermite basis 

pulses.  The generator can be realized using a finite impulse response (FIR) digital filter.  

 

At the receiver end, it is shown that a bank of correlators with proper sampling 

circuit can completely replace the need for integrate-and-dump receivers in the detection 

of data carried on the orthogonal waveform.  Again, the correlators are implemented in 

discrete-time domain.   
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 Since symbol synchronization is critical for the correlator receiver, a 

synchronization method using maximum a posteriori (MAP) estimation is derived.  The 

MAP estimator extracts synchronization from the received signal, observed for some 

short symbol periods.  It is shown that the MAP synchronizer can be constructed by 

making use of the output of the detecting Hermite correlators.  A synchronizer block 

diagram is proposed.  The simulation shows that the MAP synchronizer can extract the 

synchronization at Eb/No as low as 3 dB.   
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Chapter 4  

BER Performance of Baseband and Linear Modulated 

Hermite N-Dimensional Systems 
 

 In the two previous chapters, bandwidth efficiency and synchronization methods 

are discussed.  In this chapter, the performance of the Hermite N-orthogonal systems in 

terms of power efficiency is evaluated by simulation.  The simulation focuses on 

immunity in an additive white Gaussian noise (AWGN) environment.  The performance 

is evaluated by bit error rate (BER).  The simulation for a bandpass signal makes use of 

complex envelope, which is a carrier-free representation.  This allows simulation of 

bandpass signals to be implemented indirectly by their complex baseband representations.   

 

 

4.1 Theoretical Performance of Baseband Signals in AWGN 
 

Intangible data symbols are converted into material form before they can be 

physically transmitted.  Very often, the symbols are mapped to electrical pulses.  Direct 

transmission of the electrical pulses over some media, e.g., wire or cable, is said to be 

baseband communication and transmit signal is a baseband signal.  Typically, the 

spectrum of the transmit pulse is concentrated about zero. 

 

In an antipodal scheme, the waveform representing Binary 0 is a sign reversed 

form of the waveform representing Binary 1.  In AWGN, a matched filter, which is an 

alternative to a correlator receiver, is the optimal receiver in the sense that the signal to 

noise (SNR) at the output of the receiver is maximized.  The output SNR of the receiver 

is simply the ratio of signal bit energy to the two-sided noise power spectral density, 

Eb/(No/2) [PRO95].  Assume that the binary states 0 and 1 are equi-probably sent.  The 

optimal bit-by-bit detection with a zero decision threshold yields the probability of error  
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The probability is independent of the shape and duration of the symbol.   

 

Now, let us consider an N-dimensional system.  Based on the discussion in 

Chapter 3, a method used to retrieve the data carried on Hermite pulses already falls into 

a form of matched filter.  An extended version of the matched filter used in an N-

dimensional system is shown in Figure 4.1.  Furthermore, the analysis in Chapter 3 shows 

that in an N-dimensional orthogonal system, the output SNR of each matched filter is also 

Eb/(No/2), which is exactly the same as the results in the case of one-dimensional 

antipodal systems.  Therefore, the bit error rates of either a single or an N-dimensional 

system are theoretically identical.   

 

Note that in an N-dimensional system, 2N symbols are possible in one symbol 

period.  In a strict-sense, a total number of 2N filters are needed to implement matched 

filtering.  This implementation only matches the received signal dimension-wise to 

reduce complexity.  The strict-sense matched filtering doubles the number of filters used 

for each additional dimension.  In contrast, the complexity of the dimension-wise scheme 

increases linearly.   Therefore, the alternate receiver, which matches the received signal 

dimension-wise, is more practical. 
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Figure 4.1  Matched filters for N-dimensional antipodal systems. The received signal, impulse 
response of the Hermite ith filter, and the detected bits (-1 or 1) are denoted by r(t), hi(t) and bi, 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  Transmitter and receiver model for the simulation of BER performance in AWGN.  
The transmit signal s(t) is corrupted by n(t), the AWGN.  The received signal r(t) is the sum of the 
transmit signal and the noise. 
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4.2 Simulation Results of Baseband N-dimensional Systems 
 

The analytical discussion in the previous section concludes that the BER 

performance of a dimension-wise detection scheme is identical to the BER of a receiver 

using matched filters for a one-dimensional antipodal scheme.  The theoretical result is 

compared to a simulation result in this section.   

 

The baseband signal is very often an electrical pulse train.  Generally, the received 

pulse is a distorted version of the transmit pulse.  Possibly, the received signal suffers 

from intersymbol interference (ISI) caused by filters or the limit of allowed bandwidth.  

Equalizers are a tool to mitigate such interference.  More or less, thermal noise causes 

interference with the received pulses.  Thermal noise has a flat spectrum (white).  

Typically, the receiver filters out the white noise by a matched filter.  Weak signals will 

be affected by the noise severely.  The system is modeled here with white noise as the 

only interferer.  

 

As a matter of fact, the simulation is implemented solely on digitized versions of 

both transmit signal and noise.  In this simulation, the transmit waveform is sampled at 

least of 50 samples per one bit.  The sampling rate Fs is then 50Rb, where Rb is the bit 

rate.  The sampling interval Ts = 1/Fs = 1/(50Rb).  The discrete time representation of the 

signal is reliable (no aliasing) if the signal bandwidth is less than one half of the sampling 

rate; in this case it is 25Rb.  The bandwidth of 25Rb is far greater than the Hermite signal 

bandwidth, which is, according to the results in Chapter 2, 0.625Rb.   

 

To constrain to unity bit energy, the transmit signal is scaled so that the sum of the 

squared values of the signal samples times the sampling interval 1/(50Rb) is one.  Note 

that, since power is the rate of transmitting energy (energy divided by observing time), 

the average of the squared sample values is simply the signal power.  The power can be 

calculated directly from the sample values without the knowledge of sampling rate 

[OPP89].   
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Noise is generated by independently randomizing a number for each signal 

sample.  Typically, most software packages, including Matlab, provide a zero-mean and 

normal-distributed random number generator with unity power; the average of samples 

generated from the random generator is zero and the average squared values is one.  The 

generated numbers can be scaled to meet specific noise power.  For a given sampling 

rate, the noise power spectral density (PSD) is white from DC to one half of the sampling 

rate.  In the case with a sampling rate Fs of 50Rb, the generated noise PSD is flat from DC 

to 25Rb.  The noise power calculated by the average of the squared samples is equal to 

No×Fs/2, where No is one-sided noise power spectral density.  Therefore, given an No and 

the sampling rate Fs, the corresponding noise power can be determined by the 

relationship.  The value of the noise power is then used to scale the unity-power noise 

samples generated from the Gaussian random generator.  Therefore, in this simulation a 

broadband noise is added to the transmit signal.  The noise spectrum is flat from DC to 

one half of the sampling rate. 

 

For example, an Eb/No of 10 dB is desired in a simulation with sampling rate 

 Fs = 50Rb.  First Fs is used to constrain unity energy of Eb.  For the 10 dB and unity pulse 

energy, No is 1/10.  Thus, the broadband noise power becomes (1/10) ×25Rb.  Thus, the 

output samples from the normal distributed generator need to be multiplied by 1/√(250Rb) 

before being added to the signal.  The sum achieves an Eb/No of 10 dB.  

 

The system model to evaluate BER performance by simulation is illustrated in 

Figure 4.2.  The transmit signal s(t) is constrained to have unity bit energy.  The Hermite 

pulses are truncated using a 99.9% energy criterion as discussed in Chapter 2.  The signal 

is corrupted by channel AWGN.  In this simulation, it is assumed that neither fading of 

any kind nor co-channel interference affects the received signal.  The style of simulation 

is based on Monte Carlo simulation.  BER is determined by the ratio of incorrectly 

detected bits to the total number of trial bits. 
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Simulation is carried out at various Eb/No and number of Hermite pulses used 

(dimension).  For each Eb/No, the transmission of at least 4 million bits of data is 

simulated.  Four million simulated data bits were used to ensure that the BER can be 

reliably estimated down to at least 4×10-5 by using the criterion of a minimum of 10 bit 

errors.  The results then establish reliable statistics of the BER.  Figure 4.3 dimensional-

wise lists the BER of a 4-dimensional system.  Simulated BERs on all dimensions are 

identical.  Figure 4.4 compares the overall BER when different numbers of Hermite 

pulses are used.   According to the simulation results, the BER are independent of the 

number of dimensions.  Moreover, the simulated and the theoretical results are consistent.  

Therefore, N dimensional matched filters can replace the strict-sense 2N filters without 

losing BER performance in AWGN. 
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Figure 4.3  BER versus Eb/No listed by dimensions of a 4-dimensional Hermite system.  The 
received signal is interfered by AWGN only.  The receiver invokes matched filters and ideal 
synchronization is assumed.  The BER is uniformly distributed over all dimensions. 

 



Chapter 4 

 

68

0 1 2 3 4 5 6 7 8 9 10
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

P
ro

ba
bi

lit
y 

of
 E

rro
r

Theoretical
N=4
N=8
N=16

 

Figure 4.4  Overall BER versus Eb/No of different dimensional systems.  The same system as the 
previous figure is assumed.  The dimension does not affect the overall BER.  For the same bit 
energy, the Hermite BER is identical to the baseband polar pulse.  Pulse shape does not matter.  

 

 

4.3 A Brief Review of Bandpass Transmission Representation 
 

There are two common methods to carry baseband signals over radio channels.  

One is using the baseband signal to modulate the sinusoidal carrier amplitude (AM) and 

the other is to modulate the carrier phase or frequency (PM/FM).  Each of these methods 

relocates the spectrum to an RF band centered about the carrier frequency.  Direct 

simulation of bandpass signals requires a sampling rate more than twice the carrier 

frequency (Nyquist rate) to avoid aliasing [OPP89].  Compared with the sampling 

capability of the computer, the carrier frequencies are high, generally.  Additionally, the 

range of carrier frequencies varies dramatically from kilohertz to gigahertz.  For ease of 

computer simulation, representation of the bandpass signals in a complex baseband 

format is developed. 
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 Bandpass signals can be described by [COU97] 

 

              })(Re{)( )( θφ += tjwtj ceetRts ,     (4.2) 

 
where Re{⋅} denotes the real part.  Having the imaginary part removed, s(t) can be 

rewritten in terms of bandpass real signals as 

 

)sin()()cos()()( θθ +−+= twtytwtxts cc ,   (4.3) 

 

where )()()( 22 tytxtR +=  and )(
)(1tan)( tx

tyt −=φ .  The random carrier phase delay θ is 

generally assumed to be uniformly distributed over [-π, π].   

 

 R(t)ejφ(t) = x(t)+jy(t) is a complex baseband signal and it is called the complex 

envelope of the bandpass signal.  Furthermore, x(t) and y(t) represent the inphase and 

quadrature components of the signal.  Signal power of the bandpass signal s(t) defined in 

(4.3) is calculated by 

 
2

2
12 |)(|)( tRts =      (4.4) 

 

where ⋅  denotes time average.  

 

Bandpass noise is assumed to be a wide sense stationary (WSS) process [COU97] 

and can similarly be decomposed to  

 

)sin()()cos()()( twtntwtntn csccbp −=    (4.5) 

 

where nc(t) and ns(t) are zero-mean Gaussian distributed real baseband processes.  The 

power of bandpass noise can be determined either from the power of the inphase or of the 

quadrature components.   
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)()()( 222 tntntn scbp ==      (4.6) 

 

Double Sideband Suppressed Carrier (DSB-SC), a linear modulation technique, 

keeps the modulating signal in the inphase component x(t), and nothing is in y(t).  While 

in single sideband (SSB) modulation, one of the sidebands is removed by forcing the 

quadrature component y(t) to be the Hilbert transform (90° phase shift) of x(t).  In fact, 

two independent baseband signals can be transmitted using carriers with the same 

frequency; one is on the inphase channel and the other is on the quadrature channel.  

Quadrature Phase Shift Keying (QPSK) is an example of maximizing spectrum efficiency 

using this approach. 

 

For angle modulation, φ(t) is a function of the baseband modulating signal m(t).  

The constant envelope property of angle modulation is achieved because R(t) is constant.  

One advantage of angle modulation is that the bandwidth of the bandpass signal is 

adjustable.  Another advantage of angle modulation over amplitude modulation is that its 

instantaneous and average powers are identical.   
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4.4 Transmission of N-dimensional Signals on Carrier’s Amplitude 
 

It is commonly known that the bandwidth of an AM modulated signal is twice that 

of its baseband modulating signal.  The result in Chapter 2 concludes that bandwidth 

efficiency of a baseband Hermite N-dimensional system is about  

0.7 Hz/bps.  It implies that if AM is used as the modulation technique, the spectrum 

efficiency becomes 1.4 Hz/bps.  However, the spectrum efficiency can be improved by 

making use of both inphase and quadrature components.   

 

4.4.1 Transmitter Implementation 
 

Making use of both inphase and quadrature carriers can be done by first splitting 

the data stream into two channels.  The bit rate in each channel is dropped to one half of 

the original.  Each half-rated bit stream is passed to a Hermite baseband generator.  The 

outputs of the first and second Hermite generators are then used to amplitude modulate a 

cosine wave and its π/2 phase-shifted sine wave, respectively.  The implementation block 

diagram is illustrated in Figure 4.5. 

 

 According to Figure 4.5, the transmit signal can be written as 

 

 )sin()()cos()()( ttHttHts cqci ωω −=    (4.7) 

 

where Hi(t) and Hq(t) are baseband Hermite signals containing the binary information.   

The complex envelope representation of s(t) is then  

 

)()()( tjHtHtg qi +=       (4.8) 

 

 The inphase component, Hi(t), can be written as 
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Figure 4.5  Transmission of  an N-dimensional signal over an RF channel by using an amplitude 
modulation technique.  Utilizing both inphase and quadrature components helps maximizing 
spectrum efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  A model of an AM coherent demodulator in an AWGN channel.  The baseband 
detector consists of an array of Hermite matched filters.  The block P/S in the figure performs 
parallel to serial conversion. 
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where Hn(t) is the nth Hermite pulse with symbol period Ts and binary data  

an,k ∈{-1, 1}.  A similar expression can be written for the quadrature component Hq(t).  

 

Assume the system is symmetric meaning the inphase and quadrature powers are 

identical.  One can use (4.4) and the property or the orthogonality to show that the RF 

transmit power is equal to )(2
1

0
tH n

N

n

−

=
Σ .  Receiver block diagram and BER performance 

for this RF transmission technique are discussed next. 

 

 

4.4.2 Receiver Structure and Discussion on BER Performance  
 

 A model for AM Hermite receivers is shown in Figure 4.6.  The RF transmit 

signal s(t) is corrupted by channel AWGN right before the bandpass filter (BPF).  In an 

ideal system, the intersymbol interference (ISI) caused by the pre-detection BPF is 

negligible.  Assuming perfect carrier recovery, the outputs of the mixers contain both the 

wanted baseband signal and the high frequency components,  

Hi(t) + Hq⋅cos(2wct+θ ).  Generally, a lowpass filter is needed to remove the carrier 

double frequency components.  However, a Hermite detector already consists of Hermite 

filter banks, which coincidentally behave as lowpass filters (LPF).  Therefore, an 

additional LPF is theoretically not necessary.  Finally, the two detected bit stream are 

combined by the parallel to serial converter. 

 

 Let us consider the output of the mixer.  Assuming the high frequency component 

is removed, calculation of the BER is reduced to the case of baseband transmission.  

Therefore, the BER performance of this amplitude modulation is identical to the 

baseband case.  For example, filtered binary phase shift keying (BPSK) signal can be 

viewed as an AM modulated signal of which the modulating signal is a raised cosine 

pulse train.  The BER performance of the raised cosine pulse reflects the performance of 

BPSK.  In fact, BER performance of any AM-based modulation techniques can be 

determined from the performance of the baseband modulating signal.  The results of the 

AM Hermite system are as expected.   
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 Using complex envelope representation, the received signal can be written as 

 

)()()()()( tjntntjHtHty scqiCE +++=    (4.10) 

 

Since the inphase (real part) and the quadrature (imaginary part) signals can be treated 

independently, the BER calculation can be derived from the noise immunity of the 

baseband signals Hi(t) and Hq(t).  Note that complex bandpass noise nc(t) + jns(t) is not 

white throughout the entire spectrum.  Nevertheless, with an ideal BPF, its spectrum is 

flat over the bandwidth of Hi(t) and Hq(t).  It does not affect the BER evaluation. 

 

 

4.5 Peak to Average Power Ratio 
 

Modulated signals with non-constant envelopes undergo excessive peak to average 

signal ratios.  The Hermite system is not an exception.  Although the amplitudes of all 

basis pulses are constant (Walsh codes, for example), summing them up results in a 

waveform with amplitude variations.  Hence, a non-unity peak to average power is 

observed.  Peak to average power ratio is a common quantitative measure to determine 

the degree of envelope fluctuation.   

 

Although, Hermite pulses can be fully described mathematically, the random 

binary data carried on the pulses makes analysis of the peak power complicated.  

Alternatively, a hybrid of analysis and simulation can be used to predict the peak power.  

In the worst case, all Hermite pulses are combined in additive fashion.  Instead of adding 

the actual Hermite pulses, their absolute values are summed.  Then the maximum of the 

sum is searched over the pulse period.  The peak power is then determined from the 

square of the maximum.  This approach delivers a semi-theoretical bound of the system 

peak to average power ratio (PAR). 
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Figure 4.7 illustrates the absolute value of the all Hermite pulses in a  

4-dimensional system and their sum.  Using this approach, the peak to average power 

ratio is predicted to be approximately 6, or 7.8 dB.  The accuracy of the predicted method 

is validated by comparing the predicted peak to average power ratio with the values from 

simulation.  The simulation monitors the peak on a long generated waveform.  The results 

are compared in Figure 4.8.  According to the results, the prediction method and the 

simulation results are consistent for all numbers of Hermite pulses used.  Furthermore, 

the peak to average power ratio increases linearly as the number of Hermite pulses 

increases.  In the 8-dimensional system, the peak to average power ratio reaches 

approximately 10 dB. 

 

The simulated data suggests that the relationship between PAR and the dimension 

conforms to linearity.  Applying Minimum Least Square Error (MLSE) technique to the 

simulated data, the linear relationship is modeled as 

 

68.108.1 += NPAR      (4.11) 

 

where N is the number of Hermite pulses used or the system dimension.  The relationship 

is valid up to N = 10, and PAR is a linear ratio, not in decibels.  
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Figure 4.7  Absolute values of the first four Hermite pulses and their combination. 
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Figure 4.8  Comparison of the predicted peak to average power ratio (PAR) in linear ratio and the 
ratio monitored on a long transmit waveform.  The dashed line is the linear estimation of the 
relationship between PAR and Hermite dimension (N).   
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In the antipodal Hermite N-dimensional system, N Hermite pulses span over N bit 

periods of the rectangular NRZ pulses.  Each bit energy in Hermite system is distributed 

over N bit periods.  N orthogonal pulses are overlaid.  Thus, the added dimension extends 

the symbol period but the added dimension does not improve the spectral efficiency 

(bps/Hz).  At the same time, the additional dimension introduces a peaky transmit 

waveform.  Nevertheless, using additional dimensions does not require additional energy 

per bit to maintain a specific BER.  The results are as shown earlier.  In summary, 

increasing the number of pulses neither improves the bandwidth efficiency nor worsens 

the BER.  Both spectral efficiency and BER in AWGN are independent of the number of 

dimensions.  A longer symbol period is linearly gained from the larger dimension at the 

cost of higher PAR. 

 

The idea of dimension in Hermite waveforms is different from the case of M-ary 

Quadrature Amplitude Modulation (QAM).  In QAM, if a higher bit rate is needed, the 

QAM signal constellation allows more signal levels on the inphase and quadrature 

components.  The spectral efficiency is improved by the multi-level scheme.  The signal 

dimension of QAM is strictly 2: inphase and quadrature components, independent of the 

signal constellation.  The drawback is that, for a fixed occupied spectrum, doubling the 

bit rate requires roughly 6 dB of additional energy per bit to maintain the bit error rate 

[ZIE92].  For example, given a fixed symbol rate, the bit rate of a 16-QAM scheme (4 

bits/symbol) is 4 times that of QPSK (2 bits/symbol).  For the same symbol rate, both 

occupy the same transmit bandwidth.  However, an extra energy per bit of roughly 6×2 = 

12 dB is needed to maintain the same BER.  It is a bandwidth and power tradeoff.  PAR 

of QPSK and 16-QAM is as high as 7 dB and 8 dB, respectively [MUR00].  Note that the 

symbol period of M-ary QAM does not change as M increases.   

 

 

4.6 Chapter Summary 
 

The BER performance of Hermite baseband systems was simulated.  The results are 

consistent with the analysis.  A linear modulation to carry the Hermite baseband signal 
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over an RF channel is proposed.  Complex envelope representation is briefly reviewed.  

Then simulation of the modulated signal is implemented using the complex envelope 

representation.  It is found that the BER of the modulation scheme is identical to the 

baseband case.  Peak to average power ratio of Hermite system is discussed.  The chapter 

ends with a model of the linear relationship of PAR and the system dimension.  
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Chapter 5  

Constant Envelope Transmission of Hermite Signals 
 

 In the previous chapter, the combination of Hermite pulses introduces a high peak 

to average power ratio (PAR).  Using the waveform to amplitude-modulate the RF carrier 

does not affect the bandwidth efficiency.  However, the high PAR is disadvantageous.  In 

this chapter, the Hermite waveform is carried in the phase of the carrier.  Bandwidth 

efficiency and BER performance in AWGN are simulated.  

 

5.1 Relation to Existing Modulation Schemes 
 

Many attempts have been proposed to reduce the degradation in system 

performance caused by the envelope fluctuations that occurs in many digital modulation 

formats when Nyquist filtering is employed.  Offset quadrature phase shift keying 

(OQPSK), for example, is a successful attempt to reduce the envelope fluctuation, and 

improved BER performance is gained [GUN94].  Furthermore, linearly modulated 

signals require linear RF amplifiers.  In contrast, non-linearity of the amplifiers does not 

seriously affect the information contained in the phase or frequency of the carrier.  Thus, 

constant envelope modulation is power efficient in these systems[SAL94].   

 

 Minimum shift keying (MSK), one of the most popular constant envelope 

modulations, can be viewed as a special case of frequency shift keying (FSK).  In MSK, 

the frequencies for mark and space are separated by one half of the bit period.  MSK 

generation can be implemented by applying a non-return-to-zero (NRZ) waveform to an 

FM modulator.  In conventional FSK, the FM modulator produces only two frequencies 

for each modulating signal level.  However, the sharp transition from one to another 

frequency (discontinuous phase) introduces strong side lobes in the power spectral 

density of the signal.  Continuous phase FSK and MSK are two ways to avoid this 

problem. 
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 Gaussian Minimum Shift Keying  (GMSK) filters the NRZ baseband waveform 

by a Gaussian shaping filter before applying it to the FM modulator [MUR81].  The 

frequency transition is smoothed and continuous phase is maintained.  As a result, 

spectral side lobes are well suppressed.  Varieties of demodulation techniques for GMSK 

are reported.  The techniques range from a low complexity non-coherent 

limiter/discriminator [VAR91], multiple-symbol differential detection [ABR95] to 

coherent detectors [ISH84].  

 

 Instead of using a Gaussian-filtered waveform as an FM modulating signal, the 

baseband combined Hermite pulses are used.  Let us name this system Hermite Keying 

(HK).  There is a relation between HK and GMSK.  Let us consider the 0th Hermite pulse.   

 

     ( )2
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ψ      (5.1) 

 

and the impulse response of the Gaussian lowpass filter as used in GMSK  
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where B3dB is the 3-dB bandwidth of the filter defined by 
α

2/)2ln(
3 =dBB .   

 

Obviously, both impulse responses are in the same form.  From that result, 

Hermite pulses can be viewed as a dimensionally extended version of the Gaussian pulse.  

However, the generation methods of GMSK and constant-envelope Hermite signals are 

slightly different.  In GMSK, the NRZ waveform is filtered by a Gaussian filter to form a 

modulating signal for the FM modulator, while in a HK system, the NRZ waveform and a 

single filter are replaced by impulse trains driving a bank of Hermite waveform 

generators.  Hermite waveforms are likely to be synthesized digitally in practice.  A 

digital to analog converter is required to convert the discrete-time waveform to a 
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continuous-time waveform for the input of an FM modulator.  Figures 5.1 and 5.2 

illustrate block diagrams of GMSK and HK generations, respectively.   

 

 

 

 

 

 

 

 

 

Figure 5.1  Generation of GMSK using an FM modulator.  The Gaussian filter is bypassed if an 
FSK signal is desired.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2  Block diagram of constant-envelope Hermite system (Hermite Keying). 
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5.2 Bandwidth of Constant-Envelope Hermite System 
 

By Carson’s rule, FM bandwidth is bounded by  

 

)(2 maxffB pkTupper +∆=     (5.3) 

pkTlower fB ∆⋅= 2      (5.4) 

 

where ∆f pk and fmax are the maximum frequency deviation and the bandwidth of the 

modulating signal, respectively.  However, for the deviation ratio D defined by the ratio 

of ∆f pk and fmax less than one, the bandwidth is effectively restricted within 2fmax and FM 

modulation is categorized as narrow band.  The deviation ratio can be referred to as an 

FM modulation index.  A common notation for the FM modulation index is βfm.  The 

subscript fm implies that the modulating signal is an analog signal. . 

 

In an MSK modulation scheme, the frequencies for spaces and marks are 

separated by Rb/2.  Effectively, the maximum frequency deviation ∆f = Rb/4.  For the bit 

rate of Rb, a minimum baseband bandwidth of Rb/2 is required to satisfy the Nyquist 

criterion of zero intersymbol interference (ISI) without a multi-level scheme [NYQ28].  

The digital modulation index for MSK is 0.5 [PRO95].  As in the analog case, the 

modulation index can also be determined from the ratio of ∆f pk and fmax, 
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Compared with the NRZ pulse of MSK, the pulse width of the Gaussian shaped 

modulating signal of GMSK is broader.  The effective baseband bandwidth to drive the 

FM modulator decreases.  Therefore, for the same maximum frequency deviation, the 

occupied bandwidth of GMSK is reduced.  The penalty is that the narrower the 
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bandwidth, the more ISI is introduced.  BER performance deteriorates.  It is a bandwidth 

efficiency tradeoff. 

 

 The results from Chapter 2 suggest that the bandwidth of the Hermite pulses that 

keeps 95% of energy in the symbol period is equal to the bandwidth of the raised cosine 

pulse with a roll-off factor of 0.24.  At most, 5% of the leaking bit energy interferes with 

the adjacent symbols.  Therefore, Hermite pulses should be a bandwidth-favor 

modulating signal for the FM transmitter.  Nevertheless, Carson’s rule suggests that the 

FM transmit bandwidth could increase if the maximum frequency deviation gets large.  

Unfortunately, the waveform consisting of Hermite pulses is peaky. 

 

As discussed in Chapter 4, the Hermite waveform peak to average power ratio 

increases linearly with the dimension of the system.  The peak of the modulating signal 

implies a larger maximum frequency deviation ∆f pk and tends to broaden the FM 

bandwidth.  It is hope that the peaking effects on the FM spectrum are minimized with 

proper arrangement. 

 

Given the carrier frequency fc, the instantaneous phase of an FM signal in radians 

is written as 

 

∫
∞−

+=
t

mc dgftft ττππφ )(22)(     (5.6) 

 

where fm is the maximum frequency deviation and g(τ), whose maximum absolute value 

is typically set to unity, is the modulating signal.   

 

The derivative of the instantaneous phase yields the instantaneous frequency. 

 

)()( tgfftf mc +=      (5.7) 
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In MSK, a special case of FM modulation, the modulating signal gMSK(t) is an 

NRZ waveform.  Its instantaneous frequency, depending on the binary state transmitted, 

is either fc+fm or fc-fm, where fm = Rb/4, one quarter of the bit rate.  GMSK has a Gaussian-

shaped modulation signal, gGMSK(t).  One approach to compare the occupied bandwidth of 

the two is to set the maximum frequency deviation of both cases identically. 

 

 Between MSK and HK, the approach concerning ∆f is not appropriate since the 

Hermite modulating signal is peaky.  An alternative method is the constraint on identical 

energy per bit (Eb) in the NRZ baseband signal of gMSK(t), the MSK waveform and gHK(t), 

the Hermite modulating signal.  This method is based on the assumption that after an FM 

demodulator, both systems have the same power and the BER can be fairly compared.  

The gHK(t) baseband waveform will force the carrier frequency to deviate more than the 

NRZ baseband waveform used to generate MSK signals.  However, the high peaks of the 

HK modulating signal occur occasionally only in short periods.  In addition, the baseband 

bandwidth of gHK(t) is narrower than that of the NRZ waveform for the same bit rate.  

Therefore it cannot be justified that the bandwidth efficiency of HK is worse. 

 

The power spectral density (PSD) of an MSK waveform is described in a closed 

form in [GRO76].  In contrast, the PSD of a GMSK waveform is obtained from either 

simulation or empirical results.  The spectrum depends on the 3-dB bandwidth of the 

Gaussian filter.  In the case of HK, more parameters are involved: the dimension of HK 

and the constraint on the percentage of the energy in the symbol period.  The former 

directly influences the modulating signal peak while the latter affects the bandwidth of 

the modulating signal (fmax).   

 

The PSD of an MSK, GMSK, 4-dimensional HK and 16-dimensional HK are 

compared in Figure 5.3.  The 3-dB bandwidth of the GMSK Gaussian filter is set to 

0.5887 on the normalized scale (BT).  At this 3-dB bandwidth, degradation caused by the 

ISI is said to be minimum [ISH80].  Both HK modulating signals are generated under a 

99% symbol energy criterion.  The absolute bandwidth of each participating modulation 
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scheme is infinite.  Table 5.1 lists the bandwidths in which some specific percentages of 

power are contained.   

 

According to Figure 5.3, the spectrum of HK is monotonically decreasing. The 

overall shape looks like a triangle without both nulls and sideband ripples.  Spectral 

superiority between MSK and HK depends on how the occupied bandwidth is defined.  

According to Table 5.1, the 4-HK is spectrally superior for the 90%, 95% and 99.9% 

energy criteria.  However, if 99% is the criterion, MSK becomes preferable.  GMSK is 

the best in terms of bandwidth efficiency among the three.  In fact, GMSK bandwidth can 

even be lowered but it comes at the cost of higher BER due to ISI [MUR81].   

 

Using the formula (4.11), the peak amplitude of a 16-HK modulating signal is 

predictably about 8 times that of the 4-HK waveform.  However, the higher amplitude 

dynamic range of the modulating signal does not significantly expand the RF bandwidth.  

The bandwidths of the 16-HK and the 4-HK are trivially different.  Increasing the 

dimension does increase the peak to average power ratio but does not change the RF 

bandwidth significantly.  

 

GMSK bandwidth efficiency improves significantly if the 3-dB bandwidth of the 

Gaussian filter is decreased.  Such a filter allows more ISI.  Similarly, ISI is introduced in 

the Hermite system as well if the constraint on the pulse energy is relaxed.  The gain is 

that the bandwidth of the modulating signal is lowered.  The Hermite modulating signal 

with ISI does improve the occupied RF bandwidth but it is not as large an improvement 

as in the case of GMSK.  Figure 5.4 illustrates the PSD of HK at various pulse energy 

constraints and dimensionality (the number of dimensions used).  Table 5.2 summarizes 

the RF occupied bandwidth of the HK shown in Figure 5.4. 
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Percentages of RF Power 
Modulation 

90% 95% 99% 99.9% 

0.59-GMSK 0.72 0.84 1.06 1.67 

MSK 0.78 0.90 1.20 2.75 

99% truncated 4-HK 0.79 1.02 1.55 2.17 

99% truncated 16-HK 0.84 1.07 1.54 2.21 

 

Table 5.1  Occupied RF bandwidth (BRFT) containing at least the given percentages of the RF 
power.  The bandwidth is normalized by Rb reported in units of BT, bandwidth-bit period product. 
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Figure 5.3  Comparison of power spectral densities of an MSK, GMSK, 4- and 16-dimensional 
HK.  Only the upper side spectrum above the carrier frequency is shown.  The abscissa is 
normalized by the bit rate.   
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Percentages of RF Power 

Modulation 
90% 95% 99% 99.9% 

90% truncated 4-HK 0.82 1.02 1.40 2.00 

90% truncated 16-HK 0.81 1.03 1.47 2.14 

99.9% truncated 4-HK 0.79 1.07 1.66 2.40 

99.9% truncated 16-HK 0.82 1.08 1.59 2.35 

 

Table 5.2  Comparison of HK occupied RF bandwidth (BRFT) at various constraints on percentage 
of pulse energy and dimensions.  The bandwidth is normalized by Rb and reported in units of BT, 
bandwidth-bit period product. 
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Figure 5.4  Power spectral densities of HK at various pulse energy criteria and dimensions.  Only 
the upper side spectrum above the carrier frequency is shown.  The abscissa is normalized by 
the bit rate.   
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5.3 Detection of Constant-Envelope Hermite System Signals 
  

Matched filters are the optimal digital receiver for which the output signal to noise 

ratio is maximized.  The minimum number of matched filters required by the optimal 

receiver is equal to the dimension of the system [PRO95].  Although, the dimension of a 

Hermite modulating signal is known, the dimension of a Hermite Keying (HK) transmit 

RF waveform is not obvious.  Therefore it is not practical to use matched filter receivers 

in this case.  A non-optimal but robust receiver is discussed in this section. 

 

The complex envelope representation of an FM signal can be written as 

 









== ∫

∞−

t

mCE dgfjtjts ττπφ )(2exp)(exp()(    (5.8) 

 

In an HK system, the modulating signal is described by  
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where 1, ±=kna . 

 

Consider the first symbol period in a causal system (t ≥ 0).  The complex envelope 

representation is reduced to 
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There are 2N possible symbols of sCEsym(t) spanning over one symbol period, which is 

equal to N bit periods.  Thus, the number of filters required in a matched filter receivers is 

2N, the number of possible symbols.  The complexity increases by power of 2 for each 
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additional dimension.  This is a disadvantage of angle modulation compared to baseband 

or linear modulation, whose number of filters is linearly increased by an added 

dimension, i.e., N matched filters are needed for an N dimensional system.   

 

 A widely used non-coherent FM receiver is shown in Figure 5.5.  The receiver 

makes use of a combination of a limiter and a discriminator followed by a post-detection 

processor.  Of course, the receiver is not optimal, but it is robust.  In the absence of noise, 

the limiter and discriminator extract the derivative of the phase, which exactly is the FM 

modulating signal.  The post processor for the HK signal is a Hermite baseband detector.  

It consists of a bank of Hermite corrlelators and a sampling circuit.  Note that this block 

diagram works with MSK as well but the Hermite detector can simply be replaced by an 

integrate-and-dump circuit.   

 

If the input to the FM detector is white noise, the output of the FM discriminator 

is no longer white [ZEI90].  The noise at the input of the post-processor is colored.  The 

post-processor, which is a matched filter receiver designed for AGWN, is hence not 

optimal.  Some degradation of BER is expected. 

 

 

 

 

 

 

 

 

 

Figure 5.5  Limiter and Discriminator receiver with post processor.  The signal represented in the 
complex envelope is italicized. 
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5.4 Discriminator Noise for Hermite Keying 
 

Let s(t) = cos(ωct +φ(t)) be a transmitted FM signal.  The FM signal is corrupted by 

AWGN in the channel.  The received signal at the output of the IF filter is the sum of the 

signal and the bandpass noise, n(t) = nc(t)cos(ωct) + ns(t)sin(ωct).   

 

)sin()()cos()())(cos()()( ttnttntttAtr csccc ωωφω +++=   (5.11) 

 

where A(t) is the possibly non-constant amplitude of the IF carrier .  The noise terms can 

be rewritten as  

 

))(sin()())(cos()()( tttytttxtn cc φωφω +−+=   (5.12) 

where 

))(sin()())(cos()()( ttnttntx sc φφ +=     (5.13) 

and 

))(sin()())(cos()()( ttnttnty cs φφ +=    (5.14) 

 

The newly rewritten form expresses the noise components relative to the modulated 

phasor.  Thus, r(t) becomes  

 

))()(cos()()( ttttRtr c θφω ++=    (5.15) 

where  
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Assuming no fading and no effects from the IF filter, A(t) is a constant.  However, R(t) 

still fluctuates because of the noise components.  The derivative of the received signal is 

the desired signal plus frequency noise. 

 

)(
)]()[()()]([)( 2 tR

txtytytxAt
&&& −+

=θ     (5.18) 

  

The relative inphase and quadrature components of the noise, x(t) and y(t), and 

their derivatives are Gaussian and independent [RIC63].  The probability density function 

(pdf) of the frequency error is difficult to evaluate, but it looks Gaussian, especially for 

high signal to noise ratios or large values of the received signal amplitude A [CAS99].  

This can be validated as the follows.  For a large signal to noise ratio and the carrier 

unmodulated, i.e., φ(t) = 0, A >> x(t) and y(t) ,the )(tθ  and )(tθ& can be estimated by  

 

A
tyt )()( ≈θ       (5.19) 
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tdn
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K

t sD )(
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The power spectral density (PSD) of the frequency noise is just the PSD of the 

derivative of the white noise process ns(t).  The transfer function of the differentiator 

Hdiff(f) is KD f.  Thus, the PSD of the frequency noise, which is the output of the 

differentiator, becomes 

 

2
2

2

)( fN
A
K

fS o
D

nF =      (5.21) 

 

where No is the PSD of ns(t).  Therefore, the PSD of noise from any FM demodulators is 

proportional to the baseband frequency squared. 
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Occasionally, x(t) < -A and y(t) goes through zero.  This causes the phasor to 

encircle the origin rapidly.  The instantaneous phase, φ(t) + θ(t), jumps by either 2π or  

-2π, depending on the direction of the encirclement.  The discriminator output responds 

to the phase jump with a spike.  This phenomenon is called an FM click.  Integrating the 

spike in the short period returns an area of ±2π.   

 

 In a digital FM receiver, a non-coherent detector makes use of a 

limiter/discriminator (L/D) and is followed by either integrate-and-dump (I&D) or 

sampling-and-hold (S&H) bit detection.  The I&D circuit reintegrates the output of the 

discriminator over the bit period.  The output of the S&H, on the other hand, simply takes 

the instantaneous frequency at the center of the bit interval.  Detailed analysis can be 

found in [PAW88].   

 

An MSK time waveform with bit rate of Rb can be written as  
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R
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The received signal in a complex envelope form is represented by 
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The wanted phase is φ(t) = 2π(Rb/4)t.  In the absence of noise, integrating the output of 

the L/D detector over the bit period Tb = 1/Rb returns either π/2 or -π/2.  Noise changes 

the output values and this is called phase noise.  If strong noise is present, an FM click is 

likely to occur.  The )(tθ quickly jumps by 2π and thus integrating )(tθ& , the derivative of 

)(tθ , over Tb or even a short period of time causes an additional ±2π added to the output 

of the L/D with an I&D.  Thus, in addition to the continuous phase noise, the clicks 

aggravate the BER performance.  It has been concluded that for a digital modulation 
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index of 0.7, the phase noise and the click equally contribute to the BER.  The click effect 

dominates the BER for higher modulation indexes and the influence of the click can be 

neglected for lower modulation indexes [PAW99].   

 

 Click rate is a helpful too in evaluating the BER of digital FM.  In Hermite 

Keying (HK) detection, analysis of FM clicking effects on BER is more complicated.  

The output of the L/D must be multiplied by a proper Hermite pulse first then I&D is 

performed.  Assuming there is a click from the output of the L/D detector, multiplying the 

Hermite pulse weighs the spike.  Hence, the integral of the weighed spike is not always 

±2π.  Depending on its location, the spike could be cancelled out by a zero in the 

multiplying Hermite pulses or amplified by the pulse.  Although the click rate can be 

determined, it is still complicated to evaluate the BER degradation due to the click on HK 

system.  Nevertheless, there are various FM threshold extension methods to combat the 

clicks [POL88].  

 

Because of the linearity of Hermite correlators, the pdf of the noise at the output 

of the correlator preserves the Gaussian distribution property.  The PSD of the input noise 

is not white and is described by (5.21).  The PSD of noise at the output of the nth Hermite 

correlator becomes 
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where Hn(f) is the transfer function of the nth Hermite correlator. 

 

The integral of So,n(f) over frequency yields the noise output power, which directly 

affects BER.  Although the output powers of all Hermite correlators driven by an impulse 

(flat spectrum) are equal, the inputs to the filters are not white - they exhibit the classical 

baseband frequency squared dependence of all FM demodulators.  The output noise 

power of one Hermite correlator differs from another Hermite filter.  Therefore the BER 
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observed for different dimensions is not identical.  Note that in the linear modulation 

discussed in Chapter 4, BER is independent of dimensionality.   

 

An ideal transfer function to minimize the noise output should have an amplitude 

response of the transfer function packed about zero (DC), where the input noise power 

density is minimum.  The 0th order Hermite correlator matches that requirement.  

Unfortunately, the higher the order of the filter, the more the transfer function is 

distributed away from DC.  As a result, more noise is present at the output of the FM 

demodulator for the higher order filters.  Therefore the BER corresponding to a high 

order waveform is worse than that of the lower orders.  Dimensionality plays an 

important role in BER of angle modulated Hermite system. 

 

 

5.5 Power Spectral Density in Hermite Keying Systems 
 

Rather than attempting an analysis, simulation is used as a tool to evaluate BER 

performance of Hermite Keying (HK) in AWGN.  First, the relationship between signal 

to noise ratio (S/N) and bit energy to white noise density ratio (Eb/No) is discussed.  Then, 

an investigation addresses FM noise power and spectra at the input and output of the 

Hermite filters (the post processing unit).  Finally, system performance is evaluated by 

simulation of BER versus Eb/No.  The results are then compared to the BER performance 

of the linear modulation.   

 

5.5.1 Relationship between Power to Noise Ratio and Bit Energy 

Signal power and bit energy are related by  

 

b

b
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S =      (5.26) 

where Tb is the bit duration.   
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If AWGN is filtered by a brick-wall IF bandpass filter with bandwidth B, noise power at 

the output of the filter becomes  

 

oBNN =      (5.27) 

 

Hence, the signal to noise ratio and bit energy are related by  

 

o

bb
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S /
=      (5.28) 

 

In the cases of raised-cosine filtered BPSK and QPSK, noise equivalent bandwidth is 

equal to the transmit symbol rate, independent of signal bandwidth or the roll-off factor 

of the raised-cosine filter.  The S/N is simplified to Eb/No and 2Eb/No for BPSK and 

QPSK, respectively [PRA86].   

 

Assume a brick-wall RF bandpass filter with a cut-off frequency of kRb is used in 

the Hermite FM system.  Using (5.28), the relationship between Eb/No and S/N becomes 

 

N
Sk
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E
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    (5.29) 

 

Since the absolute bandwidth of the HK waveform is infinite, the percentage of the signal 

power in the band is used to define HK bandwidth.  The parameter k is determined from 

the percentage used to define the HK bandwidth.  For example, assume 99.9% of signal 

power is used as the bandwidth constraint.  From Table 5.1, signal bandwidth for 4-HK is 

1.55Rb.  The constant k in (5.29) is then 1.55.  Compared with BPSK/QPSK, the noise 

bandwidth of an FM Hermite system is quite broad.  In this particular setup, S/N is not 

completely described without specifying what the corresponding IF bandwidth is.  On the 

other hand, Eb and No are independent of the filter.  Consequently, Eb/No is employed to 

compare BER throughout this chapter.  
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5.5.2 Noise Power at Post Processing Outputs 

A demonstration of how FM noise power unequally distributes and unevenly 

affects the dimensional BER of a Hermite system is as follows.  As shown in Figure 5.6 

with the switch is set to A, an unmodulated carrier is sent to an AWGN channel.  At the 

receiver end, an IF filter and limiter/discriminator (L/D) are chosen as an FM 

demodulator.  The signal from the FM demodulator is then passed to a Hermite post-

processing unit.  If noise is non-existent, the L/D returns zero and so do the Hermite 

correlators.  In the presence of noise, the noise PSD at the output of the L/D follows a 

square law and its power is reciprocal to the carrier power.  Since there is no information 

carried in the carrier, the output of the post-processing unit is due to the noise only.  The 

noise power levels at the output of different Hermite filters are then compared.   

 

Switching to Position B, the desired signal without noise is received.  The output 

from the FM detector is the linear combination of signed Hermite pulses.  The transmitted 

data bits are obtained by sampling the outputs of the post-processing unit.  The system 

gain is set so that the noise-free sampled output values are unity.  Fixing the system gain, 

with the switch at Position A, noise power at the output of the Hermite signal detector is 

computed from the time average of the squared output.  The output signal to noise ratio 

(SNR) of the Hermite filter outputs is defined by the ratio of the unity signal power and 

the noise power. 

 

 Figure 5.7 (a) and (b) illustrate the PSD of the FM noise at the output of the L/D 

detector for an unmodulated FM signal corrupted by AWGN at Eb/No of 3 dB and 10 dB, 

respectively.  Comparing Figure 5.7 (a) and (b), the PSDs are similarly shaped but the 

PSD corresponding to Eb/No of 10 dB is further suppressed (less power) and looks less 

white than the PSD corresponding to Eb/No of 10 dB.  Also shown in the figures, the 

noise PSD at the outputs of filters are shaped differently, depending on the Hermite 

correlator transfer functions.  The low order noise powers are less than the power of the 

higher orders.  For example, the PSD level at the output of the 0th filter is less than that of 

the 3rd and 7th filters.  The results are emphasized when the Eb/No get large, e.g., 10 dB.  

The simulation results agree with the analytical prediction discussed earlier in the section. 
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Figure 5.6  Block diagram to examine the noise PSD at the output of the FM limiter and 
discriminator (L/D) detector and at the output of the post-processing Hermite filters.  Switch A 
allows unmodulated carrier plus AWGN to be passed to L/D detector.  Switch B passes the HK 
modulated signal without noise to the receiver.  The signal powers in both case are Tb.  With this 
setup, unity bit energy, Eb, is constrained.   

 

 
 

At low Eb/No, the input to the L/D is almost noise only.  The noise PSD at the L/D 

output preserves the flat spectrum.  High Eb/No de-whitens the PSD at the output of the 

L/D.  Transfer functions of distinct Hermite correlators frequency-selectively react to the 

input colored noise.  As a result, the differences of the noise power at the outputs of 

distinct Hermite correlators are emphasized.  Figure 5.8 compares the SNR at the outputs 

of an 8-dimensional Hermite post-processor for some Eb/No.  At low Eb/No, 0 dB, for 

instance, the SNR at the output of the 0th and the 7th correlators are almost identical.  

However, at 13-dB Eb/No, the difference between the two is as high as 12 dB.  Note that 

the simulation turns the noise off when an HK signal is being transmitted.  The noise at 

the correlator outputs is determined based on transmission of an unmodulated carrier at 

the same power as the HK signal.   
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Figure 5.7  Noise PSD at the output of L/D detector and at the outputs of 8-dimensional Hermite 
detecting correlators given Eb/No of (a) 3 dB and (b) 10 dB.
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Figure 5.8  Signal to noise ratio at the output of the Integrate-and-Dump (I&D) detectors listed 
dimension-wise at various input Eb/No.  The setup is as shown in Figure 5.6. 
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Figure 5.9  Comparison of the I&D output SNR for 4-, 8- and 16-dimensional systems.  For the 
same transmit Eb/No, the highest orders of the system (3rd , 7th and 15th for 4-, 8- and  
16-dimensional, respectively) share almost identical output receiver Eb/No.  
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Figure 5.9 compares the SNR at the outputs of the Hermite correlators for 4-, 8- 

and 16-dimensional systems.  The simulated results suggest that for the same transmit 

Eb/No, the highest order correlators for all systems deliver about the same output SNR.  

For example, at Eb/No of 10 dB, the output SNR of the 3rd correlator in the 4-dimensional 

system and the ratio of the 7th correlator in the 8-dimensional system are about the same.   

 

 

5.6 BER of Hermite Keying System 
  

In the previous section, noise at the output of the limiter/discriminator detector is 

colored.  More specifically, the noise PSD increases proportional to the frequency.  

Hermite matched filters, optimal receivers for AWGN, are no longer optimal filters in 

this colored noise.  Consequently, the analytical relationship between BER and the input 

SNR derived for AWGN, as in Chapter 4, does not apply.  Nevertheless, the noise power 

present at the output of high order Hermite filters is greater than at lower order outputs.  

Therefore, BER on higher order dimensions is expected to be larger.   

 

 A configuration of an HK transmission system is shown in Figure 5.10.  The 

diagram also includes an optional preemphasis and deemphasis circuits, which can be 

implemented either in continuous or discrete domain.  The block diagram suggests 

alternative points where the digital/analog conversion can be placed.  In simulation for 

BER, all signals are converted to complex envelope representation to avoid sampling at 

the double the carrier frequency.  The noise is also represented by a band-limited 

baseband complex signal, whose PSD is brick-wall like.  BER is determined and recorded 

dimension-wise.  The results are shown in Figure 5.12 and Figure 5.13. 
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Figure 5.10  An implementation block diagram of Hermite Keying system with BER evaluation.  
The preemphasis and deemphasis are optional and can be implemented either in continuous 
(D/A at Point A) or discrete (D/A at Point B) domain.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.11  Amplitude responses of discrete-time preemphasis and deemphasis filters.  The cut-
off frequency chosen at fTb = 2 is well above the Hermite modulating signal bandwidth.  With 
digital filter allows placing the cut-on frequency arbitrarily close to DC (fTb = 0). 
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Figure 5.12  BER of an 8 dimensional HK.  The higher order dimensions yield worse BER.  To 
achieve a BER of 10-6, the 0th dimension requires Eb/No less than 14 dB while the 7th dimension 
needs about 17 dB.  The required powers are different by 3 dB.  The system does not invoke 
pre/deemphasis. 
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Figure 5.13  Average BER of different dimensional system compared to non-coherent FSK.  To 
achieve a BER of 10-6, the 8- and 16-dimensional Hermite Keying systems require about 2 dB 
more power than the FSK does.  The average BER of the 4-dimensional system is the worst.  
Compared with the FSK, additional power of 3-4 dB is needed.   
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 Figure 5.12 shows BER of an 8-HK transmit signal versus Eb/No.  In this 

simulation, the system does not invoke preemphasis.  It is assumed that the RF bandwidth 

is 2Rb, which certainly covers almost 99.9% of the signal bandwidth.  No other effects of 

the RF filter are taken into account in this simulation.  In fact, the simulator represents the 

filtered AWGN by a baseband complex envelope representation.  Effectively, the cut-off 

frequency is Rb.  According to Figure 5.12, the BER of the 7th dimension is the highest as 

anticipated.  The average BER conforms to the BER of the 5th dimension. 

 

 Figure 5.13 compares the average BER of 4-, 8- and 16-HK.  At Eb/No under 10 

dB, the simulated BER of all HK systems are roughly the same.  When Eb/No gets larger, 

dimensionality starts to improve the BER.  A BER of 10-5 is achieved by an Eb/No of 14 

dB and 15 dB on the 16- and 4-dimensional systems, respectively.   

 

BER of non-coherent FSK is written as [COU93]   
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o
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P 2
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, exp .    (5.30) 

 

 Compared with the HK, non-coherent FSK outperforms HK for all Eb/No 

simulated.  However, the HK is simulated without preemphasis/deemphasis.  An 

improved HK system is investigated in the next section. 
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5.7 BER Improvement by Preemphasis/Deemphasis 
 

In analog FM, signal to noise ratio at the output of the detector can be improved if 

preemphasis and deemphasis are used [COU93].  Deemphasis is basically a lowpass filter 

at the output of the FM demodulator, which suppresses the large amount of high 

frequency FM noise.  A filter with a transfer function proportional to 1/f exactly 

neutralizes the increasing noise power with frequency.  A side effect is that the 

deemphasis also lowers high frequency components of the wanted signal as well.  The 

problem can be cured by pre-distorting the modulating signal by using a proper highpass 

filter so that there is no net effect on the signal after the deemphasis process.  A typical 

preemphasis and deemphasis magnitude response pair is illustrated in Figure 5.11.  The 

filters can be simply implemented by RC circuits [ZIE90].  However, it is recommended 

to implement the preemphasis/deemphasis digitally since the Hermite filters are in digital 

format already. 

 

 BER performance improvement gained from the pre/deemphasis for an 8-

dimensional HK is illustrated in Figure 5.14.  Comparing to Figure 5.12, the BER 

associated with the low order dimensions are hardly improved.  In contrast, considerable 

improvement is gained on the high order dimensions.  The pre/deemphasis narrows the 

differences of BER among the dimensions.  The average BER of the systems with 

pre/deemphasis and the analytical BER of non-coherent FSK are compared in Figure 

5.15.  The pre/deemphasis considerably reduces the required Eb/No for BER = 10-5, up to 

1 dB in the 4-dimensional system.  The improvement obtained from the pre/deemphasis 

on the 8- and 16-dimensional system are not as much as on the 4-dimensional system.  

Nonetheless, the simple pre/deemphasis system brings the BER of HK system close to 

the BER of the non-coherent FSK.   
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Figure 5.14  BER of 8-HMSK with pre/deemphasis listed in dimension order.  Little BER 
improvement is found on the 0th dimensional BER but the 7th dimensional BER is significantly 
improved. The gap between the two is considerably narrowed.   
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Figure 5.15  Comparison of average BER when pre/deemphasis are used.  BER of HK comes 
close to that of non-coherent FSK.  BER of noncoherent GMSK depends on the constraint on the 
BT bandwidth. The best performance is about the same as that of FSK [ELT89].  
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Figure 5.16  Comparison of Hermite baseband waveform (dotted) and pre-emphasized waveform 
(solid).  The pre-emphasized waveform is attenuated so that both waveforms share an identical 
power.  Signal powers after the FM demodulator in both cases are equal.   
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Figure 5.17  Comparison of bandwidth efficiencies of 16-HK signals with and without 
preemphasis.  The preemphasis introduces trivial effects on the transmit bandwidth. 
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The presence of the simple pre/deemphasis shows the promise of BER 

improvement, especially on the high Eb/No.  However, the modules are not yet optimized.  

Properly designed pre/deemphasis modules could further lower the BER of HK, 

especially on a larger dimensional system.   

 

Another concern is focused to the penalty on RF bandwidth introduced by the 

preemphasis.  The preemphasis amplifies the high frequency component of the FM 

modulating signal.  Hence, the RF bandwidth is possibly expanded.  Fortunately, the 

simulation results show that the expansion of the RF bandwidth is insignificant.   

Figure 5.16 compares the original baseband Hermite modulating waveform and the pre-

emphasized waveform.  The pre-emphaized waveform is attenuated to maintain the same 

power as the original waveform.  As a result, the FM demodulated waveforms at the 

receiver for both cases are identical.  Figure 5.17 illustrates the minimum change in the 

RF spectrum when the preemphasis is used. 

 

The PSD is not the only concern on the RF spectrum allocation.  The PSD implies 

the average deviation.  The maximum instantaneous frequency deviation is also 

important.  The filter with cutoff frequency set at the HK bandwidth will remove some 

portion of the power from the transmitted or received signal.  The maximum frequency 

deviation of HK can roughly be estimated by the peak to average power ratio (PAR) 

discussed in Chapter 4.  For example, an 8-dimensional HK has a PAR of 10.28.  The 

maximum to average frequency deviation ratio is roughly 3.2.  A distortion free filter 

must allow more than 3 times the average bandwidth for the HK waveform.  

Nevertheless, the occurrence statistics of the maximum deviation is not studied in this 

dissertation.  These statistics would be useful to predict the degradation due to filtering.  

In the simulation, only noise is filtered to fit into the signal bandwidth while the wanted 

signal is not filtered.  Taking the filtering into account, the overall BER performance will 

certainly degrade because of the frequency deviation beyond the filter cutoff frequency.   

 



Chapter 5 

 

108

5.8 Chapter Summary 
 

In this chapter, Hermite waveforms are used as a modulating signal in FM systems.  

The system is named Hermite Keying (HK).  The bandwidth is compared to MSK and 

GMSK.  SNR at the outputs of the FM limiter/discriminator and Hermite baseband 

detector are investigated.  BER of the HK is compared with non-coherent FSK.  The 

BERs for each dimension of the HK signal are not identical because of the uneven SNR 

at output of Hermite baseband detector.  Significant BER improvement is achieved by 

using pre/deemphasis.  It is shown that the pre/deemphasis has insignificant effect on HK 

transmit bandwidth. 
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Chapter 6  

Performance in a Mobile Satellite Channel 
 

In a mobile communication system, blocking of the signal, and signal arrival via 

multipath are persistent problems.  Multiple copies of the transmit signal possibly arrive 

at the receiver at different times.  The delay on the multipath severely degrades the 

communication link, especially when it becomes large relative to the symbol period.  

Hermite pulses span, depending on the system dimension, over some certain bit periods.  

Consequently, for the same delay spread, the ratio of delay and symbol period is reduced.  

Possibly, the degradation caused by the delay diminishes in Hermite transmit systems.  

The immunity to delay spread of Hermite system is investigated in this chapter.   

 

 

6.1 Choice of Channel Model 
 

A number of mobile channel models are proposed for different kinds of 

communication links.  A model of a cellular communication channel treats the received 

signal as the sum of three components: the wanted signal in the main path, its delayed 

multipath signal and a co-channel interference signal.  Each signal envelope is Rayleigh 

distributed and the phase is uniformly distributed over (0, 2π) [RAP02].  Additionally, 

the signal powers vary rapidly (fast fading).  It has been shown analytically that BER 

degradation due to multipath, when π/4 differential quadrature phase shift keying (π/4-

QPSK) is used as the modulation technique, increases as the ratio of delay spread to 

symbol period increases [LIU90].  The results are confirmed by simulation in [FUN93].  

As a result, high data rate transmission, with its short bit period, undergoes more severe 

BER degradation.   

 

Instead of using the cellular channel, a mobile satellite channel is chosen.  The 

mobile satellite channel consists of a direct lognormal path and a Rayleigh-distributed 

delayed multipath [LOO85].  The difference between the cellular model and the mobile 
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satellite model is in the characteristics of the direct path component.  The direct path of 

the mobile satellite model is assumed to be under shadowing.  The net result is that its 

amplitude varies lognormally.  However, the model does not include the effects of 

random phase on the direct path.  In contrast, the power envelope of the main path in the 

cellular channel is Rayleigh distributed and the carrier phase is also random.  Since the 

aim is to investigate the benefits of the spread symbol period using Hermite Keying (HK) 

against the distortion caused by the delayed multipath component, the less complicated 

mobile satellite model is the better choice.   

 

 

6.2 Brief Survey of Non-Frequency Selective Mobile Satellite Fading 

Channels 
 

Many mobile satellite models assume no multipath delay.  Available models are 

surveyed in this section.  Without the multipath delay, the received power fluctuates but 

the waveform is not distorted.  The channel is considered a flat or non-frequency 

selective channel.  On the other hand, if the received waveform is distorted by the 

delayed multipath component, the channel is said to be a frequency selective fading.  

BER performance of the HK technique in the frequency selective fading is investigated in 

the section after next.  

 

Signal fading in mobile communications can be categorized into two types: large-

scale fading and small-scale fading.  The large-scale fading reflects the statistical path 

loss attenuation caused by prominent terrain contours.  This kind of fading is usually 

referred to as shadowing [SKL97a].  Shadowed paths introduce variation of the mean of 

the local received power.  Lognormal is widely accepted as best describing the 

distribution of the shadowing phenomenon in space [JAK74].  Meanwhile, rapid and 

dramatic changes in the received signal power experienced over short travel distances is 

called small scale fading.  Either speed of the transceiver or radio multipath propagation 

can influence small scale fading.  The envelope of the resulting power is commonly 
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described by a Rayleigh distribution.  The Rayleigh distribution is modeled on the 

assumption that no non-fading dominant path exists.   

 

 Mobile-to-satellite communication channels experience both kinds of fading.  A 

model by Loo [LOO85], splits the received power into LOS and multipath components.  

The model assumes that only the LOS path is under shadowing and log-normally 

distributed.  Meanwhile, the multipath obeys the Rayleigh distribution with constant 

power. The total received power is just the sum of the two components.  Loo’s model is 

suitable for rural environments.  There is no multipath delay in Loo’s model. 

 

Based on statistics from data recorded, a model by Lutz et al. [LUT91] makes use 

of the states of the mobile.  If the mobile is in an unobstructed area, for example, the 

channel is modeled as the sum of a direct path from satellite and Rayleigh distributed 

signals reflected from a number of surrounding objects.  As a consequence, the resulting 

amplitude of the received signal is a Ricean process.  On the other hand, if the mobile is 

under shadowing, the received signal power is described by a conditional Rayleigh 

distribution with a mean that varies lognormally.  The distribution parameters depend 

strongly on satellite elevation angles.  Most of the time, mobiles travel across 

unobstructed and shadowing areas.  Details on superimposing the two distributions along 

with the distribution parameters are provided in the literature [LUT91].  

 

 Later, a Rice lognormal model was published [COR94].  The model extends 

Loo’s assumption by adding lognormal fading on both direct and diffuse paths.  By 

tuning the model parameters, the model is claimed to fit all types of environment (rural, 

suburban and urban).  Furthermore, the model is valid for both terrestrial and satellite 

links.  Suzuki model [SUZ77], a widely accepted model for urban areas, views the fading 

channel as a Rayleigh lognormal process.  It is, in fact, a special case of a Rice 

Lognormal Model.  In addition, Loo and Rice Lognormal models are shown to be a 

merged model [VAT95]. 
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 The above channels are not modeled with multipath delay.  The models focus on 

the statistic of the received power.  The transmitted bits are prone to be erroneous when 

the received power fades.  However, if a long delay is experienced via multipath, the 

channel encounters frequency-selective fading.  The combination of the wanted (direct) 

path and the delayed path introduces a distorted received signal.  Additional degradation 

of BER performance of the system is expected.   

 

Note that a BER performance degradation under frequency selective fading is 

analyzed by Liu and Feher [LIU91].  In the analysis, π/4 QPSK is transmitted to a two-

ray modeled channel with delay on the multipath.  The analytical results conclude that the 

degradation of BER is affected by the longer delay on the multipath channel and the 

power ratio of direct and multipath (C/M).  An interesting result is that for the same C/M, 

irreducible BER, or BER floor, increases proportionally with the delay.  Simulation 

results in [FUN93] agree with Liu and Feher’s analysis.  In Hermite Keying (HK), 

symbol periods span over several bit periods.  Tolerance to frequency selective fading 

possibly improves.  However, waveform distortion does affect the orthogonality of the 

Hermite pulses.  The interaction of the two on BER performance is investigated in the 

following sections. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  A frequency-selective fading model for a mobile satellite channel. 
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6.3 Frequency-Selective Mobile Satellite Channel Model 
 

 Extended from the Loo’s model [LOO85], a model for mobile satellite 

communication channels under frequency-selective fading is developed [DEG95].  The 

model is shown in Figure 6.1.  According to the model, the direct path component is 

under shadowing.  Its received signal power obeys lognormal fading.  Meanwhile, the 

scattered path is delayed and Rayleigh distributed.   

 

Let x(t) and y(t) be the complex envelope representation of the input and output of 

the channel, respectively.  The channel output y(t) can be expressed by 

 

)()()()()( 1 τβα −+= txttxtty
K

    (6.1) 

 

where x(t) is the input signal, α(t) is the lognormal shadowing process, β(t) is a zero-

mean, unity-power complex Gaussian process with independent real and imaginary 

components, τ is a fixed time delay and K is the ratio of the direct power to the multipath 

power..   

 

 The α(t) is, basically, a time-varying envelope of the transit signal x(t).  

Lognormality implies that XdB, the envelope power of x(t) in decibels, defined by 

20log(α(t)), is normal or Gaussian distributed with mean µdB and variance (σdB)2.   

  

),(~log20 dBdBdB NX σµα=    (6.2) 

 

The subscript dB reflects the way the lognormal distribution is defined by definition of 

decibels.  The shadowing multiplicative factor α(t) can be generated indirectly through a 

Gaussian process.   

 

),(~)( γγ σµγ Nt      (6.3) 
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where µγ = µdB and σγ = σdB 

 

The subscript dB is replaced by γ in order to be consistent with the one used in the 

literature.  The standard deviation σγ is usually referred to as dB spread.  The lognormal 

α(t) process is related to γ(t) by  

 

20/)(10)( tt γα =     (6.4) 

 

In analysis, the natural logarithm is more convenient than the base 10 logarithm.  

Let Xln be a logarithmic quantity defined by ln(α).  Xln and XdB are related by 

 

dBXX
20

)10ln(
ln =     (6.5) 

 

Xln is now Gaussian distributed with mean and variance defined respectively by  

 

dBµµ =ln      (6.6) 

222
ln dBh σσ =      (6.7) 

 

where h = ln(10)/20 = 0.115.  Therefore, α(t) can be alternatively generated by  

 

[ ])(exp)( tt λα =     (6.8) 

 

where  ),(~ lnln σµλ N . 

 

 Depending on which mean and variance system is chosen, the probability density 

function (pdf) of α can be written in various ways.  A widely adopted pdf is described by 

[LOO91] 
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On the scattered path, the envelope of the complex Gaussian process β(t) is 

Rayleigh distributed [PAP65].  The signal strength of the path of this model is controlled 

by the path gain 1/√K.  The envelope of the signal from the scattered path is then delayed 

by τ.  The non-zero τ introduces the frequency-selective characteristics of the channel.   

 

In summary, the carrier to multipath ratio (C/M) in dB is defined by 
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   (6.10) 

 

 If a clear line of sight (LOS) exists, both µγ and σγ are zero.  C/M then depends 

only on K, the power ratio of the direct and scattered path components.  Moreover, the 

channel is completely frequency-flat fading if the delay spread τ is zero.  A channel with 

C/M lower than 5 dB is considered as being under heavy multipath condition [DEG95].   

 

 A set of measured data reported in [LUT91] are selected and shown in Table 6.1.  

These parameters depend on types of antennas used, satellite elevations and 

environments.  In clear view, the Rice factor is used.  Conversely, in deep shadow, the 

channel is modeled as lognormal (µ10 and σ10).  Note that unlike many authors, the 

lognormal parameters in [LUT91] are defined over dB power.  The ratio of the clear view 

and deep shadow for a mobile traveling in an environment with a satellite angle is shown 

in the column of Time under Shadowing.  Nevertheless, the measured parameters do not 

complete the model in Figure 6.1 since the delay on the multipath channel is not yet 

included.   
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Table 6.1  Ricean and lognormal parameters selected from [LUT91].  All parameters are selected 
for an identical type of antenna.  The lognormal parameters µ10 and σ10 are defined over 
lognormal received power P, 10 log10(P). 

 

Satellite  

Elevation 
Environment 

Time under 

Shadowing 

Direct to Multipath 

Ratio 

(Rice-factor) 

Lognormal 

Mean, µ10 

Lognormal 

 σ10 

13° Highway 24% 10.2 dB -8.9 dB 5.1 dB 

13° City 89% 3.9 dB -11.5 dB 2.0 dB 

24° Highway 25% 11.9 dB -7.7 dB 6.0 dB 

24° Old City 66% 6.0 dB -10.8 dB 2.8 dB 

34° Highway 0.8% 11.7 dB -8.8 dB 3.8 dB 

34° City 58% 6.0 dB -10.6 dB 2.6 dB 

43° Highway 0.2% 14.8 dB -12.0 dB 2.9 dB 

43° City 54% 5.5 dB -13.6 dB 3.8 dB 
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6.4 Summary of System Parameters Used in Simulation 
 

 According to the mobile satellite model, many parameters can be varied.  They 

are listed as the follows: 

 
1. The AWGN floor, No.   

2. The shadowing mean and dB spread of the lognormal direct path: µdB and σdB.   

3. The power ratio of the direct and scattered path C/M. It is indicated by K in 

Figure 6.1. 

4. The delay spread τ on the scattered path.  Together with the symbol period T, 

the ratio τ/T, which indicates the degree of frequency-selectiveness, is formed.  

5. Dimension of the Hermite signals.  This directly affects the τ/T ratio. 

 

The constant envelope Hermite Keying (HK) defined in Chapter 5 with 

pre/deemphasis is the input of the channel.  Chapter 5 discusses the BER performance of 

the HK in AWGN.  This chapter extends the BER performance evaluation to a frequency-

selective fading channel.  In addition to AWGN, the received HK signal is impaired by 

the amplitude variation and the delayed multipath.  A worse BER is expected.  A few 

parameters are examined at a time.  Then, the interacting effects of the parameters for the 

more complete model are close up.    
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6.5 BER Degradation due to Slow Lognormal Fading 

 

Assume the multipath does not exist, i.e., the channel is lognormal.  Let Pe(Eb/No) 

be a BER for the given Eb/No for an unvarying channel.  Lognormal channels fluctuate 

the Eb/No and hence the associated BER.  Theoretically, the overall probability becomes 

 

∫
∞

=
0

2
, )/()( ααα dNEPpP obeLNe      (6.11)  

 

where α is lognormally distributed.  However, closed forms of the analytical BER are 

generally complicated and not provided for all modulation techniques.  Simulation is an 

alternative to determine the BER, and was used in this investigation of mobile satellite 

channels. 

 

 The lognormal channel used in the simulation is illustrated in Figure 6.2.  

Pre/deemphasis units are used on the 8-HK transmitter/receiver.  With them, the BER of 

the 8-dimensional HK is, as shown in Chapter 5, slightly worse than for non-coherent 

FSK.  The link is assumed to be slow fading.  Thus, the received power level α2(t) does 

not change during the symbol period.  In our simulation, the power level is randomized 

every two symbol periods.   

 

The simulation assumes that an Eb/No of 15 dB is received if the channel 

experiences no fading.  At 15 dB, BER of 10-6 is guaranteed on the 8-HK system.  Taking 

lognormal fading into account, the mean powers in dB (µdB) are set to drop from the 

unfaded power (Eb/No of 15 dB) by 3 levels: 0, 3 and 6 dB.  The simulated dB spreads 

(αdB) vary from 0-8 dB.  The simulation BER results are illustrated in Figure 6.3. 
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Figure 6.2  Model of the slow lognormal fading channel used in the simulation.  The received 
signal envelope α(t) is lognormally distributed.  The system invokes pre/deemphasis. 
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Figure 6.3  BER of a simulated 8-dimensional Hermite Keying (8-HK) in lognormal fading 
channels, assuming unfaded Eb/No of 15 dB.  The dashed lines are the BER of non-coherent 
FSK in the same channel obtained from the numerical integration method.  In Chapter 5, the BER 
of the NC-FSK in AWGN is slight better than the BER of 8-HK.  The same statistic of the received 
signal power variation maintains the slight advantage of NC-FSK over the 8-HK.  
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The BER for equivalent links using non-coherent FSK is also included in Figure 

6.3.  The plots are numerically generated, for the given Eb/No of 15 dB and lognormal 

parameters, by using the probability of error in lognormal channel defined in  (6.11), with 

probability of lognormal factor p(α) and the analytical BER of FSK defined in (6.9) and 

(5.30), respectively.   
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where ζ = Eb/No.  This simulation has an Eb/No of 10(15/10) = 31.6. 

 

Compared with the simulated overall BER of HK, the FSK slightly outperforms.  

As concluded in Chapter 5, the BER of the FSK is slightly better than of the 8-HK with 

the simple pre/deemphasis.  Therefore, the simulation results are not surprising.   

 

 

6.6 Degradation due to Delayed Multipath 
 

Assume the Rayleigh scattered path is present without delay (τ = 0).  The channel 

is a frequency-flat channel.  Depending on the characteristics of the direct path, the 

channel model illustrated in Figure 6.1 turns into either a simple Ricean channel or a 

lognormal satellite mobile channel.  In the case of the Ricean channel, the power on the 

direct path is constant.  In contrast, the direct path power of the latter is lognormal.  The 

probability density functions of the received signal envelope, p(α) for both cases are 

provided in [LOO91].  As long as the BER can be written in terms of Eb/No, the BER of 

the link can be obtained by numerical integration similar to the calculation of FSK in a 

lognormal channel in the previous section. 

 

Analysis becomes more complicated in the presence of delay spread on the 

scattered path.  Analytical BER for specific modulations and model channels have been 

published.  For instance, BER of π/4-QPSK in a Rayleigh frequency selective fading 
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channel is analyzed in [LIU91].  However, in the HK case, the analytical relationship 

between BER and Eb/No in a closed from is not available.  Simulation is a quick approach 

to determine the BER performance of the system, especially when many channel 

parameters are varied.   

 

 

6.6.1 Effects of Direct Path to Multipath Power Ratio (C/M) 
 

Let us maintain the constancy of the power on the direct path and remove the 

AWGN (infinite Eb/No).  No co-channel interference is assumed.  The signal dispersion is 

affected only by the multipath.  Three parameters to be examined are then  

(a) the delay spread τ 

(b) the power ratio of the direct and multipath K and  

(c) the dimension of the HK system.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4  Block diagram for a frequency selective fading channel simulation.  The direct path is 
free of fluctuation and the delay spread is fixed to Tb.  No AWGN is assumed.  The results are 
shown in Figure 6.5 and Figure 6.6. 

 
 

X

1/√K 

Delay
τ=Tb

Complex 
Gaussian 
Generator 

Σ
x(t) y(t) 

β 

dim 



Chapter 6 

 

122

The first investigation fixes the delay spread to one bit period (τ = Tb) and varies 

the direct path carrier to multipath power ratio (C/M) from 0 to 10 dB.  The BER 

performance is simulated on 1-, 4- and 8-dimensional systems.  The simulation block 

diagram is summarized in Figure 6.4.  Figure 6.5 lists the BER of a 4-HK link 

dimension-wise.  The average BER of different dimensional systems are compared in 

Figure 6.6.  In this simulation, the system is not affected by noise.  The received signal is 

distorted by the delayed copy of itself via the multipath.  The average BER of the four 

systems increases as the power of the multipath decreases.  As shown in Figure 6.5, the 

BER on the 0th dimension of the 4-dimensinal system is the least.  The results are 

consistent with HK in AWGN. 

 

According to Figure 6.6, under C/M of 7 dB, the numbers of dimensions used do 

not significantly affect the average BER.  At higher C/M, using the 1-dimensional system 

shows a BER advantage over the 4- and 8-dimensioanl systems.  Nevertheless, the 

disadvantage of the larger dimensional systems is subtle if the channel undergoes deep 

lognormal fading (C/M < 5 dB).   

 

An interesting result is on the BER of the 0th dimension.  The BER improves 

significantly as the number of dimensions grows.  Especially, in low C/M, the 0th  

order waveform of the 8-dimensional system tolerates the frequency selective fading 

better than the 0th order waveform of the 4-dimensional system.  As a result, one 

advantage of the larger system is that the information carried on the 0th dimension is 

secured in frequency selective fading.  Thus, the 0th dimension can be used to keep the 

most important bits in some applications; for example, the most significant bit of a datum 

acquired from sampling images, or the addresses in a data packet.  Therefore 

dimensionality does help in this application. 
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Figure 6.5  BER vs. Carrier to multipath power ratio (C/M) of a four-dimensional system listed by 
dimension.  The delay on the Rayleigh multipath is fixed at the bit period, τ = Tb.  Infinite Eb/No 
and no lognormal effect on the direct path are assumed.  
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Figure 6.6  Comparison of the average BER of 1-, 4- and 8-dimensional systems.  Under C/M of 
7 dB, the average BER are roughly the same.  However, the BER associated with the lowest (the 
0th) dimension, illustrated by the dashed lines, improves on the 8-dimensional system.  The 
assumptions used are as of Figure 6.5.     
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6.6.2  Effects of Delay Spread 
 

The previous section concludes that the higher the C/M, the lower the BER.  In 

this section, C/M is fixed to 6 dB and the delay spread varies from 0.1Tb to Tb.  The set up 

is as depicted in Figure 6.7 and the resulting BER are illustrated in Figure 6.8 and Figure 

6.9. 

 

According to Figure 6.8, the average BER increases as the delay spread increases.  

Again, the 0th dimension of the 4-dimensional system yields significantly better BER 

margin compared with the BER of the other higher dimensions.  As shown in Figure 6.9 

the margin of the BER of the 0th dimension and the average BER is emphasized in the 8-

dimensional system.  Dimensionality helps in securing the information carried on the 0th 

dimension.  Note that in the 8-dimensional system, no error is found on the channel with 

multipath delay of 0.1Tb.  The simulator monitors over 10 million trial bits.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7  Block diagram for a frequency selective fading channel simulation.  The direct path is 
free of fluctuation and the direct to multipath power ratio is fixed at 6 dB. The results are shown in 
Figures 6.8 and 6.9.   
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Figure 6.8  BER vs. delay spread of a four-dimensional system listed by dimension.  The C/M is 
fixed at 6 dB.  Infinite Eb/No and no lognormal effect on the direct path are assumed. 
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Figure 6.9  Comparison of the average BER of 1-, 4- and 8-dimensional systems.  The BER of 
the lowest order (the 0th) dimension are illustrated by the dashed lines.  The assumptions used 
are as of Figure 6.8.   
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6.6.3 Effects of Combination of C/M and Eb/No 
 

Earlier the bit energy to noise power density ratio was assumed to be infinite.  

This section deals with finite Eb/No.  As C/M gets sufficiently large, i.e., the multipath 

fades out, and the BER approaches zero.  However, if noise is present, the BER cannot go 

to zero.  The irreducible BER is limited by the AWGN.  The simulation block diagram is 

illustrated in Figure 6.10. 

 

Figure 6.11 shows BER versus C/M at various Eb/No.  The simulation assumes a 

multipath delay of 0.5Tb and has the Eb/No set at 8, 10, 12 and infinite dB.  C/M is then 

increased from 0 to 30 dB.  With infinite Eb/No, the BER approaches zero as the C/M 

increases.  However, finite Eb/No defines an irreducible BER floor.  There is no 

significant difference between 1- and 4-dimensional systems.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10  A model of frequency selective fading channel with AWGN included.  The simulation 
assumes that the direct path is free of fluctuation.  The BER results are summarized in Figure 
6.11 and Figure 6.12. 
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Figure 6.11  Average BER vs. C/M of 1- and 4-dimensional systems for the given Eb/No.  The 
delay spread is fixed at 0.5Tb.  No lognormal effect on the direct path is assumed. 
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Figure 6.12  Average BER vs. C/M of 1- and 4-dimensional systems for the given delay spreads.  
Eb/No is fixed at 12 dB.  No effect of the lognormal is assumed. 
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The simulation results illustrated in Figure 6.12 demonstrate how delay spread 

influences the BER with the presence of AWGN.  Three delay spreads, 0.1Tb, 0.5Tb and 

1Tb, are examined with an Eb/No of 12 dB.  The BER is evaluated for for 1- and 4-

dimensioanl Hermite Keying systems.  For the same C/M, longer delays increase BER.  

In all cases, larger C/M ratios improve the BER.  However, the BER improvement stops 

around 5×10-4 at a C/M ratio of about 15 dB.  There, the BER is limited by the 12-dB 

Eb/No. 

 

According to Figure 6.11, either a C/M of 5 dB or an Eb/No of 12 dB prevents the 

BER from going below 10-3.  Forward error correction (FEC), which adds redundant bits 

to the data stream, is capable of correcting some error bits.  Therefore, such an error 

control technique is needed to lower the irreducible errors.  FEC is beyond the scope of 

this dissertation. 

 

 In conclusion, given a fixed delay and Eb/No, the higher C/M, the lower BER.  

The BER improvement of the system is bounded by the Eb/No.  Increasing C/M, meaning 

the multipath is non-existing, gives no further reduction in BER.  Given a fixed Eb/No and 

C/M, the BER deteriorates, as multipath delay gets longer.  For a large C/M, the BER is 

dominated only by Eb/No.  No significant result is found on the 1- and 4-dimensional 

systems.   

 

In the case of frequency selective fading channels, the BER associated with lower 

order pulses of HK is significantly less than the average BER.  The lower order pulses 

should be used to carry the most important data of the transmission.  For instance, in a 

transmitted packet, address data is more crucial than the user data.  Address bits should 

be transmitted using the lower order Hermite pulses.  As a result, the uneven BER is an 

advantage of using HK in frequency selective fading channels. 

 

In the derivation of the optimal synchronization method, white noise is assumed.  

The BER on each dimension is supposed to be identical.  In AWGN case, the FM noise in 

HK is not white but the pre/deemphasis partially eliminates the difference between the 
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dimensional BER.  As a consequence, optimal synchronization, which includes all 

dimensions in determining the synchronization, is valid.  However, in frequency selective 

fading, uneven BER of HK with pre/deemphasis is observed.  It is possibly more robust 

to use only outputs from the lower order correlators to implement the synchronizer since 

they are more reliable.  The BER on the higher order dimension is worse so it possibly 

reduces the reliability of the synchronizer.  Further research on robust synchronization is 

needed. 

 

 

6.7 Chapter Summary  
 

In this chapter, models for a satellite mobile channel are reviewed.  Discussion 

focuses on the frequency-selective model.  The model parameters are discussed in detail.  

The effects of lognormal distributed direct path on the BER of Hermite Keying system 

are investigated.  The simulation examines the BER degradation caused by multipath 

delay and also the power ratio of direct and multipath signals.  Finally, AWGN is 

included in the model.  C/M and AGWN determine the floor of irreducible BER.   
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Chapter 7  

Results Summary and Conclusions 

 

In this dissertation, a new method for the transmission of digital data is introduced.  

The approach makes use of the orthogonality properties of Hermite waveforms that are 

used to represent digital data.  Hermite waveforms are derived from Hermite functions 

and have the property that all orders of waveform are orthogonal.  Multilevel signaling 

can be implemented by simultaneous transmission of several Hermite waveforms coded 

with different sections of a data stream.  Although the waveforms extend to infinity, the 

transmission of truncated waveforms leads to minimal inter-symbol interference, and the 

bandwidth required is comparable to that needed in conventional digital transmission 

systems using square root raised cosine (RRC) filtering.  

 

The investigation of the new communication system begins with an analysis of 

bandwidth efficiency of the chosen waveforms.  The discussion covers structures of the 

baseband transmitter and receiver, synchronization, techniques to carry the waveforms 

over radio links, the bandwidth and power efficiencies of Hermite waveforms when 

transmitted by modulation of an RF carrier, and finally performance in fading channels.  

The results are briefly summarized and conclusions are drawn in this chapter. 

 

 

7.1 Summary and Conclusion on Bandwidth Efficiency 

 

This dissertation analyzes the spectral efficiency of Hermite-based techniques in 

terms of bandwidth per data bit rate by using simulation.  It is found that in baseband 

communications, the bandwidth required to transmit binary data at a rate of Rb using 

antipodal Hermite pulses is 0.625Rb.  This bandwidth is identical to the bandwidth needed 

by a raised cosine pulse with a roll-off factor of 0.25.  The theoretical limit for zero ISI 

using binary waveforms is 0.5Rb.  Nevertheless, it is unlikely that a baseband system can 
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use a bandwidth less than 0.625Rb in practice.  Therefore, the bandwidth efficiency of the 

antipodal Hermite technique is considered excellent for baseband communications.   

 

Transmitting Hermite waveforms as RF signals can be implemented in either of 

two ways by using amplitude or frequency modulation.  Using AM, a total occupied 

bandwidth of 1.25Rb Hz is needed to transmit at a bit rate of Rb bits/second.  The 

bandwidth efficiency of the Hermite technique matches the bandwidth of BPSK filtered 

by a square root raised cosine filter with a roll-off factor of 0.25.  Typically, a roll off 

factor 0.25 is close to the minimum that can be used in practice with RRC filtering.  Note 

that first null bandwidth of unfiltered BPSK exceeds 2Rb.  QPSK makes use of quadrature 

carriers to double the bandwidth efficiency of BPSK.  The same approach can be applied 

to AM Hermite transmission as well.  Therefore, the bandwidth efficiency of AM 

Hermite transmissions is also excellent in a radio frequency link.  

 

 One difficulty is that Hermite waveforms are peaky.  The peak to average power 

ratio is a linear function of the number of orthogonal pulses used (dimension).  Hermite 

Keying (HK), in which the waveform is modulated onto an RF carrier using a linear FM 

modulator, is proposed as the best method for transmission of baseband Hermite 

waveforms.  Despite peaky modulating waveform, the shape of HK power spectral 

density is monotonically decreasing; unlike the case of MSK, no side lobes are observed 

in the HK spectrum.  It is found that when 99.9% of power of the HK signal is 

transmitted, the occupied bandwidth of HK is less than that of MSK even though FM 

preemphasis is used.  Hermite keying offers superior spectral efficiency to many common 

digital modulation techniques.  Therefore, HK has excellent bandwidth efficiency.   

 

In conclusion, the bandwidth efficiency of Hermite-based modulations can compete 

with other practical techniques for digital data transmission in both baseband and RF 

communications.  One may choose Hermite-based modulation techniques over others 

whenever multi-level signaling is needed without worry of bandwidth efficiency. 
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7.2 Summary and Conclusion on Bit Error Rate 

 

It is shown that an optimal receiver for a signal consisting of N orthogonal pulses 

(N-dimensional signal) can be implemented by using an array of dimension-wise matched 

filters.  In transmission of single-dimensional signals, the optimal relationship between 

the bit error rate (BER) and the ratio of bit energy and noise power spectral density 

(Eb/No) is commonly known.  This dissertation concludes that the relationship between 

BER and Eb/No also applies to the case of N-dimensional Hermite signals detected by 

using dimension-wise matched filters.   

 

Antipodal Hermite baseband waveform, an N-dimensional signal, more or less, 

allows some degree of intersymbol interference (ISI).  However, the ISI insignificantly 

affects the BER.  The BER performance of the antipodal N-dimensional Hermite 

waveforms is identical to that of other single-dimensional antipodal techniques.  An Eb/No 

ratio of 10.6 dB is required to reach a bit error rate 10-6, identical to the theoretical result 

for a polar binary waveform. 

 

Amplitude modulation is a simple method to carry the Hermite waveforms over 

radio links.  Analysis shows that AM-Hermite modulation yields the same BER as BPSK 

and QPSK.  BER is identical to the baseband case.  In both baseband and AM Hermite 

cases, errors are distributed evenly to all dimensions.  The results from simulation using 

complex envelope representation confirm the analytical results.  Without extra power 

efficiency gained from channel coding, modulation techniques alone cannot achieve 

performance superior to the BER performance of BPSK.  Therefore, AM-Hermite 

performs very well in terms of power efficiency.   

 

A constant envelope signal and simplicity of the detectors are always preferred in 

radio communications.  The BER performance of constant-envelope Hermite Keying 

(HK) with a limiter/discriminator, a simple FM detector, is compared to the BER 

performance of non-coherent FSK.  With the inclusion of a simple 

preemphasis/deemphasis process, the average BER of HK is very close to FSK in a 
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channel corrupted by white noise.  Thus, the performance of HK with a simple FM 

detector is satisfactory.   

 

To conclude the usefulness of having an extended symbol period, HK is tested in a 

frequency selective fading channel.  A summary of the BER performance of HK in the 

fading channel is as follows.  Both the delay and the power of the multipath plays an 

important roll in BER degradation.  Furthermore, the delay of the multipath spreads the 

errors unevenly to the Hermite dimensions.  The number of errors found on the high 

order Hermite pulses is greater than the number on the lower order pulses; BER for the 

0th dimension is considerably less than BER for the higher dimensions.  The difference is 

underlined either when the channel experiences long delay or the number of Hermite 

pulses used is large.  However, the larger dimension tends not to improve average BER.  

Only the data carried by the 0th pulse is more secure.  

 

It can be concluded that the BER performance of HK in a fading channel is about 

the same as GMSK (single-dimension HK) since the dimensionality does not improve the 

average BER.  Nevertheless, using N-dimensional HK can secure some important bits by 

carrying them on the 0th order pulse.  This is beneficial to some applications.  For 

example, digital data that is converted from an analog waveform can take advantage of 

the uneven error distribution.  The most significant bit of the sample is kept on the 0th 

pulse.  Because of fewer errors on the bits, fidelity will be gained when the received 

digital data is converted back to analog signal.  Therefore, N-dimensional HK is useful in 

frequency-selective fading environment and in certain applications.  It is a better choice 

than GMSK, at least for some specific applications.   
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7.3 PSD and Optimal Synchronization of Antipodal N- dimensional 

waveforms 

 

This dissertation aims to answer how efficiently the newly introduced modulation 

technique performs in terms of bandwidth and power.  The conclusion has been drawn in 

the previous two sections.  There are also interesting byproducts that are developed 

during the efficiency investigation: derivations of the PSD of antipodal N-dimensional 

waveforms and an optimal synchronization technique for the waveforms.   

 

A derivation for the power spectral density (PSD) for N-dimensional antipodal 

waveforms is extended from the commonly known single-dimensional waveform.  The 

shape of the PSD of an antipodal single-dimensional waveform can be obtained by the 

squared absolute value of the waveform Fourier transform.  For N-dimensional 

waveforms, the derivation in this dissertation concludes that the PSD is the sum of the 

squared absolute values of Fourier transforms of all participating orthogonal pulses.  The 

derived PSD for N-dimensional system assumes an equiprobable transmission of zeroes 

and ones in the data stream.   

 

Optimal synchronizers in AWGN for antipodal signals are already available.  In 

this dissertation, the theory is developed for optimal synchronization for more 

complicated N-dimensional signals.  Realization of the N-dimensional synchronizers is 

also developed.  Based on the newly developed theory, a simplified synchronizer that 

makes use of matched filters, which are already available for detection of the Hermite 

waveforms, is then designed.  The synchronizer performs well at an Eb/No of 3 dB and the 

speed of acquisition is comparable to that of other synchronizers used for digital data 

transmission.  This dissertation adds a valuable theory to communication engineering. 
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7.4 Conclusion 
 

A new method for the transmission of digital data using multi-level signaling is 

introduced in this dissertation; Hermite Keying.  Its performance is extensively evaluated.  

The results suggest that the new technique shows potential of usability in specific 

applications.  This dissertation contributes new theories on N-dimensional transmission, 

which certainly is beneficial to advanced study in Communications.  Further research is 

required to extend the technique to other applications, and to determine the relative merits 

of Hermite keying.  The analysis in this dissertation has been based on simulation and 

must be verified by the construction and testing of an N-dimensional Hermite 

transmission system. 

 

 

7.5 Suggested Further Research 
 

This dissertation focuses on the transmission of Hermite waveforms using 

amplitude and frequency modulations, with the assumption that the system can be 

implemented using simple non-coherent detectors.  Phase modulation is another method 

to carry the baseband Hermite waveform over a radio frequency channel.  It is expected 

that the BER should be improved over the FM technique proposed in the dissertation.  

The transmission techniques discussed in this dissertation are restricted to receivers that 

have non-coherent detectors.  Coherent detectors for Hermite Keying have not been 

investigated.  The BER performance of coherent detectors, in general, is better than that 

of non-coherent detectors.  It is worth studying such detectors.   

 

It would be interesting to investigate the usefulness of HK in a complete digital 

transmission system of which both address data and user data are transmitted.  It is 

possible that the digital modulation techniques that have uniform BER might lose the 

destination address or package identification information.  As a consequence, 

retransmission of the data is needed.  Hence, the overall throughput of the system 
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decreases.  Hermite Keying offers a way to provide more secure addressing and package 

ID bits by using lower order Hermite waveforms for these bits in the packet, and higher 

order waveforms for the data bits.  The BER for lower order waveforms has been 

demonstrated to be lower than for the higher order waveforms.  Throughput improvement 

should be possible in noisy channels.   In that case, Hermite Keying is an attractive 

modulation technique.  A channel coding technique for uneven BER should also be 

investigated.   
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