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(ABSTRACT)

In this thesis the right and left pole structure of a not necessarily regular rational
matrix function W is described' in terms of pairs of matrices-right and left p.ole pairs.
The concept of orthogonality in R" is investigated. Using this concept, the right
and left zero structure of a rational matrix function W is desribed in terms of pairs
and triples of matrices-right and left null pairs and right and left kernel triples. The
definition of a spectral triple of a regular rational matrix function over a subset o of C
is extended to the nonregular case. Given a rational matrix function W and a subset
o of C, the left null-pole subspace of W over o is described in terms of a left kernel
triple and a left o-spectral triple for W. A sufficient condition for the minimality of
McMillan degree of a rational matrix function H which is right equivalent to W on
o, that is a rational matrix function H of the same size and with the same left null-
pole subspace over o as W, is developed. An algorithm for constructing a rational
matrix function W with a left kernel triple (A,, B,., D.) and left null and right pole
pairs over o C C (A¢, B¢) and (Cn, A.), repectively, from a regular rational matrix
function with left null and right pole pairs over o (A, B;) and (Cy, A,) is described.
Finally, a necessary and sufficient condition for existence of a rational matrix function
W with a given left kernel triple and a given left spectral triple over a subset o of C

is established.
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Introduction

The central notion of this thesis is that of a matrix over the field R of scalar
rational functions. Such matrices can be also viewed as meromorphic functions from
the extended complex plane C,, into the space of matrices over C. As a consequence,
matrices over R can be approached from the point of view of an algebraist or an
analyst. Although the distinction is not always clear-cut, the author identifies himself
more with the latter point of view. This is reflected in the adopted name for matrices
over R: matrices over R are called rational matrix functions in this thesis. Matrices
of any size over the ring of polynomials in z will be called matrix polynomials. The
set of all m x n rational matrix functions, that is rational matrix functions of size

m X n, will be denoted by R™*",

Extensive research on rational matrix functions carried out recently is motivated
to a large extent by many applications in various branches of engineering. Transfer
functions and system matrices in Systems Theory are rational matrix functions (see
e.g. [K,R]). The concept of a rational matrix function is fundamental for the H®

control theory (see e.g. [F¥]).

A rational matrix function W is said to be regular if W is square and det W
is not identically equal to 0. Regular rational matrix functions of size n x n, n
a positive integer, form an algebra A over R such that each nonzero element of
A has an inverse in A. In fact, explicit spectral data formulae for the inverse of a
regular rational matrix function W are available (see [BGK, Chapter I} if W(oo) is an
invertible matrix and [BGR3, Chapter 5] otherwise). The theory of regular rational
matrix functions makes extensive use of the existence of, and formulas for, W-!.

Consequently, many methods and techniques developed for rational matrix functions
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cannot be transfered directly to the study of ponregular rational matrix functions,
that is rational matrix functions W such that W is not square or the determinant of
W is identically equal to 0. This thesis generalizes certain results on regular rational
matrix functions to the nonregular case.

The basic tool in the study of the properties of a rational matrix function W
is provided by the Smith-McMillan form and a Smith-McMillan factorization of W
which we now describe. Let ¢ be a monic polynomial which is the least common
multiple of the denominators of all entries of W. Then W(z) = g(z)W(z) is a matrix
over the Euclidean domain of polynomials in z. Let D be a Smith’s normal form of

W (see e.g. Theorem 26.2 in [McD] or Theorem 3.8 in [J]). Thus,

o o
P2 0
- Pk
b= 0
0
0 o0 .. 0]

where py, pa, ..., Pr are monic polynomials such that p;|pi41 ( = 1,2, ..., k—1) and there
exist units E, F in the rings of square matrices of appropriate sizes over polynomials

in z such that W = EDF. So W = EDF where

71/4q 07
r/q 0
Pr/q
D= 0 (1)
0
Lo o0 ... 0]

and E, F are matrix polynomials with constant nongzero determinants. The rational

matrix function (1) is uniquely determined by W and is called the Smith-McMillan
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form of W (see e.g. [K]). The factorization EDF of W is called a Smith-McMillan
factorization of W. We note that matrix polynomials E, F' in a Smith-McMillan
factorization EDF of W are not at all unique.

While the concept of a Smith form of a matrix polynomial goes back to 19th cen-
tury (see [McD]), the concept of & Smith-McMillan form of a rational matrix function
is fairly recent. The Smith-McMillan form of a square rational matrix function W
has been introduced in the study of properties of electrical circuits in [McM]. Us-
ing the notation in [McM], let §(W,A) denote the sum of multiplicities of poles at
) € C of the nonzero entries in the Smith-McMillan form of W. Let §(W, co) denote
§(W o T,T-*(oco)) where T is a Mdbius transformation such that T'~!(co) € C. Then
§(W, 0o) does not depend on the choice of T and the number

5W)= 3 §W,)) (2)
2eCo
has been called in [McM] the degree of a rational matrix function W. The number
§(W) defined as in (2) for a not necessarily square rational matrix function W is
called the McMillan degree of W.

If W is a nonregular m xn rational matrix function then after considering a Smith-
McMillan factorization of W we see that the columns of W are contained in a proper
subspace of the R-vector space R™*! or the rows of W are contained in a proper
subspace of the R-vector space R'*™. Forney investigated in [F] bases for a subspace

over R of R**". Let the degree of a row vector polynomial g ={g; g2 ... gn]be
deg g = max {deg 91,deg g3,...,deg gn}'

Forney defined a minimal polynomial basis for a subspace A of R'*™ to be a poly-
nomial basis {v;,vs,...,v} for A such that %

1=1

deg v; is minimal. He showed that

the degrees of the row vector polynomials in any minimal polynomial basis for A are
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invariant and depend only on A. Forney proved that a polynomial basis {v;, vs, ..., v}
for A is a minimal polynomial basis if and only if the coefficients of the highest degree
terms in v;,vy,..., v are linearly independent and v;(A), va(A), ..., va(A) are linearly
independent for every A € C. This characterization of a minimal polynomial basis
underlies the algorithm in [F] of reduction of a basis for A to a minimal polynomial
basis.

It has been also shown in [F| that the sum of degrees of the row vector polynomials
in a minimal polynomial basis for a subspace A of R!*" is equal to the sum of the
degrees of vector polynomials in a minimal polynomial basis for the right annihilator
of A in R™*!. The degrees of the row (resp. column) vector polynomials in a minimal
polynomial basis for a left (resp. right) annihilator of W are called in the literature
the left (resp. right) Forney indices of W (see [BCRo]).

Let W be an m x n rational matrix function and choose a Smith-McMillan fac-

o-[2 4

with D,; regular and partition E, F conformably. Then

torization EDF of W. Let

W = EDF

[ ][

= E\Dy, F,.
The columns of the matrix polynomial E, form a basis (over R) for the column space
of W. Choose a matrix polynomial F; whose columns form a minimal polynomial
basis for the column space of W. Then E, = E1Q1 for some regular rational matrix
function @;. Choose another matrix polynomial 7, whose rows form a minimal

polynomial basis for the row space of W. Then F; = Q,F, for some regular rational

matrix function Q,. (In fact, it can be shown that Q, and Q, are matrix polynomials



with constant nonzero determinants.) So
W = E,QiDu@s i
= E1 D}-‘-‘l’
with D a regular rational matrix function . Now for each A € C let §,(W, A) denote
the sum of multiplicities of zeros at A of the nonzero entries in the Smith-McMillan
form of W and let §,(W, 00) denote &,(W(z7"),0). Let §,(W) = 3, c_ &(W, ).
Then (see [VK])
§(W) - 6,(W) = §(E,, 00) + §(F,, 00).

Thus, the McMillan degree of W differs from §,(W) by the sum of left and right
Forney indices of W.

In the early literature on rational matrix functions, the terms "zero and pole
structure of a rational matrix function W” referred to the zeros and poles in C of
the nonzero entries in the Smith-McMillan form of W and geros and poles at 0 of
the nonzero entries in the Smith-McMillan form of W(z~!). Today more and more
authors take the attitude that the gero and pole structure of a rational matrix function
W should reflect more complete properties of W (see [CPW, WSCP, GLR, GKLR,
BGR1]). We extend the approach of Ball-Gohberg-Rodman to the nonregular case.
Suppose we multiply W on the right by a rational vector function ¢ which is analytic
and nonzero at A € C,,. After considering a Smith-McMillan factorization of W, we
see that W ¢ can be analytic at A, can have a pole at A, or can vanish at A identically
or to a certain order. The right pole structure of W at A € C,, is related to a possible
singular part of W¢ at A where ¢ is a rational vector function analytic at A. The
right zero structure of W is related to the functions ¢ such that W¢ vanishes at .
Similarly, suppose we multiply W on the left by a rational vector function ¢ which is
analytic and nonzero at A € C,,. The left pole structure of W at ) is related to the
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possible singular part at A of W. The left zero structure of W at ) is related to the
functions ¢ such that W vanishes at .

Suppose o is a subset of C,, W and H are two m x n rational matrix functions
and there exists an n x n regular rational matrix function Q with no zeros nor poles
in o such that W = HQ. Then W and H are said to be right equivalent on . Since
the singular part of a function W¢ at A € o coincides with the singular part at A
of H(Q¢), rational matrix functions which are right equivalent on o have the same
right pole structure on ¢. Similarly, if W and H are right equivalent on o then W
and H have the same left zero structure on 0. However, even in the regular case, the
converse statement is not true (see [GKLR]): two m xn rational matrix functions with
the same right pole and left zero structure on o C C,, may fail to be right equivalent
on o. Thus, the assertion that W and H are right equivalent on o C C,, is stronger
than the assertion that W and H have the same right pole and left zero structure
on o. To capture exactly this notion of right equivalence, another invariant, namely
null-pole coupling matrix, has been introduced in the regular case (see [GKLR] and
[BRanl]). The extension of the null-pole coupling matrix to the nonregular case is
defined in Chapter III.

The thesis is organized as follows. In Chapter I we show how the right and left pole
structure of an m x n rational matrix function W can be described in terms of pairs
of matrices-left and right pole pairs for W. We also show how W can be represented
in terms of its right and left pole pairs. In Chapter II we describe left and right zero
structure of a rational matrix function W in terms of pairs and triples of matrices-left
and right null pairs and left and right kernel triples. The regular case is worked out
in detail in [BGR1]. While the generalization of the definition of left and right pole

pairs to the nonregular case was straightforward, the analogous generalization of the

definition of left and right null pairs was not obvious. Our approach differs from the
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approach in [BCRo] as we utilize the concept of orthogonality in non-Archimedean
normed spaces, introduced in the study of rational matrix functions by Forney in [F]
and later pursued by Kailath-Verghese (see [VK]).

Chapter III characterizes right equivalence of rational matrix functions on a subset
o of C in terms of left spectral triples containing data as defined in Chapters I and
IL. In Chapter III we also develop a sufficient condition for a rational matrix function
H which is right equivalent to a given rational matrix function W on o C C to have
a2 minimal McMillan degree.

In Chapter IV we solve the local inverse spectral problem, that is we answer the
question ”"what are the conditions for existence of a rational matrix function with a
given right pole and left zero structure on o C C”. We also solve the refined version
of the local inverse spectral problem, that is, we indicate a necessary and sufficient
condition for existence of a rational matrix function with a given left spectral triple

over ¢ C C and a given left kernel triple.



Chapter I

Pole Structure

We say that a rational matrix function W has a pole at A € C,, (or A is a pole
of W) if some entry of W has a pole at A.

Let W € R™*™ and let A € C be a pole of W. Suppose that the first I diagonal
entries in the Smith-McMillan form D of W have a pole at A and all other entries
of D are analytic at \. Then we say that the geometric multiplicity of the pole of
W at A equals I. The multiplicities of poles at A of the diagonal entries of D are
called the partial multiplicities of the pole of W at A. The geometric multiplicity and
the partial multiplicities of a pole of W at infinity are defined to be the geometric
multiplicity and the partial multiplicities of the pole of the rational matrix function
H(z) = W(z7!) at 0. The sum of partial multiplicities of the pole of W at A € Co
is called the (total) multiplicity of the pole of W at A. Thus, the McMillan degree of
a rational matrix function W is equal to the sum of multiplicities of all poles of W.
The multiplicity of a pole of a rational matrix function W at A € C, is also called
in the literature the local degree of W at A or the pole multiplicity of W at A.

We note that if a rational (row or column) vector function W has a pole at
A € Cq then the geometric multiplicity of the pole of W at A equals 1 and the total
multiplicity of the pole of W at A equals n where n is such that

W(z) = Z(z - A)'W;

with all W;’s constant vectors and W_,, # 0. Thus, the multiplicity of a pole of a

rational vector function W at ) equals the largest multiplicity of a pole at A of some

entry of W.
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In this chapter we define pole functions and pole pairs for a not necessarily regular
rational matrix function W. Pole pairs have been introduced and extensively used
in the study of regular rational matrix functions (see [GKLR, BGR1, GK1]). The
concept of pole functions appears in [BGR1]. Sections 1.1 and 1.2 contain the basic
definitions. In Section 1.3 we discuss realization of a rational matrix function in terms

of its right and left pole pairs.

1.1 Right pole pairs

Let W be an m X n rational matrix function and let A € C,. A function ¢ € R™*!
is called a right pole function for W at A if
(i) ¢ is analytic at A and ¥(A) # 0,
(ii) there is a positive integer k and a function ¢ € R™*! such that ¢ is analytic at A

and

(z = AW (2)¢(2), ifAeC
¥(2) = { (1)

27 W (2)¢(2), if A = oo.
The maximal integer k such that (1) holds for an appropriate ¢ is called the order of
the right pole function 4.

We note that W € R,x» has a right pole function at A if and only if W has a
pole at A.

Suppose W € R™*™ has a pole at A € Co. Then the values at A of right pole
functions for W at A form, together with the 0 vector, a subspace V of C™. It can be
seen from a Smith-McMillan factorization of W that dim V is equal to the geometric
multiplicity of the pole of W at A. We say that right pole functions v;,%, ..., %, for
W at X of orders ky, ky, ..., k, respectively form a canonical set of right pole functions
for W at A if
(i) {¥1(A),¥2(A), ..., ¥n(A)} is & basis for V,



10

(ii) 37, & is maximal subject to condition (i).

It follows from a Smith-McMillan factorization of W that the orders of the pole
functions in any canonical set of right pole functions for W at A coincide with the

partial pole multiplicities for W at A.

A canonical set of right pole functions for an m x n rational matrix function W at
) € C, can be found similarly as in the regular case (cf. [BGR1]). Choose a right pole
function ¥; for W at ) of a maximal possible order. Given the right pole functions
¥1,¥3, ..., ¥; for W at A, choose from right pole functions for W at A a function ¥;, of
possibly maximal order such that ;41(A) ¢ span {$1()), %2(2),...,¥i(A)}. Continue
until the span of the values at A of the right pole functions for W at A has been

exausted.

Let W € R™*" and let A € C,, be a pole of W. Choose a canonical set of right
pole functions for W at A, {1,¥3,...,¥n}. Suppose the order of ¥; (i = 1,2,...,1) as
a right pole function for W at A is k; and let ¢;; € C™1 (1<i< 1,5 >0)besuch

that

Y (224  ireC
W(z)={ 2 (2)
DIER"TT if A =00

Any ordered pair of matrices (C, A), where C equals

[1/’1.0 Yia - Yim-1 Yo Yaa1 o Yamaa - Yno Yna - '/’n.h..-1]S,
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and
( -J’lx(’\)
51 e (}) g S, ifleC
J L Jhc('\)
A= (3)
erx(O)
5-1 Iin(0) . S, ifi=o0
‘ I Jr,(0)

for some invertible matrix S of appropriate size, is called a right pole pair for W at
A (see [BGRI1, GK1)).

Let W be an m x n rational matrix function and let 0 C C. Let A}, ), .y Ap be
the poles of W in o and let (C;, A;) be a right pole pair for W at X; (i = 1,2, vy D).

Any ordered pair of matrices (C, A), where
C = [01 Cy .. C,] S,

and A,
A=§" A s
. A

for some invertible matrix S of an appropriate size, is called a right pole pair for W
over o (or a o-right pole pair for W). We note that if W is analytic on o, the right
pole pair for W over o is vacuous. Also, if A is the only pole of W in o, the right pole
pair for W at A is the right pole pair for W over 0.

If (C, A) is a right pole pair for a rational matrix function W over ¢ C C and W
is analytic on C,,\c, (C, A) is called a global right pole pair for W.

Let o be a subset of the complex plane and let W € R™*". Then any two right

pole pairs (Cy, A,),(Cs, A;) for W over o are right-similar, that is

C) = C;S and Az = S-IAIS
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for some invertible matrix S (see Theorem 3.2 in [BGR1]). Moreover, the similarity
matrix S is unique. Similarly, any two right pole pairs for W at infinity are right-
similar. Also, if (C, A) is a right pole pair for W at A € C,, and A is in Jordan form
then the columns of C coincide with appropriate coefficients in the Taylor expansions
of the functions in some canonical set of right pole functions for W at ).

It is shown in [BGR1) (Theorems 3.1 and 3.3) that a right pole pair (C, A) for
W € R™*" over o € C is observable, that is

C
cA

ker | .| =(0)
CcA
for sufficiently large integers . Observable pairs are also called null-kernel pairs in

the literature.

1.2 Left pole pairs

Let W be an m xn rational matrix function and let A € C,,. A function Y € RI*™
is called a left pole function for W at A if
(i) ¢ is analytic at A and ¥(A) # 0,
(ii) there is a positive integer k and a function ¢ € R' ™ such that ¢ is analytic at A
and

(4)

¥(2) =

(z = A)*¢(2)W(2), if A# o0

2 h Y (2)W(2), if A =o00.

The maximal integer k such that (4) holds for an appropriate ¢ is called the order of
the left pole function .

The left pole functions ¥y, 4, ..., ¥, for W at A of orders ky, ks, ..., k,, respectively

form a caponical set of left pole functions for W at ) if
(i) ¥1(A),%2(A), ..., ¥n(A) are linearly independent,
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(i) oI, ki is maximal subject to condition (i).

We note that the number of functions in any canonical set of left pole functions
for W at A is equal to the geometric multiplicity of the pole of W at A. Also, the
orders of the functions in a canonical set of left pole functions for W are equal to the
partial multiplicities of the pole of W at A.

Let {¢1,%3,..., ¥} be a canonical set of left pole functions for W € R™*" at
A € C, of orders ky, ks, ..., ky, respectively and let ;; be such that (2) holds. Let S
be an invertible matrix of the same size as A. An ordered pair of matrices (A, B),

where

( 'J,,l())
S Jh(A) - S—l’

Jiy(A)

ifAeC

[ Jm (0)
S Jh(o) . S"l,

L ; Ju,(0)

fld=o00

and .

[ Y1,k -1
1,k ~2

¢¢';,o
Yonos

a0

'/’q,k'—l

Ny —2

| Yo |
is called a left pole pair for W at A.

Let W € R™" and let ¢ C C. Let Ay, ),, ..., A, be the poles of W in o and let
(Ai, B;) be a left pole pair for W at A; (i = 1,2,...,p). Any ordered pair of matrices
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(A, B), where

A
A=S T s', B=S§

A, B,
for some invertible matrix S of an appropriate size, is called a 1;{1 pole pair for W
over o (or a o-left pole pair for W).

If (A, B) is a left pole pair for a rational matrix function W over o C C and W
is analytic on Cq\c, (A, B) is called the global left pole pair for W.

We note that similarly as in the regular case any two o-left pole pairs (A,, B;)
and (A3, B3) for a rational matrix function W over o C C (resp. at infinity) are
left-similar, that is

Ay =SA,8"' and B;=S5B

for some matrix S (see [BGR1]). Also, the similarity matrix S is unique. It is shown
in [BGR1] (Theorem 3.4) that a left pole pair (A, B) for W over o is controllable,

that is for sufficiently large integers [ the matrix

[B AB ... A'B]

has full row rank. Controllable pairs are also called full-rank pairs in the literature.

1.3 Realization theory

The realization theory for rational matrix functions in the context of right and

left pole pairs can be based on the following lemma.

Lemma 1.1 Let (C, A) be a right pole pair for W € R™*" at A € Co. Then there
erists a unique matriz B such that the rational matriz function
{ W(z)-C(z- A)'B, ifAreC

_ ()
W(z)-C(z'—A)'B, fAr=o00
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is analytic at A. Moreover, (A, B) is a left pole pair for W at .

Lemma 1.1 can be proved in the same way as Theorem 5.1 in [BGRI1].

We note that the left version of Lemma 1.1 also holds; that is, if the left pole pair
(A, B) for W at ) is given then there exists a unique matrix C such that the rational
matrix function (5) is analytic at . Moreover, (C, A) is a right pole pair for W at A.

In view of Liouville’s Theorem, Lemma 1.1 implies that each rational matrix

function has the following representation.

Theorem 1.2 Let W be a rational matriz function. Let (C,A) and (Co, Aoo) be
right pole pairs for W over C and at infinity. Then there ezist unique matrices B,
Boo and D such that

W(z) = C(z — A)™'B + D + Co(2~ — An) " B.,. (6)

Any representation of a rational matrix function W of the form (6) is called a
realization of W, and is usually written down as (A4, B,C, D, E, F, G) where E = C,,
F = By, and G = Ae. The realization (6) of W in which o(Aw) C {0} has been
called in [C] normal. It is possible to include in the last term in (6) the singular part of
W at other poles of W besides infinity. This approach has been adopted in [BCR] (see
elso Chapter 5 in [BGR3]), where the term E(z~! — G)'F in (A4, B,C, D, E, F, G)
realizes the singular part of W outside a region @ C C which contains 0. We will not
follow, however, this more general approach. In the sequel we will use realizations as
in Theorem 1.2.

We note that if W(z) is analytic at infinity, the right pole pair (C, Ay ) for W at

infinity is vacuous and the last term in (6) does not occur. In this case the realization
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D + C(z — A)"'B is written down in the form (A4, B,C,D). If W is analytic on C,
that is, if W is a matrix polynomial, the first term on the right hand side of (6) does
not occur. If W has no poles in C,,, W(z) = D.

It is well known that the sum of sizes of matrices A and A, in (6) is at least equal
to the McMillan degree of W. A realization C(¢(z) — A)"'B+ D + E(y¥(z) — G)~'F
of W, where ¢ and 9 are scalar rational functions such that the sizes of matrices A
and G add up to the McMillan degree of W, is said to be minimal. Since the orders of
pole functions in a canonical set of right pole functions for a rational matrix function
W at A € C,, are equal to partial multiplicities of the pole of W at A, the sum of
sizes of matrices A and A, in (6) is equal to the McMillan degree of W. Thus, the
realization (6) of W is minimal. Minimal realizations of the form (6) have, in fact,

the following property.

Theorem 1.3 Let (A, B,C,D,E, F,G) be a realization of a rational matriz function

W with o(G) C {0}. Then the following are equsivalent:

(i) (C, A) is a right pole pair for W over C and (E,G) is a right pole pair for W at
infinity;

(i) (A, B) is a left pole pair for W over C and (G, F) is a left pole pair for W at
infinsty;

(i) (A,B,C, D, E, F,G) is a minimal realization of W.

Theorem 1.3 follows immediately from Theorem 1.2 and the fact that if

(Al, B,,Cy, Dy, Ey,Fy, Gl) and (Az, B,,C3, D, E,y, F,, Gz)

are two minimal realizations of a rational matrix function W such that o(G,) =
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0(G3) C {0}, then
Ay =SAS™', B;=SB,, Ca=CiS
G,=TG,T™, F,=TF, E;=ET
for some unique invertible matrices S and T (see Theorem 1.7 in [C] or Chapter 5 in

[BGR3)).



Chapter II

Zero Structure

We say that a point A € C is a zego of a rational matrix function W (or, equiv-
alently, that W has a zero at 1) if A is a zero of some nongero diagonal entry in the
Smith-McMillan form of W (see eg. [R]). W has a gero at infinity if H(z) = W(z~?)
has a zero at 0. The number of nongero diagonal entries in the Smith-McMillan form
D of W which vanish at A € C is called the geometric multiplicity of the zero of W
at A. The orders of geros at A of the nonzero diagonal entries in the Smith-McMillan
form of W are called the partial multiplicities of the zero of W at A. The geometric
multiplicity and the partial multiplicities of the zero of W at infinity are defined to be
the geometric multiplicity and the partial multiplicities of the zero of H(z) = W(z™?)
at 0. The sum of partial multiplicities of a zero of W at A € C,, is called the ({ota])
multiplicity of the zero of W at A. Partial multiplicities and the total multiplicity of
a zero of a rational matrix function W at A € C, are also called in the literature the
partial and total zero multiplicities of W at A.

If W is a rational (row or column) vector function which has a zero at A € Co,
the geometric multiplicity of the zero of W at A equals 1. In this case the multiplicity
of the zero of W at A is an integer n such that the rational vector function

(z2=-A)"W(z), if Ae€C
{ "W (z), if A=o00
is analytic and nonzero at A.

In the study of zero structure of a rational matrix function the concept of null
functions (see Sections 2.3 and 2.4 below) proves useful. Null functions are also called
root functions in the literature. They were first introduced in [KT] in the context of

18
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analytic operator functions of several variables. The definition of a null function has
been extended in [GS] to the case of a meromorphic operator function. Null functions
were used in the context of nonregular rational matrix functions in [BCRo]. We note
that our definition of null functions in Sections 2.3 and 2.4 below differs from the
respective definitions in [KT, GS, BCRo] in that we do not allow null functions to
have infinite order.

Let 0 C C, and let W be a rational matrix function which is analytic in o. If
W is regular, then it can be seen from a Smith-McMillan factorization of W that the
set of points A € o such that the matrix W(X) is singular consists of isolated points.
In a more general case, where W is not square or det W vanishes identically, there
may exist rational matrix functions ¢ such that ¢ is analytic in o, ¢(A) # 0 and
#(A)W(A) = 0 for all A € o. For this reason the spectrum of a rectangular analytic
matrix function is said in [Ro] to be continuous. We shall call the zero structure
of a rational matrix function W related to the left (or right) annihilator of W the
continuous Jeft (or right) zero structure of W. Thus, the continuous zero structure of
a rational matrix function corresponds to infinite order null functions as defined in
[GS, BCRo]. We shall call the zero structure of W related to the (finite order) null
functions the discrete gero structure of W.

The zero structure of a regular rational matrix function W can be described by
pairs of matrices-left and right null pairs. Null pairs are also called eigenpairs or
standard pairs in the literature. Null pairs were introduced originally in [GR1, GR2,
Ro] (see also [GLR]) for analytic matrix and operator functions. They evolved from
Jordan chains at Ay € C,, for an analytic matrix or operator function L, that is,
chains of vectors zy, z;, ..., 3 such that

j 1 R
Z ﬁL(')z,-_;(,\o) =0
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for j = 0,1,..., k. The definition of a Jordan chain for L above extends the definition
of a Jordan chain of a matrix. Indeed, if A is a square matrix and L(2) = z — A then
{zo0,21,..-z4} is a Jordan chain for L at Ao if and only if Ao is an eigenvalue of A and
{zo, 21, ..-z4} is a corrersponding Jordan chain (see [GLR])).

Null pairs are used to describe the discrete zero structure of a rectangular rational
matrix function in [BCRo]. We note that our definition of null pairs below differs from
the respective defintion in [BCRo].

In Chapter II we describe the right and left zero structure of a rational matrix
function W. We begin with the description of the left annihilator of W (Section 2.1).
Then we analyze the concept of orthogonality in R"™ (Section 2.2). In Section 2.3 we
define left null pairs for W. Section 2.4 contains definitions and facts referring to the
right zero structure of W. Since the proofs of all assertions made in Section 2.4 have

analogues in Section 2.1 and 2.3, they are omitted.

2.1 Continuous left zero structure

Let W be an m x n rational matrix function. We will denote by W*° the left
annihilator of W. Thus,

W ={reR™™: W =0}.

We note that if W is right invertible, then W°' = (0). If W #£ (0), a matrix
polynomial whose rows form a minimal polynomial basis for W* is called a left
kernel polynomial for W (see [BCRo]). We will assume that the rows in any left
kernel polynomial for W are ordered according to decreasing degrees.

If A is a subspace of R and A € C,,, we will denote by A()) the set of values
at A of those functions in A which are analytic at A. Plainly, A()) is a subspace of

C™. The space A(A) can be characterized equivalently as the linear span over C of



21
the leading coefficients in the expansions at A of the functions in A. In particular, if
W is an m x n rational matrix function, then W°(}) is a subspace of C'*" formed
by the values at A of functions ¢ € R'*™ such that W = 0 and ¢ is analytic at A.
Let A be a subspace of R'*" and let P be a matrix polynomial such that the
rows Py, P, ..., P, of P form a minimal polynomial basis for A. Suppose first A € C.
Plainly,

span {P;(A), Pa(A), ..., Pu(A)} C A(A). (1)

Since P(A) has full row rank, Py(A), P3(A), ..., Px(A) are linearly independent. Hence,
if 9 is a linear combination over scalar rational functions of Py, Py, ..., Py, then the
leading coefficient in the Laurent expansion of ¥ at A is contained in span {P;(}),
Py(}), ..., Py(A)}. 1t follows that inclusion (1) is an equality. Thus, {P;(A), P;(}A),...,
Pi())} is a basis for A()) for every A € C. Suppose now A = oo and let Pi(2) =
2% P;(z) where a; is such that P, is analytic and nonzero at infinity (i = 1,2, ..., k).
Since the leading coefficients in the Laurent expansions of Py, P,, ..., P, at infinity
are linearly independent, P;(o0), I’g(oo), ...y By(00) are linearly independent. Hence,
by the same reasoning as above, A(co) = span{P;(00), P;(c0), ..., Ps(c0)}. So the
leading coefficients of the rows of P form a basis for A(co). In particular, if P and
A are a left kernel polynomial and the left annihilator of an m x n rational matrix
function W, then, for each A € C, {P,(}), Pa(A), ..., Pua(A)} is a basis for W°()) and
{Pi(0), P3(0), ..., Pu(00)} is & basis for W (o).

In view of Theorem 1.2, any matrix polynomial P has a realization of the form
D+ E(z'-G)'F

where D = P(0) and (E, G), (G, F) are right and left pole pairs for P at infinity. We

now describe one canonical form for such a realization of a left kernel polynomial.
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Proposition 2.1 Let P € R**™ be a matriz polynomial with the i’th row
PA2) = Pip + 2Pimes + o+ #*Pig

(Pio # 0 if P; # 0). Suppose that the first | rows of P have a pole at infinity and the
last k — | rows of P are constant. Then

P(z)=P(0) + (B B ... E]
-Pl,m—l
Jm(0) Bl -
1 Jma(0) : (2)
Py
Jm(0) N
H,v;g-l
lm-2

Pro

where E; is the k x 1; matriz with 1 at the position (i,1) and 0’s elsewhere.

Proof Since

Jm(0) -
o LA ()

Jm(0)

(s = I ()
(s = T (0))

(271 = Jn(0))

and
z 22 ... ‘r,"‘1
"‘—
(- du(@)= |0 2 o T

0 0 ... z
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the second term on the right hand side in (2) equals

. 2Py 1+ 2*Pigya+ ... + 2% Pip

>, i

*
So equality (2) follows.
(.
If a rational vector function ¢ has a pole at A € C,, of order k, we will call the

coefficient of

z", if A=o00

{(z—,\)-*, if AeC

in the Laurent expansion of ¢ at A the Jeading coefficient of ¢ at A. It turns out that
the realization (2) of P is minimal if and only if the leading coefficients at infinity of

the rows of P are linearly independent.

Proposition 2.2 The realization (2) of a matriz polynomial P is minimal if and
only if the leading coefficients at infinity of the columns of P which have a pole at

infinity are linearly independent.

Proof Since

T (0) o
Jr(0)

Tn(0)
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is a left pole pair at infinity for P if and only if P, o, Pa,..., Pi,o are linearly indepen-
dent, the assertion follows by Theorem 1.3.

O

Corollary 2.3 If P is a left kernel polynomial for some rational matriz function
then the realization (2) of P is minimal.

The matrices E;, E,, ..., E; in the realization (2) of P are determined by the ma-
trices P(0) and J,, (0), Jop (0), ..., e (0). Indeed, the number of rows of any E; equals
the number of rows of P(0), and the number of columns of E; equals the number of

columns of J,,,(0). Consequently, the ordered triple of matrices

( ]
Pio

o) o
P(0), =(0) , : (3)

Jm(0) .

\ | P |/

determines a matrix polynomial P uniquely. A triple of matrices as in (3) which
describes a left kernel polynomial for a rational matrix function W will be called a
left kernel triple for W.

We note that a left kernel triple for a rational matrix function W can be easily
read off from a left kernel polynomial P for W. Also, a triple of matrices (A,, By, D,)
is a left kernel triple for some rational matrix function W if A, is in the Jordan form,

o(A.) = {0}, and the rows of the corresponding matrix polynomial form a minimal

polynomial basis for some subspace of R'*™.
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Finally, we note that if a left kernel triple (A, Bx, D,) is given, we can easily find
the corresponding left kernel polynomial for W. A basis for W°()) at A € C,, can
be computed from (A, By, D.) using nested multiplication. For future reference, we

state this in the following proposition.

Proposition 2.4 Let

( [ Prm-17 )
1,m-2
" Py :
Py Py
E Jm(O) ;;&m—l
P Im(0) "'.h—l
1+1,0 ’ ... ) .
Pryap Jn(0) Py
E EH.'"—I
. Py | lm-2
\ | Po |/

be a left kernel triple for an mxn rational matriz function W. Then {P,o,P;, ...,Pio}
is a basis for W°(oo) and, if A € C, the set of vectors {vy,v,, ..., v} such that
P + APipy1+ ... + A% Pip, if i<
Y =
{ })l',O) if i > l
is a basis for W°()).

2.2 Orthogonality in R"

We describe now the concept of orthogonality in R™ induced by a standard valu-
ation on R. This concept has been used in [F] (see also [K]). It has been introduced
originally by Monna in the study of non-Archimedean normed and, more generally,
locally convex spaces (see [M1, M2)).

Section 2.2 is organized as follows. In Subsection 2.2.1 we define orthogonality of

subspaces of R". In Subsection 2.2.2 we connect orthogonality of algebraic comple-
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ments A and 2 of R™ with orthogonality of their annihilators A° and Q° in the dual
space of R™ where by the dual space of R" we understand the R-vector space of the
R-valued linear functionals on R™. In Subsection 2.2.3 we specialize orthogonality
of subspaces of R™ to orthogonality of functions in R™ and define orthogonal and
orthonormal bases for subspaces of R™. In Subsection 2.2.4 we connect orthogonality
of rational column vector functions v;,v,,...,v; with the spectral points of a ratio-
nal matrix function [v, v; ... v,] where by spectral points of a rational matrix

function we understand its poles and zeros.

2.2.1 Orthogonal subspaces in R"

Let A be a point on the Riemann sphere C,,. We define a function | - |,= from

R into the set of real numbers by putting

|1'| __{0, ifr=0
=AT 1e™, ifr#0

where 7 is the unique integer such that

r(z) = {(z — A" #(z), ifAeC

27" 7(2), if A =o00
with  analytic and nonzero at A. |- |;=» is a real valuation of R. Since |n|,=) < 1 for
every integer n, the valuation |- |,=) is non-Archimedean and the stronger triangle
inequality
Iy + 7als=a < max {|r1]s=1, [rals=a}
holds for all 74,7, € R (see [VAW]).
Let n be a positive integer and let A € C,,. We define a function || - ||,=» on the

product of n copies of R by putting

"("‘1,1‘2, ---)rn)”z=X = max {lrl'z=hs Ir2|s=A’ sy Irnls=A}-
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In this way R" becomes a normed vector space over the real valued field (R, |- |.=2).
We note that (R",|| : ||.=») is not a Banach space. Indeed, exp (z) is an example of
a non-rational function which is in the completion of (R, || - ||.=2) for any A € C.
More generally, let A be a subspace of R" and let ¢ C C,,. The family of norms
{Il-lls=» : A € ¢} and valuations {|-|,=» : A € o} endow A and R with topologies such
that the addition + : A X A — A and multiplication - : R X A — A are continuous.

The resulting topological vector space will be denoted by (A, o).

(A, o) is a family of normed vector spaces with one underlying field of scalars, R,
and the same set of elements, A. Since the topology 7, of A is generated by a family
of seminorms (in fact, norms), it seems natural to call this topology a locally convex
one. The difficulty lies in the fact that the norms || - ||,=) are related to the same
underlying field R with different valuations. Consequently, the definition of a convex
set in the theory of non-Archimedean locally convex spaces (see [M2]) does not apply

to (A, o) in the nontrivial case when o contains more than one point.

Following the definition of orthogonality in a non-Archimedean normed space, we

shall say that two subspaces A and ) of R" are orthogonal at A € C, if

|2 + ¥lle=a = max {||z]|s=x, llylls=2} (4)

for each z € A, y € 2. We shall say that A and ) are orthogonal on ¢ C C,, if they

are orthogonal at every point of o.

In the study of orthogonality in R™ below, we shall need the following lemma.

Lemma 2.5 Let A be a subspace of R™ and let A € C,. Then there ezists a

basis {vy,vy,..., 9} for A such that the rational matriz function [v; v, ... ;]

has neither a pole nor a zero at A.
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Proof Choose an algebraic basis {w;,w,, ..., ws} for A and let
W=[w, w; ... w].

Considering, if necessary, H(z) = W(z~!) we may assume A € C. Choose a Smith-
McMillan factorization EDF of W and let v,,va,...,ux be the first k columns of
E. Clearly {v,v;,...,v} is a basis for A and the rational matrix function V =

[vi va ... v]is analytic at A. Since

E [g] I
is a Smith-McMillan factorization of V, V does not have a zero at A.
O
We can now characterize the orthogonality of two subspaces of R™ at a point
A € Cq in terms of linear algebra. Recall that if A is a subspace of R™ and A € C,,
then A()) denotes the subspace of C" formed by the values at A of those functions
in A which are analytic at A.

Proposition 2.6 Let A and  be two subspaces of R" and let A € C,,. Then A
and ) are orthogonal at A if and only if A(A) N Q(A) = (0).

Proof Suppose A and § are orthogonal at A and let {vy, v, ..., v} and {w;,w,, ..., w}
be algebraic bases for A and Q respectively. In view of Lemma 2.5, we may as-
sume that v;,v,, ..., 0%, Wy, w;, ..., w; are analytic at A and {v,()), va(}), ..., vx(A)} and
{w1(A), w2(A),...,wi(A)} are linearly independent sets. Suppose that

k

l
Y aw(d)+ ) Bwi(A) =0

i=1 J=1

h

i=1

thogonality of A and Q at A, || 2:-1 a;Vills=2 < 1 and || Ei-gl Bijwj|ls=a < 1. Hence

for some numbers o;,8;. Then || 3. awv; + 3., Bjwill;=a < 1. So, by the or-
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Yh s avi(A) = 0 and 3, Bswi(A) = 0. Since {v1(A),v(}), .., vu(A)} and {w;(}),
wy(A), ..., wi(A)} are linearly independent sets, oy =3 = ... = =P =F = ... =
B = 0. Thus, v1(A),va(A), ..., ve(A), w1(A),wa(A), ..., uwn(A) are linearly independent
and A(A) N Q(A) = (0).

Conversely, suppose A(A) N 2(A) = (0). Choose a basis {vy,v;,...,v4} for A
and a basis {w;,w,,...,.w;} for Q such that v;,v,,...,v4, w1, wy,...,w; are analytic
at A and {v;(A),v3(A),...,va(A)} and {wy(A),w3(A),w;(A)} are linearly independent
sets. Then v1(A), va(A), ..., va(A), wr(A), wa(A), ..., wn(A) are linearly independent. Let

71,72, ---,Ti41 be scalar rational functions, not all equal to 0. Choose x such that

I"uls=A = max {l"l ls=as |"2|z=4\v veey l"b+lls=k}'

We assume without loss of generality 1 < x < k. The linear independence of v;(}),
va(A), ..., vk(A),w1(A),w3a(A), ..., wi(A) implies then the equalities

k i
1Y rovi+ ) raswillema = Irale=a

i=1 Jj=1

and

k
" Zrivl'lls:A = lrnlzsk-

i=1
Since || Xjoy ta+swills=a < Irals=a,
k ! k 1
1D rivi+ ) risjwillees = max {|| D ravillams, | D raaswjllema}-
i=1 =1 =1 =1
Thus, A and (2 are orthogonal at A.
(]
It follows from the definition of orthogonality (see equality (4)) that two subspaces

of R" orthogonal at a single point A € C,, necessarily have the trivial intersection.

Let A, Q and X be subspaces of R". We say that the subspace 2 is an orthogonal
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complement of the subspace A in (I, ) if A and § are orthogonal on o and A+ = I.
The existence of orthogonal complements of a subspace A of (R", o) follows from the

next proposition.

Proposition 2.7 Let A and ) be subspaces of R" which are orthogonal on a proper

subset 0 of C,,. Then () has an eztension to an orthogonal complement of A in

(R™,0).

Proof We identify R"™ with R"*!. After applying a suitable MGbius transformation,
we may assume o C C. Find a basis {w;,w,,...,ws} for A + Q and let EDF be a
Smith-McMillan factorization of the rational matrix function [wy, w; ... we]. We
show that the subspace V spanned by the last n — k columns of E is orthogonal to
A + Q on 0. Then the subspace f1 + V is an orthogonal complement of A in (R, 7).
In fact, it suffices to show that the spaces spanned by the first k and the last n — k
columns of E are orthogonal on ¢. But this follows from Proposition 2.6 and the

properties of a Smith-McMillan factorization of a rational matrix function.

a

Corollary 2.8 If o is a proper subset of C., then every subspace A of R™ has an

orthogonal complement in (R", o).

We note that unlike in a Hilbert space, an orthogonal complement of A in (R", o)
is generally not unique. We also note that there exist subspaces of R™ which are
orthogonal on the whole extended complex plane. Indeed, if S = {¢,¢3,...,cn} is
a basis for C" and S; U S; is a partition of S, the subspaces of R™ spanned by
the (constant) rational vector functions contained in S; and S, respectively, are

orthogonal on C,,. In general, however, as can be seen from the following example,
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the hypothesis o # C,, in Proposition 2.7 and Corollary 2.8 is necessary.

Example 2.9 Let A be a subspace of R? spanned by [1 z]T and let  be a subspace
of R? which is orthogonal to A on C. Then dim < 1. Suppose dim = 1 and
let [py pa)T be a minimal polynomial basis for 2. In view of Proposition 2.6,
orthogonality of A and Q on C implies that

o [ 28]

sz

does not vanish in C. By the fundamental theorem of algebra, zp,(2) — pa(2) = c for

some constant c. If py # 0 then
| pa(2)[1 2] = [pr(2) P22 flema =10 €] [lsmeo =1

<e<[ p(2)1 2] [lsmeo

< max {|| p1(2)[1 2] lls=cos || [P P2] lls=co}s
a contradiction. Thus, p; = 0 and € is spanned by [0 ps|T. If p2 # 0,

I 2= (2/pa(2))0 Pa(2)] lls=eo =1
<e=max {|| {1 2] lizco, | (2/P2(2))[0  P2(2)] ls=c0}

which is again a contradiction. Thus, the only subspace of R? orthogonal to A on
Co is (0).

2.2.2 R" as a subspace of its dual

There is a natural identification of R™ with its dual space, given by
n
z'(y) = Z zi(2)yi(z)
=1
for all z = (21,23,..,Zn),¥ = (¥1,¥2,--,¥n) € R". We shall denote the image of
the embedding map z — z* by R™. If R" is identified with R"*! (resp. R'*"),
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R = RIXn (resp. R™ = 'R.""l). The members of R™ are continuous maps from

(R™, o) to (R, 0).

Proposition 2.10 Let 0 C C, and let z € R". Then z* is continuous as a map

(R*, o) = (R,0).

Proof It suffices to show that if V, a neighborhood of 0 in (R, ¢), is given, then
there exists V,, a neighborhood of 0 in (R", ), such that z*(V,) C V. Let z =
(21,23, ...,2n). We may assume z # 0. If V contains the set {r € R : |r|,=), <
€e(i=12,.,k)} let € = ¢/max {|zjl.=r, : 1 < i<k, 1 <3< n} Then
Va={r € R":|rlls=as <& (i =1,2,..,k)} is a neighborhood of 0 in (R", o) and
z*(va) C V.
(.
Let A be an m-dimensional subspace of R". By an algebraic argument, the
elements of R™ which annihilate A form an n — m dimensional subspace of R™.
Using the polar notation, we shall denote this subspace by A°. Similarly, given a
subspace () of R™*, there exists a unique subspace 2° of R™ such that  annihilates
Q°. Clearly, (A°)° = A. It turns out that the map which sends each subspace A of

R"™ to A° preserves orthogonality in the following sense.

Theorem 2.11 Let A, be algebraic complements in R™ and let 0 C Co. Then A

and ) are orthogonal on o if and only if A° and Q° are orthogonal on o.

Proof We identify R™ with R"*! and show that A° and ° are orthogonal on o
whenever A and 2 are. Choose any A € ¢. In view of Lemma 2.5 we can find bases

{v1,v3, ..., v} and {w;, wy,...,w;} for A and § such that the rational matrix functions

V = [v; v; ... v4) and W = [w; w; ... w;] have neither a pole nor a zero at A. Then
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the diagonal entries in the Smith-McMillan forms of V and of W have neither poles
nor zeros at A. So, as can be seen from Smith-McMillan factorizations of V' and W,
V¢y, W, are analytic at A whenever ¢y, ¢; are analytic at A, and V¢,, W¢, do not
vanish at A whenever ¢;, ¢; do not have a zero at A. Henceif ¢ = [¢f ¢£]T € R™!

is analytic and nonzero at A,

I [V W] |ls=a = max {[[V1]ls=2, IWes]ls=a}
=1.

In particular the columns of [V(A) W/(A)] are linearly independent. It follows that
[V W] is a regular rational matrix function that is analytic at A and does not
have a zero at A. Hence [V W] is analytic at A and does not have a zero at
X. Consequently, ¥ [V W' is analytic and does not have a zero at A whenever
¥ € R™™ is analytic and nonzero at A. So ||#|l,=x = 1 implies ||$[V W] |,=r =
1. Hence [¥[V W] ' ls=a = [[¥|ls=a for all ¥ € R'™™. Now let ¢, € R'*" have

the last ! components 0 and let ¥, € R'*" have the first k¥ components 0. Then
%1 + ¥alls=r = max {|lgh1]|:=a, [[¥all:=a} and

"('pl + ¢z)[V W]_l "1=A = "'ﬁl + "pzll':*
= max {||¢1||z=,\, ||'/’2||-=A}
=max {1 [V W] s [$2 [V W] [lema}:

It follows that the spaces spanned by the first k and last I rows of [V W]™? are
orthogonal at A. Since the former space can be identified with 2° and the latter space
with A°, A° and Q° are orthogonal at A.

O

Stated in other words, Theorem 2.11 says that A and {2 are orthogonal comple-

ments in (R", o) if and only if A° and Q° are orthogonal complements in (R"", ).
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2.2.3 Orthogonal and orthonormal bases

An algebraic basis {v,, v3, ..., v} for a subspace A of R" is said to be an orthogonal
basis for (A, o), o a subset of Co, if v; ( = 1,2, ..., k) is orthogonal to span {v; : 1 <
i < k,i # j} on 0. An orthogonal basis {v,va, ...,vs} for (A, o) such that [|vj|[,=a = 1
for every j € {1,2,...,k} and each A € o is called an orthonormal basjs for (V, o).

It follows by induction from the definition of orthogonality that an algebraic basis
{v,v3,...,vs} for A is an orthogonal basis for (V, ¢) if and only if

k
I rvills=a = max {lrevillsms : 1< §< K} (5)

i=1
for all A € o and all rational scalar functions ry,r,,...,7;. Elements v,,v,,...,v; of
R"™ such that equality (5) holds for all scalar rational functions ry,7;,..., 7 and all
points A € o are said to be orthogonal on . Thus, an algebraic basis {v,,vs,...,vs}
for a subspace A of R™ is an orthogonal basis for (A, s) if and only if v, vy, ..., v, are
orthogonal on o.

As a consequence of characterization (5), orthogonal bases have the following

property.

Proposition 2.12 Let A be a subspace of R", let ¢ C Co, and let ry,r3,...,7s
be nonzero scalar rational functions. Then {v,,vs,...,v3} is an orthogonal basis for

(A, o) if and only if {r1v1,r2va,...,Tavs} is an orthogonal basis for (A,0).
Orthogonal bases can be also characterized more directly.

Proposition 2.13  The set {vy,v,,...,v.} C A C R" is an orthogonal basis for
(A, o) if and only if
(i) the functions vy, v,, ..., v, span A,

(ii) for every A € o the leading coefficients at A of v,,va, ...,vs are linearly independent.
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Proof Suppose {vy,v,...,v} is an orthogonal basis for (A,o). Then (i) holds
and all v;’s are distinct from 0. If (ii) does not hold, there exists A € o and scalar
rational functions 7y, 73, ..., 7% such that ryv;, rava, ..., 740, are analytic at A, some r;v;
are nonzero at A and the constant term in the Laurent expansion of E?=1 r;v; is gero.

Then
k
" ngv.-",ﬂ < 1=max {"1‘;‘0,-",=A P i= 1, 2,...,k},

=1

a contradiction.
Suppose now that {vy,v,,...,ux} C A is such that (i) and (ii) hold. Then
{v1,v3, ..., v} is an algebraic basis for A. Let scalar rational functions ry,r;,...,m%

be arbitrary. Fix A € o and choose j € {1,2, ..., k} such that
lIrsvslls=a = max {|lroville=a: 1 <i <k}

Then (ii) implies that

k
1Y ravillsma = lIrgvillsma.

i=1
So (5) holds and it follows that {v;,va, ..., v} is an orthogonal basis for (A, o).
(|
It follows from the results in [F] that a minimal polynomial basis for a subspace

A of R™ is an orthogonal basis for (A, C. ). We state this in the next theorem.
Theorem 2.14 If A is a subspace of R", (A, C.) has an orthogonal basis.

In particular, (R",C,,) has an orthogonal basis. In fact it follows from Proposi-
tion 2.13 that if {¢;, ca, ..., ¢ } is & basis for C™ (over the base field C) and ry,ry,..., 7,
are nonzero scalar rational functions, then {r,(2z)c;,r2(2)ca, ..., *a(2)cn} is an orthog-
onal basis for (R", C.,).

In view of Proposition 2.12, Theorem 2.14 has the following corollary.
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Corollary 2.15 Let A be a subspace of R" and let o be a proper subset of C,,.
Then (A, o) has an orthonormal basis.

2.2.4 Orthogonality and spectral points

An orthonormal basis {v,,v,,...,v4} for (A, o) can be characterized in terms of

poles and zeros of the rational matrix function [v; v; ... v;] as follows.

Theorem 2.16  Let {v1,vy,...,v} be a basis for a subspace A of R™*! and let
0 C Co. Then {v,,vy,...,u4} is an orthonormal basis for (A,c) if and only if the

rational matriz function [v; v; ... va] has no poles nor zeros in o.

Proof We may assume o = {1} with A € C,,. We note that since {v;,v3,...,v,} are
linearly independent over R, the rational matrix function W = [v, v; ... v,) € R™*"
is left invertible.
Suppose first that {v,,v,,...,v4} is an orthonormal basis for (A, {\}). Then W is
analytic at A. Also for any ¢ = [¢; @5 ... #]T € R**! with ||¢)l,=a =1
IWéll:=r = max {|l¢vills=a: 1<i <k}
= max {|¢il.=2: 1<i<k}

= [|$lls=a
= 1.
Hence no diagonal entry in the Smith-McMillan form of W (the Smith-McMillan form
of W(2~!) if A = oo) has a zero at A (at 0 if A = o0).
Suppose now that W has neither a zero nor a pole at A. If ||v;|.=a > 1 for
some i, v; and hence also W has a pole at A. If ||v;||,=a < 1 for some %, there is a

nonzero constant function ¢ € R**! such that W¢ = v; has a zero at A. Then some

diagonal entry in the middle factor in a Smith-McMillan factorization EDF of W
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(resp. W(z™') if A = o0) has a zero at A (resp. at 0 if A = o0), a contradiction.
It follows that |lv;]|,=a = 1 for all i = 1,2,...,k. Suppose there are scalar rational
functions 7,7, ...,m% such that || F rovll.=a < max {|lraviflser 0 1 < @ < k}.
Then not all ry,ry,..., 7 are gero and we may assume ||(ry,73,...,7%)|ls=a = 1. Then
max {||riville=a: 1 < i<k} =max {|rl;=a: 1 <i<k}=1and Wr has a zero
at A where r = [r; r3 ... )7 is & function analytic and nonzero at A. Consequently,
some diagonal entry in the Smith-McMillan form of W (resp. of W(z™") if A = o0)
has a zero at A (resp. at 0 if A = o0), a contradiction. Thus, {v,,vs,...,v} is an
orthonormal basis for (A, {A}).

a

It follows from Theorem 2.16 that if W is a left invertible rational matrix function
with no poles nor zeros in 0 C C,,, then the columns of W form an orthonormal basis
for (A,0) where A is the column space of W. Thus, if the columns of W fail to be
orthogonal at A, A is a pole or a sero of W. The next proposition shows that the study
of the right pole structure at A of a rational matrix function W can be simplified if
the span of some columns of W is orthogonal at A to the span of the other columns
of W. We note that in Proposition 2.17 we do not assume linear independence of the

columns of the involved rational matrix functions.

Proposition 2.17 Let W, and W; be m X n, and m x n; rational matriz functions
with the canonical sets of right pole functions at A € Co, ¥; and ¥,, respectively, and
let W=[W, W,]. If the columns of W; and W, are contained in subspaces of R™
A, and A;, respectively, and Ay, A; are orthogonal at A, then each right pole function
Y for Wy (resp. W;) at A of order k is a right pole function for W at A of order k
and ¥ = ¥, U ¥, is a canonical set of right pole functions for W at \.
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Proof The first assertion follows from the definition of a right pole function and
Proposition 2.6. Also by Proposition 2.6 the leading coefficients in the Taylor expan-
sions at A of functions in ¥, and ¥, are linearly independent. Let 4 be a right pole
function for W at A of order k. Then ¥(z) = v;(2) + ¥a(2z) where
{ (z = A)*W;(2)é:(2), ifAeC
Yi(2) =
2 "Wi(2)di(2), if A = oo.
for some rational vector function ¢; which is analytic at A (i = 1,2). So P(A) is
contained in the span of the values at A of the functions in ¥ of order at least equal
to k. Thus, ¥ is a canonical set of right pole functions for W at .
a
Since the orders of pole functions in a canonical set of right pole functions for a
rational matrix function W at A € C,, coincide with the partial multiplicities of the

pole of W at A, Proposition 2.17 has the following corollary.

Corollary 2.18 Let W, and W, be m x n, and m x n, rational matriz functions,
let A € Co, and let ky, ka, ..., ky, and b, 1y, ...,1,, be partial multiplicities of the pole
at A of W, and W;. If the column spaces of W, and W, are orthogonal at A, then
ky,kay...,kny,liyla, ..., 1, are the partial multiplicities at A of the pole of the rational
matriz function (W, W,].

Proposition 2.17 shows that if a rational matrix function W can be split into a
block matrix function W = [W; W, ] such that the column space of W, is orthogonal
to the column space of W, at A € C,, then the right pole structure of W at A can
be investigated by considering the right pole structure at A of W, and W, sepa'rately.
Proposition 2.23 below is an analogue of this observation referring to the left zero

structure of W. We shall use in this section the following immediate corollary of

Proposition 2.23.
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Corollary 2.19 Let W, and W; be m x n, and m x n, rational matriz functions,
let A € Co, and let ky, ks, ..., ky, and I, 1, ..., 1, be partial multiplicities of the zero
at A of W, and W,. If the column spaces of Wy and W, are orthogonal at A, then
ky,kay .oy by lyy bay oo, Iy, are the partial multiplicities of the zero at A of the rational
matriz function [W; W,].

In particular, if all columns of W are orthogonal on o C Cq, Propositions 2.17
and 2.19 specialize as follows (cf. Result 2 in [VK] and Ex. 6.5-20 in [K]).

Proposition 2.20 Let 0 C C,, and let W be a left invertible rational matriz
Junction whose columns are orthogonal on 0. Choose A € o and let ry, 75, ...,7, € R"
be such that

r1(2)
( ra(2)

W(z) = W(z
()= W(s) » "
= W(z)D(2)

and W has columns that are analytic and nonzero at A. Suppose r;,,7;,,...,7;, vanish

at A and rj,,r;,...,v; have a pole at \. Then

(t) the partial multiplicities of the zero of W at A coincide with the orders of zeros
at X of 1y, Ty ey Ty,

(i) the partial multiplicities of the pole of W at A coincide with the orders of poles at
A of 5 Ty ey Tiys

(iii) the columns 3y, 7a,...,51 of W form a canonical set of right pole functions for W
at A,

2.3 Discrete left zero structure

Let W be an m x n rational matrix function and let A € C,,. We say that a
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function ¢ € R'*™ is a left pull function for W at A of order k, k a positive integer,

if

(i) ¢ is analytic and nonzero at A,

(ii) @W has a zero at A of order k,
(iii) ¢ is orthogonal to W* at A.

In view of Proposition 2.6 conditions (i)-(iii) above are equivalent to (i), (ii) and
(i) $(2) ¢ WI().

A set of left null functions {¢, ¢, ...,é,} for an m x n rational matrix function

W at A € C, of orders ky, ks, ..., k,, respectively, is called a canonical set of left null

functions for W at A if

(i) ¢1(A), #2(A), ..., ¢4(A) are linearly independent,

(ii) é1,¢3,..., ¢, are contained in an orthogonal complement of W' in (R!*™, {A}),
(iii) 37, ki is maximal subject to conditions (i) and (ii).

We note that if 7 = (D, Ay, B.) is a left kernel triple for W, then in view of Propo-

sitions 2.6 and 2.7 the condition (ii) above is equivalent to the linear independence of

rows of the matrix

()
i
@a2(A
4
where 7()) is a basis for W*()) obtained from .

We show first that the canonical sets of left null functions for W € R™*"™ at
A € Cq can be projected onto orthogonal complements of W* in (R'*™, {A}).

Proposition 2.20 Let {¢y,¢,,...,4,} be a canonical set of left null functions for
an m X n rational matriz function W at A € Co, of orders ky, ks, ..., k, respectively
and let A be an orthogonal complement of W in (R'™, {A}). Let ¢, s, ..., 6y be
the projections of ¢y, s, ..., ¢, onto A along W, Then {&1,:#,,...,&,,} is a canonical
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set of left null functions for W at A of orders ky, ks, ..., ky.

Proof Choose orthonormal bases {vy,v,, ...,v;} and {w;, w,, ..., w;} for (A, {A}) and

(W9, {2}). Then the rational matrix function

o -

L4
V2

Q=

w
Wy

w
is regular and analytic at A. By Propo.ition. 2:5: Q does not have a zero at A and hence
Q! is analytic at A. Consequently, the functions ¥, = $:1Q~,v¥3 = 42:Q7,..., ¥, =
$,Q " are analyticat A. Hoh = [¥a ¥ ... %im] (¥ € R), let ¢ = 35, visv;
(i=1,2,...,9). Then ¢, ¢, ...,y are the projections of ¢y, @3, ..., ¢, onto A along W
and ¢, ¢3, ..., d, are analytic at . Since spm{&()),%(;\), ey (W)} = span{¢:(]),
$2(2), ..., #n(A)} modulo W(X), the vectors ¢1(A), $3(R), ..., 65(A) are linearly inde-
pendent. Since ;W = W (i = 1,2,...,7), the orders of ¢; and ¢; as left null func-
tions for W at A are equal. Finally, suppose that there exists a left null function &.,H €
A for W at ) such that ¢,., ¢ span {$;(}), 2()), ..., ¢5(A)} or such that ¢,,, should
replace some function ¢; in the canonical set of left null functions {¢;, ¢, ..., $,} be-
cause of order considerations. Then, reversing the argument above, we can find a
left null function ¢,y for W at A such that ¢,, ¢, ..., Pps1 are contained in a sub-
space orthogonal to W* at A and either ¢,.1(A) ¢ span {$1(A), #2(}), ..., #,(A)} or
®n+1 should replace some functions in {¢;, ¢, ..., #5} because of order considerations.
Since {¢;,¢ds,...,@,} is a canonical set of left null functions for W at A, this is a
contradiction. It follows that {¢y,¢,...,4,} is & canonical set of left null functions
for W at A and the proof is complete.

(m
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Proposition 2.22 Let A € C,, be a zero of an m x n rational matriz function W.
Then the orders of the functions in any canonical set of left null functions for W at
A are equal to the partial multiplicities of the zero of W at A.

Proof We assume without loss of generality that A € C. Let EDF be a Smith-
McMillan factorization of W and suppose that the first k& diagonal entries of D are
nonzero and all the other entries of D are zero. Then W* is spanned by the last
m — k rows of E-1. By Proposition 2.6 the space A spanned by the first k rows of
E-! is orthogonal to W* at A. Clearly, the rows of E-! corresponding to the nonzero
entries of D which vanish at A are the left null functions for W at ) of orders equal
to the partial zero multipicities of W at A. Hence, by Proposition 2.20 the orders of
functions in any canonical set of left null functions for W at A are equal to the partial
multiplicities of the zero of W at A.

o

Proposition 2.20 implies also the following analogue of Proposition 2.17.

Proposition 2.23 Let W, and W be m x n; and m x ny rational matriz functions,
let A € C,,, and suppose that the column space of W, is orthogonal at A to the column
space of W3. Then there ezist canonical sets ®, and ®; of left null functions at A
Jor W1 and W,, respectively, such that every left null function ¢ € &, for W, (resp.
® € &, for W;) at X of order k is a left null function at X of order k for the rational
matriz function W = (W, W,)], and ® = &, U ®; is a canonical set of left null
functions at A for W.

Proof Let A; be the column space of W; (i = 1,2) and let A5 be an orthogonal
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complement of A; + A; in R™. Let
h =(A: 8 As)°,
12 = (A @ As)°,
s = (A ® A)°.
Then, by Theorem 2.11, ), is orthogonal to §2; at A wheneveri # j and Q, 0,65 =
R*m™_ Also,

Wlo‘ = 93 e na,
W=0,00,,
W"=ﬂ,.

Choose a canonical set ®; of left null functions at A for W; and project functions in
&; onto Q; along W' to get &; (i =1,2). Let ® = $, U®,. If § € ; is a left null
function for W, at A of order k, then ¢W; has a zero at A of order k and ¢W, vanishes
identically. Since §,; is orthogonal to W* at ), ¢ is a left null function for W at A
of order k. Similarly, every left null function ¢ for W; at A of order k is a left null
function for W at A of order k. Let ¢ be a left null function at A for W of order k.
We may assume ¢ € 2, © ;. Let ¢ = ¢q, + dn, with ¢n, € Q;. Then
(60, + é0,) (W1 Wa]=[(¢n, + ¢n,)W1 (0, + é0,)W:]
= [¢a, W1 ¢n,W;]
vanishes to order k at A. So each of ¢n, W, and ¢q,W; vanish to order at least &
at A and ¢(]) is contained in the span of values at A of null functions in & of order
at least k. Since, by Proposition 2.6, the values at A of functions in & are linearly
independent, & is a canonical set of left null functions for W at A.
O
A canonical set of left null functions for an m x n rational matrix function W

at A can be found similarly as in the regular case (see [BGR1]) with the additional

constraint that the functions have to be contained in a subspace A orthogonal to W
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at A. That is, choose an orthogonal complement A of W* in (R!*™, {A}). Find a
left null function ¢; € A for W of maximal possible order. Inductively, given left null
functions ¢, @3, ..., #, € A for W at ], find a left null function ¢,,, for W at ) of max-
imal possible order such that ¢.,; € A and ¢,,.1(2) ¢ span {¢;1(A), $2(}), ..., #,(A)}.
Continue until the span of values at A of left null functions for W at A which are

contained in A has been exhausted.

Let A € C, be a zero of an m x n rational matrix function W and let {¢,, ¢, ...,
¢n} be a canonical set of left null functions for W at A of orders k,, ks, ..., k,, respec-
tively. Let ¢; ; € C**" be such that

D (=W iAreC
#)={ =

Zz"jcﬁ.-‘,-, if A = oo.

=0

Any ordered pair of matrices (A, B), where

r -Jkl (’\)
S I (3) . S, ifreC
I Jiy(A)
A= (7)
-Jh(o)
S I (0) _ $1  fl=o0
\ - . qu(o)
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and . -
¢1,k1 -1
vhl ~2

$1.0
2,021

W2 ~2

$20
¢n,;—1
¢n.k.,—2

L ¢ﬂvo 4
for some invertible matrix S of an appropriate size, is called a left null pair for W at

A

Let 0 C C and let Ay, Ay, ..., A, be the zeros of a rational matrix function W in
o. Let (4;, B;) be a left null pair for W at A; (i = 1,2,...,,r). Any ordered pair of
matrices (A, B), where

A=S§ A s, B=s§|>
4, B,
for some invertible matrix S of an appropriate size, is called a Jeft null pair for W
over o (or a o-left null pair for W).

We note that since the values at A € C of functions in any canonical set of left
null functions for W € R™*" at ) are linearly independent, a left null pair (4, B) for
W over a ¢ C C, or at infinity, is controllable (see Theorem 3.4 in [BGR1)), i.e. the
matrix (B AB ... AB] has full column rank for sufficiently large integers I.

We shall need later the following property of left null pairs.

Lemma 2.24 Let o C C, let (A, B) be a left null pair for a rational matriz function
W over o, and let {A,),...,A,} be a finite set of points in C,,. Suppose that the
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largest geometric multiplicity of a zero of W in o equals x. Then there ezists a
subspace A orthogonal to W on {A,,A,,...,A,} and functions ¢,, ¢, ey O € A such
that the pair (A, B) is lefi-similar to the pair constructed from the Taylor coefficients
of d1,Pa, ..., Ox at the eigenvalues of A.

Proof After augmenting the set {A,, ), ...,A,} if necessary, we may assume that
s > r, the eigenvalues of A are {A},);,...,),}, and A, = co. Let {¥in, %2y Yin:}
(i = 1,2,...,r) be a canonical set of left null functions for W at ); such that the
pair (A, B) is left-similar to the pair constructed from the coefficients in the Taylor
expansions of ¥;; at A;. We assume x =9, > 9, > ... > 7y. Let k;; be the order of
%i,; as a left null function for W at X; (1 = 1,2,...,r, j =1,2, ..y 7;), and let
¥i(2) = (2 = 2a)™9(z = Ag)™9 (2 = A Mgy 44

+ (2= M)M9(z = A9 (2 = Ay o9 eha i + .t (8)

+ (2= M) (2 = Ag)*9 (2 = Ayt
where 7; is the largest integer such that n,, > j (j = 1,2, ...,x). Then ¥, is a left null
function for W at the points Ay, A, «ery Ay; Of orders ky ;, kg, ..., k. ; respectively.

We claim that the pair (A, B) is left-similar to the pair constructed from the

canonical sets {¢1,%3,...,¥n}, {¥1,%2, -, ¥ }, .., {¥1,¥3,..., ¥y, } of left null func-
tions for W at Ay, Ay, ..., A,. To prove the claim it suffices to show that if ¥ ; and
] are the v’th coefficients in the Taylor expansions of Yisjand Y at X, (1 <i<r,

1 < j < 1), then the pairs of matrices

ki i1 ki -

v u
Juy(0), | ¥ and | Ju, (M), | ¥
’. ¥

are left-similar. Now it follows from (8) that

¥;(2) = pii(2)¥:3(2) + (2 — ;)59 g 5(2)



47

where p; j(z) is a scalar polynomial with p;;(A;) # 0 and where g;;(z) is a vector

1 4

function analytic at A;. Hence for v € {0,1,..., ki — 1} we have y] = 3~ a,¥i;

uv=y

where ao, a4, ..., ax; ;-1 are numbers such that p;;(z) = ELO au(A — X;)* and ao # 0.

Hence
Pt kig-1
i @ G ... Gy o
¢jd _ ay ... a,,u-g "’i g
¥? o ¥y
-1
!bi,{"_z
=S ¥ii’
28
Since the inverse of S is the upper triangular matrix
b b ... by
bo e G’,‘.J_g
b
such that )
1, ify=0
Z aub, =
ntv=y, ppr20 0, if 7= 1, 2, seny k"j - 1,
we have
010 0
01 ... 0
SJ].‘J(A.')S—I =S| A+ S-!
1
0
a9 a; ay ... i ;-1 0 b0 bl bh.'J—l
G @ ... a,.u_., 0 bo .
= A‘- + :
as bO
X 8o 0
[0 1 0 . 0
01 . 0
=i+ P = Jug(R)
1
! 0
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and the claim is established.

We now describe the orthogonalization process which transforms ¥,, 4, ..., ¥, into
functions ¢, s, ..., ¢» with the required properties (cf. Proposition 2.6). We begin
with ;. Choose constant vectors ¢1,41,C1,43,61,, such that ¢;; ¢ Wo();) (5 =
r+1,7+42,...,s) and suppose that the integers u, ; are such that the rational vector

function

(z=2;)Midy(2), fj=r+1,r+2,..,8-1
zM iy (2), ifj=s

is analytic and nonzero at A; (j =r+1,r+2,...,5). We put

¢l(z) =¢1(z) + H(; - A‘)’li.x-l-l. .

(2 (= o TI0s - 2w+
Kot im1

b st o, — (o)) )

Then ¢, is a left null function for W at A; of order k;; (i = 1,2,...,r), the first
ki1 coefficients in Taylor expansions of ¢, and ¥, at \; coincide (¢ = 1,2,..,7),
and the leading coefficients in the Laurent expansions of ¢, at A1, 43, ..., A, are
C1,,41) C1,r43, -+, C1,o. Inductively, suppose ¢,, 43, ...,¢;_1 with j < k are given and let
7; < v be the largest integer such that 5,, > j. Choose nongero constant vectors
Cjivj+1s Cioyj+3y -y Cj,s Such that the span of ¢;, and the leading coefficients in the
Laurent expansions of ¢;,¢s,...,4;—1 at A, intersects trivially with W ) (v =
Yi+1:7i+21 - Vs), and suppose that the integers ;. are such that the rational vector
function
{ (z=AN)Mi(z), fv=3+1,j4+2..,5-1

zHivahi(2), fv=gs
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is analytic and nonzero at A, (v =3+ 1,7 +2,...,8). Let

¢i(z) =vi(z) + ﬁ(z — Ag)Matl,

=1

. ( i (z = A ) (cj,u - [¢,-(z)];,/ ﬁ(&, - A‘.)"i.:'+l)+

v=vj+1 §=1
TR (o, — o)) ).

Finally, we put A = span {¢,,¢y,...,¢.}. The functions ¢, s, ..., ¢, and A have the
required properties.

a

We note that by choosing constant vectors c;; in the orthogonalization process

in the proof of Lemma 2.24, we have actually defined A(\) (i = + 1,7 + 2, ey 8).

Also, in general A();) for i = 2,3, ...,r was not completely determined and depended

only on the values of ;,,¥;3, ..., ¥in 8t A;. For future reference, we state this in the

following corollary.

Corollary 2.25 Let o C C, let (A, B) be a left null pair for an m x n rational matriz
Junction W over o, and let {\,),,...,A,} be a finite set of points in C.,. Suppose
that the pair (A, B) is left-similar to the pair constructed from a canonical set of left
null functions

{{#1r;} : A is an eigenvalue of A, 1< j < 7}

and let

) = span {$3;(A): 1 <j<m}
Jor each eigenvalue X of A. Let k be an integer such that k < m and k is greater
than or equal to the largest geometric multiplicity of a zero of W in o. Suppose that

to every integeri =1,2,...,s there corresponds a k-dimensional subspace A; of C1*™

such that A; contains Q,; whenever \; is an eigenvalue of A. Then we can find a
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subspace = of R'*™ such that E(X;) = A; and the pair (A, B) is left-similar to the

left null pair constructed from a canonical set of left null functions for W in =.

It follows from Lemma 2.24 that any left null pair (A, B) for an m x n rational
matrix function W over o C C is left-similar to the pair constructed from functions
which are contained in a subspace orthogonal to W on o(A). It turns out that
the left null pairs for W over o constructed from functions in the same orthogonal
complement of W in (R'*™, {A1,As,..., A }), where Aq, Ag, ..., A, are the zeros of W

in o, are necessarily left-similar.

Proposition 2.26 Let (A, B,) and (A3, B;) be two left null pairs for an m x n
rational matriz function W over o C C constructed from functions contained in the
same orthogonal complement A of W in (R'*™,0(A;)). Then (A, B,) and (A, B,)

are lefi-similar.

Proof Let {v),v;,...,v:} be an orthonormal basis for (A°, o(A,;)). By Theorem 2.11,

the rational matrix function
Q=[W v, v ... w]

is regular. Since the pairs (A;, B) and (4,, B,) are left null pairs for Q over o(4,),
they are left-similar by Theorem 3.3 in [BGR1).

O

We note that left null pairs for a rational matrix function W over ¢ C C con-

structed from functions which are not contained in a subspace orthogonal to W*! at

the zeros of W in & need not be left-similar. E.g. if

we = [221],
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(A1, B:) = ([1], (1 0]) and (A3, By) = ([1], [0 1]) are left null pairs for W over C
which are not left-similar. A characterization of when two controllable pairs (A1, By)

and (A3, B;) are left null pairs for the same matrix polynomial W is given in [BCRo].

2.4 Right zero structure

Let W be an m x n rational matrix function. We will denote the right annihilator
of W by W*. The set of values at A C C, of functions in W° which are analytic at
A will be denoted by W*°()). A matrix polynomial whose columns form a minimal
polynomial basis for W°" is called a right kernel polynomial for W. We will assume
that the columns of a right kernel polynomial P are ordered according to decreasing

degrees.

Proposition 2.27 Let P € R™** be a matriz polynomial with columns orthogonal
at infinity and suppose that the i’th column of P equals Y To 2™ 9P, (P.; € C™,
Pio#0if P #0,i=1,2,..,k). Suppose that the first | columns of P have a pole at
infinity and the last k — | columns are constant. Then a minimal realization of P is

gwen by the formula

P(z) = P(0) +
[Po Py ... Pigoy Poo Poy ... Pam-1 ... Po Py ... Pro-1]
Jm (0) - E1
-1 Jm(o) E2
z - .. :
Jm(0) E

(9)

where E; is the 7; X k matriz with 1 at the position (3,1) and zeros elsewhere.

We note that the matrix [Ef ET ... ET ]T in the realization (9) of P can

be easily reproduced from other matrices in (9). If P is a right kernel polynomial for
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a rational matrix function W, the ordered triple of matrices (Cy, Ax, D) where

C,‘=[P1,o Py ... Popooy Pog Py ... Py P, ... Pl,m-l],
Im (0) 70
A, = =(0) , and D, = P(0)
Jm(0)
will be called a right kerne] triple for W.

We note that if W is a rational matrix function and A € C, a basis for W°(}) can
be easily computed from a right kernel triple (Cy, A, D,) for W; a basis for W*"(o0)
can be read off directly from (C,, A, D, ).
Let W be an m x n rational matrix function and let A € C,,. A function ¢ € R™*!
is a right null function for W at A of order k, k a positive integer, if
(i) ¢ is analytic and nonzero at J,
(ii) W¢ has a zero at A of order k,
(ii) ¢ is orthogonal to W*" at A.
Condition (iii) above can be replaced by
(i) $(2) ¢ W ().
A set of right null functions {¢,, ¢s, ..., ¢,} for an m x n rational matrix function
W at A € C,, of orders ky, ks, ..., ky, respectively, is called a canonical set of right null
functions for W at A if
(i) é1(A), #2(A), ..., n(A) are linearly independent,
(i) é1,43,..., ¢, are contained in an orthogonal complement of W* in (R™*?, {A}),
(iii) 327, ki is maximal subject to conditions (i) and (ii).
Condition (ii) above can be replaced with
(i) span {41(A), da(2), - $o(A) N W (A) = (0).
We note that the number of functions in a canonical set of right null functions

for W at A is equal to the geometric multiplicity of the zero of W at A. The orders
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of functions in a canonical set of right null functions for W at A coincide with the
partial multiplicities of the zero of W at A.

Let X € Co be a zero of an m X n rational matrix function W and let {¢y, ¢, ...,
@} be a canonical set of right null functions for W at A, of orders ky, ks, ..., ky,
respectively. Let ¢;; € C™** be the j’th coefficient in the Taylor expansion of ¢; at
A. Any ordered pair of matrices (C, A), where C equals

[¢1.o 11 . Pm-1 D0 Pa1 o Pamm-r . Pno Dpa . ¢q,h.,-1]S

and
( [T (A)
51 Ti(3) _ S, ifieC
I Jiy(A)
A={
-J’u(o)
51 In(0) . S, ifl=o0
[ L Ju,(0)

for some invertible matrix S of an appropriate size, is called a right null pair for W
at A.

Let o C C and let A, ), ..., A, be the zeros of a rational matrix function W in
o. Let (C;, A;) be a right null pair for W at X; (i = 1,2, ...,r). Any ordered pair of
matrices (C, A), where

4
C=[Ci C .. C]S and A=S" ' S

Ap
for some invertible matrix S of an appropriate size, is called a right null pair for W
over o (or a o-right null pair for W).
Similarly as in the regular case, right null pairs are controllable. Right null pairs

also have the following property.
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Proposition 2.28 Let 0 C C, let (C, A) be a right null pair for a rational matriz
function W over o, and let {A;, A, ..., A,} be a finite set of points in C,,. Suppose that
the largest geometric multiplicity of a zero of W in o equals x. Then there ezists a
subspace A orthogonal to W° on {A;, As,...,A,} and functions ¢y, ¢,..., ¢, € A such
that the pair (C, A) is right-similar to the pair constructed from the Taylor coefficients
of 1, P2, ..., P at the eigenvalues of A.

Proposition 2.28 allows us, in particular, to associate with each right null pair
(C, A) for a rational matrix function W over ¢ C C a subspace A of R™*! which is
orthogonal to W°" on o(A) such that (C, A) is right-similar to a pair constructed from
right null functions for W which are contained in A. Right null pairs constructed from
functions in a fixed orthogonal complement of W°r in (R™**,{);, A3, ..., A }), where

A1, Az, oy A, are all the zeros of W in o, are right-similar.



Chapter II1

Local Right Equivalence

Recall that two m X n rational matrix functions W and H are said to be right
equivalent on 0 C Cq, if W = HQ for some regular rational matrix function Q such
that Q and Q™! are analytic on . We note that if ¢ = C,, Liouville’s theorem
implies that a rational matrix function Q which has no poles in o is constant. Thus,
two rational matrix functions which are right equivalent on C,, differ by a constant
right factor.

If a subset o of the extended complex plane is given, the relation of right equiv-
alence on o divides all rational matrix functions of the same size into equivalence
classes. The members of the same class have the same right pole and left zero struc-
ture: if W and H are right equivalent on o, (C,, A,) is a right pole pair for W over
o if and only if (Cy, A.) is a right pole pair for H and (A, B;) is a left null pair for
W over o if and only if (A¢, B;) is a left null pair for H over o. As can be seen from
the regular case (see Theorem 5.1 in [GK2]), the converse of the preceding statement
does not hold: two m x n rational matrix functions with the same right-pole and
left-zero structure on o need not be right equivalent on 0.

Local right equivalence of rational matrix functions, that is right equivalence over
a proper subset of C, is a generalization of a well understood concept of equivalence
of matrices over a principal ideal domain: A and B, matrices over a principal ideal
domain D, are said to be equivalent if A = PBQ for some unimodular matrices over
D, P and Q (see [McD, J]). Morse studied in [Mor] a relation between matrices over
a principal ideal domain which he called dynamic equivalence. Two matrices A and
B over a principal ideal domain D are said to be dynamically equivalent if A = BQ

55
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for some unimodular matrix over D, Q. Plainly, dynamically equivalent matrices are
equivalent. Our definition of right equivalence of rational matrix functions A and B
extends the definition of dynamic equivalence to the case where A and B may have
entries in a field properly including the principal ideal domain D (see Proposition 3.1
below).

A concept related with local right equivalence is that of the left null-pole subspace
of a rational matrix function (see Section 3.1 below). Null-pole subspaces are also
called singular subspaces in the literature. They were introduced in [GR3, GR4]
for analytic matrix and operator functions. Null-pole subspaces of regular rational

matrix functions were investigated in [BRanl), [BCR] and [BGR2).

In the case where o contains both poles and zeros of a rational matrix function
W, the description of the null-pole subspace requires besides a right pole pair and a
left null pair for W over ¢ an extra invariant, called the null-pole coupling matrix.
For the regular case, this first appears in a global form in [GKLR] in connection
with minimal divisibility questions. In connection with null-pole subspace, it was
first introduced for the regular case in [BRanl, BRan2]. For the nonregular case, it

appears here for the first time.

Chapter III is organized as follows. In Section 3.1 we describe in more detail the
concept of right equivalence of rational matrix functions on a subset o of C.,. Included
here is an additional piece of structure, namely the null-pole coupling matrix, which,
together with the right pole and left zero structure on ¢ C C already introduced,
completely characterizes right equivalence on . In Section 3.2 we find a sufficient
condition for minimality of the McMillan degree of a rational matrix function H which

is right equivalent to a given function W on ¢.
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3.1 Left null-pole subspaces

H o C C, we will denote by R(0) the integral domain of all functions in R which
are analytic on o. It is shown in [Mor] that R(r) is in fact a principal ideal domain.
We will denote by R™*"(0) the set of matrices over R(c). Using this notation we

can characterize right equivalence of rational matrix functions as follows.

Proposition 3.1 IfW,H € R™*" and 0 C Cy, the following are equivalent:
(i) W, H are right equivalent on o,

(i) W = HQ, and H = WQ; for some @1,Q2 € R™*"(0),

(i) WR™™ (o) = HR™!(0).

Proof The implications (i) = (i) = (4#ii) are immediate. Suppose (iii) holds.
If 0 = Cp, R™*}(o) = C™*). Then WR"*(c) is a finite diminsional C-vector
space. Let k = dim WC™! We have W = [W 0] Py for some invertible constant
matrix Py and some m X (n — k) rational matrix function W with columns linearly
independent over C. Since dim (WC™') = dim (HC™'), H = [H 0] Pg for some
invertible constant matrix Py and some m X (n — k) rational matrix function H with
columns linearly independent over C. Since columns of W and H form bases for the
same vector space over C, W = HP for some (n — k) x (n — k) invertible matrix P.
It follows that
W=[Ww o]Pw=[H 0] [P I] Pw

- HP! [P I] Pw

= HQ
and W and H are right equivalent on C,.

Suppose o is a proper subset of C,,. After applying a suitable Mobius transfor-

mation, we may assume 0 C C. Let Ew Dy Fy and EgDgFyg be Smith-McMillan
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factorizations of W and H. Then
Ewpr"xl(d') = EHDHR"XI(U). (1)

Let k be the number of nonzero diagonal entries in Dy. Comparing the dimensions
of the free R(o)-modules on both sides of equality (1), we see that the number of
nonzero diagonal entries in Dy is also equal to k. I bw and DH are m X k rational
matrix functions such that Dy = [ Dw 0] and Dy = [ Dy 0], it follows from (1)
that
DwR*\(0) = E! EgDgR**}(o).

Let e; be a constant k x 1 vector with 1 at the i’th position and zeros elsewhere, and
choose fy, fa, ..., fu € R**}(c) such that Dwe; = Ez'EgDyf; (f =1,2,..,k). Let
Q=1[fi fr ... fu]. Q is a square matrix over R(c). Since Q relates two bases
of R**1(g), Q is a unit in the ring of k X k matrices over R(c). It follows that Q is

a kxk rational matrix function such that Q and Q" are analytic on o and

EwDw = EgDgQ.

Hence
EwDw = EgDyg [Q IJ .
S W = EwDwFy
— EgDgFy (Fgl [Q 1] FW)
= HQ.

Thus, W and H are right equivalent on o.
O

It follows from Proposition 3.1 that all m x n right equivalent on o rational matrix

functions viewed as maps R"*'(c) — R™*! have the same image. Let W ¢ R™*"
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and let 0 C C.. Since multiplication of matrices commutes with multiplication by
scalars, WR"*!(c) is an R(0)-module. In particular, WR"*!(¢) is a C-vector space.
After [BGR2] we shall call WR"*}(c) the left null-pole subspace for W over o.

H W € R™*™ is a regular rational matrix function and & C C, the left null-pole
subspace for W over o is determined by a right pole pair (C,, A,) for W over o, a
left null pair (A¢, B¢) for W over o and a matrix ' which couples the pairs (C,, A,)
and (A¢, B¢). The explicit representation of WR™*!(¢) in terms of (Cy, A,), (A¢, B¢)
and T is given by the formula (see Theorem 3.4.1 in [BGR2])

WR™ (o) = {Cu(z — Ax) 'z + h(2z): z € C™*'h € R™*(0)
and Z Res, =, (z — A¢)"'B¢h(z) = 'z}
20€0
where n, is the size of the matrix A,.

The matrix I above is called a pull-pole coupling matrix for (Cx, A.) and (A, B;)
as the right-pole and left-null pairs for W over o (see [BGR2)), or a coupling operator
(seee.g. [BRanl]). If W(z) is equal to I+C(z—A)~' B with the realization (4, B, C, I)
minimal and a right pole pair (C,, A,) and a left null pair (A¢, B;) for W over o are
given, the corresponding null-pole coupling matrix can be computed as follows (see
[BRanl, GK2, BGR2]). Choose simple positively oriented contours «, and v, around
o(A,) and o(A¢) such that o(A)\o(A,) is outside v, and o(A— BC)\o(A;) is outside
v¢ and let

© = (1/2ri) [ (e Ay

©* = (1/2xt) | (z— A+ BC) dz.
™"

(2)

The null-pole coupling matrix for (Cy, Ax) and (A¢, B;) as the right pole and left null
pairs for W over o is given by the formula S 1©%S;! where S; and S, are the unique

matrices such that

(C|Tm®, AlIm®) = (Cy S, -1 4,S.)

(A — BC|Im©*,0*B) = (S,AS7?, S¢B,).
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We note that if (Cy, Ax) and (A¢, B) are right pole and left null pairs over o0 C C
for some regular rational matrix function W and I’ is the corresponding null-pole

coupling matrix, the equality
I'A, - A;,T = B;C, (4)

holds (see [GK2,BGR2]).

We now extend the definition of a null-pole coupling matrix to the non-regular
case. Let W be an m X n rational matrix function and let o C C. Let (Cy, A,) and
(A¢, B¢) be right pole and left null pairs for W over 0. By Lemma 2.24, there exist an
orthogonal complement A of W*! in (R'*™, 0 A, )Uca(A¢)) such that the pair (A¢, B;)
is left-similar to a pair constructed from functions in A. Choose an orthonormal basis
{v1,va, ..., v} for (A°,0(A,) U d(A¢)). Fix a2 Smith-McMillan factorigation EDF of
W and let D be the rational matrix function obtained from D after deleting the zero
columns. Then (C,, A,) and (A¢, B;) are right pole and left zero pairs for the regular
rational matrix function Wg = [ED v, v, ... vy]. We define the null-pole
coupling matrix for (Cy, Ax) and (A¢, B¢), viewed as the right pole pair and left null
pair for Wg over o(A,) U o(A;), to be the null-pole coupling matrix I' for the right
pole pair (Cy, A,) and left null pair (A¢, B;) for W over o.

We need to show that T is well-defined. We will show that if we choose A instead
of A and ©,, 9, ..., U instead of v,,vs,..., v then Wg = [ED B Uy ... {,,,] is
right equivalent to Wg on o(A,) U o(A¢). Since Wg and Wy are regular rational

matrix functions of the same size,

[ED % #% ... %]=[ED v v ... w]Q (5)
for some regular rational matrix funétion Q. Let

o= [@nu Qu]

21 Q23
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with Q23 of the size k x k. Since the columns of Wg and Wg form bases for Rrx1,
Q11 = I and @3 = 0. Suppose that some entry of @2, has a poleat A € o(A4,)Uc(A;).
Let Q; be the corresponding column of Q. Then WgQ); is the sum of a function in
A°® which has a pole at A and a function in the column space of W. So WgQ; has
a pole at ). Since, by (5), WgQ; € {i1,7%a,...,9}, this is a contradiction. Thus,
Q23 is analytic on o(A,) U 0(A¢). Suppose now that some entry in Q,; has a pole
at A € 0(Ay) Uo(A¢). Let g;; be the corresponding entry of Q. If the i’th diagonal
entry of D does not have a zero at A, the orthogonality of the columns of Wg at A
implies that the j’th column of WgQ has a pole at A. This again contradicts (5).
Suppose that the i’th diagonal entry of D has a zero at A of order x and let ¢ be the
i’th row of E-1. Then ¢ is a left null function for W at A of order x. Since Wg and
Wg share a common left null pair, Wg and Wg have the same left zero structure.
Hence ¢ is a left null function at A of order x for Wg. Since Q,; is analytic on o and
é[vi vs ... vx] has a zero at A of order at least x, pWgQ vanishes at )\ to the
order strictly less than x or ¢WgQ does not vanish at A at all, a contradiction. It
follows that Q is analytic on o(A,)U o(A;). We show similarly that Q! is analytic
on o(Ax)Uo(A¢). Thus, Wg and Wi are right equivalent on o(A,)U o(A¢) and the
null-pole coupling matrix I’ is well-defined.

We note that if W is a rational matrix function, ¢ C C, and a right pole pair
(Cx, A,) and a left null pair (A¢, B;) for W over o are given, we can actually compute
the corresponding null-pole coupling matrix as follows.

1. Find Wg as in the definition of null-pole coupling matrix.

2. Find Wg which is right equivalent to Wg on o(A4,) U o(A¢) and has value I at
infinity.

3. Find a minimal realization (4, B, C, I) for Wg.

4. Compute I' using formulas (2) and (3).
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The involved computations may be, however, extensive.
Let W be a rational matrix function and let ¢ C C. If (C,, A,) is a o-right pole
pair for W, (A¢, Be) is a o-left null pair for W, and T' is the corresponding null-pole

coupling matrix, we will call the ordered triple
7 = {(Cx, Ax), (A¢, B¢), T}

a left spectral triple for W over o or a left o-spectral triple for W.
We note that if 7 = {(Cx, Ax), (A¢, B¢),T'} is a left spectral triple for a rational
matrix function W over ¢ C C, then it follows from (4) and the definition of a

null-pole coupling matrix that I satisfies the Sylvester equation
SAy — A¢S = B¢Cx.

Also, by the properties of spectral triples for regular rational matrix functions, if T,

and T, are invertible matrices of appropriate sizes then
= {(CuTw, T7  AuTy), (TeAcTe ', Te Be), TeT T} (6)

is another left spectral triple for W over o. If T is any left spectral triple for W over o
and there exist matrices T, and T; such that (6) holds, # and 7 are said to be similar.
If W is regular, all left o-spectral triples for W are similar. Since rational matrix
functions with nontrivial left annihilators may have left null pairs over o which are
not left-similar, a nonregular rational matrix function may have left spectral triples
which are not left-similar.

We can now characterize local right equivalence of rational matrix functions in

terms of spectral data.

Theorem 3.2 Let 0 C C and let W be an m x n rational matriz function with a left

kernel triple 7,, and a left spectral triple over o 7, = {(Cy, Ax), (A¢, B¢),T}. Then an
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m X n rational matriz function H is right equivalent to W on o if and only if 7 is a

left kernel triple for H and 7, is a left spectral triple for H over o.

Proof Suppose first that W and H are right equivalent on o. Then 7, is a left
kernel triple for H, (Cx, A.) is a right pole pair for W over o and (A¢, B;) is a left
null pair for W over . Furthermore we can find regular rational matrix functions
Wg and Hg such that Wg and Hg are right equivalent on o(A,) U 0(A¢), (Cx, 4x)
and (A¢, B;) are right pole and left null pairs for W and H over o(A,) U 0(A;), and
I' is a null-pole coupling matrix for (Cx, A.) and (A¢, B) viewed as right pole and
left null pairs for Wg over 0. Hence I is a null-pole coupling matrix for (Cy, Ax) and
(A¢, B;) viewed as right pole and left null pairs for H over o.

Suppose now that 7, is a left kernel triple for H and 7, is a spectral triple for H
over 0. Let EwDwFw and EgDgFg be Smith-McMillan factorizations of W and
H and let Dy and Dy be rational matrix functions formed by nonzero columns of
Dw and Dg. Choose an orthogonal complement A of the column space of W in
(R™*!, o(Ax)Uo(A¢)) and let {vy,va, ..., v} be an orthonormal basis for (A, o(A,)U
o(A¢)). By the definition of the null-pole coupling matrix, there exists a rational
matrix function Qg such that Qg and Q' have no poles nor zeros on o(A,) U o(A¢)

a_nd WE = HEQE where
WE:[EW-DW 1T V2 ... ‘U),]’

HE=[E3D3 v vy ... v,,]-

Since the columns of Wg and Hg form bases for R™,
_|Qu O
Qs = Qn I|°

Since the column spaces of Ey Dy and Eg Dy are the same, Qj; = 0. Since Qr and

Q' are analytic on 0(A,)Uo(A¢), Qi1 and Q5! are analytic on o(A4,)Uco(A¢). Since
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Dw and Dg have no poles nor zeros in o\(c(A4,) Uo(A¢)), Qu and Q7' are analytic

on the whole ¢. So

W=EW[DW O]FW

=Eg [Dg 0] [Q" I]Fa

-H (F;,‘ [QH I] FH)

= HQ

with Q an n X n rational matrix function such that Q and Q! are analytic on o.

Thus, W and H are right equivalent on o.
O

It follows from Theorem 3.2 that the left null-pole subspace for a rational matrix
function W over o C C is determined completely by a left kernel triple for W and
a left spectral triple for W over ¢. In fact, we can characterize the left null-pole

subspace for W over o as follows.

Proposition 3.3 Let W be an m x n rational matriz function, let 0 C C and let
{(Cx, Ax), (A¢, B¢),T'} be a left spectral triple for W over o. Let T be a left kernel
triple for W and let P be the matriz polynomial corresponding to T. Then the left

null-pole subspace for W over o is given by the formula

WR™ o) = {Cu(z — Ax) 2+ h(z): 2€C™* he R™*}(o) and

3" Resicsy(z — A)"*Beh(z) =Tz} N {f € R™': Pf =0} (7)

€Ec

where n, ts the size of the matriz A,.
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Proof By the definition of a null-pole coupling matrix I' and the regular case,

WR™ (0(Ax) U o(Ac)) ={Ca(z = Ax) 'z + h(2) : & € C™1,
h € R™x} (a(A,) V) U(A‘)) and
> Retues(z— A¢)'Beh(z) = Tz}

30€0(Ax)Uo(A¢)
N{feR™: Pf =0}

Since W is right equivalent on o\(0(A,)U0o(A¢)) to a rational matrix function whose
nongero columns form an orthonormal basis for ({ JF€R™ Y Pf=0},0\(c(Ax) U

o(4c))),
WR™ (\(o(4e) Uo(Ac)) = {f € R™* (e\(o(Ae) Uo(4r)) = Pf=0}.

So

WR™(5) = WR™ (o(4x) Ua(4()) N WR™ (2\(o(4s) U o(A()))
={feR™: Pf=0}n ({C,(z — A.) 'z + h(2) :
z € C™*, h € R™(o(4,;) U o{Ay)) and
> Res.o,(z— A¢)'B¢h(z) = 'z}

20 €(o(Ax)Uo(4¢))

nRm™x! (a\(a(A,) U a(A¢)))).

Now (z — A,)™! and (z — A¢)™? are analytic on o\(0(A,) U 0(A¢)), so if b €
R™*1(0(Ax) U o(A¢)) is not analytic on o\(0(Ax) U d(A¢)), Cu(z — Ax)~ 'z + h(2) is
not analytic on o\(0(A,) U o(A¢)) for any z € C™*1. Conversely, if h € R™*!(0)
then Cu(z — A,)"'z + h(z) is analytic on o\(c(A4,) U o(A)) for any = € C™*1, It



66

follows that
R™*1 (a\(a‘(A,,) u o(Ac))) N {Cu(z = Ax) 'z + h(2) :
z € C™X!, h ¢ R™! (a(A,) u a(Af)) and

E Res,..,,(z — A¢)"'B¢h(z) = I'z}
20€0(Ax)Uo(4¢)
= {Cu(z — Ae) 'z + h(z): z € C™*!, h € R™*(¢) and

Z Res,=,,(z — A¢) "' B¢h(z) = I'z}.

2 €0

So equality (7) holds.

3.2 Right equivalence and McMillan degree

In this chapter we continue to call the leading coefficient in the Laurent expansion
at A of a rational vector function A the leadiﬁg coefficient of h at A. We will denote
the leading coefficient of a rational vector function & at A by [A]s. Thus, e.g. [0]e, =0
and if in a neighborhood of infinity h = 3°F ___ 2°h; with hy 3 0 then [k]o = hy. We

will denote the multiplicity of a pole of a rational matrix function W at A by §(W, A).
The McMillan degree of W will be denoted by §(W). Thus, §(W) = 3, .c_ §(W, ).

We begin with the following lemma.

Lemma 3.4 Let H = [hy hy ... h,] be an m X n rational matriz function
with the columns ordered according to decreasing pole multiplicity at A € C,. If

hy,ha, ..., ki are orthogonal at X and h; has a pole at A, then we can eztend the set
X = {78 mAg, p-ihad)y, 278hA)p )

to a canonical set of right pole functions for H at ).
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Proof Clearly z76(hNp, 5=8had)p, = 2=8(kA)h, gre right pole functions for H at
A of order §(hy, A), 6(ha, A), ..., 6(hi, A) respectively. Since z~4(h A H is analytic at ),
H has no right pole functions at A of order greater than §(h;,A). Suppose we are in the
process of finding a canonical set of right pole functions for H at A and we have chosen
g8 N, g8 Mg, ., 278MNR; (1 < i < 1). The rational vector function
z78hin1 N, ) is & right pole function for H at A of order §(hqy,, A) with value at A not
contained in span {[A1]x, [Ra]s, ...[hi]s}. Since by Proposition 2.13 [hy]s, [hala, ..., [hd]a
are linearly independent, the value at A of any right pole function for H at A of
order greater than §(his1,A) is contained in span {[hy]y, [Ra]s, ..., [Ri]s}. Thus, we
can append 2=kt A, to the set {51 Np,, p-Slhad)p, z78hMp}. The

lemma follows by induction.
a
In particular, if all the columns of H which have a pole at A are orthogonal at A,

Lemma 3.4 specializes as follows.

Lemma 3.5 Let H be an m x n rational matriz function function and suppose that
.h,-,,...,h.-“ are the columns of H which have a pole at A. If [k;,]5, [Ra]a, ..., [hi ]s are

linearly independent, then

X = {z78haNp, -5ha Mg, 2=, )
is a canonical set of right pole functions for H at .

Proof By Lemma 3.4 there is an extension of X to a canonical set of right pole
functions for H at A, X. Let k be a linear combination over polynomials in z~? of the
columns of H such that k has a pole at A. Since the leading coefficients of the columns

of h that have a pole at ) are linearly independent, [k], € span {[h], : h e X}. It
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follows that X = X.

Lemma 3.5 has the following immediate consequence.

Corollary 3.6 Let H be an m x n rational matriz function such that the leading
coefficients of the columns of H that have a pole at A are linearly independent. Then
5(H,)) equals the sum of multiplicities of the poles at A of the columns of H.

We shall also need the following lemma.

Lemma 3.7 Let H, K be mxn rational matriz functions which are right equivalent on

Co\{A} and let the columns of each of H, K be orthogonal at A. Then §(H) = §(K).

Proof After applying a suitable Mobius transformation we, may assume A = oo.
Then H and K are right equivalent on C and H = KQ for some matrix polynomial
Q such that det Q equals a nonzero constant. Let i,,1s,...,i, be distinct integers
such that the (ij, 7)'th entry of Q is a nonzero polynomial (j = 1,2,...,n). Then
6(hj,00) > 8(ki;,00). Using Corollary 3.6 we see that

B(H,00) = 3 (hs,00) 2 3 8(k00) = 3 8(hi 00) = (K, o0).

j=1 j=1 i=1
We show similarly the inequality §(K,o00) > &§(H,o0). Thus, §(H, o) = §(K, 00).
Since §(H,A) = §(K, }) for every A € C, §(H) = §(K) as asserted.
()
We will show now that the columns of a rational matrix function K can be
made orthogonal at any point A of the extended complex plane without increasing
the McMillan degree of K. The involved column operations, used by Forney in

[F], do not affect the orthogonality of the columns of K on C.\{A}. Unlike the

orthogonalization process utilized in the proof of Lemma 2.24, the operations in the



69

proof of Theorem 3.8 do not change the span of the columns of K.

Theorem 3.8 Let K € R™*" and let A € C,,. Then there ezists an H € R™*"
such that
(i) H and K are right equivalent on C,\{)\},

(i) §(H) < §(K),

(i51) the columns of H are orthogonal at A.

Proof After applying a suitable MGbius transformation, we may assume A = oco. Let
K =[k ki ... k,]beanmxn rational matrix function with linearly dependent
leading coefficients at infinity of nonzero columns. We assume without loss of gener-
ality that the columns of K are ordered according to decreasing degrees, where by the
degree of a rational m x 1 vector function k we understand —oo if k = 0, or the num-
ber 7 such that 2"k is analytic and nonzero at infinity if k # 0. It suffices to show
that the McMillan degree of K does not increase due to a single operation which we
will now describe. Let & be the collection of all submatrices [k, ki, ... ki, ] con-
taining columns k;,, k;,, ..., k;, of K whose leading coefficients at infinity [k;,), ..., ki, ]
form a linearly dependent subset of C™ that becomes linearly independent after re-
moving any one element. Let p be the smallest integer such that the p'th column
k, of K is the last column of some matrix [k, ki, .. k] in . Clearly there
is exactly one matrix in & with the last column k,. The operation to be considered

replaces k; by
l.c,-, = k"‘ —_ a‘.’zdcg(k.-‘ )—deg(k.-: )k," — e ™ a,z‘“'("‘! )-de‘(k’)kp (8)
where a;,, &y, ..., ap are such that [k;, oo — 0 [kiyJoo — .- — ap[kploo = 0. We note that

such an operation can be carried out whenever the leading coefficients at infinity of

nonzero columns of K are linearly dependent. Also, a finite number of such operations
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leads to a matrix function whose columns are orthogonal at infinity, that is a matrix
function with linearly independent leading coefficients at infinity of nonzero columns
(see Proposition 2.13). Indeed, let g(z) be a scalar monic polynomial such that
K = (1/q)L for some matrix polynomial L = {l;,},,...,1,]. Then l.c,-‘ = (1/¢)l;, where

iix = lt'x - a‘_’zdeg(la‘)—deg(l.")l‘.z T T aﬁzde'(l‘l )-de.(l,)lﬂ (8')

has lower degree than [;,. Plainly a finite number of operations like (8') transforms
L into a matrix polynomial with linearly independent leading coefficients of nonzero
columns. Hence a finite number of operations like (8) transforms K into a rational
matrix function with linearly independent leading coefficients at infinity of nonzero
columns. Finally, the replacing of k;, by I.c,-1 corresponds to multiplication on the right
by a unimodular matrix polynomial, and so the resulting rational matrix function is
right equivalent to K on C. We denote the rational matrix function obtained by
replacing the column k;, of K with k;, by K.

Since K and K are right equivalent on C, we have §(K,z) = §(K,z) for each
z € C. We need to show §(K,00) > §(K,c0). We will show this by comparing
canonical sets of right pole functions at infinity for K and K. We shall consider the
case when k, has a pole at infinity. The proof in the case when k, is analytic at
infinity is simpler.

By Lemma 3.4, we can choose a canonical set of right pole functions for K at

infinity
X= {z"(" SaF ,z'6(°'“'°°)z,_1, z's("“'”)z,.,.l, ey z's("'“)z,}

where z; = k; ift = 1,2,...,p—1 and 2~6(ri0) 5. ig a right pole function for K at
infinity of order §(z;,00) if i > p+ 1. We assume that §(z;,00) > §(z;, 00) whenever

1 < j. We may also assume that for eachi = p+1, ..., 8 ; is a linear combination over
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polynomials in z~? of the columns of K that have a pole at infinity. For notational

convenience we put z, = k.

Lemma 3.8.1 For1<i<s,i#i, 275z, is a right pole function for K at

infinity.

Proof If h(z) is a pole function for K at infinity of order a, then z2*A(z) is a linear
combination over polynomials in z~? of columns of K which have a pole at infinity. If
this linear combination does not contain k;,, then trivially k(z) is also a pole function
for K(z) at infinity. Otherwise, the coefficient g(27?) of k;, has the form z~23(z~?)

where A = §(z;,,00) — §(zp, 00) and § is a polynomial. Then replace g(z~1)k;, with
a(z7 ki, + iy g(z7 )z s )mdelbia )l 1 4 apg(s7H)ptee M) deslbeg, (9)

Since the coefficients in (9) are polynomials in z~!, we may conclude that z*h(z)is a
linear combination (with coefficients equal to polynomials in z~1) of columns of X(z),
and hence h(z) is a pole function for K(z) also in this case.

O

Continuation of proof of Theorem 3.8

While by Lemma 3.8.1 we know that X\{z~%=1:>)z, } consists of pole functions
for K at infinity, it may happen that linear combinations (over polynomials in z-?) of
columns of K (including the new column k;, ) produce rational vector functions with
a higher order pole at infinity. In this situation X\{z%(®1%)z; } is not a part of a
canonical set of right pole functions for K at X\{z~%®1~)z; }. To overcome this
difficulty, we will define a finite set {c,,...,c.} of rational vector functions such that

the set

XU {z"('"“)z,} U {z"‘s('" )1y e z"(“"“)c,}
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contains a canonical set of right pole functions for K at infinity. To define the ClyeenyCn
put ¢; = l-e.-‘. Inductively, suppose that v is a nonnegative integer and we are given a
rational vector function c,. K c, is analytic at infinity or [¢,]e0 ¢ span {[z]e : = € X},
stop. Otherwise find the smallest integer j, such that [¢,]Jec € 8p{[Zy)e : 1 < 9 <

Jvs 7 # 11}, choose numbers a,(1 < 9 < j,,n # 1;) such that
[eyleo = a1[®1]oo + .- + @iy —a[®is—1)o0 + @iy s1[Biy41)oo + oo + @ [25 )oo
and put
Cyyr = 26778Ero) e _ g plr=benee)y, aj, z‘ﬁ"(’)’q'“)z’.1 (10)
where {, = min{é(c,, ), §(=;,,00)}. For the sake of definiteness we assume that
8(cx, 00) is positive.

Let vy,...,v, with 1 <13 < ... < 4, < & be all the integers such that §(cy;, 00) >

§(=;,,,00) (i =1,...,7).

Lemma 3.8.2 Let ¢y,...,cx be defined as above. Then the set of rational vector

functions

X = (X U {z =g )\ (200 e)g,  z~80hm )y, =i ®)g, })
U {z—i(c,‘ '”)cv; eens z—J(c.,.eo)cv" z—6(c,.,eo)c“}

is a canonical set of right pole functions for K at oo.

Proof We argue by contradiction. Let ! be the largest integer such that the I’th
column of K has a pole at infinity and suppose there exist scalar polynomials gy, ..., ¢

such that
¢(z) = ql(z_l)kl +..+ qt'n(z-l)l.eii + qt'x+l(z-l)kl'1+1 + ...+ q;(z—l)k, (11)
has a pole at infinity and either

[#lee & sp{[2]eo : =z € i’} (12)
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or - .
there is a right pole function y € X for K at oo

of order less than §(¢, o) such that (13)

Ve € sp({[#lec} U{[z)ee : 2 € X,z # 9}).
(s)

We will show that there exists an integer 4 < x and scalar polynomials qg“ o, Q-p

such that .
#(z) =a (2" ky(2) + . + (2 eu(2) + ¢ (3 iy aa(2) + .. 14)
+ (27 hi(2) + G (2 )2pea(2) + oo + g (272, (2)
and
8(a)(27")eu(2), 00) < (1), 00). (15)

Note that by definition ¢; = k;, ; hence, if §(g;, (272)k;, (2), 00) < §(¢(z), 00), then by
(11) we may take y = 1 and have (14) and (15) satisfied. If &(g;, (2~1)k;,(2), 00) >
6(#(z), 00), we proceed by induction. Let 4 < x be a positive integer and suppose
that
#(2) =gz ha(2) + .. + (2 Ver(2) + gl (= kiaa(2) + . (16
+ g (27 Ya(2) + G (27 )zp4a(2) + . + @ (27N)zu(2)

for some scalar polynomials qg-"). We note that (16) can be obtained directly from
(11) when 4 = 1. Suppose J(qg;')(z‘l)c.,(z),oo) > §(¢,00). Then the leading terms
in the Laurent expansions at infinity of qg')(z‘l)c.,(z) and (—¢(2) + q.(;' )(z'l)c.,(z))
are the same. In particular, [c,])c € 8p{[2]eo : = € X}. Since we are assuming that
6(cx,00) > 0, by the construction necessarily [c,]o € 8p{[2]e : € X}; hence v < «.
Let q.(;')(z) = a2 + a1 2**! + ... + apz?, a; # 0. By comstruction, §(e,,00) ~ ¢,
is the smallest integer 7 such that the leading term in the Laurent series at infinity
for 27"¢7(z) coincides with the leading term of the Laurent series at infinity for
some linear combination (over polynomials in z7!) of 2y, ...,2;, -1, 2,41, ..., 2,; hence

necessarily ¢t > 1 = §(c,, 00) — {,. Hence by (10) we see that qg')(z“)c.,(z) is a linear
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combination over polynomials in z7! of 21,...,2i,_1,%i, 41, ..-4, Cy41. Consequently,
we obtain a formula of the form (14) with o + 1 in place of 4. It follows by induction
that there exists an integer 4 < x such that (14) and (15) hold.

If the inequality (15) is strict, let ¥(z) = ¢(z)—q§:‘)(z“)c,,(z). Then 2-5(¥:)y(2)
is a right pole function for K at infinity. Since X is a canonical set of right pole
functions for K at infinity, neither (12) nor (13) can happen, a contradiction. Next
suppose we have equality in (15). Since ‘1-(1“ )is a polynomial, certainly 6(c,,c0) >
J(q‘(l”)(z'l)c,,(z),oo) = §(¢(2),00). Hence if [loc = [cu)os, (12) is not possible since
[cu)oo i8 in 8p{[z]es : € X} by the choice of X. Since either z=8(==*)¢, is in X or
[cu)oo is in the span of leading coefficients at infinity of pole functions in X of order at
least §(c,, 00), (13) is also not possible. Suppose (¢l # [cu)oo. If We let (z) = ¢(2) -
q‘g‘")(z‘l)c,,(z), then §(1(2), 00) = §(¢(z), 00) and z~5¥:)y(2) is a right pole function
for both K and K at infinity. Since X is a canonical set of right pole functions for K
at infinity, we have [¥]o, € 8p{[Z1)o0) -+ [Zi;-1]00s [Zi, +1)00s s [Zpleoy ++; [£j]eo } fOr sSOME
j such that §(z;, 00) > §(3,00). Note that sp{[z]e : = € X} C sp{[z]es : € X} by

the choice of X. Hence (12) in this case is not possible. Since

[¢]oo € sp{[zlleo, ey [zil—lloor [3i1+1]co, ooy [zj]eo’ [cp]oo}

where 6(p,00) > 6(¢,00) for p = =,..., %, -1, iy 41, -, 25, €, (13) is not possible

either.

Continuation of proof of Theorem 3.8

Since partial multiplicities of a pole at infinity of any rational matrix function W

are equal to the orders of the functions in a canonical set of right pole functions for
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W at infinity, comparing X and X we see that

§(K,00) — §(K,00) >

> §(kiy, 00) + 3 8(24,:,00) — 8(2p, 00) — I _ 8(cu, 00) — 8(cx, 00)

=1 i=1
r

= [6(k;,, 00) — 6(279 °°)] - Z[é(cvn o) — 6(”:’-,-) 00)] — 6(cx, 00)

=1

= A—i:A.-—A,H.

=1

Suppose that A — Y7 | A; < 0 and let g be the smallest integer such that > i, A; >
A. Then

B-1
(281 +8rm1-8¢,  o0) — §(z;,,00) = Z A; — A + 8(c,,, 00) — 8(z;,,00)

i=1

=ZA‘_A

=1

> 0.
By the choice of j,,,

sp({[zieo : i < v} U{le.]ee}) = sp{[zilee : 1 <40}

Also, since z-%¢;(z) = 22k, (2) is a linear combination over polynomials in z~? of
the columns of K, we see from (10) that zA:+-+8x-1=4¢,  is such a combination.
It follows that X is not a canonical set of right pole functions for K at infinity, a
contradiction. Thus, A — Y, A; > 0. Similarly, A — Y7*! A; < 0 implies that
z81++8:-8, hag a pole at infinity. Since zA1+-+Ar-8¢, ig a linear combination
over polynomials in 2~! of the columns of K, this is a contradiction. It follows that
§(K,00) > 8§(K,00) and the proof is complete.

O

In the proof of the next theorem we will need the following lemma.

Lemma 3.9 Let K € R™*" and let \;,A\; € C,. Then there ezists a rational matriz

function H such that
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(i) H and K are right equivalent on Co.\{A1, Az},
(#) 8§(H) < §(K),

(iit) H has neither a pole nor a zero at A,.

Proof It follows from Theorem 3.8 that there exists a rational matrix function W
such that §(W) < §(K), W and K are right equivalent on C..\{A;,A;} and the
nonzero columns of W are orthogonal on {);,A:}. For notational convenience we

assume A, Ay # co. Choose a,, 3, ...,a, and B, B, ..., Bn such that W(z) is equal to

(2= A1) (z = Aa)
W(z) (‘z - A1) ’(z - A’)p,

(z = A)o~(z — Ap)P=
and all columns of W are analytic and nonzero on {A1,A2}. Define a rational matrix
function H by
(z = Ag)th
H(z) = W(z) (2 = Ag)m
(2 — Ag)on+hn
Then H and K are right equivalent on C,\{)\;,A;}. By Corollary 2.20 H has neither
a zero nor a pole at ), and

§(H, M)+ 6(H,A2) = 6(H, As)
= D (a+5Bi)

1<ikn
a;3+8i>0

Sza.'+23-'

1<i<n 1<i<n
a;>0 Bi>0

= §(W, 1) + 8(W, X).
So §(H) < §(K).

We can now prove the following theorem.
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Theorem 3.10 Let W, H € R™*" be right equivalent on 0 C C,, and let A € Co\0.
If
(i) H has no zeros nor poles in Co.\(c U {A}) and
(ii) the columns of H are orthogonal at A
then H has the minimal McMillan degree among all rational matriz functions which

are right equivalent to W on o.

Proof Let H have the properties (i) and (ii) and let K be a rational matrix function
which is right equivalent to W on 0. We show that §(H) < §(K). Applying Lemma
3.9 to K a finite number of times, we find a rational matrix function K; such that
K, is right equivalent to W on ¢, §(K;) < §(KX) and K, has no poles nor zeros in
Co\(c U {)}). Applying Theorem 3.8 to K;, we find a rational matrix function K,
such that §(K;) < §(K,), K1 and K, are right equivalent on C..\(oc U {A}) and the
columns of K, are orthogonal at A. Then K, and H are right equivalent on C.\{}}
and it follows from Lemma 3.7 that §( H) = §(K;). So §(H) < §(K) as asserted.
(]
Considering the special cases when o = @ or o = C, we obtain the following two

corollaries.

Corollary 3.11 A matriz polynomial whose columns form a minimal polynomial
basis for a subspace V of R™ has the minimal McMillan degree among all rational

matriz functions with the column space V.

Corollary 3.12 Let W be an m x n matriz polynomial and let H be a matriz
polynomial that is right equivalent to W on C and whose columns are orthogonal at
infinity. Then H has the minimal McMillan degree among all matriz polynomials

with the same left zero structure on C as W.
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Theorem 3.10 gives rise to the algorithm for finding a minimal McMillan degree
rational matrix function which is right equivalent to a given matrix function on o C
Co. Such an algorithm is described, together with an example, in [BR).

We conclude this chapter with two propositions which form an analogue of Theo-
rem 3.8. In view of Corollary 2.20, the proof of Proposition 3.13 allows us to find the
partial multiplicities of the pole and zero of a rational matrix function K at A € C
without finding a Smith-McMillan factorization of K and without finding canonical
sets of right pole and left null functions for K at A (cf. [VK]).

Proposition 3.13 Let K € R™*" and let A € C. Then there ezists a rational matriz
function H such that

(i) H and K are right equivalent on C,

(i) the columns of H are orthogonal at A.

Proof If nonzero columns k; , k;,, ..., k;, of K are not orthogonal at A, find numbers
ay, ay, ..., @, such that ay[k; ]s + asfki,]s + ... + a,[ki,]n = 0. Then choose k;, such
that [|k;, [|l:=» = min {[|k;;||.=» : 1 < j < s} and replace k;, by

ki, = Za,-(z — A%k,
where a; (1 < j < ) is such that ||J(zl—- A%k lle=a = |lki;]le=a (cf. formula (8) in
the proof of Theorem 3.8). Since a; > 0 (1 < j < s), this operation corresponds
to multiplication on the right by a unimodular matrix polynomial. By an argument
as in the proof of Theorem 3.8, a finite number of such operations yields a rational

matrix function H with columns orthogonal at A.

a

Proposition 3.14 Let K € R™*" and let A € C. Then there ezists a rational matriz

function H such that
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(i) H and K are right equivalent on C,
() 8(H) < §(K),
(iii) the columns of H are orthogonal at ).

Proof In view of Theorem 3.10, it suffices to multiply the rational matrix function
H obtained as in Proposition 3.13 by a unimodular matrix polynomial such that the
columns of H become, after multiplication, orthogonal at infinity.

a



Chapter IV

Local inverse spectral problem

In this chapter we solve the local inverse spectral problem for not necessarily
regular rational matrix functions. The problem is as follows. Suppose we are given a
triple of matrices (A,, By, D,) and two pairs of matrices (Cy, Ax) and (A¢, B¢). Under
what conditions does there exist a rational matrix function W such that (A,, B,, D,)
is a left kernel triple for W, (A, B¢) is a left null pair for W over a subset o of C and
(Cx, Ay) is a right pole pair for W over o7 In other words, does there exist a rational
matrix function W with a given left zero and right pole structure?

It has been shown in [Ro] that there always exists an analytic matrix function
W with a given left zero structure. In fact, W can be taken to be a rational matrix
function (see [BCRo]). The solution of the local inverse spectral problem has been
known also in the case when the triple (A., Bx, D,) is vacuous: if the pairs (A, B¢)
and (Cy, A) are given and ¢ C C contains o(A;) U 0(A,), then there exists a right
invertible rational matrix function W such that (A¢, B¢) and (Cx, Ax) are left zero
and right pole pairs for W over o if and only if the pair (A¢, B¢) is controllable, the

pair (C,, A,) is observable, and the Sylvester equation
SA, — AS = B;Cy (1)

has a solution (see [GK2]). Moreover, for any solution I of equation (1) there exists a
regular rational matrix function W with a left o-spectral triple {(Cx, Ax),(4¢, B¢), T}
In this chapter we generalize these results to the case when the left kernel triple is
NIONVaCuous.

Chapter IV contains two sections. In Section 4.1 we solve the basic local inverse

80
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spectral problem, that is we prove a necessary and sufficient condition for existence of
a rational matrix function with a given right pole and left zero structure over o C C.
In Section 4.2 we show that if (Cy, Ax), (A¢, B¢) and (Ax, Be, D,) satisfy certain
normalization conditions and if I is any solution of equation (1), then there exists a
rational matrix function W with a left kernel triple—(A,, B,, D) and a left spectral
triple over o—{(Cx, Ax),(A¢, B¢),T}.

4.1 Basic local inverse problem

Right pole and left null pairs and a left kernel triple for a rational matrix function
have to satisfy certain obvious conditions. We summarize these conditions in the

following proposition.

Proposition 4.1 Suppose (Cx, A,) and (A¢, B¢) are right pole and left null pairs
over ¢ C C for a rational matriz function W and (A, B, D..) is a left kernel triple
for W. Then

(i) the pair (Cy, Ay) is observable and o(A,) C o,

(ii) the pair (A¢, B;) is controllable and o(A¢) C o,

(i%) A, is in Jordan form, o(A,) C {0}, and the matriz polynomial P corresponding
to (Ax, Bx, Dy) is such that P has full row rank at every A € C and the columns
of P are orthogonal at infinity,

(iv) the rational matriz function P(z)Cx(z — A,)™* is analytic on C,

(v) if X is an eigenvalue of A;, SA¢S™' is a Jordan form of A; and by, b,, ..., b, are
the rows of SB; corresponding to the last rows in Jordan blocks of SA¢S™' with

) on the diagonal, then span {by,b,,...,b,} intersects trivially with W°(}), where

W* is the row space of P.
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Proof Assertions (i)-(iii) follow from the definitions of a right pole pair for W over
o, left null pair for W over o, and a left kernel triple for W. To show (iv) note that
after multiplying P(z)Cx(z — Ax)~" on the right by a constant invertible matrix, we
may assume that A, is in Jordan form and the columns of C, contain coefficients of
the Taylor expansions of right pole functions for W at the corresponding eigenvalues
of Ax. We may also assume without loss of generality that A, consists of a single
Jordan cell of size k x k with A on the diagonal and P(z) = Y}_ (z — A)'P; is a
polynomial row vector function. Let the columns of C, be Cy, G, ...Cs—;. Then there
exist vectors Ci,Ciy1, ... such that (z) = 3572 (2 — AYC; is a right pole function
for W at A. Since P annihilates 9,

E Pg’Cy-J‘ =0 (V = 0, 1, ...)-
t+j=v
0<i<!

20

Hence

P(2)Co(z — A,)~ = (E(z - A)‘P.-) [(z=2)"1C0 (2= A)2Co + (2 - A)1Cy

i=1
(2=2A)*Co+(z2=2)™Cy +... + (2= A)'Ci_4 ]
is analytic at A and (iv) is established. Finally, assertion (v) follows from condition

(iii) in the definition of a canonical set of left null functions for W at A.
O
We can now state the solution of the local inverse spectral problem. The proof

will be completed with the proof of Theorem 4.8 below.

Theorem 4.2 Let o C C and let (C,, A.), (A¢, B;) and (A, By, D,.) satisfy condi-

tions (i)-(v) in Proposition 4.1. Then there ezists a rational matriz function W with
the right pole and left null pairs over o (Cy, Ax) and (A¢, B;) and with the left kernel

triple (A., Bx, D..) if and only if the matriz equation in T’

TA, — AT = B.C, (2)
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has a solution.

Proof If (Cx,A«) is a right pole pair for a rational matrix function W over o and
(A¢, Be) is a left null pair for W over o, then clearly equation (2) has a solution. In
fact, a null-pole coupling matrix for (Cx, A,) and (A¢, B¢) as right pole and left null

pairs for W over o is one such solution.

Suppose equation (2) has a solution. Then, since (C,, A,) and (A, B;) satisfy
conditions (i) and (ii) in Proposition 4.1, by Theorem 2.3 in [GK2], there exists a
regular rational matrix function H with the right pole and left null pairs over o
(Cx, Ay) and (A¢, B;). Since (Cy, Ag), (A¢, B;) and (A, B,, D,) satisfy conditions
(iii)-(v) in Proposition 4.1, by Theorem 4.8 below, there exists a rational matrix
function W with a left kernel triple~(A,, B., D) and right pole and left null pairs
over o—(Cy, A,) and (A, By).

(W]

We shall need below the following properties of orthogonal projections in R"™.

Proposition 4.3 Let o be a subset of C,, and let A, be orthogonal complements
in (R*,0). Ifh € R" is analytic on o then the projection of h onto A along Q is

analytic on 0.

Proof Let hy € A and hg € 2 be such that A = hy + hg and suppose that A, has
a pole at A € 0. Then, since [hy]s and [hq]s are linearly independent, h has a pole

at A, a contradiction.

a

Proposition 4.4 Let A € C,, and let A,Q be orthogonal complements in (R"™, {A}).
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Let h € R™ have the Laurent ezpansion at A
k(2 —AYh;, ifreC
{ Y ki ifA=o0
with hy # 0. If hy is the projection of b onto A along Q, then
Yieulz —AYhaj, fAeC
ha(2) =
{ Z;;_” zihy;, ffA=o00
where hy, is the projection of hy along Q(X) onto A(X).

(3)

Proof In view of Proposition 4.3, by can be represented as in (3). Similarly, the

projection hq of h along A onto § has the Laurent expansion at A

2;:__,.(1 - A)jhﬂja ifAeC,
ha(z) = ,
Ezz_w z-’hm, fA=o00.
Since hy € A and hg € Q, hax € A(X) and hqx € Q()). (We note that ks or hns

may be equal to 0.) Since Ay = hax + has, the assertion follows.
a

Corollary 4.5 Let A € C,, and let A, be orthogonal complements in (R™,{A}).
Let h € R and let hy be the projection of h along Q onto A. If [h],=x ¢ Q(A), then

alls=a = ll2alls=s-

Let A € Co, let A and Q be orthogonal complements in (R'*™,{A}), and let
h € R™!, In view of Theorem 2.11, if A has a pole of multiplicity 1 at A and
[k]x € A°(}), then Proposition 4.4 implies that the projection of h along Q2° onto A°
does not affect the singular part at A of h. This observation can be generalized as

follows.
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Proposition 4.8 Let A € C,, and suppose that the rows of a rational matriz function
P form an orthonormal basis for a subspace A of (R*™*™,{A}). Let h € R™*! and
let hye be a projection of b onto A° along some orthogonal complement Q° of A® in
(R™*3,{)}). Then h — hy. is analytic at ) whenever Ph is analytic at ).

Proof We have h = hye + hge with hge € Q°. Suppose hqge has a pole at A. Then
[has]a € Q°(A), 0 P(A)[hqe]r # 0. Hence
P(hgo + hno) = Phgqe

has a pole at A. Since Ph is analytic at ), this is a contradiction.
o
We shall also need below the following characterization of a canonical set of left

null functions at A € Cy, of a rational matrix function W.

Proposition 4.7 Let W be an m x n rational matriz function, let V be the linear
span over R of the columns of W and let A € C,,. Suppose E4,Z,,...,5 € RIxm
have no poles at A and for i =1,2,...,0 Z;W has a zero at X of order k;, k; > 0. If
(i) Z1(2),Z2(A),...,Zi(2) are linearly independent,

(i) total multiplicity of the zero of W at A equals 2:=1 k;,

(iti) dim (2,(A\)V(A) + Z5(A)V(A) + ... + Si(A)V(A)) =,

then =; is a left null function for W at X of order k; (i = 1,2,...,1) and {Z,,E,, ..., 5t}
is a canonical set of left null functions for W at A.

Proof Conditions (i) and (iii) imply that the subspace of R'*™ spanned by
=,,Z,,...,5 is orthogonal to W at A. Hence each Z; is a left null function for

W at X of order k; and, by (ii), {Z4,Z3,...,Z1} is a canonical set of left null functions
for W at A.
0o
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We can show now how to construct from a regular rational matrix function H a
left invertible rational matrix function W with the same left null and right pole pairs

over o C C as H and a given left kernel triple (Ax, By, Dy).

Theorem 4.8 Let H be a regular m x m rational matriz function with right pole
and left null pairs over 0 C C (Cy, A,) and (A¢, By), respectively. If (A, B, D,) is
a triple of matrices which satisfy conditions (iii)-(v) in Proposition 4.1, then a left
invertible rational matriz function W with right pole and left null pairs over o (Cy, A,)
and (A¢, B;) and a left kernel triple (Ax, By, D) can be constructed as follows.

Step 1 Find a Smith-McMillan factorization EDF of H and let W, = ED.

Step 2 Let d; denote the i’th diagonal entry of D (i =1,2,...,m) and let v and p
be the largest geometric multiplicity of a pole and of a zero of W, in o respectively.
Let 1 be the largest integer such that the sum of the geometric multiplicity of a pole
and the geometric multiplicity of a zero of W, at some point A € o equals . Define
two m x 7 rational matriz functions Vi, and Vg by

Vo =[dEy d&E; ... &E, 0 ... 0],

Va=[0 ... 0 dmyr1Bmpy1 dm_psaBmopsz .. dmEm ]
and let p; (i =n—p+1,7—p+2,...,v) be the minimal degree monic polynomials such
that p; times the i’th column of Vi has the same zeros with the same multiplicities as
the i 'th column of Vg. We put
-1 .
Pn-p+1

Pn-p+2

W, =V, + Va. (4)
Dy
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Step 3  Let Ay, Ag, ..., A be the points of 0(A,x) U a(A¢). Call the columns of W,
Wy, Wy, ..., W, and let the geometric multiplicities of the pole and zero of W; at A; be
and I. For eachi € {1,2,...,r} find a subspace A; of C**™ as follows. Let

) = span {[wi]x,, [wa]n;, -, [wi)x}

Q; = span {{wi1]x;, (Wiralais o [Wo-tlai}
and let Q be the subspace of C™** annihilated by the bottom I rows of E-Y(X;). Let
W* be the row span of the matriz polynomial corresponding to (A., Bx, D,) and let
(W°‘(/\,-))o be the subspace of C™*! annihilated by W°!(X;) (cf. Proposition 2.4).
Find a complement Q,, of (W°‘(,\.-))° N Q in Q such that the projection of Ny along
Q. onto (W°'(z\.-))° N has dimension 7 — I — | and intersects trivially with Q,. Let
A; be the subspace of C'*™ which annthilates Q.

Using Corollary 2.25 find a subspace = of R!*™ such that E()\;) = A; (i =

1,2,...,7) and the pair (A¢, B;) is left-similar to the pair constructed from functions
Prm—pt1s Pm—p+2s -y Om which are contained in =. Construct W by projecting each

column of W, along Z° onto (W°!)°.

Step4 If
t = dim (W™)® — dim (column span of W3)
>0,
proceed as follows. Let P be the matriz polynomial corresponding to (A, B, D) and
let ¥y, v, ..., 9y € E be such that the rational matriz function

- -

P
h
Y2

R= ¢:1
¢M-u+1

'm—u+2

| ém
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has no zeros nor poles in (A,)Uo(A¢). Let Uy, Us,...,Uyyoy be the last p+v columns
of R~ and suppose that the largest the geometric multiplicity of a zero of W3 in o is
t. For each X; € {\1,)a,..., A} = 0(Ax) Uo(A;) choose vy, v, ..., v € R™*! such

that v;y, via, ..., Ve are analytic on o and
(W) = span {20, via(As), -y vae( M)} © V(A1)

where V is the column span of W;. Using Lagrange interpolation find rational vector
Junctions vy, vy, ..., v, such that vj(A;) = v;5(A;) and d;v; vanishes at A € o whenever

@; s a left null function for Wy at A of order k. We put

W4=[W3 “ vV ... vg].

Step 5 Apply to W, Lemma 3.9 a finite number of times to get a rational matriz
function W such that W is right equivalent to Wy on o(A,) U o(A¢) and W has no

poles nor zeros in o\ (o(A,,) U a'(Ac)) .

Proof We note that since (Cy, A,) and (A¢, B¢) are right pole and left null pairs
for H over o, (Cy, A,) and (A, B;) satisfy conditions (i) and (ii) in Proposition 4.1.
Thus, (Cy, A,), (A¢, B¢) and (A, By, D,) satisfy conditions (i)-(v) in Proposition
4.1. For convenience, we shall refer to these conditions as simply conditions (i)-(v).
For the sake of definiteness we assume that the number of rows in the matrix D, is
k. We assume m > k > 0. We also put n = m — k. Thus, the size of the constructed
rational matrix function W is m x n.

We need to show that all steps in the algorithm are feasible, and that the resulting
rational matrix function has a right pole pair over o (C,, A,), left null pair over o
(A¢, B;) and a left kernel triple (A,, B,, D.). We shall discuss the algorithm step by

step.
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Step 1 Since W; and H are right equivalent on C, W, has the right pole pair over o
(Cr, Ay) and the left null pair over o (A¢, B¢). After applying appropriate similarity
transformations to the pairs (Cy, Ay) and (A¢, B¢), we assume that
- A, and A¢ are in Jordan forms,
- (Cx, Ay) has been read off from the first v columns of E, E,, E,, ..., E,,

- (A¢, B¢) has been read off from the last pu rows of E~%, Epn_pis1, Em—pt2; s Em-

Step 2 Since > v and > p, the m x 7 rational matrix functions Vz and Vp
exist. We have to show that we can find the polynomials p; occuring in the definition
of W,. We show first that n < n. Let A € o be such that 5 diagonal entries of D have
either a pole or a zero at A. The ¢ columns of E()) which correspond to the diagonal
entries of D with a pole at ) are annihilated by W®!()) (see condition (iv)) and by
the j rows of E~!(A) which correspond to the diagonal entries of D with a zero at
A. Since, by condition (v), the span of the rows of E~}(A) which correspond to the
diagonal entries of D with a zero at ) intersects trivially with W°(X), i +j + k < m.
Sop=i+j<m-—-k=n.

Suppose now that we take the first  diagonal entries d,,ds, ..., d, of D, the last
n diagonal entries dm_n+1,dm-n+2,--,dm of D, and map the i’th component of the

n-tuple (d;, d3, ..., dy) to the i’th component of the n-tuple (dn_p41.dm-n+2, - dm):

dy d ... d
l l 1.
dmntt dm-niz ... Om

Since # < n < m, i < j whenever d; is mapped to d;. The preceding implication
persists if we replace the last 7 — v components of (dy, ds,...,dy) and the first 7 — p
components of (dm—n+1, dm-n+2, - @m) by 0’s. Thus, if the i’th columns of V7 and Vg
are d; E; and d;E; then i < j and, by the properties of the Smith-McMillan form of a
rational matrix function, we can find a monic polynomial p; of the least degree such

that p;d; has the same zeros in o with the same multiplicities as d; (or, equivalently,
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such that p;d;E; has the same zeros in ¢ with the same multiplicities as d;E;). So

W, can be constructed in the way described in Step 2.

We list now the properties of W,.

Lemma 4.8.1 If W, is constructed as in Step 2, then the following hold.
(i) The number of columns of W, is less than, or equal to, m — k.

(i) W, has no zero columns.

(tii) The columns of W, are orthogonal on o.

(iv) The i'th column of Wy has the same poles in o with the same multiplicities as the
i’th column of W, (1 < i < v) and the (n—j) 'th column of W; has the same zeros
in o with the same multiplicities as the (m — j)’th column of W, (1 < j < p).

(v) (Cx, Ay) is a right pole pair for W; over o.

(vi) (A¢, Be) is a left null pair for Wy over o.

Proof Inequality 7 < n has been indicated above and property (ii) follows from the
choice of 7.

Suppose that the first [ columns of V; have a pole at A € . Then by the choice
of ) at most 7 — I columns of V have a zero at A and, by construction, these columns
are the last columns of Vi. Thus, it cannot happen that the i’th column of V; has a
pole at A while the i’th column of Vi has a zero at A. Consequently, the i’th column
of W, has the same poles in o with the same multiplicities as the #’th column of V¢
and hence as the i’th column of W;. By construction, the (7 — j)’th column of W,
has the same zeros in o with the same multiplicities as the (7 — 7)’th column of Vg

and hence as the (m — j)'th column of W;. This establishes (iv).

We show now (iii). For each column w; of W, we can find a scalar rational

function d; such that w; = d;i; and i; has no poles nor zeros in . Let W, =
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[@, W3 ... 1]so that

W, = W,

Since for each A € o the set {E;(}), Ea(A), ..., Em(A)} is linearly independent, the set
{E(A),Ea(A); - En-u(A), En-ps1(2) + @1 Bmepia(A), - - -,

E () + oytv-nEm-vin(A); Emontvs1(R), ..., Em(a)}

is linearly independent for all constants ay, a3, ..., @u4r—n. Therefore it follows from
(4) that Wy()) has full column rank for all A € 0. By Proposition 2.13 the columns
of W, are orthogonal on o as asserted.

In view of (iv), in order to prove (v), it suffices to show that if d; has a pole at
) € o of order | then we can find a right pole function ¥; for W, at A of order [ such
that the first ! coefficients in the Taylor expansions at A of ¥; and E; coincide. The
latter assertion is obvious when the #’th column of Vp is 0 or the i’th column of Vp
is analytic at A. Suppose d;E;, the i’th column of Vg, has a pole at A. Then the i’th
column of W is p;d; E; + d;E; and the j’th column of W, is p;d;E; + d..E, for some

x and scalar polynomials p;, p; with p;(A)p;(A) # 0. So
pi(pidiE; + d;E;) — (pid; Ej + deEy) = pipsdi B; — doE,..

Inducting, if necessary, on x we can find an m x 1 rational vector function ¥ =
pd;E; — d. E, with d.()) # 0 such that 17) = W,¢ with ¢ a vector polynomial which
does not vanish at A. So ¥ = (pd;)~'¥ is a right pole function for W, at A of order [
and the first ! coefficients in the Taylor expansions at A of ¥ and E; coincide. Thus,
(v) is established.

Suppose, finally, that {Z, 1,1, S 1420 Em} is a canonical set of left null func-

tions for W, at A € o of orders [, 1, ..., ;. Then the last i diagonal entries of D vanish
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at X to the orders ly, ls, ..., ;. By (iv), the last [ diagonal entries of diag (dy, d, ..., ;i,,)
vanish at ) to the orders l, 3, ...,l;. By (iii) and Corollary 2.20, the multiplicity of
the zero at A of W, is equal to Ei=1 l;. Now if Z;W; vanishes at A to order [; then
it follows from the construction that =;W, vanishes at A to order I;. By (iii), (iv)
and Corollary 2.20 I, Iy, ..., lj are partial multiplicities of the zero of W; at A. Plainly,
Em-1+1(A)s Emcis2(A); s Em(A) are linearly independent. Since S, +i(A) annihilates
span {@y(A), W3(A), -y By _135-2(A)} a0d E 1 (W), 1s(0) # 0 for i = 1,2,..,1, it
follows from Proposition 4.7 that {E,, 1,1, Za_142:--» =m} i8 2 canonical set of left
null functions for W; at A of orders I;,1,,..., ;. Hence (A¢, B;) is a left null pair for

W, over o.

a

Continuation of proof of Theorem 4.8

Step 3 Choose \; € o(A,) U o(A;) and let 1,1,9,,Q; and Q be as in Step
3 of the algorithm. By property (iii) of Wi, ; U Q3 = (0). By condition (v),
dim ((W%(A\))°N Q) =m —k —1 and hence
dim (R, + Q3) =9 -1
<n-1
=m—-k-1
= dim ((W*(%))°nA).
Therefore we can find 2, with the required property.
Let A; be the annihilator of Q, in C**™.

Lemma 4.8.2 A; has the following properties:
(i) C*™ = A; @ W(X;),

(ii) the bottom I rows of E~1(X;) are contained in A;,
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(iii) the projection of span {{wi]x;, [wa]x;, .., [wy]y} onto (We(X))° along Q,, the

right annihilator of ; in C™*1, has dimension 1.

Proof Property (i) is equivalent to the direct sum decomposition C™*! = Q,, &
(W®(X:))°. To see that the latter decomposition holds, choose a basis {c;,cs, ..., cx}

for W°!();) and vectors cx41, k43 -++y Cp_] Such that the matrix

-

(5]
C3

| e
- Em—l+l(A")
"-"m-l+z('\i )

is invertible. Then the first m — I columns of M~! form a basis for 2 and the last
columns of M~! form a basis for a subspace { C (W*(A;))°. So
cC™' =Q0ef
=0, & (Wol(X))’'NQ)e N
= Q, ® (Wol(X))°
as asserted.

Property (ii) follows from the definition of Q. Property (iii) follows from the fact
that the projection of the first 7 — I columns of W, onto (Wol();))° along Q,, has
full column rank and Z;(A)wp(X) = form—I+1<j<mand 1<k <1
O

Continuation of proof of Theorem 4.8

It follows from Corollary 2.25 and parts (i) and (ii) of Lemma 4.8.2 that we
can indeed construct =. By Proposition 2.6 and Theorem 2.11, (W*')° and Z° are
orthogonal complements in (R™*!,0(A,) U 0(A¢)). In particular, (W°')° and =° are

algebraic complements in R™ and the construction of Wy is possible.
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We note that by condition (iv) and Proposition 4.6, (Cx, As) is a right pole pair
for W over o(A,) U o(A¢). Also, by Proposition 4.7, (A¢, B¢) is a left null pair for
W3 over o(Ax) U o(A¢).

Step 4 The feasibility of construction steps 4 and 5 is clear.

Since vy, va, ..., v are analytic on o, (Cx, A¢) is a right pole pair for W, over
o. Since the columns of W, are orthogonal on o(A,) U o(A¢), by Proposition 2.23
(A¢, Be) is a left null pair for W, over o. By construction, (Ay, By, Dy) is a left kernel

triple for W,.

Step 5 Since W and W, differ by a right factor, (Ax, Bx, Dx) is a left kernel triple

for W. Since W and W, are right equivalent on o(A,)Uc(A4¢), (Cx, Ax) and (A¢, B¢)

are right pole and left null pairs for W over o(A,)Uo(A¢). Since W has no zeros nor

poles in o\ (¢(Ax) U 0(A¢)), (Cx, Ax) and (A, B¢) are right pole and left null pairs
for W over o.

(]

We note that the rational matrix functions obtained in all steps of the algorithm

in Theorem 4.8 have the same right pole and left null pairs over o(A.) U o(A¢)-

(Cx, Ax) and (A¢, B¢). Steps 2, 3 and 4 affected the left kernel polynomial of the

respective functions.

4.2 Functions with a given left null-pole subspace

Let o C C and suppose (Cyr, A, ), (A¢, B¢) and (Ay, By, D,.) satisfy conditions (i)-
(v) in Proposition 4.1. By Theorem 4.2, there exists a rational matrix function with
the right pole structure described by (Cy, A) and the left zero structure described

by (A¢, B;) and (A, By, D,) whenever equation (1) has a solution. It turns out that
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a stronger assertion is true.

Theorem 4.9 Let 0 C C, suppose that (C,, Ay), (A¢, B;) and (A, B., D,) satisfy

conditions (i)-(v) in Proposition 4.1, and let T' be a solution of the Sylvester equation
SA, — A;S = B.C,. (5)

Then there ezists a left-invertible rational matriz function W with a left kernel triple
(Ax, Bx, D) and a left spectral triple over o {(Cy, Ax), (A¢, B¢), T}

Proof We may assume o(A,) U d(A¢) # 0. Let P be a matrix polynomial corre-
sponding to the triple (A, By, D,). For the sake of definiteness, we assume that the
size of P is k x m. Let
Swe = {Cx(z — Ax) 'z + h(z) : h € R™(0)
and ) Res,o,,(z — A¢)" Beh(z) = I'z} (6)

2€c

N{feR™!: Pf=0}.
Since I' satisfies equation (5), by Theorem 12.2.1 in [BGR3| Sw, is an R(o)-module.
Clearly Sw. is a submodule of the R(s)-module

Sy = {Cu(z — Az) 'z + h(2) : h € R™(0)

and E Res,.,,(z — A¢)"!B¢h(z) = I'z}.

€
Since by Theorems 3.3.2 and 3.3.3 in [BGR2] the module S, is finitely generated and
R(o) is a principal ideal domain, Sw, is finitely generated. Since the torsion sub-
module of Sw, is trivial, by the fundamental structure theorem for finitely generated
modules over a principal ideal domain (see e.g. [J]) Sw, is a free module. Choose a

basis {w;,wy,...,wn} for Sw, and define the rational matrix function W by

W=[w w; ... w,].
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We show first that the rational matrix function W is left invertible, and the triple
(Ax, By, D,) is a left kernel triple for W. Since the columns of W are contained in a
subspace of R™*! which is annihilated by P, it suffices to show the equality n = m—k.
Choose an algebraic basis {h,, k3, ..., Am_s} for an R-vector space {f € R™*! : Pf =

0} and let ¢ be a scalar polynomial such that the rational matrix functions

a(2)(z = A) ' B¢ [ha(2) ha(z) ... hm-a(2)]

and

q[h1 hz e hm—-b]

are analytic on o(A,) U 0(A;). Then gh,,gk,,...,qhm-s are contained in Sw, and
hence n > m — k. Suppose the last inequality is strict. Then the set {w;,w, ..., w,}

is linearly dependent over R and
rwy F W+ ..., =0 (9)

for some scalar rational functions ry,7,,...,7, not all equal to gero. After multiply-
ing both sides of equality (9) by a scalar polynomial we may assume ry,r,,...,7, €
R(U(A,) U a(A¢)). But then equality (9) contradicts the direct sum decomposition

Swe = R(e)w; ® R(0)w; & ... ® R(0)w,.

Thus, n = m — k. So P is a left kernel polynomial for W and W is left invertible.
It remains to show that {(C,, A,), (A¢, B¢),T'} is a left spectral triple for W over
o. Let

o1 =0(Ax)Ua(A)U{A € o: W has a pole or zero at A}.

Since (A¢, B¢) and (A, By, D,.) satisfy condition (v) in Proposition 4.1, by Corollary
2.25 we can find an orthogonal complement = of the row span of P in (R'*™,a,)

such that the pair (A, B¢) is left-similar to a pair constructed from functions in =.
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In view of Proposition 2.21 we can choose a left spectral triple {((.J,, AL)\(Ae, B,),T}

for W over o such that the pair (A¢, B;) is left-similar to a pair constructed from
functions in Z.

By Proposition 3.3,
Swe = {Cx(z — Ax) 'z + h(2) : h € R™(0)
and E Res,.,,(z — A¢) "' B¢h(z) = Iz} (7

2 €0

N{ferR™: Pf=0}.
Now (cf. Proposition 3.1.3 and Theorem 3.3.3 in [BGR2])
Sy = {Cu(z — Ay) 'z + h(2) : h € R™*Y(0y)
and Z Res,_.m(z. — A¢)'Beh(z) =Tz}

20 €y

N{Cue(z — As) 'z + h(2): h € R™(o\on)
and Z Res, =y, (z — A¢) "' B¢h(z) = Tz}

2€0\0y
= {Cu(z— A;) 'z + h(z): h € R™} (o)
and Y Res,_,(z — A¢) " Bch(z) = I'z}
29 €0

NR™(o\0,)

= S, N R} (o\o1).

Similarly, A A :
5, = {Cu(z— As) 'z + h(z): h € R™ (o)
and Z Res,—.,(z — A¢) "' B¢h(z) = I'z}
€0
= 8, NR™Y(o\on)
where

5, = {Cu(z — A) 'z + h(z): h € R™}(on)
and E Res,—,(z — A¢) ' Bch(z) = I'z}.

20€0)

By Theorem 12.2.1 in [BGR3] S, and 5,, are R(o;)-modules. We claim that S,, =

S,,. Indeed, suppose there exists f € S, \S',, and let p be a scalar polynomial with
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all zeros in o'\o; such that pf € R™*!(c\o1). Then p € R(0y) and p~! € R(ay), s0
pf € S,, and pf ¢ S,,. Hence pf € S, and pf ¢ S,. Let fw be the projection of pf
along =° onto {f € R™*!: Pf =0}. Then

pf = fx + fw (8)

for some fx € =°. Since (Cy, A,) and (A,, By, D,) satisfy condition (iv) in Propo-
sition 4.1, P(pf) is analytic on o;. Hence, by Proposition 4.6, fx € R™*1(oy).
Multiplying, if necessary, both sides of equality (8) by a scalar polynomial with all
zeros in o'\o; we may assume fx € R™*(c). Since the pairs (A¢, B¢) and (A¢, Be)
are left similar to the pairs which are constructed from functions which annihilate
fx,

D Res.ooy(z — A¢) " Befx(2) = 0

29 €0y
and

Z Res, =, (2 — A¢) "' B fx(2) = 0.

2p€01
Consequently,

fw € {Cu(z—AL) Y2+ h(2): he R™*(0)
and ) Res,_, (2 — A¢)"*Bch(z) = I'z}
20€0
Nn{feR™: Pf=0}

and

fw ¢ {Ce(z — Ay) 'z + h(z) : h € R™(0)

and ) Res,_,,(z — A¢) 7 Bh(z) = Tz}
20€0

Nn{feR™: Pf=0}.
In view of (6) and (7), this is a contradiction. Thus, S,, C 5;,. Similarly, 5,, C S.,.
So S,, = S,, as asserted and it follows from Theorem 12.2.4 in [BGR3] that the triples
{(Cr, Ax), (A¢, B¢), T} and {(Cw, A), (A, B¢), T} are similar. Hence {(Cx, 4),
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(A¢, Be), T} is a left spectral triple for W over o.
O

Theorem 4.2 can be proved as a corollary of Theorem 4.9. However, the proof
of Theorem 4.9 relies on existence of a basis for a free module Sw., whereas the
proof of Theorem 4.2 is based on the construction described in Theorem 4.8. This
construction, apart from the Smith-McMillan factorization in Step 1, is long and
tedious but involves mainly standard linear algebra procedures. Conceivably there
should also be a constructive proof of the stronger Theorem 4.9. The ultimate goal
is a realization formula for the solution of the interpolation problem in Theorems
4.9 and 4.9 in terms of spectral data. Such formulas exist for the regular case (see
[BGR3)). Applications of such realization formulas to interpolation and factorization

problems analogous to those developed for the regular case are anticipated.

Let o C C and suppose that (Cy, Ax), (A¢, B¢) and (Ax, Bx, Dx) satisfy conditions
(i)-(v) in Proposition 4.1. In view of Proposition 3.1 and Theorem 3.2 it follows from
Theorem 4.9 that there is a one-to-one correspondence between solutions of equation
(5) on the one hand and equivalence classes of right equivalent on o left invertible
rational matrix functions with right pole and left null pairs over o equal to (Cxy Ayx)
and (A¢, B¢), respectively, and a left kernel triple equal to (Ax, By, D.) on the other.
In general, if the size of the matrix D, is k x m, there is a one-to-one correspondence
between solutions of equation (5) and equivalence classes of m X n rational matrix
functions with a right pole and left null pairs over o equal to (Cx, Ax) and (A¢, B¢)
and with a left kernel triple (A,, Bx, D) for any n 2 m — k.

Corollary 4.10 Let ¢ C C and suppose that (Cr, Ax), (A¢, B¢) and (A, Bx, Dx)

satisfy conditions (i)-(v) in Proposition 4.1. Then for every integer n 2 m — k and
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each solution T’ of the Sylvester equation
SAy — A¢S = B;Cy

there ezists an m X n rational matriz function R with a left kernel triple (A, B, D,)
and a left spectral triple over o {(Cy, Ax), (A¢, B¢), T}.

Proof Let W be the function given by Theorem 4.9. The rational matrix function
R=[W 0]

where the size of the block matrix 0 is m x (n — k) has the required properties.
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List of symbols

C. - Extended complex plane, C U oo
C™ - Product of n copies of C
C™*J - { x j matrices with entries in C
R - Field of scalar rational functions
R™ - Product of n copies of R (viewed as a vector space over R)
R*J — § x j rational matrix functions
R(c) - Subset of R formed by functions which are are analyticon 7, o a subset of
Co
R*J(g) - Functions in R**J which are are analytic on o, o a subset of C,,
R™ - Algebraic dual of R" (see Section 2.2.2)
5(W, ) - Multiplicity of a pole of a rational matrix function W at A € C,,
§(W) - McMillan degree of a rational matrix function W
(X,Y) - Right or left pole or null pair, X,Y matrices (see Sections 1.1, 1.2, 2.3 and
2.4)
(A, Bx, D,) — Left kernel triple (see Section 2.1)
Ji(A) - k x k Jordan cell with A € C on the diagonal
diag ,A; - (Block) diagonal matrix

A
Az

A,

| - ]e=a — Valuation of R at A, A € Cq (see Section 2.2.1)
| - lz=» - Max norm on R" induced by |- |:=1, A € Ceo (see Section 2.2.1)

(A, o) - Subspace A of R™ with the topology generated by {|| - [li=a: A € 0}
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A()) - Subspace of C" formed by the values at A of all functions in A which are
analytic at A, A a subspace of R"
A° - Algebraic annihilator of A, A a subspace of R™ or C"
W - Left annihilator of a rational matrix function W
We°" - Right annihilator of a rational matrix function W
[A)r - Leading coefficient in the Laurent expansion at A € C,, of k, h a rational

vector function
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