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_ (ABSTRACT)

In this thesis the right and left pole structure of a not necessarily regular rational

matrix function W is described in terms of pairs of matrices—right and left pole pairs.

The concept of orthogonality in 'R." is investigated. Using this concept, the right

and left zero structure of a rational matrix function W is desribed in terms of pairs

and triples of matrices—right and left null pairs and right and left kernel triples. The

definition of a spectral triple of a regular rational matrix function over a subset 0 of C

is extended to the nonregular case. Given a rational matrix function W and a subset

0 of C, the left null~pole subspace of W over 0 is described in terms of a left kernel

triple and a left 0-spectral triple for W. A sufficient condition for the minimality of

McMillan degree of a rational matrix function H which is right equivalent to W on

0, tl1at is a rational matrix function H of the same size and with the same left null-

pole subspace over 0 as W, is developed. An algorithm for constructing a rational

matrix function W with a left kernel triple (A,„ B„, D,) and left null and right pole

pairs over 0 C C (A;, B;) and (C,, A,), repectively, from a regular rational matrix

function with left null and right pole pairs over 0 (A;, B;) and (C,, A,) is described.

Finally, a necessary and sufficient condition for existence of a rational matrix function

W with a given left kernel triple and a given left spectral triple over a subset 0 of C
is established.
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Introduction

The central notion of this thesis is that of a matrix over the field R of scalar

rational functions. Such matrices can be also viewed as meromorphic functions from

the extended complex plane C„ into the space of matrices over C. As a consequence,

matrices over R can be approached from the point of view of an algebraist or an

analyst. Although the distinction is not always clear-cut, the author identifies himself

more with the latter point of view. This is reflected in the adopted name for matrices

over R: matrices over R are called rational matrix functions in this thesis. Matrices

of any size over the ring of polynomials in z will be called matrix polynomials. The

set of all m x n rational matrix functions, that is rational matrix functions of size

m x ·n, will be denoted by R"""‘.

Extensive research on rational matrix functions carried out recently is motivated

to a large extent by many applications in various branches of engineering. Transfer

functions and system matrices in Systems Theory are rational matrix functions (see

e.g. [K,R]). The concept of a rational matrix function is fundamental for the H°°

control theory (seee.g.A

rational matrix function W is said to be gggylg if W is square and det W

is not identically equal to 0. Regular rational matrix functions of size n x n, n

a positive integer, form an algebra A over R such that each nonzero element of

A has an inverse in A. In fact, explicit spectral data formulae for the inverse of a

regular rational matrix function W are available (see [BGK, Chapter I] if W(oo) is an

invertible matrix and [BGR3, Chapter 5] otherwise). The theory of regular rational

matrix functions makes extensive use of the existence of, and formulas for, W".

Consequently, many methods and techniques developed for rational matrix functions
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cannot be transfered directly to the study of ngmgglar rational matrix functions,

that is rational matrix functions W such that W is not square or the determinant of

W is identically equal to 0. This thesis generalizes certain results on regular rational

matrix functions to the nonregular case.

The basic tool in the study of the properties of a rational matrix function W

is provided by the Smith-McMi1lan form and a Smith-McMillan factorization of W

which we now describe. Let q be a monic polynomial which is the least common

multiple of the denominators of all entries of W. Then E q(z)W(z) is a matrix

over the Euclidean domain of polynomials in z. Let Ö be a Smith’s normal form of

W (see e.g. Theorem 26.2 in [McD] or Theorem 3.8 in Thus,

pl 0
pg 0

D =
pi

0

0 0 .

..wherepl,p;, ...,p;, are monic polynomials such that p;'p;+1 (i = 1,2,..., k—1) and there

exist units E, F in the rings of square matrices of appropriate sizes over polynomials

in z such that W = EÜF. So W é EDF where

1¤i/4 0
pe/<1 9

D =
P1•/9 0 (1)

0 0 . ..and

E, F are matrix polynomials with constant nonzero determinants. The rational

matrix function (1) is uniquely determined by W and is called the
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{gsm of W (see e.g. The factorization EDF of W is called

afactorizationof W. We note that matrix polynomials E,F in a Smith—McMillan

factorization EDF of W are not at all unique.

While the concept of a Smith form of a matrix polynomial goes back to 19th cen-

tury (see [McD]), the concept of a Smith-McMillan form of a rational matrix function

is fairly recent. The Smith—McMillan form of a square rational matrix function W

has been introduced in the study of properties of electrical circuits in [McM]. Us-

ing the notation in [McM], let 6(VK A) denote the sum of multiplicities of poles at

A E C of the nonzero entries in the Smith-McMillan form of W. Let 6(W§ oo) denote

6(W o T, T“‘(oo)) where T is a Möbius transformation such that T"‘(oo) E C. Then

6(VK oo) does not depend on the choice of T and the number

5(W) = 5(W,A) (2)
.\eC„

has been called in [McM] the degree of a rational matrix function W. The number

6(W) defined as in (2) for a not necessarily square rational matrix function W is

called the McMillan gggses of W.

If W is a nonregular mxn rational matrix function then after considering a Smith-

McMillan factorization of W we see that the columns of W are contained in a proper

subspace of the 'R.-vector space
’R.'“"‘

or the rows of W are contained in a proper

subspace of the ’R,-vector space Rlx". Forney investigated in bases for a subspace

over R of 'R.1"". Let the degree of a row vector polynomial g = [gl gz . . . g„] be

deg g = max {deg gl,deg gl, . . . ,deg g„}.

Forney defined a mjgjmgl bssis for a subspace A of 7?.1"" to be a poly-

nomial basis {vl,vl, ...,12;,} for A such that 2::, deg vl is minimal. He showed that

the degrees of the row vector polynomials in any minimal polynomial basis for A are
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invariant and depend only on A. Forney proved that a polynomial basis {11;,11;, ..., vb}

for A is a minimal polynomial basis if and only if the coeücients of the highat degree

terms in 1:;,1:;, ...,1:;, are linearly independent and v;(»\),v;()A), ...,v;,(«\) are linearly

independent for every «\ E C. This characterization of a minimal polynomial basis

underlies the algorithm in of reduction of a basis for A to a minimal polynomial

basis.

It has been also shown in that the sum of degrea of the row vector polynomials

in a minimal polynomial basis for a subspace A of 7?.“" is equal to the sum of the

degrea of vector polynomials in a minimal polynomial basis for the right annihilator

of A in 'R.""‘. The degrees of the row (rap. column) vector polynomials in a minimal

polynomial basis for a left (rap. right) annihilator of W are called in the literature

the left (rap. Egmey imlig of W (see [BCB,o]).

Let W be an m x n rational matrix function and choose a Smith-McMi1lan fac-

torization EDF of W. Let

D = [ ’%‘ 3]
with Du regular and partition E,F conformably. Then

W = EDF

=[E· E·ll’%‘ 8]%:]
= E;D;;F;.

The columns of the matrix polynomial E; form a basis (over 'R.) for the column space

of W. Choose a matrix polynomial E; whose columns form a minimal polynomial

basis for the column space of W. Then E; = EIQ; for some regular rational matrix

function Q;. Choose another matrix polynomial fi'; whose rows form a minimal

polynomial basis for the row space of W. Then F; = Q;F'; for some regular rational

matrix function Q;. (In fact, it can be shown that Q; and Q; are matrix polynomials
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with constant nonzero determinants.) So

w = E1Q1D„Q,F'1

E E1DF1,

with Ü a regular rational matrix function . Now for each A 6 C let 6,(W, A) denote

the sum of multiplicities of zeros at A of the nonzero entries in the Smith-McMillan

form of W and let 6,(W{ oo) denote 5,(W(z"1),0). Let
6”,(W)

= Z,€C_ 5,(H§ A).
Then (see6(W)

oo) + 5(Ä,oo).

Thus, the McMillan degree of W diifers from 6,(W) by the sum of left and right

Forney indices of W.

In the early literature on rational matrix functions, the terms ”zero and pole

structure of a rational matrix function W" referred to the zeros and poles in C of

the nonzero entries in the Smith·McMi1lan form of W and zeros and poles at 0 of

the nonzero entries in the Smith-McMillan form of W(z"). Today more and more

authors take the attitude that the nero and pole structure of a rational matrix function '

W should reilect more complete properties of W (see [CPW, WSCP, GLR, GKLR,

BGR1]). We extend the approach of Ball·Gohberg-Rodman to the nonregular case.

Suppose we multiply W on the right by a rational vector function da which is analytic

and nonzero at A 6 C„. After considering a Smith·McMillan factorization of W, we

see that W¢ can be analytic at A, can have a pole at A, or can vanish at A identically

or to a certain order. The right pole structure of W at A 6 C„ is related to a possible

singular part of Weß at A where ¢ is a rational vector function analytic at A. The

right zero structure of W is related to the functions 49 such that W¢ vanishes at A.

Similarly, suppose we multiply W on the left by a rational vector function 43 which is

analytic and nonzero at A 6 C„. The left pole structure of W at A is related to the
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possible singular part at «\ of ¢W. The left zero structure of W at Ä is related to the

functions ¢ such that ¢W vanishes at «\.

Suppose 0 is a subset of C„, W and H are two m x n rational matrix functions

and there ezdsts an n x n regular rational matrix function Q with no zeros nor poles

in 0 such that W = HQ. Then W and H are said to be right gqgiglgnt on 0. Since

the singular part of a function W¢ at «\ E 0 ooincides with the singular part at «\

of H(Qe/>), rational matrix functions which are right equivalent on 0 have the same

right pole structure on 0. Similarly, if W and H are right equivalent on 0 then W

and H have the same left zero structure on 0. However, even in the regular case, the

converse statement is not true (see [GKLR]): two mxn rational matrix functions with

the same right pole and left zero structure on 0 C C„ may fail to be right equivalent

on 0. Thus, the assertion that W and H are right equivalent on 0 C C„ is stronger

than the assertion that W and H have the same right pole and left zero structure

on 0. To capture exactly this notion of right equivalenoe, another invariant, namely

null-pole coupling matrix, has been introduced in the regular case (see [GKLR] and

[BRan1]). The extension of the null·pole coupling matrix to the nonregular case is
i

defined in Chapter III.

The thesis is organized as follows. In Chapter I we show how the right and left pole

structure of an m x n rational matrix function W can be described in terms of pairs

of matrices-left and right pole pairs for W. We also show how W can be represented

in terms of its right and left pole pairs. In Chapter II we describe left and right zero

structure of a rational matrix function W in terms of pairs and triples of matrices—left

and right null pairs and left and right kernel triples. The regular case is worked out

in detail in [BGR1]. While the generalization of the definition of left and right pole

pairs to the nonregular case was straightforward, the analogous generalization of the

definition of left and right null pairs was not obvious. Our approach differs from the
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approach in [BCRo] as we utilize the concept of orthogonality in non·Archimedean

normed spaces, introduoed in the study of rational matrix functions by Forney

inandlater pursued by Kailath-Verghese

(seeChapterIH characterizes right equivalence of rational matrix functions on a subset

6 of C in terms of left spectral triples containing data as defined in Chapters I and

II. In Chapter III we also develop a suHicient condition for a rational matrix function

H which is right equivalent to a given rational matrix function W on 6 C C to have

a minimal McMillan degree.

In Chapter IV we solve the local inverse spectral problem, that is we answer the

question ”what are the conditions for existence of a rational matrix function with a

given right pole and left zero structure on 6 C C". We also solve the reiined version

of the local inverse spectral problem, that is, we indicate a necessary and sufficient

condition for existence of a rational matrix function with a given left spectral triple

over 6 C C and a given left kernel triple.



Chapter I

Pole Structure

We say that a rational matrix function W has a pg]; at A
€ C, (or A is a pole

of W) if some entry of W has a pole at A.

Let W E 'R."""‘ and let A E C be a pole of W. Suppose that the first l diagonal

entries in the Smith-McMillan form D of W have a pole at A and all other entries

of D are analytic at A. Then we say that the ggmgtjg of the pg]; of

W at A equals l. The multiplicities of poles at A of the diagonal entries of D are

called the p_a;_ti_a1 of the p_Q1g of W at A. The geometric multiplicity and

the partial multiplicities of a pole of W at infinity are defined to be the geometric

multiplicity and the partial multiplicities of the pole of the rational matrix function

H(z) = W(z'°‘) at 0. The sum of partial multiplicities of the pole of W at A E C,

is called the @@.1) multiplicity of the pplg of W at A. Thus, the McMillan degree of

a rational matrix function W is equal to the sum of multiplicities of all poles of W.

The multiplicity of a pole of a rational matrix function W at A E C, is also called

in the literature the local degree of W at A or the pole multiplicity of W at A.

We note that if a rational (row or column) vector function W has a pole at

A G C, then the geometric multiplicity of the pole of W at A equals 1 and the total

multiplicity of the pole of W at A equals n where n. is such that

with all
W;’s

constant vectors and W.„ 76 0. Thus, the multiplicity of a pole of a

rational vector function W at A equals the largest multiplicity of a pole at A of some

entry of W.
I

8
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In this chapter we define pole functions and pole pairs for a not necessarily regular

rational matrix function W. Pole pairs have been introduced and extensively used

in the study of regular rational matrix functions (see [GKLR, BGR1, GK1]). The

concept of pole functions appears in [BGR1]. Sections 1.1 and 1.2 contain the basic

definitions. In Section 1.3 we discuss realization of a rational matrix function in terms

of its right and left pole pairs.

1.1 Right pole pairs

Let W be an m xn rational matrix function and let A 6 C„. A function aß 6 'R."""

is caüedagjghtgolgfgggtiogfor WatAif

(i) ¢• is analytic at A and ¢(A) 96 0,

there is a positive integer k and a function ¢ 6 'R"1 such that ¢ is analytic at A

and

{

(2 — A)hW(z)¢(z), if A 6 C
~/»(¤) = (1)

Z—hW(z)¢(z), if A = oo.

The maximal integer k such that (1) holds for an appropriate ¢ is called the ogdg of

the right polefunctionWe

note that W 6 R„.x„ has a right pole function at A if and only if W has a

pole at A.

Suppose W 6 'R."""‘ has a pole at A 6 C„. Then the values at A of right pole

functions for W at A form, together with the 0 vector, a subspace V of C"'. It can be

seen from a Smith-McMi]lan factorization of W that dim V is equal to the geometric

multiplicity of the pole of W at A. We say that right pole functions $1,1/:;, ...,1ß,, for

W at A of orders kl, ka, ..., k,, respectively form a oagogjgg got of giglg ooLe functions

for W at A if

(i) {1/:1(A),1/1„(A),...,1/:;,(A)} is a basis for V,
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(ii) EL, kg is maximal subject toconditionIt

follows from a Smith—McMi]lan factorization of W that the orders of the pole

functions in any canonical set of right pole functions for W at A coincide with the

partisl pole multiplicities for W at A.

A canonical set of right pole functions for an m x vz rational matrix function W at

A E C, can be found similarly as in the regular case (cf. [BGR1]). Choose a right pole

function $1 for W at A of a maximal possible order. Given the right pole functions

$1, %, ..., $g for W at A, choose from right pole functions for W at A a function $g+1 of

possibly maximal order such that $g+1(A) ¢ span {$1(A),$1(A), ...,$g(A)}. Continue

until the span of the values at A of the right pole functions for W at A has been

exausted.

Let W 6
'R,"""‘

and let A E C, be a pole of W. Choose a canonical set of right

pole functions for W at A, {$1,%, ...,$,,}. Suppose the order of $g (i = 1,2, ...,1;) as

a right pole function for W at A is kg and let $g_g E
C""“

(1 $ i $ 1;,j Z 0) be such

that

2(Z — A)j‘$*;•j, if A E C

¢.<=> =
’i° <2>
2;-%,, ar A = co
.i=¤

Any ordered pair of matrices (C, A), where C equals

[$1,0 1/#1,1 */·'1,1•,-1 $2,0 #*:,1 1/·'z,1•„—1 */*1;,0 ¢'n.1 ¢n,kq-1] S,
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and J¤•„(^)C-1[ J···<^> _ [C, C, C C
A =

l J¤·,(·‘)
(3)

A
Jr·„(0)

s·*[ J"*(°) __ s, am = CC
for some invertible matrix S of appropriate size, is called a right p_Q],g pair for W at

Ä (see [BGR1, GK1]).

Let W be an m x n rational matrix function and let 0 C C. Let «\,,A;, be

the poles of W in 0 and let (C;,A;) be a right pole pair for W at «\; (i = 1,2, ...,p).

Any ordered pair of matrices (C',A), where

0 = [0, 0, 0,] s,

and A' ._ ]s ·
for some invertible matrix S of an appropriate size, is called a right pg]; p_g,i; for W

over 0 (or a 0-right pole pair for We note thatif W is analytic on 0, the right

pole pair for W over 0 is vacuous. Also, if «\ is the only pole of W in 0, the right pole

pair for W at «\ is the right pole pair for W over 0.

If (C, A) is a right pole pair for a rational matrix function W over 0 C C and W

is analytic on C„\0, (C, A) is called a gl_c@ glglg gglgy.j;_ for W.

Let 0 be a subset of the complex plane and let W E 'R."""‘. Then any two right

pole pairs (C,, .4,), (C2, A;) for W over 0 are , that is

C; = C',S and A; = S"A,S
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for some invertible matrix S (see Theorem 3.2 in [BGRl]). Moreover, the similarity

matrix S is unique. Similarly, any two right pole pairs for W at infinity are right·

similar. Also, if (C, A) is a right pole pair for W at A E C„ and A is in Jordan form
then the columns of C coincide with appropriate coefficients in the Taylor expansions

of the functions in some canonical set of right pole functions for W at A.

It is shown in [BGR1] (Theorems 3.1 and 3.3) that a right pole pair (C, A) for

W 6
'R.""‘"

over 6 6 C is , that is

Cker = (0)
G'A‘

for sufficiently large integers l. Observable pairs are also called null·kernel pairs in
the literature. _

1.2 Left pole pairs

Let W be an mxn rational matrix function and let A E C„. A function gb E
'R.l""‘

isca1ledalg@;@iuAg1;¢g;,forWatAif
i

(i) gb is analytic at A and 1b(A) 96 0,

(ii) there is a positive integer k and a function ¢ E 'R.“‘"‘ such that ¢ is analytic at A
and

{

(z — A)"¢(z)W(z), if A 96 oo
¢(=) = (4)

z·'·¢(z)w(z), sr A = so.
. The maximal integer k such that (4) holds for an appropriate ¢ is called the ggdg of

the left pole function gb.

The left pole functions gbl,1bl, ...,gb,, for W at A of orders kl, kl, ..., k,, respectively

form a g.gonica.l;.gof@m]gfor W at Aif

(i) gbl(A),1bl(A), ...,gbl,(A) are linearly independent,
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(ii) kl is maximal subject toconditionWe

note that the number of functions in any canonical set of left pole functions

for W at A is equal to the geometric multiplicity of the pole of W at A. Also, the

orders of the functions in a canonical set of left pole functions for W are equal to the U
partial multiplicities of the pole of W at A.

Let {¢•l,1/:,,...,¢,,} be a canonical set of left pole functions for W 6
’R."""‘

at

A 6 Cl, of orders kl, kl, respectively and let vßgj be such that (2) holds. Let S

be an invertible matrix of the same size as A. An ordered pair of matrices (A, B),

where

s J"*(") _ s·*, ar A 6 c
·’~„(*)

A I

J~l(0)
s J"·(°) _ .s·—*, if A - oa

J¤·„(0)
and 1/, '1;, -1

-7

¢¢i,„
:;,-1

¢:;,-:

B = S E ,
¢:,o

¢UvÄ!"1
„ 1/,*71,*1*2

¢i,„„
is called algftpglgpairfor W at A.

Let W 6
7?,"""‘

and let 0 C C. Let Al,A,, be the poles of W in 0 and let

(A,,B;) be a left pole pair for W at A, (i = 1,2, ...,p). Any ordered pair of matrices
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(A,B), where

^* A §‘
A, B,

for some invertible matrix S of an appropriate size, is called a left p_Qle gel; for W

over 0 (or a 0-left pole pair

forIf(A, B) is a left pole pair for a rational matrix function W over 0 C C and W

is analytic on C,\0, (A, B) is called the gl9_b_gl leff p_Qle pek for W.

We note that similarly as in the regular case any two 0-left pole pairs (A1, B1)

and (A;,B;) for a rational matrix function W over 0 C C (resp. at infinity) are

left—s;°m.ilar, that is

A3 = SÄ1S_1 and B3 = SB;

for some matrix S (see [BGR1]). Also, the similarity matrix S is unique. It is shown

in [BGR1] (Theorem 3.4) that a left pole pair (A,B) for W over 0 is controßable,

that is for sufliciently large integers I the matrix

[B AB Aus]

has full row rank. Controllable pairs are also called full—rank pairs in the literature.

1.3 Realization theory

The realization theory for rational matrix functions in the context of right and

left pole pairs can be based on the following lemma.

Lemma 1.1 Let (C, A) be a right pole pair for W 6 'R.""‘" at «\ 6 C,. Then there

exists a unique matrix B such that the national matrix function

W(z) — C(z — A)'1B, if«\ E C
(5)

W(z) —· C(z" — A)“1B, if) = oo
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is analytic at «\. llloreover, (A, B) is a left pole pair for W at «\.

Lemma 1.1 can be proved in the same way as Theorem 5.1 in [BGR1].

We note that the left version of Lemma 1.1 also holds; that is, if the left pole pair

(A, B) for W at «\ is given then there exists a unique matrix C such that the rational
matrix function (5) is analytic at «\. Moreover, (C, A) is a right pole pair for W at «\.

In view of Liouville’s Theorem, Lemma 1.1 implies that each rational matrix
function has the following representation.

Theorem 1.2 Let W be a national matrix function. Let (C, A) and (C,,A,) be

right pole pairs for W over C and at infinity. Then there exist unique matrices B,

B, and D such that

W(z) = C(z — A)"B + D + C,(z" - A,)”‘B,. (6) ·

Any representatiou of a rational matrix function W of the form (6) is called a
i

realizatiog of W, and is usually written down as (A, B, G, D, E, F, G) where E = C',,
F = B, and G = A,. The realization (6) of W in which o(A,) C {0} has been

called in [C] normal. It is possible to include in the last term in (6) the singular part of
W at other poles of W besides infinity. This approach has been adopted in [BCR] (see

also Chapter 5 in [BGR.3]), where the term
E(z“‘ — G)"‘F in (A, B, C, D, E, F, G)

realizes the singular part of W outside a region fl C C which contains 0. We will not
follow, however, this more general approach. In the sequel we will use realizations as
in Theorem 1.2.

We note that if W(z) is analytic at infinity, the right pole pair (C,, A,) for W at
infinity is vacuous and the last term in (6) does not occur. In this case the realization
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D + C(z -— A)"B is written down in the form (A, B, C,D). If W is analytic on C,

that is, if W is a matrix polynomial, the first term on the right hand side of (6) does

not occur. If W has no poles in C,, W(z) = D.

It is well known that the sum of sizes of matrices A and A, in (6) is at least equal

to the McMillan degree of W. A realization G(¢(z) - A)'°‘B + D + E(1l:(z) — G)°‘F

of W, where ¢ and dv are scalar rational functions such that the sizes of matrices A

and G add up to the McMillan degree of W, is said to be Since the orders of

pole functions in a canonical set of right pole functions for a rational matrix function

W at «\ E C, are equal to partial multiplicities of the pole of W at «\, the sum of

sizes of matrices A and A, in (6) is equal to the McMillan degree of W. Thus, the

realization (6) of W is minimal. Minimal realizations of the form (6) have, in fact,

the following property.

Theorem 1.3 Let (A, B, G, D,E, F, G) be a realization ofa rational matrix function

W with o·(G) C Then the following are equivalent:

{i) (C, A) is a right pole pairfor W over C and (E,G) is a right pole pair for W at

infinity;

{ii} (A,B) is a left pole pair for W over C and (G, F) is a left pole pair for W at

infinity;

(iii) (A,B, C, D, E, F, G) is a minimal nealization of W.

Theorem 1.3 follows immediately from Theorem 1.2 and the fact that if

(A1,B1,C1,D1,E1,F;,G1) and (A;,B;,C;,D;,E;,F;,G;)

are two minimal realizations of a rational matrix function W such that ¢r(G1) =
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a(G;) C {0}, then

A1 = SA1S"‘, B1 = SB1, G1 = C15

G1 = TGgT_1, F1 = TF1, E1 = E1T

for some unique invertible matrices S and T (see Theorem I.7 in [C] or Chapter 5 in

[BGR3]).



Chapter II

Zero Structure

We say that a point A 6 C is a ggg of a rational matrix function W (or, equiv-

alently, that W has a zero at A) if A is a zero of some nouzero diagonal entry in the

Smith·McMillan form of W (see eg. W has a zero at infinity if H(z) = W(z")

has a zero at 0. The number of nonzero diagonal entries in the Smith·McMillan form
D of W which vanish at A 6 C is called the of the zero of W

at A. The orders of zeros at A of the nonzero diagonal entries in the Smith·McMillan

form of W are called the p_g,·_tig1 of the ggg; of W at A. The geometric

multiplicity and the partial multiplicities of the zero of W at infinity are defined to be

the geometric multiplicity and the partial multiplicities of the zero of H(z) = W(z"‘)

at 0. The sum of partial multiplicities of a zero of W at A 6 C„ is called

themultiligjtyof theäof W at A. Partial multiplicities and the total multiplicity of

a zero of a rational matrix function W at A 6 C„ are also called in the literature the
l

partial and total zero multiplicities of W at A.

If W is a rational (row or column) vector function which has a zero at A 6 C„,

the geometric multiplicity of the zero of W at A equals 1. In this case the multiplicity

of the zero of W at A is an integer 11 such that the rational vector function

(z — A)"‘W(z), if A 6 C

{z"W(z), if A = co

is analytic and nouzero at A.

In the study of zero structure of a rational matrix function the concept of nuH

functions (see Sections 2.3 and 2.4 below) proves useful. Null functions are also called

root functions in the literature. They were first introduced in [KT] in the context of

18
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analytic operator functions of several variables. The definition of a null function has

been extended in [GS] to the case of a meromorphic operator function. Null functions

were used in the context of nonregular rational matrix functions in [BCRo]. We note

that our definition of nuH functions in Sections 2.3 and 2.4 below differs from the

respective definitions in [KT, GS, BCR.o] in that we do not aHow null functions to

have infinite order.

Let 6 C C„ and let W be a rational matrix function which is analytic in 6. If

W is regular, then it can be seen from a Smith·McMillan factorization of W that the

set of points Ä 6 6 such that the matrix W(Ä) is singular consists of isolated points.

In a more general case, where W is not square or det W vanishes identically, there

may exist rational matrix functions 45 such that ¢ is analytic in 6, ¢(Ä) 96 0 and

¢(Ä)W(Ä) = 0 for all Ä E 6. For this reason the spectrum of a rectangular analytic

matrix function is said in to be continuous. We shall call the zero structure

of a rational matrix function W related to the left (or right) annihilator of W the

[gf; (or ggg ßmgtggg of W. Thus, the continuous zero structure of

a rational matrix function corresponds to infinite order null functions as defined in

[GS, BCRo]. We shall call the zero structure of W related to the (finite order) null

functions the gßgg ggg of W.

The zero structure of a regular rational matrix function W can be described by

pairs of matrices—left and right null pairs. Null pairs are also called eigenpairs or

standard pairs in the literature. Null pairs ware introduced originally in [GR1, GR2,

Ro] (see also [GLR]) for analytic matrix and operator functions. They evolved from

Jordan chains at Äyy E C„ for an analytic matrix or operator function L, that is,

chains of vectors ::0, xy, ..., xy, such that

iI§L"*=j-«<¤~„> = 0
a=o
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for j = 0, 1, ..., k. The definition of a Jordan chain for L above extends the definition

of a Jordan chain of a matrix. Indeed, if A is a square matrix and L(z) = z — A then

{2:0,2:1, ...2:;,} is a Jordan chain for L at A0 if and only if A0 is an eigenvalue of A and

{::0, 221, ...2:;,} is a corrersponding Jordan chain (see [GLR]).

Null pairs are used to describe the discrete zero structure of a rectangular rational

matrix function in [BCRo]. We note that our definition ofnull pairs below differs from

the respective defintion in [BCRo].

In Chapter II we describe the right and left zero structure of a rational matrix

function W. We begin with the description of the leü annihilator of W (Section 2.1).

Then we analyze the concept of orthogonality in ‘R." (Section 2.2). In Section 2.3 we

define left null pairs for W. Section 2.4 contains definitions and facts referring to the

right zero structure of W. Since the proofs of all assertions made in Section 2.4 have

analogues in Section 2.1 and 2.3, they are omitted.

2.1 Continuous left zero structure

Let W be an m x n rational matrix function. We will denote by W°' the left

annihilator of W. Thus,

w•'
= {r 6 1z‘*···; rw = 0}.

We note that ii W is right invertible, then W°' = (0). H W°' ;é (0), a matrix

polynomial whose rows form a minimal polynomial basis for W°' is called a left

lggggl for W (see [BCRo]). We will assume that the rows in any left

kernel polynomial for W are ordered according to decreasing degrees.

If A is a subspace of 'R." and A E C,„, we will denote by A(A) the set of values

at A of those functions in A which are analytic at A. Plainly, A(A) is a subspace of

C". The space A(A) can be characterized equivalently as the linear span over C of
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the leading coefficients in the expansions at «\ of the functions in A. In particular, if

W is an m x n rational matrix function, then W°‘(«\) is a subspace of
C""‘

formed

by the values at «\ of functions ¢ 6
'R"‘"‘

such that ¢W = 0 and ¢ is analytic at «\.

Let A be a subspace of 'R.""‘ and let P be a matrix polynomial such that the

rows P1, P2, ..., P}, of P form a minimal polynomial basis for A. Suppose first «\ E C.

Plainly,

span {P1(«\),P;(«\), ..., Pi}(«\)} C A(«\). (1)

Since P(«\) has full row rank, P1(«\), P;(«\), ..., P},(«\) are linearly independent. Hence,

if ¢ is a linear combination over scalar rational functions of P1,P;, ..., P},, then the

leading coefficient in the Laurent expansion of tß at «\ is contained in span {P1(«\),

P,(«\),..., P},(«\)}. It follows that inclusion (1) is an equality. Thus, {P1(«\), P,(«\), ...,

P},(«\)} is a basis for A(«\) for every »\ E C. Suppose now «\ = oo and let P;(z) =

z"°"P;(z) where ai is such that P; is analytic and nonzero at infinity (i = 1,2, ..., k).

Since the leading coefiicients in the Laurent expansions of P1,P,, ...,P}, at infinity

are linearly independent, P1(oo), ..., P},(oo) are linearly independent. Hence,

by the same reasoning as above, A(oo) = span{P1(oo),P2(oo),...,P},(oo)}. So the

leading coefficients of the rows of P form a basis for A(oo). In particular, if P and

A are a left kernel polynomial and the left annihilator of an m x n rational matrix

function W, then, for each «\ E C, {P1(Ä),P;(«\), ...,P},(Ä)} is a basis for W°‘(«\) and

{i>,(„), i>,(„), ..., i>,,(„)} is a ima, for w·*(„).

In view of Theorem 1.2, any matrix polynomial P has a realization of the form

D + E(z·* - G)·*F

where D = P(0) and (E,G), (G, F) are right and left pole pairs for P at infinity. We

now describe one canonical form for such a realization of a left kernel polynomial.
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Proposition 2.1 Let P E
'R"’"‘

be a matrix polynomial with the i’th row

R(z) = 1%,.,,

56 0 if H 56 0). Suppose that the first I rows of P have a pole at infinity and the

last k — I rows of P are constant. Then

P(z) = P(0) + [E1 E; El]-
P1, -1P1.:-2
PPL,.

J„.<¤) " Pig;]
_ z_, _ J„„(¤)

E (2)

J„.<¤> f°
H, -1
H.:L—¤

1%,0

where E; is the k x 1;; matrix with 1 at the position (i, 1) and 0’s elsewhere.

Proof Since

J„.<¤> "
..1Z — _

• =

~I·„(0)
(=" — ·7·„(0))"‘

= (=" — J·„(0))"
(=°‘

· J·„(0))"

and
z z' . . . z"‘1

"‘•—

f zjj 'E ,
0 0 . . . z
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the second term on the right hand side in (2) equals

.„ + ZMH,0

i=1 Il

So equality (2) follows.

El

If a rational vector function ef: has a pole at Ä 6 C, of order k, we will call the

coefiicient of
(g - ,\)"", if Ä 6 C

zh, if Ä = ®

in the Laurent expansion of ¢ at Ä the of ¢ at Ä. It turns out that

the realization (2) of P is minimal if and only if the leading coeflicients at infinity of

the rows of P are linearly independent.

Proposition 2.2 The realization (2) of a matriz polynomial P is minimal if and

only if the leading coeßicients at infinity of the colurnns of P which have a pole at

infinity are linearly independent.

Proof Since

P1, -1
P1;-2

PPL.
J„.<¤> pi;]

:
• 7 °•

· PJ„.<¤> f°

lin
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is a left pole pair at infinity for P if and only if P1,o,P,_„, ..., Hp are linearly indepen-

dent, the assertion follows by Theorem 1.3.

El

Corollary 2.3 If P is a left kernel polynomial for some rational matrix function

then the realization (2) of P is minimal.

The matrices E1, E;, ..., E; in the realization (2) of P are determined by the ma-

trices P(0) and J,,, (0),J,,,(0), ...,J,,,(0). Indeed, the number of rows of any E; equals

the number of rows of P(0), and the number of columns of E; equals the number of

columns of J,,, Consequently, the ordered triple of matrices

$1:::;
Pfg;

J-„(0) 1>,f,„-,
J,,,(0) .P(3), ._ „ = (3)

l ° J„.<¤>i P§‘°
fäjitiä

1%,0

determines a matrix polynomial P uniquely. A triple of matrices as in (3) which

describes a left kernel polynomial for a rational matrix function W will be called a

im kgmg mp}; for W.

We note that a left kernel triple for a rational matrix function W can be easily

read off from a left kernel polynomial P for W. Also, a triple of matrices (A„, B„, D,,)

is a left kernel triple for some rational matrix function W if .4,, is in the Jordan form,

o(A,,) = {0}, and the rows of the corresponding matrix polynomial form a minimal

polynomial basis for some subspace of 'R."‘"‘.
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Finally, we note that if a left kernel triple (A,,, B,,, D,,) is given, we can easily find

the corresponding left kernel polynomial for W. A basis for W°‘(«\) at A E C,,,, can

be computed from (.4,,, B,,, D,,) using nested multiplication. For future reference, we

state this in the following proposition.

Proposition 2.4 Let

P1, -11*.,2-.
PII l
P2.: Pw

H+1I0 I .
· • I :

·H+2,0 _]m(()) P2,o
E EH, -1P,. ali.

1%,0
be a left kernel triple for an mxn national matriz function W. Then {Pm,P;,0, ...,P;,_„}

is a basis for W°‘(oo) and, if»\ E C, the set of vectors {12,,11;, ...,1:;,} such that

{

1%,,, + .\P;,,,..1 + + «\"‘1%_°, if ig! .
U; =

Hp, > l

is a basis for W°‘(«\).

2.2 Orthogonality in R"

We describe now the concept of orthogonality in
’R„"

induced by a standard valu-

ation on 'R. This concept has been used in (see also It has been introducecl

originally by Monna in the study of non-Archimedean normed and, more generally,

locally convex spaces (see [M1, M2]).

Section 2.2 is organized as follows. In Subsection 2.2.1 we define orthogonality of

subspaces of 'R". In Subsection 2.2.2 we connect orthogonality of algebraic comple-



26

ments A and fl of R" with orthogonality of their annihilators A° and O° in the dual

space of R" where by the dual space of R" we understand the R-vector space of the

R·valued linear functionals on R". In Subsection 2.2.3 we specialize orthogonality

of subspaces of R" to orthogonality of functions in R" and define orthogonal and

orthonormal bases for subspaces of R". In Subsection 2.2.4 we connect orthogonality

of rational column vector functions v;,vz, ...,v;, with the spectral points of a ratio-

nal matrix function [vz vz .. . vz] where by spectral points of a rational matrix

function we understand its poles and zeros.

2.2.1 Orthogonal subspaces in R"

Let Ä be a point on the Riemann sphere C„. We define a function | · |,=z from

R into the set of real numbers by putting

__ O, if 1* = OIrl'=^ ° le'", if 1* gé 0

where 1; is the unique integer such that

_ (z — Ä)" i·(z), ifÄ 6 Cdz) — {z"' ·F·(z), if Ä = oo

with F analytic and nonzero at Ä. | · |,=,\ is a real valuation of R. Since |n.|,=z S 1 for

every integer 71, the valuation | · |,=; is non-Archimedean and the stronger triangle

inequality

In + r¤I„=i S max {Ir1I„=i, Ir¤I„=i}

holds for all ·r1,·rz 6 R (see [VdW]).

Let n be a positive integer and let Ä 6 C„. We define a function · ||,=z on the

product of ·n. copies of R by putting

ll(r1•r2• ··-»rn)lIs=Ä = max {lI°1ls=Äs lr2ls=Ä• •·•1lrnl:=Äl·
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In this way R" becomes a normed vector space over the real valued field (R, | · |,=,\).

We note that (R", · ||,=A) is not a Banach space. Indeed, exp (z) is an example of

a non-rational function which is in the completion of (R, · ,=i) for any A 6 C.

More generally, let A be a subspace of R" and let 0 C C,. The family of norms

||,=,\ : A 6 0} and valuations {|·|,=; : A 6 0} endow A and R with topologies such

that the addition + : A X A —• A and multiplication · : R X A —• A are continuous.

The resulting topological vector space will be denoted by (A, 0).

(A, 0) is a family of normed vector spaces with one underlying field of scalars, R,

and the same set of elements, A. Since the topology 1*, of A is generated by a family

of seminorms (in fact, norms), it seems natural to call this topology a locally convex

one. The difficulty lies in the fact that the norms · ||,=,\ are related to the same

underlying field R with different valuations. Consequently, the definition of a convex

set in the theory of non-Archimedean locally convex spaces (see [M2]) does not apply

to (A, 0) in the nontrivial case when 0 contains more than one point.

FoHowing the definition of orthogonality in a non-Archimedean normed space, we

shall say that two subspaces A and O of R" are at A E C,ifII==

+ vI|.=» = mu {||=¤|I-=». ||v||»=s} (4)

for each x E A, y E fl. We shall say that A and Q are orthogonal on 0 C C, if they

are orthogonal at every point of 0. ·

In the study of orthogonality in R" below, we shall need the foHowing lemma.

Lemma 2.5 Let A be a subspace of R" and let A 6 C,. Then there exists a

basis {v1,v,,...,v;,} for A such that the rational matrix function [vl vz 11;,]

has neither a pole nor a zero at A.
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Proof Choose an algebraic basis for A and let

W= [wl

wlConsidering,if necessary, H(z) = W(z"‘) we may assume Ä E C. Choose a Smith-

McMillan factorization EDF of W and let vl,vl,...,vl, be the first k columns of

E. Clearly {vl,vl,...,vl,} is a basis for A and the rational matrix function V =

[vl vl vl,] is analytic at Ä. Since

.1: 1
is a Smith·McMi1lan factorization of V, V does not have a zero at Ä.

El

We can now characterize the orthogonality of two subspaces of 'R." at a point

Ä 6 C„ in terms of linear algebra. Recall that if A is a subspace of R" and Ä 6 C„

then A(Ä) denotes the subspace of C" formed by the values at Ä of those functions

in A which are analytic at Ä.

Proposition 2.6 Let A and 0 be two subspaces of 'R." and let Ä E C„. Then A

and fl are orthogonal at Ä if and only if A(Ä) F1 0(Ä)

=ProofSuppose A and S1 are orthogonal at Ä and let {vl, vl, ..., vl,} and {wl,wl, ..., wl}

be algebraic bases for A and Q respectively. In view of Lemma 2.5, we may as-

sume that vl,vl, ...,vl,,wl,wl, ...,wl are analytic at Ä and {vl(Ä),vl(Ä), ...,vl,(Ä)} and

{wl(Ä),wl(Ä), ...,wl(Ä)} are linearly independent sets. Suppose that

In 1
0

i=1 j=1

for some numbers a;,ß_,. Then Erg, alu; + Egg, ßjwj||,=l < 1. So, by the or-

thogonality of A and fl at Ä, Egg, a;v;[|,=; < 1 and Egg, ßjw_.l||,=,\ < 1. Hence



29

2;, a,v,(„\) = 0 and Z;=,ß_,w,(»\) = 0. Since {v1(«\),v,(«\), ...,v,,(1\)} and {w1(,\),

w1(,\), ...,w;(«\)} are linearly independent sets, a1 = cz; = = 01;, = ßl = ß, = =

ß; = 0. Thus, v1(«\),1.3(«\),...,v;,(«\),w1(«\),w;()1),...,w;(«\) are linearly independent

and A()1) F1 Q(„\) = (0).

Conversely, suppose A(«\) F1 S](«\) = Choose a basis {v1,v;,...,v;,} for A

and a basis {w1,w;,...,w;} for Q such that 1,1,1},,«••’vh,w1’wQ’•••’w[ are analytic

at «\ and {v1(«\),v1(»\),...,v,,(«\)} and {w1(«\),w;(«\),w;(«\)} are linearly independent

sets. Then v1(«\),v;(«\), ...,v;,(»\),w1(A),w;(«\),...,w1(«\) are linearly independent. Let

1-1,13, ...,13+; be scalar rational functions, not all equal to 0. Choose 1: such that

Ir„|•:>1 =m¤We

assume without loss of generality 1 $ rc $_ k. The linear independence of v1(«\),

111(A), ...,v;,(«\),w1(«\),w;(«\), ..., w;(«\) implies then the equalities

11 1
II1:1

5:1

and
i

11

IISi¤<=¢II S I*‘«Is:x„

11 1 11 1
II greve + §'~+1w1ll•=A = ¤¤¤ {II g"1”6ll•=A» II §·‘1+1w1||-:1}-

Thus, A and Q are orthogonal at »\.

- El

It follows from the definition oforthogonality (see equality that two subspaces

of 'R." orthogonal at a single point «\ 6 C„ necessarily have the trivial intersection.

Let A, (2 and E be subspaces of 'R". We say that the subspace Q is an
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of the subspace A in (E, 0) if A and fl are orthogonal on 0 and A+(l = E.

The existence of orthogonal complements of a subspace A of (R", 0) follows from the

next proposition.

Proposition 2.7 Let A and 0 be subspaces ofR" which are orthogonal on a proper

subset 0 of C,. Then fl has an extension to an orthogonal complement of A in

(R",0).

Proof We identify R" with
R""‘.

After applying a suitable Möbius transformation,

we may assume 0 C C. Find a basis {w1,wg,...,w;,} for A + D and let EDF be a

Smith·McMillan factorization of the rational matrix function [wg wg We

show that the subspace V spanned by the last n — k columns of E is orthogonal to

A + 0 on 0. Then the subspace fl + V is an orthogonal complement of A in (R", 0).

In fact, it sufiices to show that the spaces spanned by the -first k and the last n — I:

columns of E are orthogonal on 0. But this follows from Proposition 2.6 and the

properties of a Smith-McMillan factorization of a rational matrix function.

Ü

Corollary 2.8 If 0 is a proper subset of C, then every subspace A of R" has an

orthogonal complement in (R", 0).

We note that unlike in a Hilbert space, an orthogonal complement of A in (R", 0)

· is generally not unique. We also note that there exist subspaces of R" which are

orthogonal on the whole extended complex plane. Indeed, if S = {c1,cg,...,c„} is

a basis for C" and Sg U Sg is a partition of S, the subspaces of R" spanned by

the (constant) rational vector functions contained in Sg and Sg, respectively, are

orthogonal on C,. In general, however, as can be seen from the following example,
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the hypothesis 0 96 C„ in Proposition 2.7 and Corollary 2.8 is necessary.

Example 2.9 Let A be a subspace of R2 spanned by [1 z]T and let Q be a subspace

of R2 which is orthogonal to A on C„. Then dim fl $ 1. Suppose dim fl = 1 and

let [pl pl]T be a minimal polynomial basis for fl. In view of Proposition 2.6,

orthogonality of A and fl on C implies that

1 plälgdet [ z pa Z

does not vanish in C. By the fundamental theorem of algebra, zpl(z) — pl(z) = c for

some constant c. If pl 96 0 then

II 1•1(#)l1 #1 — lm(#) 1>=(#)l ||•=» = II [0 ¤1 II-=•• = 1

< ¤ S II m(#)l1 #1 II--••

S ¤¤¤ {II m(#)l1 #1 II-=•·»|| [rimla

contradiction. Thus, pg = 0 and 0 is spanned by [0 p;]T. If pg 96 0,

II [1 #1 — (#/z>¤(#))l0 v¤(#)1 Ilm. = 1

< ¢ = mu {II [1 zl ||•=•¤„ II (#/pz(#))[0 1•¤(#)1 II-=«»}

which is again a contradiction. Thus, the only subspace of R2 orthogonal to A on

C„

is2.2.2 72** as a subspace of its dual

There is a natural identification of 72** with its dual space, given by

#‘(v) = E ‘6(z)314(')
i=l

for all an = (zl,a:l,...,:„),y = (yl,yl,...,y„) 6 R". We shall denote the image of

the embedding map 2: -» z' by R"'. If R" is identified with
R""‘

(resp. 72****),
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R"' = R1"" (resp. R"' = R""'). The members of R"' are continuous maps from

(R",6) to (R, 6).

Proposition 2.10 Let 6 C C, and let 2 6 R". Then 2* is continuous as a map

(R",6) —» (R, 6).

Proof It suffices to show that if V, a neighborhood of 0 in (R, 6), is given, then

there exists V„, a neighborhood of 0 in (R",6), such that 2'(Vj,) C V. Let 2 =

(2l,2l,...,2„). We may assume 2 76 0. If V contains the set {1- 6 R : [7‘[s=A; <

6 (i = 1,2,...,]:)}, let E = 6/max {|2_lI,=,\l : 1 S i S ]:, 1 S j S n}. Then

M, = {1- 6 R" : ||1·||,=l, < E (i = 1,2,...,]:)} is a neighborhood of 0 in (R",6) and

2'(v„) C V.

El

Let A be an m—dimensional subspace of R". By an algebraic argument, the

elements of R"' which annihilate A form an n — m dimensional subspace of R"'.

Using the polar notation, we shall denote this subspace by A°. Similarly, given a ‘

subspace Sl of R"', there exists a unique subspace O° of R" such that Q annihilates

Q°. Clearly, (A°)° = A. It turns out that the map which sends each subspace A of

R" to A° preserves orthogonality in the following sense.

Theorem 2.11 Let A,!l be d»lg¢bT4iC complements in R" and let 6 C C,. Then A

and fl are orthogonal on 6 if and only if A° and
$”l°

are orthogona] on 6.

Proof We identify R" with
R""‘

and show that A° and fl° are orthogonal on 6

whenever A and Sl are. Choose any A 6 6. In view of Lemma 2.5 we can find bases

{vl, vl, ..., vl,} and {wl,wl, ...,1vl} for A and 0 such that the rational matrix functions

V = [vl vl vgl and W = [wl wl wl] have neither a pole nor a zero at A. Then
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tl1e diagonal entries in the Smith—McMillan forms of V and of W have neither poles

nor zeros at A. So, as can be seen from Sm.ith-McMil1an factorizations of V and W,

V¢;, Web; are analytic at A whenever ¢b;,¢; are analytic at A, and V¢;, Web; do not

vanish at A whenever ¢;, ¢; do not have a zero at A. Hence ifeb = [qsf ¢§']T 6 'R.'*"‘

is analytic and nonzero at A,

II [V W]¢ Ilm = mu {|IV¢iIIm„ IIW¢·¤IIm}
= 1.

In particular the columns of [V(A) are linearly independent. It follows that

[V W] is a regular rational matrix function that is analytic at A and does not

have a zero at A. Hence [V W]”1 is analytic at A and does not have a zero at

A. Consequently, wb[V W]'1 is analytic and does not have a zero at A whenever

wb 6
R"‘"‘

is analytic and nonzero at A. So ||wb[[,=A = 1 implies ||wb [ V W]'1 ||,=„\ =

1. Hence |[wb [V
W]‘1

[|,=;„ = |[wb||,=;; for all wb E Rlx". Now let wb; E
R""‘

have

the last l components 0 and let wb; E
R“"

have the first k components 0. Then

II¢1 + ißzllm = max {II¢1IIm„ II¢¤lIm} ¤¤d *

ll(~/vi + ¢·¤)IV WV1 Ilm = Ilvßi + wßillm
= mu {II¢ilIm„ II•/¤¤I|m}

= ¤¤¤ {|l¢1lV W]" Ilm, II¢¤ IV
W]“‘

Ilm}-

It follows that the spaces spanned by the first k and last l rows of [V W]°1 are

orthogonal at A. Since the former space can be identified with fl° and the latter space

with A°, A° and fl° are orthogonal at A.

Ü

Stated in other words, Theorem 2.11 says that A and fl are orthogonal comple-

ments in (R", 6) if and only if A° and S'l° are orthogonal complements in (R", 6).
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2.2.3 Orthogonal and orthonormal bases

An algebraic basis {v,, vg, ..., vg,} for a subspace A of R" is said to be

anhui;for (A, 0), 0 a subset of C„, if vg (j = 1,2, ..., k) is orthogonal to span {vg : 1 5

i 5 k,i yé j} on 0. An orthogonal basis {vg,v;, ...,vg,} for (A, 0) such that ||v,||,=Ä = 1

for every j 6 {1,2,...,k} and each A 6 0 is called an for (V, 0).

It follows by induction from the definition of orthogonality that an algebraic basis

{v,,v;, ...,vg,} for A is an orthogonal basis for (K 0) if and only if
1.

II Z'6v¤II•=A = ¤¤¤ {|l'¤”¤ll·-A = 1 S 1 S k} (5)
6=1

for all A 6 0 and all rational scalar functions rg,r;,...,rg,. Elements v,,v;,...,vg, of

R" such that equality (5) holds for all scalar rational functions rg,r;, ...,rg, and all

points A 6 0 are said to be on 0. Thus, an algebraic basis {vg,v;, ...,vg,}

for a subspace A of R" is an orthogonal basis for (A,0) if and only if v,, vz, ..., vg, are

orthogonal on 0.

As a consequence of characterization (5), orthogonal bases have the following

property.
I

Proposition 2.12 Let A be a subspace of R", let 0 C C,,,, and let r,,r;,...,rg,

be nonzero scalar rational functions. Then {v1,v;,...,vg,} is an orthogonal basis for

(A, 0) if and only if {rgvg,r;v;, ...,rg,vg,} is an orthogonal basis for (A, 0).

Orthogonal bases can be also characterized more directly.

Proposition 2.13 The set {vg,v;,...,vg,} C A C R" is an orthogonal basis for

(A,0) if and only if

{i) the functions v,,v,,...,vg, span A,

(ii) for every A 6 0 the leading coeßicients at A ofv,,v,, ...,vg, are linearly independent.
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Proof Suppose {111,12;,...,11;,} is an orthogonal basis for (A,6). Then holds

and all 11,’s are distinct from 0. If (ii) does not hold, there 'sts A 6 6 and scalar

rational functions 17, rg, ...,17, such that 7'1‘I]1,‘]'g‘|)3, ...,17,v;, are analytic at A, some nv;

are nonzero at A and the constant term in the Laurent expansion of XL, 1-,1:, is zero.

Then
b

|| Zr;v,||,=A < 1 = max {||1•,v;||,=;, : i = 1,2,...,]:},
€=1

a contradiction.

Suppose now that {1:1,1:,, ...,12;,} C A is such that and (ii) hold. Then

{1:1,1:;, ...,1:;,} is an algebraic basis for A. Let scalar rational functions 1-1,1-;, ...,17,

be arbitrary. Fix A E 6 and choose j E {1,2, ...,]:} such that

ll"s”1ll·=A = m¤ {ll*'¢”6ll¤=x = 1 S 1 S k}-

Then (ii) implies that
J;

IIiul
So (5) holds and it follows that {1);,1}}, ...,11;,} is an orthogonal basis for (A, 6). ‘

Ü

It follows from the results in that a minimal polynomial basis for a subspace

A of R" is an orthogonal basis for (A, C„). We state this in the next theorem.

Theorem 2.14 If A is a subspace of R", (A, C,,,) has an orthogonal basis.

In particular, (R", C,„) has an orthogonal basis. In fact it follows from Proposi·

tion 2.13 that if {cl, cg, ..., c,,} is a basis for C" (over the base field C) and 17, 1-;, ..., 1-,,

are nonzero scalar rational functions, then {1·1(z)c,,1-;(z)c;, ...,1-,,(z)c,,} is an orthog·

onal basis for (R", C,,,,).

In view of Proposition 2.12, Theorem 2.14 has the following corollary.
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Corollary 2.15 Let A be a subspace of R" and let 0 be a proper subset of C,.

Then (A, 0) has an orthonormal basis.

2.2.4 Orthogonality and spectral points

An orthonormal basis {vl,vl,...,vl,} for (A,0) can be characterized in terms of

poles and zeros of the rational matrix function [vl vl . . . vl,] as follows.

Theorem 2.16 Let {vl,v;,...,vl,} be a basis for a subspace A of
R""“

and let

0 C C,. Then {vl,vl,...,vl,} is an orthonormal basis for (A,0) if and only if the

rational matrix function [vl vl vl,] has no poles nor zeros in 0.

Proof We may assume 0 = {A} with «\ E C,. We note that since {vl,vl, ...,1:,,} are

linearly independent over R, the rational matrix function W = [vl vl vl,] 6 R""‘"

is left invertible.

Suppose first that {vl,vl, ...,vl,} is an orthonormal basis for (A, Then W is

analytic at A. Also for any ¢ = [¢l ¢; ¢l,]T 6 Rhxl with II¢II„.-at = 1 •

||W¢I|.=i = mv {|l¢«v«||.=l : 1 S i S k}

= mu {|¢¤|.=i= 1 S i S k}

= ||¢lI.„i

= 1.

Hence no diagonal entry in the Smith·McMil1an form of W (the Smith·McMil1an form

of W(z") if Ä = oo) has a zero at «\ (at 0 if «\ = oo).

Suppose now that W has neither a zero nor a pole at »\. If ||vl||,=l > 1 for

some i, vl and hence also W has a pole at «\. If [|v;||,„l < 1 for some i, there is a

nonzero constant function ¢ E
R""‘

such that W¢ = vl has a zero at «\. Then some

diagonal entry in the middle factor in a Smith-McMil1an factorization EDF of W
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(resp. W(z") if A = oo) has a zero at A (resp. at 0 if A = oo), a contradiction.

It follows that ||v,||,=, = 1 for all i = 1,2,...,]:. Suppose there are scalar rational

functions r,,r,,...,r;, such that EL, r;v;||,=;, < max {||r;v,||,=,\ : 1 S i S I:}.

Then not all r,,r,, ...,17, are zero and we may assume ||(r,,r,, ...,r,,)||,=, = 1. Then

max {||r,v;||,=, : 1 S i S I:} = max {|r;|,=,\ : 1 S i S I:} = 1 and Wr has a zero

at A where r = [1·, r, r;,]T is a function analytic and nonzero at A. Consequently,

some diagonal entry in the Smith·McMi]lan form of W (resp. of W(z"‘) if A = oo)

has a zero at A (resp. at 0 if A = oo), a contradiction. Thus, {v,,v,,...,v;,} is an

orthonormal basis for (A,

El

It follows from Theorem 2.16 that if W is a left invertible rational matrix function

with no poles nor zeros in 0 C C„, then the columns of W form an orthonormal basis

for (A,0) where A is the column space of W. Thus, if the columns of W fail to be

orthogonal at A, A is a pole or a zero of W. The next proposition shows that the study

of the right pole structure at A of a rational matrix function W can be simplified if -
the span of some columns of W is orthogonal at A to the span of the other columns

of W. We note that in Proposition 2.17 we do not assume linear independence of the

columns of the involved rational matrix functions.

Proposition 2.17 Let W, and W, be m x n, and m x n, rational matr·ix functions
" with the canonical sets of right pole functions at A E C,„ W, and \I!,, respectively, and

let W = [W, W, If the columns of W, and W, are contained in subspaces of
‘R."‘

A, and A,, respectively, and A,,A, are orthogonal at A, then each right pole function

¢ for W, (resp. W,) at A of order I: is a right pole function for W at A of order Ic

and \I¤ = \I!, U \I¤, is a canonical set of right pole functions for W at A.
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Proof The first assertion follows from the definition of a right pole function and

Proposition 2.6. Also by Proposition 2.6 the leading coefficients in the Taylor expan-

sions at Ä of functions in
‘I!1

and \I!1 are linearly independent. Let aß be a right pole

function for W at Ä of order k. Then aß(z) = aß1(z) + aß1(z) where

{

(z — Ä)"W}(z)¢1(z), if Ä E C
•/*6(=) =

z°"W}(z)¢;(z), if Ä = oo.
for some rational vector function aß; which is analytic at Ä (i = 1,2). So aß(Ä) is

contained in the span of the values at Ä of the functions in W of order at least equal

to k. Thus, ‘I! is a canonical set of right pole functions for W at Ä.

EI
Since the orders of pole functions in a canonical set of right pole functions for a

rational matrix function W at Ä E C„ coincide with the partial multiplicities of the

pole of W at Ä, Proposition 2.17 has the following corollary.

Corollary 2.18 Let W1 and W1 be m x n1 and m x n1 rational matrix functions,

let Ä E C,„, and let k1,k1, and l1,l1, ...,l,,, be partial multiplicities of the pole _

at Ä of W1 and W1. If the column spaces of W1 and W1 are orthogonal at Ä, then

k1,k1,...,k,,,,l1,l1, ...,l,,, are the partial multiplicities at Ä of the pole of the rational

matrix function [W1

W1Proposition2.17 shows that if a rational matrix function W can be split into a

block matrix function W = [VV1 W1] such that the column space of W1 is orthogonal

to the column space of W1 at Ä E C„, then the right pole structure of VV at Ä can

be investigated by considering the right pole structure at Ä of VV1 and W1 separately.

Proposition 2.23 below is an analogue of this observation referring to the left zero

structure of W. We shall use in this section the following immediate corollary of
Proposition 2.23.
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Corollary 2.19 Let Wl and Wl be m x nl and m x nl rational matrix functions,

let Ä 6 C„, and let kl, kl, ..., k,,, and ll,ll, ...,l,,, be partial multiplicities of the zero

at Ä of Wl and Wl. If the column spaces of Wl and Wl are orthogonal at Ä, then

kl,kl, ...,k,,,,ll,ll, ...,l,,, are the partial multiplicities of the zero at Ä of the rational

matrix function [Wl Wl].

In particular, if all columns of W are orthogonal on 6 C C„, Propositions 2.17

and 2.19 specialize as follows (cf. Result 2 in [VK] and Ex. 6.5-20

inProposition2.20 Let 6 C C„ and let W be a left invertible rational matrix

function whose columns are orthogonal on 6. Choose Ä E 6 and let rl,rl, ...,r„ E 'R"

be such that
¤(=)

'• (6)
r»(=)

E W(z)D(z)

and W has columns that are analytic and nonzero at Ä. Suppose r;,,r;,, ...,r;, vanish •
at Ä and 1·j,,rj,, ...,rj, have a pole at Ä. Then

{i) the partial multiplicities of the zero of W at Ä coincide with the orders of zeros

at Ä ofr;,,r;,, ...,11,,

{ii) the partial multiplicities of the pole of W at Ä coincide with the orders ofpoles at

Ä 0f1‘j,,1'j,,...,1'j,,

{iii) the columns jl, jl, ...,jl of W' form a canonical set of right pole functions for W

at Ä.

2.3 Discrete left zero structure

Let W be an m x n rational matrix function and let Ä E C,„. We say that a
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function ¢ E
’R1""‘

is a gg fyggg for W at «\ of gßlg; k, k a positive integer,

if „

(i) ¢ is analytic and nonzero at «\,

(ii) ¢W has a zero at «\ of order k,

(iii) ¢ is orthogonal to
W°‘

at .\.

In view of Proposition 2.6 conditions above are equivalent to (i), and

(ii?) ¢(·‘) ¢ W°‘(#\)·
A set of left null functions {¢f•l,¢l, ...,¢,,} for an m x n rational matrix function

W at «\ 6 C, of orders kl, kl, ...,k,,, respectively, is called a ggggiggl Le; of left gnu

fgmgtigm for W at «\ if

(i) ¢l(«\), ¢l(«\), are linearly independent,

(ii) ¢l,¢l, ..., 45,, are contained in an orthogonal complement of
W°‘

in ('R."‘"‘, {.\}),

(iii) 2;;,, kl is maximal subject to conditionsandWe

note that if ·r = (D,, A,, B,) is a left kernel triple for W, then in view of Propo-

sitions 2.6 and 2.7 the condition above is equivalent to the linear independence of

rows of the matrix '#0)[6666]
.6„t#>

where ‘ll'(Ä) is a basis for W°‘(»\) obtained from ·r.

We show first that the canonical sets of left null functions for W E 'R."""‘ at
«\ E C, can be projected onto orthogonal complements of

W°‘

inProposition2.20 Let {¢l,¢l,...,¢,,} be a canonical set of left null functions for

an m x n rational matrix function W at «\ E C, of oniers kl,kl, ..., k,, respectively

.....1 za A be an orthogonal comprsmme .6;
w·‘

6.. (1z*=‘···,{A}). Let $6,,.;,, ..., .;„ be
ul. p.—.6l„.;¢6.„„ .6;.;,,.;,, ..., 46,, .6..:.6 A ..1.6..,. w·‘. r1„„{.;,,.;,, ..., $6,,} is a canonical
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set of left null functions for W at A of ordersl¤1,k1,Proof

Choose orthonormal bases {1:1,1:1, ...,1:1,} and {w1,w1, ...,101} for (A, and

(W°', Then the rational matrix function

vzQ = [IL';]
ws

uh
is regular and analytic at A. By Proposition 2.6, Q does not have a zero at A and hence

Q" is analytic at A. Cousequently, the functions ¢v1 = ¢1Q",¢·1 = ¢>1Q", ...,¢,, =

are at ^•=°(i

= 1, 2, ...,1}). Then $1, $1, ..., dg, are the projections of¢1, %, ..., ¢,, onto A along W°'

and $1,%, ...,d$,, are analytic at A. Since span{%(A),%(A), ...,d>,,(A)} = span{¢1(A),

%(A), ...,¢,,(A)} modulo W°'(A), the vectors $1(A),%(A),...,Ä$,,(A) are linearly inde-

pendent. Since Aw = ¢;W (i = 1,2, ...,1)), the orders of Ä; and gb; as left null func-

tions for W at A are equal. Finally, suppose that there exists a left null function $,,+1 E

A for W at A such that $,,+1 ¢ span {$1(A),%(A), ...,%,(A)} or such that $,,+1 should

replace some function ein in the canonical set of left null functions {451, %, ..., ¢,,} be-

cause of order considerations. Then, reversing the argument above, we can find a

left null function ¢>,,+1 for W at A such that ¢1,%, ...,¢,,+1 are contained in a sub-

spaoe orthogonal to W°' at A and either ¢>,,+1(A) ¢ span {¢1(A),¢;(A), ...,¢,,(A)} or

¢,,+1 should replace some functions in {¢1’¢2’ ..., because of order considerations.

Since {¢>1,%,...,¢,,} is a canonical set of left null functions for W at A, this is a

contradiction. It follows that {$1,%, ...,¢i$,,} is a canonical set of left null functions

for W at A and the proof is complete.

EI
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Proposition 2.22 Let A 6 C„ be a zero of an m x n rational matrix function W.

Then the orders of the functions in any canonical set of left null functions for W at

A are equal to the partial multiplicities of the zero of W at A.

Proof We assume without loss of generality that A 6 C. Let EDF be a Smith-

McMillan factorization of W and suppose that the first li diagonal entries of D are

nonzero and all the other entries of D are zero. Then W" is spanned by the last

m — k rows of E". By Proposition 2.6 the space A spanned by the first k rows of
E"‘

is orthogonal to W°' at A. Clearly, the rows ofE" eorresponding to the nonzero

entries of D which vanish at A are the left null functions for W at A of orders equal

to the partial zero multipicities of W at A. Henoe, by Proposition 2.20 the orders of

functions in any canonical set of left null functions for W at A are equal to the partial

multiplicities of the zero of W at A.

D

Proposition 2.20 implies also the following analogue of Proposition 2.17. -

Proposition 2.23 Let W; and W; be m x n; and rn x n; rational matrix _functions,

let A E C,,, and suppose that the column space of W; is orthogonal at A to the column

space of W;. Then there exist canonical sets Ö; and Ö; of left null functions at A

for W; and W;, respectively, such that every left null function ¢ 6 Ö; for W; (resp.

¢ E Ö; for W;) at A of order k is a left null function at A of order k for the rational

matrix function W = [W; W;], and Ö = Ö; U Ö; is a canonical set of left null

functions at A for W.

Proof Let A; be the column rpucc of W} (i = 1,2) and let A, be an orzhogonnl
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complement of A; + A; in
'R."‘.

Let

Q, = (A, 6 A,)°,

Ü: = (A1 9 Aa)°»

ng = (A1 S Ag)°.

Then, by Theorem 2.11, Q, is orthogonal to fl, at A wheneveri yé j and Q, $fl;$0; =
'R"‘"‘.

Also,
w;·‘ = 0, 6 0,,

W? = Ü1 9 ns,

w·' = 0,.

Choose a canonical set Ö; of left null functions at A for M and project functions in

Ö; onto Q, along M°' to get Ö; (i = 1,2). Let Ö = Ö; U Ö;. If ¢ 6 Ö, is a left null

function for W, at A of order k, then ¢W1 has a zero at A of order k and ¢W; vanishes

identically. Since {2; is orthogonal to
W°‘

at A, 49 is a left null function for W at A

of order I:. Similarly, every left null function ¢ for W; at A of order k is a left null

function for W at A of order k. Let ¢ be a left null function at A for W of order k.

We may assume ¢ 6 O; 9 O;. Let ¢ = ¢0, + dm, with dm, 6 fl;. Then °

(¢0, + ¢0;)lW1 Wal = l(¢m + ¢0;)W1 (¢m + ¢¤„)W¤l

= [¢>0, W1 ¢n,W:]
vanishes to order I: at A. So each of ¢n,W; and dm, W; vanish to order at least k

at A and ¢(A) is contained in the span of values at A of null functions in Ö of order

at least k. Since, by Proposition 2.6, the values at A of functions in Ö are linearly

independent, Ö is a canonical set of left null functions for W at A.

El

A canonical set of left m1ll functions for an m x n rational matrix function W

at A can be found similarly as in the regular case (see [BGR1]) with the additional

constraint that the functions have to be contained in a subspace A orthogonal to
W°‘
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at Ä. That is, choose an orthogonal complement A of W°' in (7Z1""‘, Find a

left null function du 6 A for W of maximal possible order. Inductively, given left nu.ll

functions 491, 45;, ..., ¢., 6 A for W at Ä, find a. left null function ¢.,+1 for W at Ä of max-

imal possible order such that 45.,+; 6 A and ¢.,+1(Ä) ¢ span {¢1(Ä),¢,(Ä), ...,¢.,(Ä)}.

Continue until the span of values at Ä of left null functions for W at Ä which are

contained in A has been exhausted.

Let Ä 6 C„ be a zero of an m x fl rational matrix function W and let {¢1, 4:,, ...,

45,,} be a canonical set of left null functions for W at Ä of orders kl, ka, ..., k,,, respec-

tively. Let ¢i..i 6 C1" be such that

am 6 c
¢(=) = 5:

if Ä = 00.

i=¤Any

ordered pair of matrioes (A, B), where

_• ]S", if«\ 6 C
A =

i J¤·„(^)
(7)~7».(0)

s[ J"*(°) _ ls-*, am = ooii
J¤·„(0)
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and
¢1,kg—].
¢l,hg -2

Ji,.
!h—1

¢*2,1•,-z
B = S i

¢2,o

¢n,li'—1

¢'lrh1°2

¢·i.¤
for some invertible matrix S of an appropriate size, is called a Leit @y for W at

A.

Let 0 C C and let A1,A2,...,A,. be the zeros of a rational matrix function W in

0. Let (A;,B;) be a left null pair for W at A; (i = 1,2, ...,r). Any ordered pair of

matrices (A, B), where

A1 .4 gl
.4=s ' __ s·‘,

ß=s
,’

,
Av Bv

for some invertible matrix S of an appropriate size, is called a lgfg, ggü pg; for W

over 0 (or a 0-left null pairforWe

note that since the values at A 6 C of functions in any canonical set of left

null functions for W 6 R"""‘ at A are linearly independent, a left null pair (A, B) for

W over a 0 C C, or at infinity, is controllable (see Theorem 3.4 in [BGR1]), i.e. the

matrix [B AB A;B ] has full column rank for suiiiciently large integers l.
We shall need later the following property of left null pairs.

Lemma 2.24 Let 0 C C, let (A, B) be a left null pair for a rational matrix function

W over 0, and let {A1,A;,...,A,} be a finite set of points in C„. Suppose that the
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largest geometric multiplicity of a zero of W in 0 equals rt. Then there ezists a

subspace A orthogonal to W°' on {«\,,)(;, ...,«\,} and functions ¢1,¢;, ..., 45,, 6 A such

that the pair (A, B) is left-similar to the pair constructed fnom the Taylor coeßicients

of ¢1,¢,, ...,¢,, at the eigenvalues of A.

Proof After augmenting the set {«\1,«\,, ...,«\,} if necessary, we may assume that

s > r, the eigenvalues of A are {«\1,»\;,...,«\,}, and Ä, = oo. Let {1/:,_1,1,b,_;,...,qb,_,,,}
(i = 1,2,...,r) be a canonical set of left null functions for W at Ä; such that the
pair (A, B) is left-similar to the pair constructed from the coeflicients in the Taylor

expansions of ¢•;_, at Ä;. We assume re = 1;; 2 1;; 2 1;,.. Let l¤;_, be the order of
1b,_, as a left null function for W at Ä; (i = 1,2,...,r, j = 1,2, ...,1;,), and let

1/*1(Z) = (Z

(z (6)

+
(Zwhere7j is the largest integer such that 1;,, 3 j (j = 1,2, ...,1t). Then zb, is a left null

function for W at the points »\1,Ä;, ...,)(.,j of orders k1_,, km, ..., k.,,_, respectively. ,
We claim that the pair (A, B) is left·similar to the pair constructed from the

canonical sets {¢1,¢;,...,·¢v,,,}, {¢v1,1ß;,...,¢,,,},..., {1ßv1,1/:;,...,¢,,,} of left null func-
tions for W at «\1,Ä,,...,«\,.. To prove the claim it suflices to show that if 1/:2J and

1/I; are the 7’th coeflicients in the Taylor expansions of 1l1;·j and rb, at A; (1 S i S 1-,
1 S j S 17,), then the pairs of matrices

le; --2
andri;.

(S2
are left-similar. Now it follows from (8) that

•/6(Z) = Ps.1(Z)¢'¢.1(Z) + (Z
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where p;_j(z) is a scalar polynomial with p;_j(Ä;) 56 0 and where q;_,(z) is a vector

function analytic at Ä;. Hence for 7 E {0,1, ...,k;__, — 1} we have = Z“+v=7 auwij

where ao, 11;,..., a;„_,..1 are numbers such that p;_j(z) = EL, a„(Ä — Ä;)" and ao 56 0.

Hence
a„.¢-,·¤

Z
=

ag a;„_,_, ,,,245.1-*

~ß?
“··

¢?„,¢?‘—"‘
$*.12-2

E S
‘J

.

¢'ii,5

Since the inverse of S is the upper triangular matrix

h bl „ . . bh',-}

bo . . . dh',-}

i b}
such that

1, if7 =0p+v=7,

p,vz0 0, = 1,2, „., — 1,

we have

0 l 0 0
0 1 0

s.r,,„(A,)s·* = s A, g s·*
1
0

Gq G1 G; . . . (1*,.,,1 0 bo bl ·
• • b*6,j—2

A "°
°‘ “'·¤·*

0 bo E
= 5 + · . _

E . _

G1 bo

°° 0
0 1 0 0

0 1 . .. 0

0
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and the claim is established.

We now describe the orthogonalization process which transforms $1, $1,..., $,1 into

functions $1,$1,...,$„ with the required properties (cf. Proposition 2.6). We begin

with $1. Choose constant vectors c1_,.+1,c1_,+;,c1_, such that c1_,
¢ W°'(«\,) (j =

1- + 1,1- + 2, ..., s) and suppose that the integers 111_, are such that the rational vector

function

(z — «\,)'“*·!$1(z), ifj = r + 1,r + 2, ...,s — 1

{z"‘·*$1(z), ifj = s

is analytic and nonzero at A, (j = 1- + 1,r + 2,...,s). We put

¢1(=) =~/-1(=) + H(z - »\«)"‘·‘+‘· ‘
6:1

6-1 1-

· ( Z(=5:1+1
6:1

+
z—1•1,•-Z:_,(7•6,1+1) (cl"

_Then$1 is a left null function for W at Ä; of order k;_1 (i = 1,2,...,r), the first
i

k,_1 coefiicients in Taylor expansions of $1 and $1 at A, coincide (i = 1,2,...,1-),

and the leading coefficients in the Laurent expansions of $1 at »\,.+1,«\,.+1, ...,«\, are

c1_,+1,c1,,+1, ...,c1,,. Inductively, suppose $1,$1, ...,$,-1 with j S 16 are given and let

7, S 1- be the largest integer such that 1),, 2 j. Choose nonzero constant vectors

c,_.,,+1,c,_.,_,+1,...,c,_, such that the span of c,_,, and the leading coefficients in the
Laurent expansions of $1,$1,...,$,..1 at Ä,. intersects trivially with W°'(«\,,) (V =
7,+1,7,+1, ...,7,), and suppose that the integers p,_,, are such that the rational vector

function

(z — «\,,)"‘i·"$,(z), if V =+1,j+ 2, ...,s -1
{ z"*·'$,(z), if V = s
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is analytic and nonzero at »\,, (v = j +1,j + 2, ...,6). Let

·v1
¢1(=) =¢'1(=) + Ha··I-I

i=1

7}

· (X;v=·yj+1 i=1

+
_

-

Finally, we put A = span {¢1,¢;,...,¢„}. The functions ¢;,¢;,...,¢,, and A have the

required properties.

El
We note that by choosing constant vectors c;__, in the orthogonalization process

in the proof of Lemma 2.24, we have actually defined A(»\;) (i = r + 1,r + 2, ...,6).
Also, in general A(«\;) for i = 2,3, ...,r was not completely determined and depended

only on the values of 30;,;,1/:;;, ...,r/1;,,,, at Ä;. For future reference, we state this in the

following corollary.

Corollary 2.25 Let 6 C C, let (A, B) be a left nullpair for an m x n rational matriz _

function W over 6, and let {«\1,«\;, ...,)t,} be a finite set of points in C„. Suppose

that the pair (A, B) is left-similar to the pair constructed horn a canonical set of left
null functions

{{¢,\j} : «\ is an eigenvalue of A, 1 S j S 1);}

and let

m = ·p«¤{¢11<^>= 1 s 1 s ni}
for each eigenvalue »\ of A. Let k be an integer such that k S m and k is greater

than or equal to the largest geometric multiplicity of a zero of W in 6. Suppose that
to every integeri = 1,2, ...,6 there corresponds a k-dirnensional subspace A; of cl""‘

such that A, contains OA, whenever A; is an eigenvalue of A. Then we can find a
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subspace E of
'R1""‘

such that E(«\;) = A; and the pair (A, B) is left·similar to the

left null pair constructed from a canonical set of left null functions for W in E.

It follows from Lemma 2.24 that any left null pair (A,B) for an m x n rational

matrix function W over 0 C C is left-similar to the pair oonstructed from functions

which are contained in a subspace orthogonal to
W°‘

on 0(A). It turns out that

the left null pairs for W over 0 constructed from functions in the same orthogonal

complement of
W°‘

in ('R.1°‘"°, {«\1,»\2,...,Ä,}), where Ä2,»\2, ...,»\,. are the zeros of W

in 0, are necessarily left-similar.

Proposition 2.26 Let (A1,B1) and (A2,B2) be two left null pairs for an m x n

rational matrix function W over 0 C C constructed from functions contained in the

same orthogonal complement A ofW°' in ('R.“"",0(A1)). Then (A1, B2) and (A2, B2)
are left·similar.

Proof Let {vl, v2, ..., v2} be an orthonormal basis for (A°, 0(A1)). By Theorem 2.11,

the rational matrix function ‘

Q= [W vl v2 1:;,]

is regular. Since the pairs (Al, B;) and (A2, B2) are left null pairs for Q over 0(A1),

they are left-similar by Theorem 3.3 in [BGR1].

El

We note that left null pairs for a rational matrix function W over 0 C C con-

structed from functions which are not contained in a subspace orthogonal to
W°‘

at

the zeros of W in 0 need not be left-similar. E.g. if

wm = [; ; 1] .
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(A1,B1) = ([1], [1 0]) and (Ag,Bg) = ([1], [0 1]) are left null pairs for W over C
which are not left-similar. A characterization of when two controHable pairs (A1, Bg)
and (Ag, Bg) are left null pairs for the same matrix polynomial W is given in [BCRo].

2.4 Right zero structure

Let W be an m >< n rational matrix function. We will denote the right annihilator
of W by W". The set of values at A C C,„ of functions in W" which are analytic at
A will be denoted by W°'(A). A matrix polynomial whose columns form a minimal

polyuomial basis for W" is called a gight kgmgl for W. We will assume

that the columns of a right kernel polynomial P are ordered according to decreasing
degrees.

Proposition 2.27 Let P 6 ’R."" be a matrix polynomial with columns orthogonal
at infinity and suppose that the i’th column of P equals z""·lP;_j (HJ 6 C"1,

Rp 56 0 ifß 56 0, i = 1,2, ..., k). Suppose that the jirstl columns 0fP have a pole at

infinity and the last k — l columns are constant. Then a minimal realization of P is
l

given by the formula

P(z) = P(0) +

• • • P1,m—1 • • • • • • Hvß • • • H'm—1]

J„„(0) " E,

( i J„.<¤>l) é·
(9)

where E; is the 1;; >< k matrix with 1 at the position (i, 1) and zeros elsewhere.

We note that the matrix Ef Ef ]T in the realization (9) of P can
be easily reproduced from other matrices in If P is a right kernel polynomial for
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a rational matrix function W, the ordered triple of matrices (C,, A,, D,) where

Cn = [Pl), Pl_l Pl_,,,-l Pg,0 Pl_l . . . Bl, HJ H_,,,_l] ,

[JAG) J(0)A,
=

m _• and D, = P(0)

will be called a right kgnc], triolc for W.

We note that if W is a rational matrix function and Ä 6 C, a basis for W°"(Ä) can

be easily computed from a right kernel triple (C,,A,, D,) for W; a basis for W°'(oo)

can be read off directly from (C,,A,, D,).

Let W be an m >< n rational matrix function and let Ä E C,„. A function ¢ E 'R.""1

is a fight nun function for W at Ä of ondc; k, k a positive integer, if

(i) 45 is analytic and nonzero at Ä,

(ii) W¢ has a zero at Ä of order k,

(iii) ¢ is orthogonal to W°' at Ä.

Condition (iii) above can be replaced by

(ii?) ¢(«‘) ¢ W°'(«\)- I

A set of right nuH functions {¢1’¢2’ ...,45,,} for an m x n rational matrix function

W at Ä E C„ of orders kl, kl, ..., k,,, respectively, is called a ofnigä ing

function; for W at Ä if

(i) ¢l(Ä),¢l(Ä), ...,¢,,(Ä) are linearly independent,

(ii) ¢l,¢~l, ..., ¢,, are contained in an orthogonal complement of W°" in (’R""1, {Ä}),
(iii) §_j}'=, ki is maximal subject to conditions (i) and (ii).

Condition (ii) above can be replaced with

(ii') V7 W°'(^) = (0)-
We note that the number of functions in a canonical set of right null functions

for W at Ä is equal to the geometric multiplicity of the zero of W at Ä. The orders
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of functions in a canonical set of right null functions for VV at A coincide with the

partial multiplicities of the zero of W at A.

Let A 6 C„ be a zero of an m x n rational matrix function W and let {¢1,¢;, ...,

45,,} be a canonical set of right null functions for W at A, of orders k1,k,,...,k,,,

respectively. Let ¢,_j 6
C""‘

be the j’th coeflicient in the Taylor expansion of ¢, at

A. Any ordered pair of matrices (C, A), where C equals

S

and J¤•1(·\)
S"

lr J'°°(’\) _· S, ifA 6 C
AJ».,(0)s—*[ J"·(°) __ ls, ifA=ool ·’¤·„(0)

-
for some invertible matrix S of an appropriate size, is called a right mil], pg; for W

at A.
l

Let 0* C C and let A1,A;, ...,A,. be the zeros of a rational matrix function W in

0*. Let (Ca,/1;) bc a right null pair for W at A; (i = 1,2,...,r). Any ordered pair of

matrices (C, A), where

A1
C=[C1 C; G',]S and A=S"[

A2
,_ ls

for some invertible matrix S of an appropriate size, is called a rjglg for W

over 0 (or a 0-right null pair

forSimilarlyas in the regular case, right null pairs are coutrollable. Right nuH pairs

also have the following property.
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Proposition 2.28 Let 6 C C, let (C, A) be a right null pair for a rational matrix

function W over 6, and let {A1, A1, ..., A,} be a finite set ofpoints in C„. Suppose that

the largest geometric multiplicity of a zero of W in 6 equals rc. Then therwe exists a

subspace A orthogonal to W°' on {A1, »\;, ...,«\,} and functions 481, 48,, ..., ¢„ 6 A such

that the pair (C, A) is right·similar· to the pair constructedfrom the Taylor coeßicients

of ¢1,¢;, ...,¢,, at the eigenvalues of A.

Proposition 2.28 allows us, in particular, to associate with each right null pair

(C, A) for a rational matrix function W over 6 C C a subspace A of
’R."""

which is

orthogonal to W" on 6(A) such that (C, A) is right·similar to a pair constructed from

right null functions for W which are contained in A. Right null pairs constructed from

functions in a fixed orthogonal complement of W°" in ('R.""‘, {A1, A2, ..., «\,}), where

«\l,«\;, ...,«\,. are all the zeros of W in 6, are right-similar.



Chapter III

Local Right Equivalence

Recall that two m x n rational matrix functions W and H are said to be right

equivalent on 6 C C„ if W = HQ for some regular rational matrix function Q such

that Q and Q" are analytic on 6. We note that if 6 = C„, Liouvi1le’s theorem

implies that a rational matrix function Q which has no poles in 6 is constant. Thus,

two rational matrix functions which are right equivalent on C„ differ by a constant

right factor.

If a subset 6 of the extended complex plane is given, the relation of right equiv-

alence on 6 divides all rational matrix functions of the same size into equivalence

classes. The members of the same class have the same right pole and left zero struc-

ture: if W and H are right equivalent on 6, (C,,A,) is a right pole pair for W over

6 if and only if (C,, A,) is a right pole pair for H and (A;, B;) is a left null pair for

W over 6 if and only if (A;, B;) is a left null pair for H over 6. As can be seen from
i

the regular case (see Theorem 5.1 in [GK2]), the converse of the preceding statement

does not hold: two m x n rational matrix functions with the same right·pole and

left-zero structure on 6 need not be right equivalent on 6.

Local right equivalence of rational matrix functions, that is right equivalence over

a proper subset of C„,, is a generalization of a well understood concept of equivalence

of matrices over a principal ideal domain: A and B, matrices over a principal ideal

domain D, are said to be equivalent if A = PBQ for some unimodular matrices over

D, P and Q (see [McD, Morse studied in [Mor] a relation between matrices over

a principal ideal domain which he called dynamic equivalence. Two matrices A and

B over a principal ideal domain D are said to be dynamically equivalent if A = BQ
‘ 55
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for some unimodular matrix over D, Q. Plainly, dynamically equivalent matrices are

equivalent. Our definition of right equivalence of rational matrix functions A and B

extends the definition of dynamic equivalence to the case where A and B may have

entries in a field properly including the principal ideal domain D (see Proposition 3.1

below).

A concept related with local right equivalence is that of the left null-pole subspace

of a rational matrix function (see Section 3.1 below). Null-pole subspaces are also

called singular subspaces in the literature. They were introduced in [GR3, GR4]

for analytic matrix and operator functions. Null-pole subspaces of regular rational

matrix functions were investigated in [BRan1], [BCR] and [BGR2].

In the case where 0 contains both poles and zeros of a rational matrix function

W, the description of the null·pole subspace requires besides a right pole pair and a

left null pair for W over 0 an extra invariant, called the null-pole coupling matrix.

For the regular case, this first appears in a global form in [GKLR] in connection

with minimal divisibility questions. In connection with null·pole subspace, it was

first introduced for the regular case in [BRan1, BRan2]. For the nonregular case, it

appears here for the first time.

Chapter III is organized as follows. In Section 3.1 we describe in more detail the

concept of right equivalence ofrational matrix functions on a subset 0 ofC„. Included

here is an additional piece of structure, namely the null-pole coupling matrix, which,

together with the right pole and left zero structure on 0 C C already introduced,

completely characterizes right equivalence on 0. In Section 3.2 we find a sufiicient

condition for minimality of the McMillan degree of a rational matrix function H which

is right equivalent to a given function W on 0.
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3.1 Left null-pole subspaces

If 6 C C„,,, we will denote by 'R.(6) the integral domain of all functions in ’R. which

am analytic on o. It is shown in [Mor] that ‘R(o) is in fact a principal ideal domain.

We will denote by 7Z"""‘(6) the set of matrices over 'R,(6). Using this notation we

can characterize right equivalence of rational matrix functions as follows.

Proposition 3.1 If W, H 6 'R."""‘ and 6 C C„, the following are equivalent:

{i} W, H are right equivalent on 6,

(ii) W = HQI and H = WQI for some QI,Q; 6 'R„"""(6),

{iii) W’R.""‘(6) = H’R.""‘(6).

Proof The implications => (ii) => (iii) are immediate. Suppose (iii) holds.

If 6 = C,,,, 7Z""‘(6) = C""‘. Then W'R.“x!(U) is a finite diminsional C-vector

space. Let k = dim wc··**. We have W 0] Pw for some invertible constant

matrix Pw and some m x (n — ls) rational matrix function W with columns linearly

independent over C. Since dim (WC""‘) = dim (H
C""‘),

H = [H 0] PH for some

invertible constant matrix PH and some m x (n —- k) rational matrix function H with

columns linearly independent over C. Since columns of W and H form bases for the

same vector space over C, W = HP for some (n — k) x (n -— k) invertible matrix P.

It follows that
W= [W 0]Pw= [H 0] [P

I] Pw

= HP? [P I] Pw
E HQ

and W and H are right equivalent on C„.

Suppose 6 is a proper subset of C„. After applying a suitable Möbius transfor·

mation, we may assume 6 C C. Let EwDwFw and EHDHFH be Smith-McMi1lan
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factorizations of W and H. Then

EWDW'R.""‘(0) = EgDH7?.""‘(0). (1)

Let I: be the number of nonzero diagonal entries in Dg. Comparing the dimensions

of the free 'R„(0)-modules on both sides of equality (1), we see that the number of

nonzero diagonal entries in DW is also equal to k. If DW and D; are m x k rational

matrix functions such that DW = [ bw 0] and Dg = [ BH 0], it follows from (1)

that

D„1z'··<*(«) = E,;=E„1ö„1z'·=<*(«).

Let e; be a constant k x 1 vector with 1 at the i’th position and zeros elsewhere, and

choose f1,f,,...,f;, 6 ‘R""‘(0) such that Dwc; = E;}EgDgf; (i = 1,2,...,k). Let

Q = [ fl f, fh]. Q is a square matrix over ’R.(0). Since Q relates two bases

of ‘R,""‘(0), Q is a unit in the ring of k x k matrices over 'R,(0). It follows that Q is

a kxk rational matrix function such that Q and Q" are analytic on 0 and

EWDW = Egbgö. •

Hence

EWDW = EHDH [Q I).
So

W = EWDWFW

= E·”“*‘““ (F? [Q 1[ FW)
E HQ.

Thus, W and H are right equivalent on 0.

EI

It follows from Proposition 3.1 that all m x n right equivalent on 0 rational matrix
functions viewed as maps 'R.""‘(0) -—+

’R""" have the same image. Let W E
'R"""‘
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and let 0 C C„. Since multiplication of matrices commutes with multiplication by

scalars, W'R,”x1(0) is an ”R.(0)·m0<lul¢. In particular, WR°x1(0) is a C-vector space.

After [BGR2] we shall call W7Z'“‘1(0) the left m;11;p_Q1g mhspggg for W over 0.

If W E
’R.’"*'"

is a regular rational matrix function and 0 C C, the left null-pole

subspace for W over 0 is determined by a right pole pair (C,, A,) for W over 0, a

left null pair (A;, B;) for W over 0 and a matrix
I‘

which couplcs the pairs (C,, A,)

and (A;, B;). The explicit representation of W’R."‘*1(0) in terms of (0,, A,), (A;, B;)

and P is given by the formula (see Theorem 3.4.1 in [BGR2])
W’R."‘*1(0) = {C'„(z — Ä«)°1z

+ h(z) : z E C""*1,h E 'R."‘*1(0)

and Res,=,„(z — A;)°1B;h(z) = Fa:}
nee

where n, is the size of the matrix A,.

The matrix I' above is called am},H;_pg1gg9_up1i¤g¤;gt;j;for(C,,A,) and (A;, B;)

as the right-pole and left-null pairs for W over 0 (see [BGR.2]), or a coupling operator

(see e.g. [BR.an1]). IfW(z) is equal to I+C'(z-A)'1B with the realization (A, B, C, I)

minimal and a right pole pair (Un Ar) and a left null pair (A;, B;) for W over 0 are

given, the corresponding null·pole coupling matrix can be computed as follows (see
‘

[BRan1, GK2, BGR2]). Choose simple positively oriented ooutours 7, and 7; around

0(A,) and 0(A;) such that 0(A)\0(A,) is outside 7, and 0(A- BC)\0(A;) is outside

7; and let

9 = (1/21ri)/l (z — A)'1dz

9* = (1/21ri)/ (z — A + BC)'1dz.

The null·pole coupling matrix for (C,, and (A;, B;) as the right pole and left null

pairs for W over 0 is given by the formula $[19*5:1 where $; and S, are the unique

matrices such that
(C|Im9,A|Im9) = (C„S„, $,:1/ks:)

(A — BC|Im9*, 9*B) = (5;A;5[1,5;B;).
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We note that if (C,, A,) and (Ac, Bc) are right pole and left null pairs over 6 C C

for some regular rational matrix function W and
I‘

is the corresponding null-pole

coupling matrix, the equality

I‘A,
- AcI‘ = BcC, (4)

holds (see [GK2,BGR2]).

We now extend the definition of a null-pole coupling matrix to the non-regular

case. Let W be an m x n rational matrix function and let 6 C C. Let (C,, A,) and

(Ac, Bc) be right pole and left null pairs for W over 6. By Lemma 2.24, there exist an

orthogonal complement A of W°' in ('R.“"‘, 6(A,)U6(Ac)) such that the pair (Ac, Bc)

is left-similar to a pair constructed from functions in A. Choose an orthonormal basis

{11,,1;,,...,6,,} for (A°,U(A,) LJ 6(Ac)). Fix a Smith-McMi1lan factorization EDF of

W and let D be the rational matrix function obtained from D after deleting the zero

columns. Then (C',, A,) and (Ac, Bc) are right pole and left zero pairs for the regular

rational nnntnn function W, = [ Eb „, „, „„]. We nenne the nnu-pe1e
coupling matrix for (C,, A,) and (Ac, Bc), viewed as the right pole pair and left null .

pair for W, over 6(A,) U 6(Ac), to be the @@1; @@11;; @ I' for the _rjg1i1

@ p@ (C,,A,) and @{1 @1l_ pg; (Ac,Bc) for W over 6.

We need to show that
I‘

is well-defined. We will show that if we choose Ä instead

of A and {1,,%,,...,6,, instead of 1:,,1;,,...,11,, then W, = [Eb 5, 52 is

right equivalent to W, on e(A,) u e(A,). Since W, and W, are regular rational

matrix functions of the same size,

[ED iz, 6, 6,,]=[ED 6, 6, 6,,]Q (5)

for some regular rational matrix function Q. Let

Q [8;: 3::]
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with Qu of the size I: >< I:. Since the columns of WE and WE form bases for 72****,

Qu = I and Qu = 0. Suppose that some entry of Qu has a pole at Ä E 6(A')UU(Äc).

Let Qj be the corresponding column of Q. Then WEQ5 it the sum of a function in

A° which has a pole at Ä and a function in the column space of W. So WEQj has

a pole at Ä. Since, by (5), WEQj E {ö1,i2;,...,ö;,}, this is a contradiction. Thus,

Qu is analytic on 6(A,) U 6(Ac). Suppose now that some entry in Qu has a pole

at Ä 6 6(A.„) U 6(Ac). Let qgj be the corresponding entry of Q. If the i’th diagonal

entry of Ü does not have a zero at Ä, the orthogonality of the columns of WE at Ä

implies that the j’th column of WEQ has a pole at Ä. This againcontradictsSuppose

that the i’th diagonal entry of B has a zero at Ä of order 1: and let ¢ be the

i’th row of E". Then ¢ is a left null function for WE at Ä of order nc. Since WE and

WE share a common left null pair, WE and WE have the same left zero structure.

Hence ¢ is a left null function at Ä of order IC for WE. Since Qu is analytic on 6 and

¢[v1 11; 1:;,] has a zero at Ä of order at least 1:, ¢WEQ vanishes at Ä to the

order strictly less than IG or ¢WEQ does not vanish at Ä at all, a contradiction. It

follows that Q is analytic on 6(A,) U 6(Ac). We show similarly that Q" is analytic '

on 6(A,) U 6(Ac). Thus, WE and WE are right equivalent on 6(A,) U 6(Ac) and the

nu]1~pole coupling matrix
I‘

is well-defined.

We note that if W is a rational matrix function, 6 C C, and a right pole pair

(C,, A,) and a left null pair (Ac, Bc) for W over 6 are given, we can actually compute

the corresponding null·pole coupling matrix as follows.

1. Find WE as in the definition of null-pole coupling matrix.

2. Find WE which is right equivalent to WE on 6(A„) U 6(Ac) and has value I at

infinity.

3. Find a minimal realization (A, B, C, I) for WE.

4. Compute
I‘

using formulas (2) and



62

The involved computations may be, however, extensive.

Let W be a rational matrix function and let 0 C C. If (C,, A,) is a 0-right pole

pair for W, (Ac, Bc) is a 0-left null pair for W, and I"' is the corresponding null-pole

coupling matrix, we will call the ordered triple

A')!a

@ spgtral triple for W over 0 or a left 0-spectral triple for W.

We note that if 1* = {(C,,A,), (Ac, Bc),
I‘}

is a left spectral triple for a rational

matrix function W over 0 C C, then it follows from (4) and the definition of a

null-pole coupling matrix that
I‘

satisfies the Sylvester equation

SA, — AcS = BcC,.

Also, by the properties of spectral triples for regular rational matrix functions, if T,

and Tc are invertible matrices of appropriate sizes then

i' = {(C«T«»T$1A«T«)» (TcAcT[‘,TcBc)•Tc1”T«} (6)

is another left spectral triple for W over 0. If i* is any left spectral triple for W over 0

and there exist matrices T, and Tc such that (6) holds, *7* and 1* are said to be similar.

If W is regular, all left 0-spectral triples for W are similar. Since rational matrix

functions with nontrivial left annihilators may have left null pairs over 0 which are

not left-similar, a nonregular rational matrix function may have left spectral triples

which are not left—similar.

We can now characterize local right equivalence of rational matrix functions in

terms of spectral data.

Theorem 3.2 Let 0 C C and let W be an m x n rational matrix function with a left

kernel triple 1*,, and a left spectral triple over 0 1*, = {(C,, A,), (Ac, Bc), F}. Then an
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m x n rational matrix function H is right equivalent to W on 0 if and only if 1*,, is a

left kernel triple for H and 1*, is a left spectral triple for H over 0.

Proof Suppose first that W and H are right equivalent on 0. Then 1*,, is a left

kernel triple for H, (C,,A,) is a right pole pair for W over 0 and (Ac, Bc) is a left

null pair for W over 0. Furthermore we can find regular rational matrix functions

W; and H; such that W; and H; are right equivalent on 0(A,) U 0(Ac), (C,,A,)

and (Ac, Bc) are right pole and left null pairs for W and H over 0(A,) U 0(Ac), and

F is a null-pole coupling matrix for (C,,,A,) and (Ac,Bc) viewed as right pole and

left null pairs for W; over 0. Hence
I‘

is a null-pole coupling matrix for (C,, A,) and

(Ac, Bc) viewed as right pole and left null pairs for H over 0.

Suppose now that 1*,, is a left kernel triple for H and 1*, is a spectral triple for H

over 0. Let EWDWFW and E;DgF; be Smith-McMillan factorizations of W and

H and let DW and D; be rational matrix functions formed by nonzero columns of

DW and D;. Choose an orthogonal complement A of the column space of W in

('R,""", 0(A,) U0(Ac)) and let {vuvz, ...,1:;,} be an orthonormal basis for (A, 0(A,,)U

0(Ac)). By the definition of the null—pole coupling matrix, there exists a rational

matrix function Q; such that Q; and Q? have no poles nor zeros on 0(A„) U 0(Ac)

8.Iid Wg = HEQE Wh¢I'¢

WE = [EWDW U1 vg ... 1)),] 1

HE = [Egbg U1 vg ... Uh] ·

Since the columns of W; and H; form bases for
'R"‘,

¤~ = [3:: il ~
Since the column spaces of EWDW and EHDH are the same, Qu = 0. Since Q; and

Q? are analytic on 0(A,)U0(Ac), Qu and Q;} are analytic on 0(A,) U0(Ac). Since
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Öw and bg have no poles nor zeros in 6\(6(A,) U 6(A()), Qu and Qf,1 are analytic

on the whole 6. So

W = Ew [bw 0] Fw

= EH [bg Ü]
[Qu

I] FH

= H (FE! [Qu I] Fg)
E HQ

with Q an n x n rational matrix function auch that Q and Q" are analytic on 6.

Thus, W and H are right equivalt on 6.

EI

It follows from Theorem 3.2 that the left null-pole subcpace for a rational matrix

function W over 6 C C is determined completely by a left kernel triple for W and

a left spectral triple for W over 6. In fact, we can characterize the left null-pole

subspace for W over 6 as follows.

Proposition 3.3 Let W be an m X n rational matrix function, let 6 C C and let

{(C,,A,), (A;,B(),I‘} be a left spectral triple for W over 6. Let ·r be a left kernel

triple for W and let P be the matrix polynomial corresponding to r. Then the left

null-pole subspace for W over 6 is given by the formula

WR""‘1(6) = {C',(z — A,)°‘x + h(z): x E C"""‘,h E 'R,""‘1(6) and

R¢s,=,„(z — A;)'1B(h(z) = Fx} O {f E
’R"""

: Pf = 0} (7)
¤0€v

where n, is the size of the matrix A,.
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Proof By the definition of a null-pole coupling matrix
I‘

and the regular case,

W'R""‘1(a(A,,)U a(Ac)) ={C,(z — A„)"¤: + h(z): z 6 C""",

h 6
’R,”""

(6(A„) U v(A()) and

Res,„„(z — Ac)"B(h(z) = Fa:}.
so6v(A„)Ua(A()

¤{f€R""“= Pf=0}

Since W is right equivalent on ¢r\(6(A,) U¢r(A()) to a rational matrix function whose

nonzero oolumns form an orthonormal basis for f 6 'R."""; Pf = 0},o·\(6(A,) U

«<A¢>>),

www («x<«<A„> U {r 6 ww («\<«<A„> U Pf = U}-

So

W'R,""“(¢r) = W7?,""‘1(a·(A,)U 0(A;)) O W'R.'”"1 (a*\(0·(A„) U 6(A())) i

= {f 6 72,"""; Pf = 0} 0 ({C,(z - A,)"z + h(z):

=¤ G C""", h E 7¢"""(¢(A«) U ¢(Ac)) md
Res,=,„(z — Ac)'lBch(z) = Fx}

¤«>€(¤(4·)U¢(4¢))

PI'R„""‘1(o·\(o*(A„)UNow

(z — A,)" and (z — A()" are analytic on 6\(a(A,) U ¢r(A()), so if h 6

'R„"""(o·(A,) U ¢r(Ac)) is not analytic on cr\(a·(A,,) U 0·(A()), C,(z — A„)°°‘:¤ + h(z) is

not analytic on a\(0·(A,) U ¢r(A()) for any 2: 6
C”"‘1.

Conversely, if h 6 'R,"""(0)

then C',(z — A,,)":c + h(z) is analytic on o·\(a(A,.) U a(A()) for any as 6
C"""‘.

It
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follows that

’R"""
(o\(0(A„) U o(A())) O {C„(z — A„)"x + h(z) :

z 6 c'··*‘, rl 6 RM @(.4,) U ma
Res,=„(z — A()'1B(h(z) = Fx}

=¤€v(4•)¤¢(^¢)

= {C,,(z — A,)'1x + h(z): x 6 C”"‘1, h 6 'R"""(o) and

Res,=,„(z - A()"‘B;h(z) = Fx}.
soév

So equality (7) holds.

· C]

3.2 Right equivalence and McMillan degree

In this chapter we continue to call the leading coeflicient in the Laurent expansion

at Ä of a rational vector function h the leading coeflicient of h at Ä. We will denote

the leading coefficient of a rational vector function h at Ä by [h];. Thus, e.g. [0],, = 0

and if in a neighborhood of infinity h = Z?=_„ zihl with hl, gé 0 then [h],, = hl,. We
O

will denote the multiplicity of a pole of a rational matrix function W at Ä by 6(VK Ä).

The McMiHan degree of W will be denoted by Thus, 6(W) = Zxecu 6(VK Ä).

We begin with the following lemma.

Lemma 3.4 Let H = [hl hg . . . h„] be an m x n rational matrix function

with the columns ordered according to decreasing pole multiplicity at Ä 6 C,,. If

hl, hl, ..., hl are orthogonal at Ä and hl has a pole at Ä, then we can extend the set

X = {z"(’“·^)hl, z"("*·")h,, ..., z"‘("•·")hl}

to a canonical set of right pole functions for H at Ä.
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Proof Clearly z"(""A)h1, z"("'·")h;, . . . , z’6(""^)h; are right pole functions for H at

A of order 6(h1, A), 6(h;, A), ..., 6(h;, A) respectively. Since z"("‘·")H is analytic at A,

H has no right pole functions at A oforder greater than 6(h1, A). Suppose we are in the

process of finding a canonical set of right pole functions for H at A and we have chosen
” z"("*·")h1, z"("'·*)h;, . . . , z"("‘·*)h; (1 $ i < l). The rational vector function

z"('“+¤·*)h;+1 is a right pole function for H at A oforder 6(h;+;, A) with value at A not

contained in span {[h1];, [h;];, ...[h;]A}. Since by Proposition 2.13 [h1]A,[h,],\,...,[h‘],\

are lincarly independent, the value at A of any right pole function for H at A of

order greater than 5(h;+1,A) is contained in span {[h1]A,[h;],\,..., [h;]A}. Thus, we

can append to the set The
lemma follows by induction.

EI

In particular, if all the columns of H which have a pole at A are orthogonal at A,

Lemma 3.4 specializes as follows.

Lemma 3.5 Let H be an m x n rational matrix function function and suppose that _

·h,,,...,h;__ are the columns 0fH which have a pole at A. [f [h;,]A, [h;]^,..., [h;_]A are

lincarly independent, then

x = {z·‘<'·¤«
«‘>n,,

,
z—‘<'·»· «‘>1„,,

..., „·‘<'····*>1„_}

is a canonical set of right pole functions for H at A.

Proof By Lemma 3.4 there is an extension of X to a canonical set of right pole

functions for H at A, X. Let k be a linear combination over polynomials in z" of the

columns of H such that I: has a pole at A. Since the leading coeiücients of the columns

of h that have a pole at A are lincarly independent, [ls]; E span : h E X It
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follows that X = X.

EI

Lemma 3.5 has the foHowing immediate consequence.

Corollary 3.6 Let H be an m >< n rational matrix function such that the leading

coeßicient.! of the column.! of H that have a pole at Ä are linearly independent. Then

6(H, Ä) equal.! the sum of multiplicitie.! of the pole.! at Ä of the column.! of H.

We shall also need the following lemma.

Lemma 3.7 Let H, K be mxn rational matrix function.! which are right equivalent on

C„\{Ä} and let the column.! of each of H, K be orthogonal at Ä. Then 6(H) = 5(K).

Proof After applying a suitable Möbius transformation we, may assume Ä = oo.

Then H and K are right equivalent on C and H = KQ for some matrix polynomial

Q such that detQ equals a nonzero constant. Let i5,i5,...,i„ be distinct integers

such that the (ij,j)’th entry of Q is a nonzero polynomial (j = 1,2,...,n). Then .
6(hj, oo) Z 6(kü, oo). Using Corollary 3.6 we see that

6(H,oo) = Z5(h_,,oo) 2 Z6(k;j,oo) = Z6(lc;,oo) = 6(K, oo).
5:1 5:1 6:1

We show similarly the inequality 6(K,oo) 2 6(H,oo). Thus, 6(H,oo) = 5(K,oo).

Since 6(H,Ä) = 5(K,Ä) for every Ä E C, 6(H) = 6(K) as asserted.

El

We will show now that the columns of a rational matrix function K can be

made orthogonal at any point Ä of the extended complex plane without increasing

the McMillan degree of K. The involved column operations, used by Forney in

[F], do not affect the orthogonality of the columns of K on C„\{Ä]·. Unlike the
orthogonalization process utilized in the proof of Lemma 2.24, the operations in the
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proof of Theorem 3.8 do not change the span of the columns of K.

Theorem 3.8 Let K E
'R""‘"

and let «\ 6 Cu,. Then them exists an H E R”""‘

such that

{i} H and K am right equivalent on C„\{«\},

(ii) 6(H) S 6(K)„
{iii) the columns of H am orthogonal at Ä.

Proof After applying a suitable Möbius transformation, we may assume «\ = oo. Let

K = [kl kg . . . k„] be an m x n. rational matrix function with linearly dependent

leading coefficients at infinity of nonzero columns. We assume without loss of gener-

ality that the columns of K are ordered according to decreasing degrees, where by the

degree of a rational m x 1 vector function k we understand —oo if k = 0, or the num-

ber q such that z“"k is analytic and nonzero at infinity if k 96 0. It sufiices to show

that the McMi11an degree of K does not increase due to a single operation which we

will now describe. Let Ö be the collection of all submatrices [ks, ka, ksh ] con-

taining columns kh, kh, ..., kh; of K whose leading coefficients at infinity [kh], ...,

[hin]forma linearly dependent subset of
C"‘

that becomes linearly independent after re-

moving any one element. Let p be the smallest integer such that the p'th column

kv of K is the last column of some matrix [kg, kg, in Ö. Clearly there

is exactly one matrix in Ö with the last column The operation to be considered

replaces kh by

ki! = kh __ __
(8)

where ah , ah, ..., ap are such that [kh]„ — ag,[kh]„ — —- = 0. We note that

such an operation can be carried out whenever the leading coefficients at infinity of

nonzero columns of K are linearly dependent. Also, a finite number of such operations
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leads to a matrix function whose columns are orthogonal at infinity, that is a matrix
i

function with linearly independent leading coefficients at infinity of nonzero columns

(see Proposition 2.13). Indeed, let q(z) be a scalar monic polynomial such that

K = (1/q)L for some matrix polynomial L = [11,1;, ...,1,,]. Then 1;;, = (1/q)1;, where

1,, = 1,, - .1., z·*·•<'=->·‘··<'=·>z., - - a,z‘·•<“·>·‘·•<'·>z, (s')

has lower degree than 1;,. Plainly a finite number of operations like (S') transforms

L into a matrix polynomial with linearly independent leading coefficients of nonzero

columns. Henoe a finite number of operations like (S) transforms K into a rational

matrix function with linearly independent leading coeßicients at infinity of nonzero

columns. Finally, the replacing of 1:;, by 1;;, corresponds to multipliution on the right

by a unimodular matrix polynomial, and so the resulting rational matrix function is

right equivalent to K on C. We denote the rational matrix function obtained by

replacing the column 1¤;, of K with 1;;, by K.

Since K and K are right equivalent on C, we have 6(K,z) = 5(K,z) for each

z E C. We need to show 6(K,oo) 2 5(K,oo). We will show this by comparing

canonical sets of right pole functions at infinity for K and K. We shall consider the

case when 1:,, has a pole at infinity. The proof in the use when 1c,, is analytic at

infinity is simpler.

By Lemma 3.4, we can choose a unonical set of right pole functions for K at

infinity

X = {z"('*·°°1m1,...,z"(°•—*·°°)z,-,,z"('-+*·°°1z,+,,...,z"('··°°1¤,}

where ss; = 1:; ifi = 1,2, ...,p — 1 and z"‘("·°°1a:; is a right pole function for K at

infinity of order 6(z;, oo) ifi Z p + 1. We assume that 6(:s;, oo) 2 6(zj, oo) whenever

i < j. We may also assume that for each i = p+ 1, ..., s ss; is a linear combination over



71

polynomials in z" of the columns of K that have a pole at infinity. For notational

convenience we

putLemma3.8.1 For 1 $ i $ s, i 96 il, z°‘("‘·°°)z; is a right pole function for K at

infinity.

Proof If h(z) is a pole function for K at infinity of order oz, then z"h(z) is a linear

combination over polynomials in z" of columns of K which have a pole at infinity. If

this linear combination does not contain lq, , then trivially h(z) is also a pole function

for K(z) at infinity. Otherwise, the coefiicient
q(z"‘)

of iq, has the form z'^§(z“‘)

where A = 6(x;, , oo) — $(2:,,, oo) and Z1 is a polynomial. Then replace q(z")lq, with

(9)

Since the coefiicients in (9) are polynomials in z"1, we may conclude that z°h(z)is a

linear combination (with coefficients equal to polynomials in z") of columns of K(z),

and hence h.(z) is a pole function for K(z) also in this case. ‘

Continuation of proof of Theorem 3.8

While by Lemma 3.8.1 we know that X\{z"‘("‘¤ ·°°)z;,]· consists of pole functions

for K at infinity, it may happen that linear combinations (over polynomials in
z°‘)

of

columns of K (including the new column iq,) produce rational vector functions with

a higher order pole at infinity. In this situation X\{z"("¤ ·°°)z;,} is not a part of a

canonical set of right pole functions for K at X
\{z°‘("r

·°°):c;,}. To overcome this

difficulty, we will define a finite set {cl, ..., c„} of rational vector functions such that

the set

x U {z·‘<·····>„,} U {„·‘<=¤···>c,, ..., „·‘<=····>„„}
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contains a canonical set of right pole functions for If at infinity. To define the cl, ..., c„

put cl = hl,. Inductively, suppose that 7 is a nonnegative integer and we are given a

rational vector function c.,. Ifc., is analytic at infinity or [c.,]„ ¢ span {[:1:],, : z E X},

stop. Otherwise find the smallest integer j, such that [c,]„ 6 sp{[z,,]„ : 1 S 1; S
j.y,T] 96 il}, choose numbers a,,(1 S 1; S j.,,1; 96 il) such that

and put

(10)

where (9 = min{6(c.,,o<>),6°(¤:,;,,co)}. For the sake of definiteness we assume that

6(c,,, oo) is positive.

Let ul, ...,1/, with 1 S vl < < V, < 1: be all the integers such that 5(c„,,oo) >

b°(1:_;_,,co) (i = 1,...,r).

Lemma 3.8.2 Let cl,...,c„ be defined as above. Then the set of rational vector

functions .

X = XUUis

a canonical set of right pole functions for I? at oo.

Proof We argue by contradiction. Let l be the largest integer such that the l’th

column of I? has a pole at infinity and suppose there exist scalar polynomials qg , ..., q;

such that

qz(¤")kz (11)

has a pole at infinity and either

{¢].• ¢ ¤1>{[==]„ = = E X} (12)
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or
there is a right pole function y E X for Ä' at oo

of order less than 6(¢, oo) such that (13)

[v]~ 6 ¤p({l¢1„}¤ {[=¤]•• = = 6 X5 7i v})-
We will show that there exists an integer p. S rc and scalar polynomials gi"), ..., gif;

such that _
¢<z> =q£“1<=·‘>¤·1<=> + + q$:><=·*>«„<=> + «$:‘1,<··*>¤·,.„<»>

+and
S 5(¢(=)•¤<>)· (15)

Note that by definition cl = Äh; hence, if 6(qh(z")Äh(z),oo) S 6(¢(z), oo), then by

(11) we may take p = 1 and have (14) and (15) satisfied. If 6(q;,(Z-1),;;I(Z),X) >
5(¢(z),oo), we proceed by induction. Let 7 S nc be a positive integer and suppose

that

¢<z> =q$"<=">k1(=>+ + «§:><=·‘>¤.<·>
+<1$§’l1(¤“‘)k«.+1(=)+for

some scalar polynomials qgl). We note that (16) can be obtained directly from

(11) when 7 = 1. Suppose 6(q§;')(z")c,(z),oo) > 6(¢,oo). Then the leading terms

in the Laurent expansions at infinity of qg')(z")c,(z) and (—¢(z) + q§:)(z")c,(z))

are the same. In particular, [c,]„ 6 sp{[=¤]„ : az E X Since we are assuming that

6(c„, oo) > 0, by the construction necessarily [c,,],_, ¢ sp{[z]„ : z 6 X}; hence 7 < 1:.
Let q§;')(z) = a;z‘ + a,.,.1z‘+‘ + + an', a, 56 0. By construction, 5(c,,oo) - C,

is the smallest integer 1; such that the leading term in the Laurent series at infinity

for z"'c"(z) coincides with the leading term of the Laurent series at infinity for

some linear combination (over polynomials in z") of 2:1, ...,2;,-1,2;,+1,..., z,; hence

necessarily t 2 17 = 5(c,, oo) — C,. Hence by (10) we see that q§;')(z")c,(z) is a linear
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combination over polynomials in 2'1 of 21, ...,2;,-;,2:;,+1, ...2:,,6,+;. Consequently,

we obtain a formula of the form (14) with 7 + 1 in place of 7. It follows by induction

that there exists an integer p 5 rs such that (14) and (15) hold.

If the inequality (15) is strict, let $(2) = ¢(2)—q$:‘)(2'°‘)c,,(2). Then 2"("'·°°)$(z)

is a right pole function for K at infinity. Since X is a canonical set of right pole

functions for K at infinity, neither (12) nor (13) can happen, a contradiction. Next

suppose we have equality in (15). Since ) is a polynomial, certainly 6(c„,oo) 2
6(q$:‘)(z")c,,(z),oo) = 6(¢(z),oo). Hence if [95],, = [c„],,, (12) is not possible since

[c„],, is in sp{[:c],, : z E X} by the choice of X. Since either z"('••·°°)c„ is in X or

[6,,],, is in the span of leading coefficients at infinity of pole functions in X of order at

least 6(c,„ oo), (13) is also not possible. Suppose [45],, 56 [c„],,. If we let $(2) = ¢(z)-

q§:‘)(z")c„(z), then 6($(z), oo) = 6(¢(z), oo) and z"("'·°°)$(z) is a right pole function

for both K and K at infinity. Since X_is a canonical set of right pole functions for K

at infinity, we have [$],, 6 sp{[z1],,, ..., [:%-1],,, [2:;,+1],,, ..., [21:,,],,,..., [:6,],,} for some

j such that 5(a:j,oo) 2 6($,oo). Note that sp{[z],„, 2 z 6 X} C sp{[2=],, : 2c E X} by

the choice of X. Hence (12) in this case is not possible. Since

[¢]ee 6 ¤P{[=1]¤¤• ··-• l=¤n—1l¤¤• l==n+1]¤¤» -··» l=¤s]¤¤» l¢»]¤¤}

where 6(p,oo) 2 6(¢,oo) for p = zi,...,z;,-;,:c;,+1,...,cj,c„, (13) is not possible

either.

I]

Continuation of proof of Theorem 3.8

Since partial multiplicities of a pole at infinity of any rational matrix function W

are equal to the orders of the functions in a canonical set of right pole functions for
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VV at infinity, comparing X and X we sec that

6(K, so) - 6(R, so) 2

2 6(kin
°°)

'l' Züzivar co) 6(CM °°)
i=1 i=1

= l6('¤«„<><>) — ö(¤v• ¤¤)1 — Zl6(¢v„ ¤¤) — 6(=¤:.„ <><>)l — 6(¢„, <>¤)
i=1

E A - ZA; - A,+,.
i=1

Suppose that A — 2;:, A; < 0 and let p. be the smallest integer such that 2;, A; >

A. Then
u-1

oo) - §(gjp, gg) = A; — A + 6(cw, GO)- Ö.(¤¤j,,, ¤¤)
::1

= E A, - A
i=1

> 0.
By the choice of j„,

¤1>({l=¤¢l¤v = i < iv,} U {l¤v,l«»}) = ¤1>{l¢¤}·• = i S j¤·„l·

Also, since z‘^c;(z) = z'^h;,(z) is a linear combination over polynomials in
z“‘

of

the columns of K, we see from (10) that z^*+"‘+^•‘·*'^c,,„ is such a combination.

It follows that X is not a canonical set of right pole functions for K at infinity, a

contradiction. Thus, A -— 2;:, A; 2 0. Similarly, A — A; < 0 implies that

z^*+···+^"°^c„ has a pole at infinity. Since z^*+'“"'^"^c,, is a linear combination

over polynomials in z'°1 of the columns of K, this is a contradiction. It follows that

5(K, oo) 2 5(K, oo) and the proof is complete.

El

In the proof of the next theorem we will need the following lemma.

Lemma 3.9 Let K 6
7?,""‘"

and let A1, Ä, E C„. Then there exists a rational matrix

function H such that
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(i} H and K are right equivalent on

6(H) S 6(K),
{iii) H has neither a pole nor a zero at A1.

Proof It follows from Theorem 3.8 that there exists a rational matrix function W

such that 6(W) $ 5(K), W and K are right equivalent on C,,\{«\1,«\;} and the

nonzero columns of W are orthogonal on {»\1,«\;}. For notational convenience we

assume A1, A; 76 oo. Choose a1,a;, ...,a„ and /91,,8;, ...,ß„ such that W(z) is equal to

(Z ·-
Ä1)°‘

(Z
(Z ••

(z — ,\1)°‘··(z —
,\,)*’··

and all columns of W are analytic and nonzero on {A1, Ä,}. Define a rational matrix

function H by

(Z — Äg)°‘+p‘Hm = Wm ._
(ZThenH and K are right equivalent on C,„\{«\1, Ä;}. By Corollary 2.20 H has neither

a zero nor a pole at A1 and

6(H,«\1)+ 6(H,«\,) = 6(H,«\;)

= E (aa + ßi)
$ä2?;'„

S E de + ßa
ääär äéé:

= 5(W, A1) + 6(W,,\,).

So 5(H) g 6(K).

D

We can now prove the following theorem.
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Theorem 3.10 Let HC H E 'R.""‘" be right equivalcnt on 6 C C„ and let A E C„\6.

lf

{i) H has no zeros nor poles in C„\(6 U and

{ii) the columns of H are orthogonal at A

then H has the minimal McMillan degree among all rational matrix functions which

are right equivalent to W on 6.

Proof Let H have the properties and and let K be a rational matrix function

which is right equivalent to W on 6. We show that 6(H) S Applying Lemma

3.9 to K a finite number of times, we find a rational matrix function K; such that

K1 is right equivalent to W on 6, 6(K;) S 6(K) and K; has no poles nor zeros in

C„\(6 U Applying Theorem 3.8 to K1, we find a rational matrix function K;

such that 6(K;) S 6(K;), K1 and K; are right equivalent on C„\(6 U {A}) and the

columns of K; are orthogonal at A. Then K; and H are right equiva.lent on C„\{A}

and it follows from Lemma 3.7 that 6(H) = 6(K;). So 5(H) S 6(K) as asserted.

U .

Considering the special cases when 6 = 0 or 6 = C, we obtain the following two

corollaries.

Corollary 3.11 A matrix polynomial whose columns form a minimal polynomial

basis for a subspace V of 'R."‘ has the minimal McMillan degree among all rational

matrix functions with the column space V.

Corollary 3.12 Let W be an m >< n matrix polynomial and let H be a matrix

polynomial that is right equivalent to W on C and whose columns are orthogonal at

infinity. Then H has the minimal McMillan degree among all matrix polynomials

with the same left zero structure on C as W.
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Theorem 3.10 gives rise to the algorithm for finding a minimal McMi1lan degree

rational matrix function which is right equivalent to a given matrix function on 6 C

C„. Such an algorithm is described, together with an example, in [BR].

We conclude this chapter with two propositions which form an analogue of Theo-

rem 3.8. In view of Corollary 2.20, the proof of Proposition 3.13 allows us to find the

partial multiplicities of the pole and zero of a rational matrix function K at A 6 C

without finding a Smith—McMillan factorization of K and without finding canonical

sets of right pole and left null functions for K at A

(cf.Proposition3.13 Let K 6 ’R."""‘ and let A 6 C. Then there exists a rational matrix

function H such that

{i} H and K are right equivalent on C,

{ii} the columns of H are orthogonal at A.

Proof If nonzero columns kj, , k;,, ..., ki, of K are not orthogonal at A, find numbers

a1,a;,...,a, such that a1[k;,]; + a;[k;,],\ + + a,[k;_],\ = 0. Then choose k;„ such

that ||kj„||,=;, = min {||k;j||,=;, : 1 Sj S s} and replace ki, by

hä = Z;aj(z -
A)°‘*k,,

where aj (1 S j S s) is such that — A)"‘*k;,|],=A = [[k;,||,=; (cf. formula (8) in

the proof of Theorem 3.8). Since aj > 0 (1 S j S s), this operation corresponds

to multiplication on the right by a unimodular matrix polynomial. By an argument

as in the proof of Theorem 3.8, a finite number of such operations yields a rational

matrix function H with columns orthogonal at A.

E]

Proposition 3.14 Let K 6
'R."""‘

and let A E C. Then there exists a rational matrix

function H such that
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{i) H and K am right equivalent on C,

(ii) 6(H) S 6(K).
{iii) the column.! of H are orthogonal at A.

Proof In view of Theorem 3.10, it suffices to multiply the rational matrix function

H obtained as in Propoaition 3.13 by a unimodular matrix polynomial such that the

columns of H become, after multiplication, orthogonal at infinity.

Ü



Chapter IV

Local inverse spectral problem

In this chapter we solve the local inverse spectral problem for not necessarily

regular rational matrix functions. The problem is as follows. Suppose we are given a

triple of matrices (A,, B,, D,) and two pairs of matrices (C,, A,) and (AC, BC). Under

what conditions does there exist a rational matrix function W such that (A,, B,, D,)

is a left kernel triple for W, (AC, BC) is a left null pair for W over a subset 0 of C and

(C,, A,) is a right pole pair for W over 0? In other words, does there exist a rational

matrix function W with a given left zero and right pole structure?

It has been shown in [Ro] that there always exists an analytic matrix function

W with a given left zero structure. In fact, W can be taken to be a rational matrix

function (see [BCRo]). The solution of the local inverse spectral problem has been

known also in the case when the triple (A,, B,, D,) is vacuous: if the pairs (AC, BC)

and (C,,A,) are given and 0 C C contains 0(AC) U 0(A,), then there exists a right

invertible rational matrix function W such that (AC,BC) and (C,,A,) are left zero

and right pole pairs for W over 0 if and only if the pair (AC, BC) is controllable, the

pair (C,,A,) is observable, and the Sylvester equation

SA, — ACS = BCC, (1)

has a solution (see [GK2]). Moreover, for any solution
I‘

of equation (1) there exists a

regular rational matrix function W with a left 0-spectral triple {(C,, A,),(AC, BC),
I‘}.

In this chapter we generalize these results to the case when the left kernel triple is

nonvacuous.

Chapter IV contains two sections. In Section 4.1 we solve the basic local inverse

80
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spectral problem, that is we prove a necessary and sufiicient condition for existence of

a rational matrix function with a given right pole and left zero structure over 6 C C.

In Section 4.2 we show that if (C„,A„), (AGB;) and (A,,,B,,,D,,) satisfy certain

normalization conditions and if F is any solution of equation (1), then there exists a

rational matrix function W with a left kernel triple—(A,,, B,„ D„) and a left spectral

triple over 6—{(C„, A„),(A;, B;), F}.

4.1 Basic local inverse problem

Right pole and left null pairs and a left kernel triple for a rational matrix function

have to satisfy certain obvious conditions. We summarize these conditions in the

following proposition.

Proposition 4.1 Suppose (C„,A,,) and (A;, B;) am right pole and left null pairs

over 6 C C for a rational matrix _function W and (A,,,B,,,D,,) is a left kernel triple

for W. Then

{i) the pair (C,,,A„) is observable and 6(A„) C 6,

{ii} the pair (A;, B;) is contmllable and 6(A;) C 6,

(iii} A,. is in Jordan form, 6(A„) C {0}, and the matrix polynomial P corresponding

to (A„,B„, D,,) is such that P has full mw rank at every A E C and the columns

of P are orthogonal at infinity,

{iv} the national matrix function P(z)C„(z — A„)" is analytic on C,

{v) ifA is an eigenvalue of A;, S/l;S" is a Jordan form of A; and b1,b2, ...,b, are

the mws of SB; corresponding to the last mws in Jordan blocks of SA;S'I with

A on the diagonal, then span {b1,b;, ...,b,} intersects trivially with W°‘(A), where
w·‘

is the mw space of P.
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Proof Assertions (i)-(iii) follow from the definitions of a right pole pair for W over

6, left null pair for W over 6, and a left kernel triple for W. To show (iv) note that

after multiplying P(2)C,(2 — A,)" on the right by a oonstant invertible matrix, we

may assume that A, is in Jordan form and the columns of C, contain coefficients of

the Taylor expansions of right pole functions for W at the corresponding eigenvalues

of A,. We may also assume without loss of generality that A, consists of a single

Jordan cell of size k x k with A on the diagonal and P(2) = Z[=0(2 — A)‘1*§
is a

polynomial row vector function. Let the columns of C, be Co, C1, ...G;,-1. Then there

exist vectors 61,0;,+1, such that $(2) = Z;;,(2 — A)·lC', is a right pole function

for W at A. Since P annihilates $,

E 1%,-, = 0 (V = 0,1,...).
$227
i'2¤

Hence
1

P(Z)C,(Z — A,)'1 = — AVR) [(2 — A)"C„ (2 — A)°'C„ + (2 — A)“‘C1
1=1
... (2 — „\)·'•C„

+ (2 — A)·"+‘C,
+ ... + (2 — A)"C;,-1] I

is analytic at A and (iv) is established. Finally, assertion (v) follows from condition

(iii) in the definition of a canonical set of left null functions for W at A.

D

We can now state the solution of the local inverse spectral problem. The proof

will be completed with the proof of Theorem 4.8 below.

Theorem 4.2 Let 6 C C and let (C,,A,), (A;,B;) and (A,, B,, D,) satisfy condi-

tions (i)-{11} in Proposition {.1. Then there exists a rational matrix function W with

the right pole and le_ft null pairs over6 (C,, A,) and (.4;, B;) and with the left kernel

triple (A,, B,, D,) if and only if the matrix equation in F

FA, — A;1‘ = B;C, (2)
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has a solution.

Proof lf (C,, A,) is a right pole pair for a rational matrix function W over 6 and

(Ac, Bc) is a left null pair for W over 6, then clearly equation (2) has a solution. In

fact, a null-pole coupling matrix for (0,, A,) and (Ac, Bc) as right pole and left null

pairs for W over 6 is one such solution.

Suppose equation (2) has a solution. Then, since (C,,A,) and (Ac, Bc) satisfy

conditions and (ii) in Proposition 4.1, by Theorem 2.3 in [GK2], there exists a

regular rational matrix function H with the right pole and left null pairs over 6

(C,,A,) and (Ac,Bc). Since (C,,A,), (Ac,Bc) and (A„,B„,D„) satisfy conditions

(iii)-(v) in Proposition 4.1, by Theorem 4.8 below, there exists a rational matrix

function W with a left kernel triple-(A,,,B„,D„) and right pole and left nuH pairs

over 6—(C,,A,) and (Ac,Bc).

Ü

We shall need below the following properties of orthogonal projections in R".

Proposition 4.3 Let 6 be a subset of C„ and let A,O be orthogonal complements

in (R",6). If h E R" is analytic on 6 then the projection of h onto A along I] is

analytic on 6.

Proof Let hn E A and hg E fl be such that h = hn + hn and suppose that hn has

a pole at A E 6. Then, since [hn]; and [hn]A are linearly independent, h has a pole

at A, a contradiction.

Ü

Proposition 4.4 Let A 6 C, und let A, Q be orthogonal complements in (R",
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Let h E R" have the Laurent expansion at A

ifA 6 C

{ gQt=___ zm,, an = es

with hl, gé 0. If hl is the projection of h onto A along fl, then

Z;;,·(z — A)jhlj, i_fA E C
hA(') = _ (3)

ifA = oo

where hll, is the projection of hl, along GQ) onto AQ).

Proof In view of Proposition 4.3, hl can be represented as in Similarly, the

projection hll of h along A onto S] ha: the Laurent expansion at A

A)·lhllj, if A 6 C ,
h¤(=) = .

zjhllj, Ä = 00 .

Since hl E A and hn E Q, han E A(A) and hlll, E GQ). (We note that hll, or hn}

may be equal to 0.) Since hl, = hat + hlll, the assertion follow:.

Ü

Corollary 4.5 Let A E C,„ and let A,O be orthogonal complements in ('R",{A}).

Let h E 'R." and let hx be the projection ofh along G onto A. If [h],=l ¢ GQ), then

Ilhll-=A = IIhAI|„„»

Let A E C„, let A and Q be orthogonal complements in ('R."‘"‘,{A}), and let

h E ’R.”"". In view of Theorem 2.11, if h has a pole of multiplicity 1 at A and

[h]; E A°(A), then Proposition 4.4 implies that the projection of h along (P onto A°

does not aifect the singular part at A of h. This observation can be generalized as

follow:.
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Proposition 4.6 Let «\ 6 C, and suppose that the rows of a rational matrix function

P form an orthonormal basis for a subspace A of (R"‘"‘,{«\}). Let h E
R”""

and

let h^• be a projection of h onto A° along some orthogonal complement 0° of A° in

(R""",{«\}). Then h — h;;• is analytic at »\ whenever Ph is analytic at Ä.

Proof We have h = h;;• + hm with hn. E fl°. Suppose has has a pole at «\. Then

[hm]; E 0°(«\), so P(«\)[h;;•]A gé 0. Hence

P(hA•
+ has) =

Pha•

has a pole at «\. Since Ph is analytic at «\, this is a contradiction.

Ü

We shall also need below the following characterization of a canonical set of left

null functions at Ä E C, of a rational matrix function W. '

Proposition 4.7 Let W be an m x n rational matrix function, let V be the linear

span over R of the columns 0fW and let «\ E C,. Suppose 5;,5;,...,5; 6
R"‘"‘

have no poles at «\ and fori = 1,2,...,l 5;W has a zem at Ä of order lq, lq > 0. If

{i) 5;(«\),5;(«\), ...,5;(»\) are linearly independent,

(ii) total multiplicity of the zero of W at «\ equals EL, lq,

{iii} dim (5;(«\)V(«\) + 5;(«\)V(»\) + + 5;(»\)V(»\)) = l,

then 5; is a left nullfunction forW at «\ of orderlq (i = 1,2, ...,l) and {5;,5;, ...,5;}

is a canonical set of left null functions for W at «\.

Proof Conditions and (iii) imply that the subspace of
R"‘"‘

spanned by

5;,5;, ...,5; is orthogonal to W
°‘

at «\. Hence each 5; is a left null function for

W at «\ of order lq and, by (ii), {5;, 5;, ..., 5;} is a canonical set of left null functions

for W at «\.

Ü
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We can show now how to construct from a regular rational matrix function H a

left invertible rational matrix function W with the same left null and right pole pairs

over 0 C C as H and a given left kernel triple (A,,, B,,, D,,).

Theorem 4.8 Let H be a regular m x m rational matrix function with right pole

and left null pairs over 0 C C (C,,A,) and (A;,B;), respectively. If (A,„, B,,, D,) is

a triple of matr·ices which satisfy conditions {iii}-{v} in Proposition {.1, then a le_ft

invertible rational matrix function W with right pole and left nullpairs over 0 (C,, A,)

and (A;,B;) and a left kernel tr·iple (A,,,B„,D,,) can be constructed as follows.

Step 1 Find a Smith-McMillan factorization EDF of H and let W1 = ED.

Step 2 Let d, denote the i’th diagonal entry of D (i = 1,2, ...,m) and let v and p
’

be the largest geometric multiplicity of a pole and of a zero of W1 in 0 respectively.

Let r} be the largest integer such that the sum of the geometric multiplicity of a pole

and the geometric multiplicity of a zero of W1 at some point «\ E 0 equals 1;. Define

two rn x rp rational matrix functions VL and VR by

VL = [d1E1 d1E1 0 0],

VR =°• • •
·

• •

•andlet p, (i = 17-p+ 1,1;-41+2, ..., v) be the minimal degree monic polynomials such

that p; times the i’th column of VL has the same zeros with the same multiplicities as

the i’th column of VR. We put

1
l

p*1·ß+1 Pn—u+2
W1 = li + VR. (4)
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Step 3 Let )\,,«\,,...,«\,. be the points of o(A„) U a(A(). Call the columns of W,

w1,w,, ..., w,, and let the geometric multiplicities of the pole and zero of W, at «\; be l

and l. For eachi 6 {1,2,...,r} find a subspace A; of C"‘"' as follows. Let

Q1 = ~•P¤¤ {[w1]x;; [wzlxn ---1 lwzln}

Q2andlet Q be the subspace of
C""“

annihilated by the bottoml rows of E"()‘;). Let
W°‘

be the row span of the mat1-ix polynomial corresponding to (A,, B,, D,) and let

(W°‘(,\;))° be the subspace of
C""‘1

annihilated by W°‘(«\;) {cf. Proposition 2.4

Find a complement 0,,, of (W°‘(«\;))° V1 Q in Q such that the projection of Q, along

(1,,,. onto (W°'(«\;))° 0 O has dimension 17 -1- l and intersects trivially with Q,. Let

A; be the subspace of
C1""‘

which annihilates (2,,,..

Using Corollary 2.25 find a subspace E of
'R1"”‘

such that E(«\;) = A; (i =
I

1,2, ...,1-) and the pair (A;,B;) is left-similar to the pair constructed from functions

¢,„_,,+,,¢>„,_,,+,, ...,¢„, which are contained in E. Construct W, by pnojecting each

column of W, along E° onto (W°‘)°.

Step 4 If
t E dim (W°')° - dim {column span of W,)

> 0,

proceed as follows. Let P be the matrix polynomial corresponding to (.4,, B,, D,) and

let 101,1/1,, ...,1ß., E E he such that the rational matrix function

P
*/*1
*/*2R¢|'¤-}J+1

¢‘m-p-{-2

¢·;.
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has no zeros nor poles in 0(A„)U0(A;). Let U1, U1, ..., U„+., be the last u+·y columns

of R" and suppose that the largest the geometric multiplicity of a zero of W3 in 0 is

t. For each A; 6 {«\1,)l;,...,«\,.} = 0(A,) U 0(A;) choose v;1,v;;,...,v;, 6 'R.""" such

bhdt Ilghvgg, ...,1};; df! dhdlytiC Oh G' dhd

Spdh

QwhereV is the column span of W,. Using Lagrange interpolation find rational vector

functions v1,v1, ...,111 such that vj(«\;) = v;j(«\;) and ¢;vj vanishes at A 6 0 whenever

¢; is a left null function for W; at Ä of order k. We put

U1 U; ... 1);],

Step 5 Apply to W1 Lemma 8.9 a finite number of times to get a rational matrix

function W such that W is right equivalent to W4 on 0(A„) U 0(A;) and W has no

poles nor zeros in 0\ (0(A„) U 0(/1;)) .

Proof We note that since (C„,A,) and (A;,B;) are right pole and left null pairs
l

for H over 0, (C,, A,) and (A;, B;) satisfy conditions and (ii) in Proposition 4.1.

Thus, (C,,,A,,), (A;,B;) and (A,, B,, D,) satisfy conditions (i)-(v) in Proposition

4.1. For convenicnce, we shall refer to these conditions as simply conditions (i)-(v).

For the sake of definiteness we assume that the number of rows in the matrix D, is

k. We assume m > k > 0. We also put n = m — k. Thus, the size of the constructed

rational matrix function W is m x n.

We need to show that aH steps in the algorithm are feasible, and that the resulting

rational matrix function has a right pole pair over 0 left null pair over 0

(.4;, B;) and a left kernel triple (A,, B,,D,). We shall discuss the algorithm step by

step.
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Step 1 Since W1 and H are right equivalent on C, W; has the right pole pair over 0

(C,, A,) and the left null pair over 0 (Ac, BL). After applying appropriate similarity

transformations to the pairs (C,,A,) and (Ac, BC), we assume that

· A, and At are in Jordan forms,

- (C,, A,) has been read off from the first v columns of E, E1, E;, ..., E„,

- (Ac,Bc) has been read off from the last ;1 rows of
E°‘,

E.„,-„+;,E.„,-„+;, ...,E„,.

Step 2 Since 1; 2 v and 1; 2 p, the 111 x 1; rational matrix functions VL and VR

exist. We have to show that we can find the polynomials p; occuring in the definition

of W;. We show first that 1; S 11. Let A 6 0 be such that 1; diagonal entries of D have

either a pole or a zero at A. The i columns of E(A) which correspond to the diagonal

entries of D with a pole at A are annihilated by W°'(A) (see condition (iv)) and by

the j rows of E"‘(A) which correspond to the diagonal entries of D with a zero at

A. Since, by condition (v), the span of the rows of E"(A) which correspond to the

diagonal entries of D with a zero at A intersects trivially with W°‘(A), i+ j + k S m.

So1;=i+jS‘m—k=11. _

Suppose now that we take the first 1; diagonal entries d;,d;, ..., d„ of D, the last

1; diagonal entries d„,,„+1,d,„-„+;,...,d,„ of D, and map the i’th component of the

1;-tuple (dl, d;, ..., to the i’th component of the 1;·tuple (d„,-,,+;.d„,-,,+;, ..., d„,):

T T T .
¢l„„-„+1 dm-„+z d„„

Sinoe 1; S TI < m, i < j whenever d; is mapped to dj. The preceding implication

persists if we replace the last 1; — v components of (d;,d;,..., d,,) and the first 1; — ;1

components of (d„,-,,+;, d„,-„+;, ..., d„,) by 0’s. Thus, if the i’th columns of VL and IQ;

are d,E; and djEj then i < j and, by the properties of the Smith-McMil1an form of a

rational matrix function, we can find a monic polynomial p; of the least degree such

that pjdj has the same zeros in 0 with the same multiplicities as dj (or, equivalently,
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such that p6d;E; has the same zeros in 0 with the same multiplicities as d_}E_,). So

W; can be constructed in the way described in Step 2.

We list now the properties of W;.

Lemma 4.8.1 If W; is constructed as in Step 2, then the following hold.

(i) The number of columns of W; is less than, or equal to, m — k.

{ii} W; has no zero columns.

{iii} The columns of W; are orthogonal on 0.

{iv} The i’th column ofW; has the same poles in 0 with the same multiplicities as the

i’th column ofW; (1 $ i $ V) and the (1}- j) ’th column of W; has the same zeros

in 0 with the same multiplicities as the (m — j)
’th

column of W; (1 5 j g p).

{v} (C'„,A,) is a right pole pair for W; over 0.

{vi) (Ac, Bc) is a left null pair for W; over 0.

Proof Inequality 1} $ fl has been indicated above and property follows from the

choice of 1}. '

Suppose that the first l columns of VL have a pole at Ä E 0. Then by the choice

of 1} at most 1} —l columns of VR have a zero at Ä and, by construction, these columns

are the last columns of V};. Thus, it cannot happen that the i’th column of VL has a

pole at Ä while the i’th column of VR has a zero at Ä. Consequently, the i’th column

of W; has the same poles in 0 with the same multiplicities as the i’th column of VL

and hence as the i’th column of W;. By construction, the (1} — j)’th column of W;

has the same zeros in 0 with the same multiplicities as the (1} — j
)’th

column of VR

and hence ss the (m - j)'th column of W;. This estnblishes (iv).

We show now For each column w; of W; we can find a scalar rational

function Z1, such that uv. = Zieh; and ui, has no poles nor zeros in e. Let W, =
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[11:, 12:,] so that

. al
-

w,=W,[ d' __l

L
Since for each A 6 6 the set {E,(A), E,(A), ..., E„,(A)} is linearly independent, the set

-„

E»·(#\) + ¤=«+•·—•1E«·-··+•1(·\)» Em-»+~+1(d)» · - · » E«•(¤)}

is linearly independent for all oonstants 0:,,0:,, ...,a„+„-,,. Therefore it follows from

(4) that Ü/°,(A) has full column rank for all A 6 6. By Proposition 2.13 the columns

of W, are orthogonal on 6 as asserted.

In view of (iv), in order to prove (v), it suflices to show that if Ü, has a pole at

A 6 6 of order I then we can find a right pole function 1/:, for W, at A of order I such

that the first I coefficients in the Taylor expansions at A of 1/:; and E; coincide. The

latter assertion is obvious when the i’th column of V; is 0 or the i’th column of VR

is analytic at A. Suppose djE_9, the i’th column of VR, has a pole at A. Then the i’th

column of W, is P¢d;E; + d,E, and the j’th column of W, is p_,d_,E_; + d,,E„ for some

K Mid BC8»l8-I pOl}'I1OII118•lB p;,pj with p;(A)p9(A) # Ü- So

P5(P6d6Es + d,E,) — (p5d_;E; + d,.E„) = p;p_9d;E; — d„E,,.

Inducting, if necessary, on rc we can find an m x 1 rational vector function 1/v =

pd;E; — d,,E,, with d,,(A) 96 0 such that qh = W,¢ with e/: a vector polynomial which

does not vanish at A. So Ill = (pd,)"1/v is a right pole function for W, at A of order 1

and the first I coefiicients in the Taylor expansions at A of 1/: and E; coincide. Thus,

(v) is established.

Suppose, finally, that {E„,_}+,,E„__;+,, ..., E„,} is a canonical set of left null func-

tions for W, at A 6 6 of orders 1,,1,, ...,1;. Then the last I diagonal entries of D vanish
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at A to the orders ll,l,, ..., ll. By (iv), the last l diagonal entries of diag (dl, d,,...,vanish

at A to the orders ll,l,, ...,ll. By (iii) and Corollary 2.20, the multiplicity of

the zero at A of W, is equal to 2;,1,. Now if E..W, vanishes at A to order I, then

it rouows from the construction that E,W, vanishes at A to order 1,. By (iii), (iv)

and Corollary 2.20 l1’Iz’ ..., ll are partial multiplicities of the zero of W, at A. Plainly,

Em__l_,_,(A), E-'.m_l+2(A), ..., E,„(A) are linearly independent. Since E„,_l_,_l(A) annihilates

span {ü1l(A),ü1,(A),...,ü1„_l+,_,(A)} and E„,_l+,(A)ü1„_l+l(A) =;é 0 for i = 1,2, ...,l, it

follows from Proposition 4.7 that {E„__l+,,E,„_l+,,...,'.E'„„} is a canonical set of left

null functions for W, at A of orders ll,l,, ...,ll. Henoe (Ac, B;) is a left null pair for

W, over 0.

El

Continuation of proof of Theorem 4.8

Step 3 Choose A, 6 0(A„) U 0(A() and let l,l,(ll,Q, and Q be as in Step

3 of the algorithm. By property (iii) of W,, Ol U 0, = By condition (v),

dim ((W°‘(A.))° n sz) = m — 1. -i .....1 herree

dimgn-?

= m - 1. -1

= dirn ((W°‘(A,))° V1 Q) .

Therefore we can find 0,,, with the required property.

Let A, be the annihilator of 0,,,. in C"‘"‘.

Lemma 4.8.2 Al has the following properties:

(i)
C"‘"‘

= A, 9 W°‘(A,),

(ii) the bottornl rows of E"‘(A,) am contained in Al,
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{iii} the projection of span {[w1];,, [111,],1,, ..., [w,,];,} onto (W°‘(Ä;))° along 0,,,., the

right annihilator of fl; in
C""‘1,

has dimension 1}.

Proof Property is equivalent to the direct sum decomposition
C""‘1

= 0,,, 9

(W°‘(,\1))°. To see that the latter decomposition holds, choose a basis {61,6,, ..., 61,}

for and vectors 6;,+1, 6;,+,, ...,c„,_} such that the matrix

C1
C2

— im—l+1(A‘)
*:111-·l+2(Ä‘)

is invertible. Then the first m -l columns of M'I form a basis for O and the last l

columns of M
"‘

form a basis for a subspace Ö C (W°‘(«\;))°. So
Cmxl = Q Ö

= Q', 9 ((Wol(«\;))° V1 O) 9 Ö

= ns- 9 (W¤l(«‘¤))° ·
as asserted.

Property (ii) follows from the definition of Q. Property follows from the fact

that the projection of the first 1} — l columns of W, onto (Wol(«\;))° along 9,,. has

full column rank and Ej(«\;)w;,(»\;) = 5;}, for m — l + 1 S j S m and 1 S ls S 1}.

EI

Continuation of proof of Theorem 4.8

It follows from Corollary 2.25 and parts and of Lemma 4.8.2 that we

can indeed construct E. By Proposition 2.6 and Theorem 2.11, (W°‘)° and E° are

orthogonal complements in ('R.""",o(A,) U ¢r(A()). In particular, (W°')° and E° are

algebraic complements in
7?,"‘

and the construction of W; is possible.
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We note that by condition (iv) and Proposition 4.6, (C,, A,) is a right pole pair

for W, over 6(A,) U 6(A;). Also, by Proposition 4.7, (A;,B;) is a left null pair for

W, over 6(A,) U 6(A;).

Step 4 The feasibility of construction steps 4 and 5 is clear.

Since 11,,1:;,...,1:, are analytic on 6, (C,, A,) is a right pole pair for W, over

6. Since the columns of W, are orthogonal on 6(A,) U 6(A;), by Proposition 2.23

(A;, B;) is a left null pair for W, over 6. By construction, (A,, B,, D,) is a left kernel

triple for W,.

Step 5 Since W and W4 differ by a right factor, (A,, B,, D,) is a left kernel triple

for W. Since W and W, are right equivalent on 6(A,)U6(A;), (C,, A,) and (A;,B;)

are right pole and left null pairs for W over 6(A,) U 6(A;). Since W has no zeros nor

poles in 6\ (J(A,-) U 6(A;)), (C,,A,) and (A;,B;) are right pole and left nuH pairs

for W over 6.

D

We note that the rational matrix functions obtained in all steps of the algorithm

in Theorem 4.8 have the same right pole and left null pairs over 6(A,) U 6(A;)-

(C,,A,) and (A;,B;). Steps 2, 3 and 4 affected the left kernel polynomial of the

respective functions.
A

4.2 Functions with a given left null-pole subspace

Let 6 C C and suppose (C}, AJ, (Ap B;) and (A,, B,, D,) satisfy conditions (i)-

(v) in Proposition 4.1. By Theorem 4.2, there exists a rational matrix function with

the right pole structure described by (C,, A,) and the left zero structure described

by (A;, B;) and (A,, B,, D,) whcnever equation (1) has a solution. It turns out that
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a stronger assertion is true.

Theorem 4.9 Let o C C, suppose that (C,,A,), (AC,BC) and (A,,B,,D,) satisfy

conditions {i)-{v} in Proposition {.1, and let
I‘

be a solution of the Sylvester equation

SA, — ACS = BCC,. (5)

Then them exists a left-invertible rational matrix function W with a left kernel triple

(A,,B,, D,) and a left spectral triple over o {(C«·•A«)« (AC,BC), F}.

Proof We may assume o*(A.„) U o(AC) 56 0. Let P be a matrix polynomial corre-

sponding to the triple (A,, B,, D,). For the sake of definiteness, we assume that the

size of P is k x m. Let „

Sw, = {C,(z — A,)'1x + h(z) : h E 'R,""‘1(o)

and Res,,„(z — AC)'1BCh(z) = Fx} (6)
rose

f7{f E 'R.""‘1: Pf = 0}.

Since I" satisfies equation (5), by Theorem 12.2.1 in [BGR3] Sw, is an ’R,(¢r)-module.

Clearly Sw, is a submodule of the ‘R.(o*)-module

S, = {C,(z —· A„)'1x + h(z) : h E ’R."“‘1(o)

and R»es,=„(z — AC)'1BCh(z) = Fx}.
nee

Since by Theorems 3.3.2 and 3.3.3 in [BGR2] the module S, is finitely generated and

'R.(o·) is a principal ideal domain, Sw, is finitely generated. Since the torsion sub-

module of Sw, is trivial, by the fundamental structure theorem for finitely generated

modules over a principal ideal domain (see e.g. Sw, is a free module. Choose a

basis {w1,w;,...,w„} for Sw, and define the rational matrix function W by

W=[w1 wg w,].
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We show first that the rational matrix function W is left invertible, and the triple

(A,,, B,,, D,,) is a left kernel triple for W. Since the columns of W are contained in a

subspace of 'R,""" which is annihilated by P, it suffices to show the equality TI. = m—k.

Choose an algebraic basis {hl, hl, ..., h,„..;,} for an 'R.-vector space {f Q 'R,""" : Pf =

0} and let q be a scalar polynomial such that the rational matrix functions

and

qlhg hg ... hm-;]

are analytic on 0(A,) U 0(Ag). Then qhl,qh;, ...,qh„,-;, are contained in Sw, and

hence 11 2 m — k. Suppose the last inequality is strict. Then the set {wl,wl, ...,111,,}

is linearly dependent over 'R. and

rlwl + rlwl + . . . 1·„w„ = 0 (9)

for some scalar rational functions 1·l,1·l, ...,1·„ not all equal to zero. After multiply-

ing both sides of equality (9) by a scalar polynomial we may assume 1·l,1·l, ...,1·„ E °

’R,(0(A,,) U 0(Ag)). But then equality (9) contradicts the direct sum decomposition

SW, = 'R.(0)wl Q 'R.(0*)wl Q . . . Q 'R.(0)w„.

Thus, fl = m ~ k. So P is a left kernel polynomial for W and W is left invertible.

It remains to show that {(C,, A.„), (Ag, Bg), F} is a left spectral triple for W over

0. Let

cl = 0(A,) U 0(Ag) U {«\ E 0* : W has a pole or zero at «\}.

Since (Ag, Bg) and (A„, B,„ D„) satisfy condition (v) in Proposition 4.1, by Corollary

2.25 we can find an orthogonal complement E of the row span of P in ('R."‘"‘,0l)

such that the pair (Ag, Bg) is left-similar to a pair constructed from functions in E.
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In view of Proposition 2.21 we can choose a left spectral triple {(Ö„, Ä,,),(Ä<,Bc),1‘}

for W over 0* such that the pair (Äc,B() is left-similar to a pair constructed from

functions in E.

By Proposition 3.3,

Sw, = {Ö,,(z — Ä,)'1z + h(z) : h E 'R."“‘1(0')

and E Res,=,„(z - Äc)'1B(h(z) = lg:} (7)
user

O{f E 'R."‘“: Pf = 0}.

Now (cf. Proposition 3.1.3 and Theorem 3.3.3 in [BGR2])

S, = {C„(z - A„)'1x + h.(z) : h E ’R.”"“(a1)

and Res,_.„„(z· - A()"1B(h(z) = F2:}
zoivi

f1{C„(z - A„)":v + h(z) : h E ’R."""(o*\o·1)

and Res,=,„(z -· A()'1B(h(z) = Pa:}
*0€'\¢1

= {C„(z — A,,)":¤ + h(z) : h E ’R."""(¢r1)

and Res,=,„(z — Ac)°1Bch(z) = I‘z}
xoévi

O ’R.""1(0\o·1)

E S,, O 'R""1(o·\o·1).

Similarly, _ _ _
S, E {C'„(z -

A,)"1:¤ + h(z) : h 6 ’R.""“(a)

and Res,=,„(z — Ä()"B(h(z) = fm}
¤oEv

= S,, O 'R.'“"(¢r\61)
where _ _ _

S,, = {C„(z — A„)'1x + h(z) : h E 'R.""‘1(a1)

and R.es,=,„(z - Äc)°1B(h(z)=By

Theorem 12.2.1 in [BGR3] S,, and S,, are ’R(61)-modules. We claim that S,, =

S,,- Indeed, suppose there exists f E S,,\S,, and let p be a scalar polynomial with
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all zeros in a\a, such that pf 6 7Z"""(cr\¢r,). Then p 6 'R(¢r,) and
p“‘

6 7?.(a,), so

pf 6 5,, and pf ¢ 5,,. Hence pf 6 S, and pf 6 5,. Let fw be the projection of pf

along E° onto {f 6
’R”""

: Pf = 0}. Then

pf = fx + fw (8)

{or some fg 6 E°. Since (C„,A„) and (A,, B,, D,) satisfy condition (iv) in Propo-

sition 4.1, P(pf) is analytic on 6,. Hence, by Proposition 4.6, fg 6 7Z"""(o·,).

Multiplying, if necessary, both sides of equality (8) by a scalar polynomial with all

zeros in a\o·, we may assume fg 6 'R.'""‘(o·). Since the pairs (Ac, Bc) and (Ac,Üc)

are left similar to the pairs which are constructed from functions which annihilate

fx,
8

zaeai
and

R¢B,=,,,(Z ·— Äc)_1BcfK(l)

=Consequently,

fw 6 {C„(z — A„)"a: + h(z) : h 6 72.”""(6)

and Res„=„„(= - Ac)"Bch(z) = 1*::}

0 {f 6 0}

and _ _

fw ¢ {C'„(= — A„)"=¤ + h(=) = h E 'R"""(¤)

ana Z n,s,=„(, - .Z1,)—*E2,a(,) = F,}

O {f 6
7?."""z‘;€cPf

= 0}.

In view of (6) and (7), this is a contradiction. Thus, 5,, C 5,,. Similarly, 5,, C 5,,.

So 5,, = 5,, as asserted and it follows from Theorem 12.2.4 in [BGR3] that the triples

{(0,,,.4,), (A,,ß,), r} and {@,,.21,), (Äc,Bc), 1*} are similar. nm, {(0,,,.4,,),
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(A(, B(), F} is a left spectral triple for W over 0.

Ü

Theorem 4.2 can be proved as a corollary of Theorem 4.9. However, the proof

of Theorem 4.9 relies on existeuce of a basis for a free module Sw, whereas the

proof of Theorem 4.2 is based on the construction described in Theorem 4.8. This

construction, apart from the Smith·McMillan factorization in Step 1, is long and

tedious but involves mainly standard linear algebra prooedures. Conceivably there

should also be a constructive proof of the stronger Theorem 4.9. The ultimate goal

is a realization formula for the solution of the interpolation problem in Theorems

4.2 and 4.9 in terms of spectral data. Such formulas exist for the regular case (see

[BGR.3]). Applications of such realization formulas to interpolation and factorization

problems analogous to those developed for the regular case are anticipated.

Let 0 C C and suppose that (C}, As), (Ao Bg) and (A,, B,, D,) satisfy conditions

(i)·(v) in Proposition 4.1. In view of Proposition 3.1 and Theorem 3.2 it follows from

Theorem 4.9 that there is a one·to·one correspondence between solutions of equation
(

(5) on the one hand and equivalenoe classes of right equivalent on 0 left invertible

rational matrix functions with right pole and left null pairs over 0 equal to (C,, A,)

and (A(, Bc), respectively, and a left kernel triple equal to (A,, B,, D,) on the other.

In general, if the size of the matrix D, is k x m, there is a one-to-one correspondence

between solutions of equation and equivalence classes of m. x n rational matrix

functions with a right pole and left null pairs over 0 equal to (C,, A,) and (Ac, B;)

and with a left kernel triple (A,, B,, D,) for any n Z m — k.

Corollary 4.10 Let 0 C C and suppose that and (A,,B,, D,)

satisfy conditions (i)- (v) in Proposition {.1. Then for every integer n 2 m — k and
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each solution F of the Sylvester equation

SA, — A;S = BCC,

there exists an m >< n rational matrix function R with a left kernel triple (A,,, B,,, D„)

and a left spectral triple over 0 {(C,,A,,), (A;,Bc), P}.

Proof Let W be the function given by Theorem 4.9. The rational matrix function

R = [W 0]

where the size of the block matrix 0 is in x (n — k) has the required properties.

E]
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List of symbols

C„ — Extended complex plane, C U oo

C" - Product of Tl copies of C
C"‘j

- i >< j matrices with entries in C

R — Field of scalar rational functions

R" — Product of fl copies of R (viewed as a vector space over R)
R"‘j — i x j rational matrix functions

R(0) - Subset of R formed by functions which are are analytic on 0, 0 a subset of

css

R"‘·l(0) — Functions in Rlxj which are are analytic on 0, 0 a subset of C„

R”'
- Algebraic dual of R" (see Section 2.2.2)

5(W, A) - Multiplicity of a pole of a rational matrix function W at A 6 C„

5(W) - McMi1lan degree of a rational matrix function W

(X, Y) — Right or left pole or null pair, X,Y matrices (see Sections 1.1, 1.2, 2.3 and

2.4)

(.4,, B,, D,) - Left kernel triple (see Section 2.1)

J,(A) — k x k Jordan cell with A E C on the diagonal

diag§‘=,A; — (Block) diagonal matrix

A1
Az[ 1 .„]

| · |,=, — Valuation of R at A, A E C„ (see Section 2.2.1)

|| ·
||,=;_ — Max norm on R" induced by | · |,=;, A E C„ (see Section 2.2.1)

(A,0) - Subspace A of R" with the topology generated by {II · II,=A : A E 0}
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A(Ä) — Subspace of C" formed by the values at A of all functions in A which are

analytic at «\, A a subspace of 'R."

A° - Algebraic annihilator of A, A a subspace of
’R."

or C"
W°‘

- Left annihilator of a rational matrix function W

W" — Right annihilator of a rational matrix function W

[h],\ — Leading coefficient in the Laurent expansion at A E C„ of h, h a rational

vector function






