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(ABSTRACT)

A first-order shear deformation plate theory is used to predict free vibration frequencies in rotating
laminated composite plates. The theory accounts for geometric non-linearity in the form of von
Karman strains. The plate is permitted to have arbitrary orientation and offset from the axis of

rotation.

A finite element model is developed to obtain a solution to the problem. The model is validated
by comparing the results for free vibration of non-rotating plates for various boundary conditions
and material properties with the exact results based on the classical plate theory and the first-order
shear deformable plate theory. Results are presented for free vibration of isotropic and laminated
composite plates rotating at different angular velocities. A study has also been made on the change
in the free vibration frequencies of the plate with angular velocity for different plate thicknesses and

for different modulus ratios.
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1.0 INTRODUCTION

In recent years, there has been a renewed interest in the design of aircraft turbo-propellers which
have much higher fuel efficiency than present aircraft engines. This is because of the availability
of composite materials which have a high strength-to-weight ratio, and thus provide quiet and more
efficient propellers than other available materials. In this study, an analysis has been made of vi-
brations in rotating plates to provide a basis for future vibration analysis of rotating turbo-propellers

with more complicated geometries.

Earlier studies of vibrations in turbo-propellers used beam models for their analyses. Since low
aspect ratio blades are expected to behave like plates rather than like beams, it is hoped that a plate

model will provide better results for propellers with high width-to-length ratios.

Chen and Chen [1] studied the vibration and stability of cracked rotating blades. They considered
the effects of transverse shear deformation and rotatory inertia. Hodges and Rutkowski [2] made
an analysis of free vibrations in rotating beams. Their analysis dealt with rotating beams with both
translational and rotational offsets from the axis of rotation. In their paper they have given both

the eigenvalues and the mode shapes associated with the rotation of a cantilever beam.
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Dokainish and Rawtani [3] used a finite element technique to determine the natural frequencies and
mode shapes of an isotropic cantilever plate mounted on a rotating disk and assumed to make any
arbitrary angle with the plane of rotation of the disc. Their study assumed geometrically linear

strains.

Gupta {4-7], Meirovitch [8], and Bauchau [9] have developed algorithms to solve the eigenvalue
problem associated with the undamped free vibration of spinning structures. Bauchau found that
the stiffness matrix for the problem was composed of three components : the linear stiffness matrix,
the non-linear stiffness matrix due to spin-induced loads, and the centrifugal stiffness matrix. The
non-linear and the centrifugal stiffnesses vanish when the plate is not spinning. Besides this, there
is a gyroscopic matrix due to the Coriolis acceleration. The stiffness and mass matrices for this

problem are symmetric, while the gyroscopic matrix is skew-symmetric.

Gupta was the first to develop an algorithm for this problem which, however, was not very efficient
for systems with large bandwidth. Meirovitch offered an alternative solution which took advantage
of the symmetric and the skew-symmetric nature of the matrices for this problem, but this proce-
dure destroys the sparsity of the system and, hence, can not be used for large problems. In the
present analysis, it has not been possible to use any of the above algorithms because of their una-
vailability, and only the commonly available subroutines have been used to solve the eigenvalue

problem.

Because of the presence of a gyroscopic matrix, the problem has complex roots, occurring in con-
jugate pairs, with the real part representing the exponential decay (if negative) or exponential
growth (if positive), and, the imaginary part representing the frequency of vibration. However, for
an undamped vibration problem, as would be expected, the eigenvalues are purely imaginary and

the imaginary part of the eigenvalue is the frequency of free vibration of the structure.

Meirovitch [10] showed that for a rotating cantilever beam, the lowest natural frequency of out-of-

plane vibration increases with the angular velocity and in such a way that it is always higher than
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the angular rotation. Gupta [5] showed that if the non-linear and the centrifugal stiffnesses are

omitted in the analysis, the eigenvalues remain almost unchanged for various unchanged spin rates.

In the present study, a finite element model has been developed to study vibration of plates made

of laminated composite materials. Some features of this model are :

1. The plate is permitted to have any arbitrary orientation about the inertial reference frame, and
any arbitrary displacement from the axis of rotation

2. The laminated composite plate is permitted to have plies with arbitrary orientation, and, each
ply is permitted to have different material properties.

3. Aerodynamic loads on the plate have not been considered. So, the plate modelled is physically
equivalent to one rotating in a vacuum. (In future studies, aerodynamic loads can be brought
into consideration by making minor alterations to the present development.)

4. A first-order non-linear theory of plates with transverse shear deformation has been used for
the analysis. This theory incorporates geometrical non-linearity in the form of von Karman

strains.

In earlier analyses of plates, the classical plate theory was frequently used. It is a thin plate theory,
in that, it considers, and is reasonably accurate for, plates with thickness-to-side ratios of less than

1/20. It is based on the following assumptions:

1. Planes normal to the mid-plane remain plane and normal after deformation, i.e., transverse
shear strains are neglected.

2. The mid-plane of the plate remains unstretched after deformation, i.e., the mid-plane of the
plate is the neutral plane.

3. Transverse normal stresses are assumed to small and hence are neglected, i.e., a state of plane

stress is assumed
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This theory can be extended to allow for moderate transverse deflections (of the order of the plate
thickness). This can be done by considering the second-order terms in the expressions for the dis-
placements in the plate. One way of doing this is to use the von Karman theory of plates which
considers the products of derivatives of displacements. The von Karman theory of plates assumes
the derivatives of in-plane displacements to be much smaller than the corresponding out of plane

terms, and, thus neglects products and squares of derivatives of the in-plane displacements.

However, it is found that the classical plate theory (CPT) under-predicts deflections and over-
predicts the natural frequencies. This is attributed to the fact that the transvers;e shear strains are
omitted in the classical plate theory. This assumption is valid for thin plates where transverse shear
strains are indeed negligible. However, when transverse shear strains are not negligible, as in the
case of thick plates or plates made of composites, the classical plate theory can prove to be inac-
curate. Also, the effect of transverse shear deformation is more significant at the higher modes.
Thus an alternate theory which allows for transverse shear deformation is required for the analysis

of plates made of composite materials.

Reissner [11], Mindlin [12], and others developed a plate theory which allows for transverse shear
strains and, hence, is known as the first- order shear deformation plate theory (see Reddy [!13]).
This theory yields much better results for thick plates and for laminated composite plates, and,
therefore has been used in the present analysis. The first-order shear deformation plate theory is

based on the following assumptions :

1. Planes normal to the mid-plane remain plane but not necessarily normal after deformation.

2. The mid-plane of the plate remains unstretched after deformation, i.e., the mid-plane of the
plate remains the neutral plane.

3. Transverse normal stresses are assumed to be negligible compared to the in-plane and the

transverse shear stresses.
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The first-order shear deformation plate theory has two independent in-plane displacement vari-
ables (u, v), and three independent out of plane displacement variables (w, ¥, , ¥,). In this theory
the displacements are assumed to vary linearly through the thickness. Also, the transverse shear
strains, and hence the transverse shear stresses are assumed to be constant through the thickness.
This is incorrect as, actually, the transverse shear stresses are observed to vary parabolically through
the thickness and are zero at the plate surfaces. Reissner, and Mindlin have attempted to correct
this shortcoming by multiplying the transverse shear forces by a constant, called the shear correction
factor . This makes the strain energy of the plate closer to the exact value though it still does not
accurately represent the distribution of the transverse shear stresses though the thickness of the
plate. Reissner gave the value of the shear correction factor to be 5/6 while Mindlin gave it to be
n?/12 for isotropic rectangular plates. The value given by Reissner has been used in the present

study.

In this analysis, four-node bilinear and nine-node quadratic elements have been used for the finite
element analysis. Here the Gauss-Legendre quadrature was used for the numerical evaluation of
mass, stiffness and coriolis matrices. For a polynomial of degree n, a Gauss-Legendre using
(n+ 1)/2 Gauss points integrates the polynomial exactly. The above integration is referred to as full
integration. It is observed, however, that when full integration is carried out on the transverse shear
coefficient terms to obtain the element stiffness matrix, there appears to be an over-stiffening of the
plate, resulting in under-prediction of deflections and over-prediction of frequencies. This apparent

over-stiffening is due to the difference in magnitudes of the transverse shear and the in-plane terms.

To get around the problem, an accepted mathematical trick is performed in the integration by using
reduced integration on the transverse shear coefficients. In this so-called reduced integration, Gauss
quadrature using 1 point less than the full integration is employed for the transverse shear terms.
This seems to give acceptable results for static and dynamic analysis of plates. However, it was first
observed by Hughes [14,15] that the reduced integration results in rank deficient stiffness and mass
matrices for the four-node element. This problem was later observed for the 8-node and 9-node

elements also by Verhegghe and Powell [16]. This rank deficiency results in the appearance of some
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spurious zero-energy modes. It was observed that this problem manifests only in very thick plates
and here only in some special cases. The boundary conditions and the mode shapes associated with
this kind of a problem are discussed later. Hughes suggested correcting this error by modifying the
reduced integration. Verhegghe and Powell [16] have also discussed techniques to deal with this

problem.

Levinson [17], Murthy [18], Reddy [19,20], and others have introduced higher order shear defor-
mation plate theories . These theories are based on the same assumptions as the first-order shear
deformation plate theory, but allow for a parabolic variation of the transverse shear strains through
the thickness, and vanish on the bounding planes. As in the first-order theory, there are two inde-
pendent in-plane displacement variables (u, v), and three independent out of plane variables (w,
Y., ¥,). Reddy’s theory is a variationally consistent theory, whereas Levinson’s and Murthy’s are

not.

The higher order shear deformation plate theories are even more accurate than the first-order plate

theory in the analysis of composite plates, but are beyond the scope of this study.
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2.0 THEORETICAL DEVELOPMENT

In the displacement-based theories, one assumes that the displacement field can be expressed as a

linear combination of unknown functions of (x, y) and the thickness coordinate, z :

ux,y, 21 = u()(xfyr H + z‘/’x(x».}’)t) + Zzéx(x’yrt) + 23’1x(xay’t) + .
vz t) = vy + zpyxp 0 + z? Gt + z (00 + ..
w(x, 2,8 = wx,pn) + z¢,(x,pt) + 22 &y, + z3nz(x,y, H + ..

where, u, v, and w denote the displacement components of a point along x, y, and z directions,

respectively. i, vo, Wy, V.o ¥, Y20 &4 €50 & 1120 My, 1, are independent displacement variables.

According to the first-order shear deformation plate theory (FSDPT) developed by Reissner [11],
Mindlin {12], and others, the inplane displacements are assumed to vary linearly through the
thickness, i.e. displacements are functions of first order powers of z. Thus, the displacement field

for a first-order shear deformation theory can be expressed as:
u@x,p,z2,8) = wxy) + zy(xnl

vx,3,z2,0) = vy 0 + zy,(x1)
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w3zl = wy(x,0 [2.1.1]

where, ¥, and n,by are the rotations about y and x axes, respectively. Note that w is assumed to

be constant through the thickness, implying that the transverse normal strain is negligible.

2.1 Strain-Displacement Relations

In general, the strain-displacement relations can be written as:
1
g = S WVy+ Vg + ViV

where the indices vary from 1 to 3, and, repeated indices indicate summation over the index (Ex:

Ly = & + b, + L), and,
V1=u, V2=V, V3=W
Thus, for example,

1/, 2 2
enp = Vg + 7(V1,1 + Vag + Vip)

However, for plates, the inplane displacements and their derivatives are much smaller in magnitude
compared to the corresponding out of plane terms. So, according to von Karmaan’s hypothesis,
terms containing products or squares of derivatives of inplane displacements can be neglected in

comparison with the corresponding out of plane terms. Thus, for example,

1 2
ey = Vig + ‘2'(V3,1)
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or, writing the relations in terms of u, v, w, X, y, and z,

_ou o, 1(owY
xx = 6x+2(6x)

_w o, 1(ow)
syy_ay"'z 2

du ov ow ow
Yy = e+ oo+ o2

dy ax Oy
= v Ow
Wz = gyt dy
- Qu  Ow
Tz = 5t T

Using the displacement field [2.1.1], the following strain-displacement relations can be derived :

fx T Tax 2% 2 ox

om oy 1(6%)2

2

0 oy 0
. T, I W )
Y dy dy 2\ oy

13} v a oy dwy Ow,
“o+_o_+z<'//x+ y>+oo

Yoy = oy ox dy ox ox Oy
owo

= Uy ¥ 5
6w0

Yxz = ‘px + E— [ZIZJ

THEORETICAL DEVELOPMENT 9



In the classical plate theory, the normality of cross-section (Assumption 1 on page 3) implies that

the rotations ¥, and y, are related to the derivatives of the transverse deflection by :

dw, owy
¥, = —ay't’b’— T ox

So,sz = VY = 0

Writing in a condensed form, the FSDPT strain-displacement relations can be written as,

AT ™ I P R R T A
& Eyy £ x sNL
| = |vy| = [L J| + 2]L J] + [2.1.3]
4 Vyz [70] N [0]

-85‘ s.‘yxz.l L— J- 'h -" - J

where,

{eq} are the mid-plane strains given by:

[ Oy ]
Ox
5v0
{eo} = £ [2.14]
0uy v
dy ox
L .
{yo} are the shearing strains given by:
ow,
bt Ty
{ro} = [2.1.5]
aWO
Vx+ oo
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{x} are the bending curvatures given by

[

{x} =

{enr} are the non-linear mid-plane strains given by

" -

THEORETICAL DEVELOPMENT

oV
Ox
o,

3

dy ox

1 ( dwg )2T
2 ox

1 owy 5
2( dy )
6w0 6W0
ox oy

L -

E

[2.1.6]

[2.1.7]
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2.2 Stresses and Stress Resultants

2.2.1 Constitutive relations

For an orthotropic material, the relations between the stresses and the strains, called the

constitutive relations, are given by:

[ [ 11 7

o1 Ch Cp2 G3 0 00 &

o2 Co Gy G3 000 &

sl _ Ci3 Gz G3 000 &3 [221]
T3 0 0 0 Cyu0 O Y23

713 0 0 0 0Css 0 713

_le_J 0 0 0 0 0 Cg _712_

where, C; are independent material constants obtained from the generalized Hooke’s law.

For the first order shear deformation plate theory, transverse normal stress, o, is assumed to be zero.

Thus,
o3=Ci3e; + Cpey + Cy3e3 = 0
Or,

33 33
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Substituting the above relation into the constitutive relations, the constitutive relations can be

written in the material principal directions for a single ply as [22]:

- .
3 On @, 0 0 0 (81
o3 On O 0 0 0 )
1’]2 = 0 0 Q66 O 0 'ylz [2.2.2:]
723 0 0 0 Q4 O Y23
| 713 LO 0 0 0 Qs | 713 |
where,

Ci3 Ci3

= C

on 1 Cnr

Ci3Cy
O = Cy — ———
12 12 C33

Cy3 Cp3
Qn = Cy - ——=
22 22 s
Osg = Cag v Oss = Css, Qgg = Cge

c.C
o0 = G - —z— hi=12

33

Q is known as the “reduced” stiffness matrix for the laminate.

If the material principal directions are considered to be at an arbitrary angle 8§ to the laminate
principal directions, as shown in Figure 1 on page 14 and Figure 2 on page 15, then the above

constitutive relations for the m* ply are given in the global coordinates as:
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I N —

Figure 1. Laminate Coordinate System
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,2 - Material Principle Directions

X,y - Laminate Principle Directions

Figure 2. Laminate and Material Principle Directions
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where,

(3 By e
§12 §22 Q-ze
Léxa éze §66

(Os Ois }
L§4s Oss

011 012 Qi
012 0 Oz
O1s 06 Oss
0 0 0
0 0 O

il

o o | [ ]
0 0 &y
0 0 Yxy
§44 §45 Yyz
Oss Oss J | ¥xz |
) -1
n"  2mn On 9 O
m*  —2mn 012 Os
mn m®—n? 0
(m)
OQua Oas [m —"]
Oss Oss ] n m

where, m = cosf ,and, n= sin@

2.2.2 Stress Resultants

The stress resultants are given by

NX

Rf2
M=
ny

3

m=1

2,

Qﬂ §12 §16

Zm+1 —
m

n
d Zm+1
y|% = Z
m=1 "Zm

(m)

01 On O

_Q—16 §26 §66

THEORETICAL DEVELOPMENT

(m)

dz

(m)

dz

[2.2.3]

m n mn

2 2

n m —mn

2 2

—-2mn 2mn m°“—n

[2.2.4]
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where, z,, is the distance of the bottom of the m* ply from the mid-plane of the plate.

Similarly,
— — o~ m m
M, . O Q12 Qs Ex
Zp1 —_— — —
M,| = Z L Q12 O O gy zdz
m=1 m — — —
My Q6 26 Do Vxy

_ _ (m) (m)
{Qy} = i J‘Zmu k2 844 _Q~45 {sz} dz
Oy m=1 "2m Oss  Oss Yxz

Substituting for the ply strains in terms of the mid-ply strains and curvatures,

Ny . On O O
zm+1 —_— j— —
N Zj Qa O Qe {30} + z {"} + {GNL} dz
m=1 "%m — — —_—
Ny Q16 D26 o6
Ay Ay A4 By By; By
= |43 Apn Ay {Go} + {SNL} + (B2 By By {K}
A Azs Ags Big By Bgs
where,

n
Zpy, _
Aij = Z J‘ ! Ql] dz i,_] = 1,2,6

m=1 "Zm

= Z (—Q_ij)<m) (Zm+1 - m)
m=1

THEORETICAL DEVELOPMENT
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[2.2.6]

[2.2.7]
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Z @™ ( i1 = o ) [2.28]

m=1

and, {g}, {e"}, {x} are as defined earlier. Similarly,

M, . On On Qs
M, Z J.M1 Q1 On O {50} + z {K} + {SNL} zdz
My, " Qs O Oss
By Biy By Dyy Dy; Dy
= | By By By {30} + {SNL} + |Dy2 Dy Dy {K}
Bis Bye Bge Dig Dy Dgs
where,
I zﬂH—l . 2
D; = ZJ 0;7dz  ij = 1,2,6
m=1 "?m

= ZQ(M)< m+1"23n>

And,

o - S omel ]
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Ay Ags {Yo}
X45 Z55
where, k2 is the shear correction factor given by Reissner to be 5/6, and
Z Zm41 2 =
4; = Zf K 0ydz  ij = 45
m=1 "Zm

n

= Z k2 Q-&m) (Zpg1 = Zm)

m=1

Thus, the following expressions are obtained for the stress resultants:

THEORETICAL DEVELOPMENT

wa Ay Ay Ay By By B 0 0T

Ny A Ay Ay By By By 0 0

Ny dig Ay Aes Bie B Bes 0 O

My|  [Bu B B Dy Dy Dy 00

M, By By By Dig Dy Dy 0 0

M,y Bi¢ By Bes Dig Dy Des 0 O

0, 0 0 0 0 0 0 A Ay {”}
0, 0 0 0 0 0 0 Ay 4ss|L

[2.2.9]
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2.3 Hamilton's Principle

Hamilton’s principle is used to obtain the equations of motion by setting the variation in the inte-

gral of the Lagrangian function equal to zero.

;) L
0=6det=6(U—T—-We)dt
4 h
where,
U = Plate Strain Energy

T = Plate Kinetic Energy
W, = Plate External Work

2.3.1 Strain Energy (U)

The strain energy for an elastic system is given by

1
U = 3_’;,( oxex + 0y + 058 + Tovxy + Ty + Tx¥xz ) AV

For plain stress assumption, o, = 0.

Therefore,

1
Uu = 7.[;,(0,:5): + oyey + Tyl + Tyayr + Txabxz ) AV
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[2.3.1]

[2.3.2]
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7]
2A

hj2
- 1
AY—h[2

T -
[ €x W 9x
& oy
Yxy Txy
Yyz Tyz
Red i Txz

dz dA

k{2
fhl2(axsx + opey + Toyxy + Ty + Te¥x) AV

Thus, using the first order shear deformation plate theory relations,

U

h[2
1
2
AY—h]2
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dz d4 +

N |—

Txz {

Jv fﬁ/:z
AY—h[2

dz dA

z
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- T r
o - - wa
T L
- —;-J + Ny|da + %f {x} M, | dd
AL e b
L" - - T1 7 QxJ
- - NJC )
T
4
Ny
1 M,
= = {K} dA [2.3.3]
A My
(e
| |12
Ox
But, from [2.2.9], -
" - [ T 3 )
Ny 17 1]
O ER IR IO
ny b o - . - -
M, [ 17T 11 |
e BIRIDIR
My, I 1L 1L -
Q, 'o]-oJrz {?o}
O i i |

Substituting [2.2.9] into [2.3.3] and taking the variation of the strain energy will produce the fol-

lowing relation :
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Using definitions from [2.1.3], [2.1.4], [2.1.5], [2.1.6],

[58()] =

[6x] =

[5‘/0] =

[5:] =

r -

]
g

L JQx

0oy,
ox
66170

dy
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&y My
SE

dA

[2.3.4]

[2.3.5]
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Thus using [2.3.4] and [2.3.5], the following expression is obtained for the variation in Strain Energy.

. 66u0 Bwo 66w0 66V0 6w0 65w0
LoV = J[Nx( x T Tox ox ) + NY( 7 T o
A

0duy dovy owy 90wy owy 9owy
6y+6y+6x 6y+ax ox

369, 26¥,, 05y,  oby,
+ Mx( ax)+M,( 5 )t Mol %t o

+ Qy(awy + a‘;:f”) + 0, (an/,x + ag;"") ]dA [2.3.6]

Integrating by parts, one will get the final form of the variation of the total strain energy.

ON, N, aN, Ny,
A
8 dowg owy 00,
+ l: ox (Nx ox Ny dy ) ox
_a_ aWO 6W0 g Q Y
+ ay (N 'y ay N xy ax ) ay (5W0
oM, oMy,
+ l: ax + a y - Qx 6'901
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oM oM
y Xy
+ [ 5t T T Qy] Sy, }dA [23.7]
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2.3.2 Kinetic Energy (T)

The total Kinetic Energy of a plate can be expressed as :

T = %J p V.V dv [2.3.8]
14

where, p is the mass density of the plate and V is the velocity vector of an arbitrary point on the

plate with respect to the inertial reference frame ( i, j~ , k )
It has been assumed that the plate rotates about the inertial coordinate system ( ?, f , k ), with an
angular velocity Q about the k axis.

A

V=% +Qk x? | [23.9]

where, 7 is the position vector from the origin of the inertial reference frame to a point on the de-

formed plate

From Figure 3 on page 27,

Po= (W k) + (x+u y+v w) [2.3.10]

s > e
NN) ‘<f§> HN}

The plate element is in ¢, — €y plane. Therefore, z = 0 for each element.

For first-order shear deformation plate theory,
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a8 b

Figure 3. Translational offsets of the orthogonal axes (¢, é,, é,) from the inertial axes (i, , k)
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kl

Figure 4. Rotational offsets of the orthogonal axes (€,, 3,, e) from the inertial axes (i,/, k). The
: order of the Euler angles is g, 8, .

THEORETICAL DEVELOPMENT

28



U = u + zy,
V=V0+lely

w = W

Substituting the displacement definitions from [2.1.1] into position vector [2.3.1] and transforming

A

to the local inertial frame (e,, e,, €,),

ex
P = et x gzl Rty +vtzd,, h+w) |8 (2.3.11]
&
where,
T
(hxs hy: hz) = (hii }f") hk) [TLG] [2312]
1 0 0 cosB; 0 —sinf;|| cosfy. sinf, 0
[T,g] = |0 cosB; sinp; 0 1 0 —sinf, cosfy O [2.3.13]
0 —sinf; cosB;| |sinf; 0 cosp; 0 0 1

and, the Euler angles, §;, ﬁj, and B, are defined in figure, and the order of rotations is g, ﬁj, and

B;, as shown in figure 4. The above transformation is orthogonal such that :

A A A A
€x i i r €x
A A A A)
e = [T l|j = |j| = Tl |
A A A A
ey k k ey

Also, Q k can be written in the plate coordinate system as :
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Qk = Q8 + Q8 + Q.8 [23.14]

where,

T
(Qx) Qy’ Qz:) = (0, 0: Q) [TLG]

ex
WP o= (g + z¥x, Yo + 2y, W) & [2.3.15]
&
Similarly,
A
ex
A A A A
Qk xr = (Qx,Qy,Qz) & X r
&
A A A
€x e e,
== Qx Qy QZ
b+ x+ 1y +2zy, h+y+wn+zy, h+w
= & {0 (h +w) — Q (b +y+w+ 2y
+ 6 {Q (e + x + Uy + 200 — Q (b + W)}
+ Qe +y vt zyy) — Q (At X+ U + 2Y)} [2.3.16]

<>
I
~>
+
o)
_
X
~>

= & {li+2dx) + Q (t+w) — Qhy+y+%+ 24}
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+ 8 {(130+2\Ly) + Qe+ x4 u+ z¥y) — Q (h,+w0)}

+ & {wy + Qe +y+w+tzd) — Qe+ x+up+ 2y}

Writing the variation of the total Kinetic Energy :

A A
5T = JpV.éVdV
| 4

From equation [2.3.17],
A A . .
8V = & {(8 + z8i5) + Q, 0wy — Q, (6% + z8¥,)}
+ & {(8U + z80y) + Q (Bup + z8Y) — Oy Swp
+ e {W + Q (v + zoY) — Q, (6 + 26Uy}

Thus,

A A hlz Ia) N
6T = pV.oV dV = pV .8V dzdA
1 4 AY-=h[2

& Zm+1 A A
= ) IJ pmV .5V dzdA
m=1 A2
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[2.3.18]

[2.3.19]
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n
zﬂl
5T = J’ +1 o
zm
m=1 4

{ @i + 260,) [(i + 20 + Q@ (b + w)) — Q, (b + 3 + % + 29)]

+ 0, Gup + 28U [ + 2¥y) + Q (e + x + gy + z¥y) — Qy (R + wp)]

— QU+ 250 [y + Qe +y + v+ 2¥) — Q (he + x + Uy + 20)]

+ &% + z69y) [(Go + 2¥y) + Qp (he + x + wy + 20y — Qy (, + wp)]

— Q, @Ow + z6¥y) [(g + 2dx) + Q (B + W) — Q (b +p + % + 2¥)]

+ Qv+ zoYy) [y + Qe (B +y + v+ z¥y) — Q (e + x + g + 2¥)]

+ Swp [Wo + Qe by +y + v + 28)) — Q (A + X + 1 + 29)]

F bw [(d + 2de) £ Oy (et w) — 9 (y + o+ + 2]

— Quomy [Go+ 2dy) + Qe+ x+ g+ 2U) — Q (h + wp)] | dV
[2.3.20]

Integrating by parts with respect to time for time dependent variations, and using the Hamilton'’s

principle such that,

5()y=5()y,=0,
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E = G+ 2di) — Qi + Q00 + )

+ Q. ( Go+2¥y) + Qi+ x+ 1t + 2 — Qlhy + W) )

— QW + Ut Fy v t+zy) — Qe+ x+u+zv)) | (Gu + z6¥y)
+ [ =Co+ 29y — Q0 + 29 + Qi

+ (G +zd) + Qly+ w) — Qhy + 3+ %+ 2¥y))

— Q. (W + Qe+ Y+t zY) — Qe+ x+ U+ zi) ) | (O + z26Y))
+ [y — Qo + 29y) + Q6 + 290

+ o+ 20 + Yk + W) — by +y+ %+ 25))

+ O Gp + zd) + Qlh + x + 1wy + 20 — Qu(k, + W) ] 5w } dz dA
[2.3.21]

Substituting for the position vector r,, 7,, r,, integrating over the plate thickness and rearranging,

oT =
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J' { [ L(—i — 2QuW + 2Q,9 + () + Q) (b + x + )
A

- Q,Q,(h,+wy) — ngx(hy +Jy+ VO))
+ L (mdx+ 200, + @ + v - 0¥,) | o
+ [ n(=% - 204 + 20,0 + @ + QY%+ + %)
- Q,Q,(h+w) — QQ, (A + x + w))
+ 4 (b = 2Q0s + @+ v — Q) |
.. . . 2 2
+ [ n(=v - 2000 + 20,4 + @+ D)k + w)
- Q0,0 +y+v — Q0+ x+ 1))
+ b (=290 + 2Q s - Q0 — Qb)) | w
+ [ L(=i — 29w + 2Q,% + @ + Q) (A + x + %)
- Q,Qh+w) — Q,Qy (hy +y+ VO))
.. . 2 2
+ I (=G + 200, + @+ Dy - QQ%Y,) | by
+ [ B(=% - 294 + 2000 + @ + Q)@+ + %)
- Q,Q,(h,+w) — QQ,h + x + ))

+ I3 ("'{/}y - znz‘.ﬁx + ('Qg + Qch) ¥x — Q‘ny‘/’x) ] 5‘/’)'} d4
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where

n

Zm+1 2
(I, I, ) = J- om(l,2,2%) dz [2.3.23]
zm
m=1
Defining Z,o, Zo, Zvo' -Z—,x, Zﬁ to be the coefficients of w, v, Wy, ¥, ¥, in the above ex-

pression, the variation in Kinetic Energy can be rewritten as :
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5T = j (Ziybut + Zyo% + Zyowy + Zy bUy + Z, 64} dd [2.3.24]
A
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2.3.3 External Work (W)

The external work contribution is given by

T
Px L)
We + py VD dA
4 Pz Wo

where, p,, p,, p, are the distributed loads (pressures) acting on the plate in the x, y, and z directions

respectively.

Thus, the variation in the external work can be written as:

T
Px] | P4
oW, = Py ovy | d4 [2.3.25]
4 pZ 6 Wo
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2.4 Governing Equations

From Hamilton’s Principle,

L
0 = 6| (U=-T- W) dt [2.4.1]
4

Thus, using equations [2.3.7], [2.3.24], [2.3.25], assuming no external forces, and using the fact that

the variations du, 6v, oWy, 6Y¥,, 6y, vary independently, the following governing equations are

obtained:
Suq agf: + ag}"y +Z, =0
v Eg—y+agfy+zvo=0
Sw, aax(Nx 0 nyag% ) + ai(Ny 6;% xy—a(—;ﬁ’-)
+ aa% +aa%‘+zwo—0
L aaMx" + aj;"y -0 -2z, =0
Sy agjy + ag:y -9 -z, =0 [2.4.2]
where,
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allo 5v0 6W0 Owo
+ Alé( dy t o ax dy
1/ W, o, oYy
+ Bll ax BIZW + B16 a + ax
Jyy 1 Owp 0 ] Owg 2
Ny = Au(—ax— + 77) toAn{G o
6110 5v0 6WO 6W0
+ A26( dy ox ox Oy
O 2, oy, Oy
+ B3 By, % Bys . t
U ] Owp? ] dwp?
Mo = Aw('a? ¥ 7—5—) * A26(T 27y
6110 6V0 aWO aWO
+ A66( a ox ox dy
O x 0y, Oy oY,
_ Vi 0 0
Ox = 45 (‘/’y + —6—-) + 4ss (‘/’x + W)
6 0 6w0
Qy = Ags 'aby + o + Ags | ¥ + '—a;'
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+ Blé(_%l;i + %%cg- %%’CQ- %Q-)
+ Dy aatl;x D”%y- ¥ Dm(a‘;ﬁ’x i %)
+ 326(?;,0 %o_ 5;:0 -a—t’l)

+ Dy (;[’ . Dy, af;l;y ¥ D26( ag;x ) %)
o (a_,,o law02> . (_51’_0_ .\ Lmz>
s 16 5 > % 26\ "oy 2 oy

o oag(d Do, i)
. Dy aa¢x Dy, a(;/zy N Dse( a(;px . a@dg)
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3.0 FINITE ELEMENT MODELLING

In the present analyses, a Ritz-Galerkin formulation has been used. The Ritz approximation as-
sumes displacements at any point in an element to be a linear combination of the corresponding
displacements at the nodes of the element. Thus the displacements w, vy, Wy, ¥,, and ¥, can be

written in the form:

w = ;A}qu
vo = ;Afdzj
wy = ;qus,
Ve = ;Af"‘f
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by = D Al [3.1.1]
J

where, ¢; are shape functions discussed later, and, A} are respectively u, v, Wy, ¥,, and ¥, on the

J* node of the element.

Substituting the above displacement relations into the previously defined energy varations, the

following non-linear expression of motion is obtained.
M1 [} + a1 {A) + [KF + k* + k" )] (4 = [Fh

where the submatrices associated with each matrix is given in Appendix A. In order to solve this
equation, one must divide the solution into two parts, the determination of the static shape and the

vibrations about this non-linear static position.

3.1 Static Analysis

For the static analysis of the problem, the time-dependent terms are neglected. Then, the governing

equations for static analysis are obtained from equation [2.4.2] as follows

oN, aNXy
duy: E + % = 0
ON, oN
. y ¥ _
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t o v e = 0
aMx aMxy
6"’):‘ Ax + ay - Qx =0
oM, oM
. Y e A —
By -t 0, 0

Then, following the Galerkin variational formulation, the governing equations yield :

oN, oN.
y Xy _
J‘qsi(ay + ax)dQ—O
Q
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oM, oMy,
¢’<Ox Ty T %) =0
Q
oM oM
y xy _
¢,( 5t T " Qy> aQ = 0 [3.1.3]
Q

Using the Ritz approximation for the displacements, and using the stress-displacement relations, the

following final form is obtained for the equations of motion for static analysis:

[KF + kb + k" @] (a3 = {FI}

where,

KL are the geometrically linear stiffness terms obtained from the strain energy expression,

KL are the geometrically non-linear stiffness terms obtained from the strain energy expression,
KC¢F and FCF are the stiffness’s and forces, respectively, obtained from the kinetic energy expression
(centrifugal terms), and,

A, is the static component of the deflections

3.1.1 Newton-Raphson Method

The Newton-Raphson Method is an efficient technique to obtain a converging solution for non-
linear differential equations. The above equation of motion for the static problem can be rewritten

in the form :
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[Kw)] (u) = {F} [3.1.4]

where, [ K(x) ] is the non-linear expression for the stiffness matrix for the problem, and,

u, = A, is the static component of the deflection.
Or,
[Ku)]l {u} — {F'} = ® = (0 [3.1.5]

Expanding {R} in a Taylor series expansion in terms of the displacements A,,

o{R
© = & + [( S )] (d +

where the superscript r denotes the value of the function evaluated at the solution obtained in the

previous iteration.

Considering only the first-order terms,
. O(R)
{0 = R + [ ( Ay ) {Au}

where, Au is the change in the solution from the previous iteration.

Defining,
3(R) _
[( a{u} )’] =[],
(K] (a = - @® = -[KeH] ) + [F) [3.1.6]

The above differential equation is solved numerically for the unknowns, Au , and after each iter-

ation, the solution u, is updated as:
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W™ = W o+ Ay
The solution is assumed to have converged when
z | Ay ?
g4
Y112
J
for a sufficiently smalle > 0

{R} is called the Residual, and , {K7} is known as the tangent stiffness matrix for the Newton-

Raphson method.

3.1.1.1 Tangent Stiffness Matrix

The tangent stiffness matrix is evaluated as follows:

k7] = (k) - 2 [3.17]
J

where,

where, K% is the element stiffness sub-matrix, the coefficient of Avin the a* equation of motion ,
y is the number of degrees of freedom, and, n is the number of nodes in each element in the finite
element mesh. F* is the force on the i# node in the finite element mesh. Therefore, the coefficients

of the tangent stiffness matrix, [KX7] , are defined by :
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R AR
8 \tan _ i _ aff ik v
(Kl‘;‘ ) = —F - K + E E AP Al [3.1.8]
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3.2 Dynamic Analysis

For dynamic analysis, both the static, and the time dependent components of displacement are
considered. Following the approach used for static analysis, the following equations of motion are

obtained:

M1 {&} + rc1 {8} + [KF + k* + kM @)] (a8 = {Ff

[3.1.9]
where [M] is the mass, and [C] the coriolis matrix, and

A is the deflection, involving both static and time-dependent terms.

Any displacement A can be expressed as the sum of a static and a dynamic term. Thus,
A = A + 6

where, A, is the static deflection as a result of the centrifugal load, and, J is the dynamic displace-
ment, or the vibration about the static displaced position. For centrifugal loads, the dynamic dis-

placements are much smaller than the corresponding static displacements.

Thus,

A = A, + 6

A = ¢

A = § [3.2.10]

where, it 1s assumed that A is not a function of time.

Thus, the equations of motion can be written in terms of the static and dynamic terms as:
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M1 (8} + a1 {8} + [KF + kY + kM A+ 0] A, + 8y = (F

[3.2.11]
where, KL are the geometrically linear stiffness terms obtained from the strain energy expression

KNL are the geometrically non-linear stiffness terms obtained from the strain energy expression, and,
KCF and FCF are the stiffness’s and forces, respectively, obtained from the kinetic energy expression

(centrifugal terms).

Consider K¥L (A, + ) :

2
KM, +8) = KM@y + 6 %K”L(As) + & ;‘%—KNL(AS) + o
5

5

Ignoring the &% and higher order terms (as 6, the dynamic deflections, are much smaller than the

corresponding static deflections), the following equations are obtained :

M1 (3} + a1 (3} + [KF + kb + KM @4ay)] 0 + [a —st(K”L(AS))] {6)

+  [KF + k' + kM @ay] 8y + [5 77%: (K”L(As))] (a3 = {Ff}
Or, simplifying the above expression,
[M1 {3} + [C] {} + [KCF + KV + k") + As-aaTs(KNL(As))] {6}
+ [&F + kK + &M @y] 8y = {F [3.2.12]

However, from the earlier static analysis,
[kF + k" + k" )] (83 = F}
_0_

* 04,
the Newton-Raphson technique to solve a non-linear equation.

and, [KCF + KL + KM (A) + A (K”’-(A,))] is the tangent stiffness matrix obtained in
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Thus,

M1 {8} + [C1 {8} + [KT] (& = o [3.2.13]

This is the standard form of equations of motion of undamped free vibrations of spinning struc-
tures, as the {C] matrix obtained above represents the Coriolis rather than the damping terms. This
eigenvalue problem can be solved by a standard procedure. This involves creation of a dummy

variable {q}, the derivative of the displacements {6}

@ = {9

@ = {3

Then, the above equations of motion can be rewritten in the following from :
[Mi{g} + [01{8} + [01{g} — [MI{5} = O

[01{gg + K18} + M@ + [} = o0

Or,

(M1 L0 |  (q) 1 0 @)

o1 k1" {{53} | - -ra gy (- [3.2.14]
or,

(410} - [B1(p} = O

where,

(M1 [0]
(4] =
(01 [kl
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(o] M1
(Bl = [ ]
-[M]1 -ILC]

0
oy = {{5}} [3.2.15]

Here, [A] is a symmetric, and [B] is an anti-symmetric matrix. Taking the solution to be of the form

y = e

Bl 't410y = a0y

3.2.1 Numerical Integration

In the present analysis, Gauss-Legendre quadrature has been used for numerical integration. In
this, a linear transformation is used to convert from the global to the local co-ordinate system. In
this study, the shape functions used are of maximum polynomial degree 2 for the rectangular 4-node
linear plate element and of maximum polynomial degree 4 for the rectangular 9-node quadratic
plate element. Thus they should be integrated exactly using 2 and 3-point integration, respectively.
This integration is referred to as the full integration. It is seen that for thin plates, full integration
of the shear deformation terms results in the phenomenon of shear locking, in which, the plate
appears to become stiffer, resulting in under-prediction of deflections, and over-prediction of fre-

quencies.

This phenomenon is attributed to the difference in the orders of magnitude between the bending
and the shear terms. This results in an inaccurate representation of the shear terms. To circumvent
this problem, reduced integration using one Gauss point less than the full integration is used on the
shear coefficients. This is equivalent to reducing the degree of the interpolating polynomial by one

for the shear coefficient terms. This appears to yield much better results in the analysis of thin
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plates. However, as noted by Hughes, Taylor, and Konoknukulchai [14], reduced integration has
the opposite effect for thick plates. In particular, in case of a body with rigid body modes, some

spurious zero-energy modes are obtained as discussed later in Results and Conclusions.
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4.0 RESULTS AND DISCUSSION

Here the problem of free vibration of isotropic and cross-ply laminated plates has been considered.
The results for non-rotating isotropic cross-ply and angle-ply laminated plates are compared with
the standard results available for various boundary conditions. Three types of boundary conditions
have been considered, namely, Free, Simply Supported and Cantilever. Also a comparison has
been made between the results obtained by using the 4-node linear rectangular plate element and

the 9-node quadratic rectangular plate element.

For all problems, repeated frequencies have not been tabulated. Also, for symmetric plates, where
the in-plane and the transverse deflections are uncoupled, only the frequencies corresponding to
flexural modes of vibration have been tabulated. As observed by Leissa [21], repetition of fre-
quencies is a result of using a square plate for which repeated frequencies have been seen to exist

simultaneously.

For the rotating plate only the cantilever type of boundary conditions are considered as they are
the only ones relevant to this study. Here, a study has been made of the relation between the an-

gular velocity of the plate and its frequencies.
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For the non-rotating plate the non-linear strains to do not have any effect because of the absence
of any force acting on the plate. Thus, in this study, the non-linear analysis has not been used for
the case of the non-rotating plate. On the other hand, for the rotating plate, because of the presence
of centrifugal forces, the non-linearity can have a significant effect on the results obtained, especially

for thin plates. So, the non-linear analysis has been performed for the rotating plate.

For the isotropic plate, the material properties used are:

E = 10.92 x 10%psi

v = 03

p = 10

t = thickness = 1.0in

For the laminated composite plate, the material properties used are:

E, = 40.00 x 10° psi

E, = 100 x 10°psi
Gy, = 0.60 x 10° psi

Gy3 = 0.60 x 10° psi

Gy; = 0.50 x 10° psi

Vlz = 0.25

p = LOBin°

t = thickness = 1.0in
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4.1 Non-Rotating Plates

4.1.1 Free Plates

A free plate here has been defined as one without any constraints on it. The results for this plate

are computed only for isotropic plates.

For this kind of problem, six rigid body modes would be expected, corresponding to the three
translations and three rotations. However, as first observed by Hughes [15], for a first-order shear
deformable rectangular plate element, some computational errors associated with reduced inte-
gration of shear coefficient terms, creep up resulting in seven zero energy modes. These zero energy
modes correspond to five rigid modes and two spurious zero energy modes which do not corre-
spond to rigid body modes. The extra zero energy mode is considered to be due to the use of re-

duced integration on transverse shear terms in the stiffness matrix.

As explained by Hughes [14], these Spurious modes appear because the element is rank deficient,
but this problem usually manifests itself only in very thick plates and only in some special cases.
In this study it was observed that the spurious modes appeared only for a completely free plate.
It has been accepted that one reason for this problem is the reduced integration performed on the
transverse shear coefficient terms and this error can be corrected by modifying the reduced inte-
gration or by using constraints to prevent rigid body motion, when, it is observed, the problem

disappears.

Also, because of the large number of identical zero eigenvalues, the eigenvalues subroutines may
yield eigenvectors (mode shapes) which are linear combinations of two or more eigenvectors cor-

responding to the same eigenvalue. For this particular problem, there are three in-plane rigid body
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modes, as is logically expected. But, there are four out-of-plane modes, which are linear combi-

nations of the rigid body modes and the spurious mode shapes predicted by Hughes.

The results are compared with those obtained by Leissa [21]. During the development, the results
were also compared with those obtained by Gorman [23], though they have not been tabulated here
as the above two sources used different material properties for their analyses and only one is in-

cluded here.

4.1.2 Simply-Supported Plates

The plate is simply supported on all four edges. For this problem, the tangential rotations and the
out-of-plane displacements are constrained on the edges. As there is no in-plane constraint, this
results in the expected three zero energy rigid body modes involving the two in-lane displacements

and the in-plane rotation.

The first mode for the simply-supported plate is symmetric about lines parallel to the edges and
about the diagonals. Similarly, the second and third modes have been obtained for the simply-

supported plate.

The problem of an isotropic plate with all sides simply supported is a standard one and is one of
the easiest to obtain an exact solution for. The exact solution obtained using the classical plate

theory is (see [21,24]) :
o = ) - () ]VR

The nodal lines for an isotropic rectangular plate are straight lines paralle]l to the edges. For a
square plate, two mode shapes may have the same frequency. The mode shapes for the simply-

supported isotropic plate are shown in Figs. 5§ - 10
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Table 1. Vibration of Free Isotropic Plates

Isotropic Plate

o = (coaz)«/ph/D

(FSDPT)

Mode 1 2 3 4 5
Exact (CPT) 13.473 19.596 24.270 35.156 35.156
8 x 8 Linear Mesh 12.792 19.287 23.986 32.521 32.521
(FSDPT)
4 x 4 Quadratic Mesh 12.729 18.999 23.429 32.052 32.052

RESULTS AND DISCUSSION

a=10in, b = 10in,,h = 1in.
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The problem of vibration of simply-supported laminated composite plates has been discussed by
Reddy and Phan [25]. They have obtained results for this problem based on the first-order and the
third-order transverse shear deformable plate theories. In the present study, the results have been
obtained using the same material and geometric properties as in the above paper to provide a direct
comparison between the two sets of results. As can be seen in Tables 2 and 3, there is an excellent
agreement between the two sets of results. On the other hand, it can be seen that there is a great
disparity between these results and those obtained from the classical plate theory. This may be
explained by the fact that transverse shear effects manifest themselves more in laminated plates.
The mode shapes for the [0/90/90/0] laminate and isotropic plate are shown in Figures 11-16. The
mode shapes have been plotted only for the [0/90/90/0] laminate as this laminate is symmetric. So,
it does not have bending-extension coupling and it is possible to obtain mode shapes and frequen-
cies for the flexural vibration of the plate. Thus, Table 3 contains the flexural vibration frequencies
for both the isotropic and the symmetric composite plate, and, only the lowest five frequencies have

been tabulated for the anti-symmetric angle-ply laminated composite plate.

Interestingly both the present study and the above paper yield results which underpredict frequen-
cies as compared to the results of 3-D elasticity. This is in contrast to the expectation that most
approximate plate theories would overestimate frequencies because of the inadequate representation
of the flexibility of the structure. It may be expected that the results obtained by this computation

will converge to the expected over-prediction of frequencies and under-prediction of deflections.

4.1.3 Cantilever Plates

A rectangular plate with one edge (perpendicular to the longer side) clamped and the remaining
sides free is known as a cantilever plate. For this problem, the transverse displacement, the two
inplane displacements and the rotations normal to the edge are constrained. This results in sup-

pression of rigid body modes and thus no zero eigenvalues are obtained for this problem. The first
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Table 2. Vibration of Simply Supported Isotropic Plates

Isotropic Plate

RESULTS AND DISCUSSION

o = (waz)\/ph/D
Mode 1 2 3 4 5
Exact (CPT) 19.739 49.348 78.957 98.696 128.31
Exact (FSDPT) 19.059 45476 69.802 85.029 106.69
8 x 8 Linear Mesh 19.375 48.103 73.722 81.751 87.352
(FSDPT)
4 x 4 Quadratic Mesh 19.077 45.841 70.355 80.507 85.835
(FSDPT)
a=10,b=10,h=1
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Table 3. Vibration of Simply Supported Laminated Composite Plates

[0/90/90/0] Laminated Composite Plate
& = (0dWplE,
Mode 1 2 3 4 5
Exact (CPT) 18.738 33.148 63.518 67.268 73.196
Exact (FSDPT) 15.143 27.162 36.848 43.342 46.624
(FSDPT)
8 x 8 Linear Mesh 15.333 28.398 38.125 44.655 51.606
4 x 4 Quadratic Mesh 15.149 27.329 37.047 43.592 48.037
(FSDPT)
|[45/-45] Laminated Composite Plate
& = (0d’|W/plE
Mode 1 2 3 4 5
Exact (CPT) 14.439 32.702 34.414 55.541 59.004
Exact (FSDPT) 13.044 26.938 34414 41.341 44.530
8 x 8 Linear Mesh 13.215 28.023 36.259 42.704 44.390
(FSDPT)
4 x 4 Quadratic Mesh 13.047 27.078 34.546 41.146 41.532
(FSDPT)
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Figure 6. Simply Supported Isotropic Plate. Mode 1
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Figure 8. Simply Supported Isotropic Plate. Mode 2
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Figure 12. Simply Supported [0/90/90/0] Laminated Composite Plate. Mode 1
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Figure 13. Simply Supported [0/90/90/0] Laminated Composite Plate. Mode 2
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Figure 14. Simply Supported {0/90/90/0] Laminated Composite Plate. Mode 2
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i 1S. Simply Supported [0/90/90/0] Laminated Composite Plate. Mode 3
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Figure 16. Simply Supported [0/90/90/0] Laminated Composite Plate. Mode 3
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five frequencies of flexural vibration have been obtained for both the isotropic and the laminated
composite plate in Tables 4 and 5. The mode shapes for the first three modes have been plotted
for the isotropic cantilever plates in Figures 17 - 22. The mode shapes for the first three modes have

also been plotted for the [0/90/90/0] laminated composite cantilever plates in Figures 23-28.

As in the case of simply-supported plates, the mode shapes have been plotted only for symmetric
plates as these do not have bending-extension coupling and hence it is possible to obtain vibration
modes for flexural vibration of the plates. Similarly, for the symmetric plates, the frequencies of
flexural vibration of the plate have been tabulated, while, for the anti-symmetric angle-ply laminated

plate the lowest frequencies of vibration have been tabulated.

The results for the cantilever isotropic plate have been compared with the exact results based on

the classical plate theory, given by Leissa [21].

4.2 Rotating Plates

For rotating plates, only the cantilever boundary conditions have been considered.

The results for various angular velocities are tabulated for a plate. As shown in figure 29, the axis
of rotation of the plate has been taken normal to the plate and lying at one corner of the plate.
One of the edges adjacent to the axis of rotation is oriented along the radial direction. Thus in the
present analysis, results have been obtained for a plate without any translational or rotational offsets

from the axis of rotation.

The results for the rotating isotropic plate have been verified by comparing with those obtained by

Dokainish and Rawtani [3], which used CPT to model the rotating plate and did not consider
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Table 4. Vibration of Cantilever Isotropic Plates

Isotropic Plate

o = (a)az/h)../p/D

Mode 1 2 3 4 5

Exact (CPT) 3.4940 8.5470 21.440 27.460 31.170

8 x 8 Linear Mesh 3.4338 8.0833 20.752 26.055 28.953
(FSDPT)

4 x 4 Quadratic Mesh 3.4275 8.0545 20.144 25.576 28.307
(FSDPT) .

a=10in, b = 10in.,, h = lin.
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Table 5. Vibration of Cantilever Laminated Composite Plates

[0/90/90/0] Laminated Composite Plate

& = (0dWJplE;

Mode 1 2 3 4 5
8 x 8 Linear Mesh 17621 5.7851 9.8498 14.496 15.365
(FSDPT)

4 x 4 Quadratic Mesh 1.7584 5.7590 9.5789 13.756 14.875

(FSDPT)
[45/-45] Laminated Composite Plate
& = (0d[WJolE,
Mode 1 2 3 4 5

8 x 8 Linear Mesh 5.2784 5.2848 16.300 22.065 22.571
(FSDPT)

4 x 4 Quadratic Mesh 5.2695 5.8310 16.067 21.670 22.294
(FSDPT)

a=10in, b= 10in, h = 1in.
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Figure 28. Cantilever Laminated Composite [0/90/90/0] Plate. Mode 3

RESULTS AND DISCUSSION

87



non-linear strains. The comparison is given in Table 6 and in Figure 30. The angular velocity has
been non-dimensionalized by dividing by the fundamental frequency of vibration of a non-rotating
cantilever plate. It was seen that for the plate thickness used in the above reference, non-linear
strains were not significant and the results obtained in the present study are very close to those
obtained in the above reference. There was divergence of results for the higher modes of vibration,
where, as has been observed earlier, the classical plate theory gives inaccurate results. Also, it was

seen that for thin plates, non-linear strains are very significant and can not be neglected.

The results for the analysis are presented in Table 7 for isotropic and in Table 8 for laminated
composite plates. As expected, the frequency of vibration increasés with an increase in the angular
velocity. Also, as predicted by Meirovitch [10], the fundamental frequency of free vibration of the
plate remains greater than the angular velocity of the plate. There is a monotonic increase in the
frequency of vibration with the increase in angular velocity. The same non-dimensionalization has

been used for both the vibration frequency and the angular velocity.

The variation in the frequency of free vibration of plate with angular velocity has been plotted in
Figure 31 for the isotropic plate and in Figure 32 for the laminated composite plate. It is seen both
from the values obtained and from the corresponding plot that for the isotropic plate there is a slight
decrease in the frequency with angular velocity for the third mode for one observation. For the
laminated composite plate, it is seen that, in general, the frequency of vibration is lower, but there
is a greater increase in the frequency with increase in angular velocity. Also, though the the first
and second modes, and, the fourth and fifth mode have frequency close to each other for the static

case, they diverge with increase in angular velocity.

A study has been made of the effect of change of the side-to-thickness ratio of the [0/90/90/0]
laminated composite plate on its fundamental frequency of free vibration, and the results are in-
cluded in Table 9. For thick plates, it is observed that there is little change in the frequency with
increase in angular velocity. This is explained by the fact that for thick plates the terms of the

centrifugal stiffness matrix are much smaller than the linear and non-linear stiffness terms and hence
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Table 6. Rotating Cantilever Isotropic Plates - Verification of Results

Isotropic Plate

v = (wa2)~/ph/D

Mode 1 2 3 4 5
DOKAINISH 5.097 9.824 22913 27.849 32.735
PRESENT STUDY 5.113 9.635 22.649 24.232 28.759

RESULTS AND DISCUSSION

a=10in, b = 10in, h = lin.

Non-Dimensionalised Velocity = 1

90



50

Dokainish and Rawtani

Present Study

40
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Figure 30. Rotating Cantilever Isotropic Plates - Verification of Results
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Table 7. Vibration of Rotating Cantilever Isotropic Plates

Isotropic Plate
& = (wa)W/phlD
Angular Velocity Mode
Q = Qa&hJplD 1 2 3 4 5
0.0 3.4275 8.0545 20.144 25.576 28.307
1.0 3.5949 8.1779 20.287 25.651 28.439
2.0 4.0491 8.5299 20.704 25.873 28.832
3.0 4.6921 9.0653 22.054 26.238 29.478
4.0 5.4414 9.7311 22.032 26.744 30.359
5.0 6.2456 10.842 22.369 27.407 31.446
6.0 7.0758 11.288 22.658 28.245 32.701

a=10in, b = 10in, h = 1in.

do not play a significant role. But, as the length-to-thickness ratio is increased, the effect of angular
velocity on the frequency of the plate becomes more apparent. A plot of variation in fundamental

frequency with angular velocity for various values of side-to-thickness ratio is shown in Figure 33.
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Table 8. Vibration of Rotating Cantilever Laminated Composite Plates

[0/90/90/0] Laminated Composite Plate
& = (0dWplE;
Angular Velocity Mode
Q = Qa&hJolE, 1 2 3 4 5
0.0 5.2695 5.8310 16.067 21.670 22.294
1.0 5.3639 6.0028 16.187 21.800 22.469
2.0 5.6304 6.4801 16.522 22.085 23.064
3.0 6.0338 7.1767 17.023 22.461 24.062
4.0 6.5368 8.0114 17.638 22.966 25.321
5.0 7.1062 8.9334 18.335 23.615 26.702
6.0 7.7144 9.9187 19.107 24.343 28.056

a=1in, b= 10in, h = lin.

In Table 10, a study has been made of the effect of change of modulus ratio of the [0/90/90/0]

laminated composite plate on its fundamental frequency. It is observed that the change in the
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Table 9. Variation in Fundamental Frequency of Rotating Plate with Side-to-Thickness Ratio

[0/90/90/0] Laminated Composite Plate
& = (wd'lhnplE;
Angular Velocity a/h

Q = (QahJolE 4.0 10.0 20.0 50.0 100.0
0.0 3.5024 5.2761 5.8133 5.9935 6.0205
1.0 3.5047 5.3649 6.1737 7.9521 11.824
2.0 3.5142 5.6175 7.1091 11.749 19.854
3.0 3.5362 5.9994 8.3751 15.806 25.026
4.0 3.5753 6.4709 9.7946 19.676 -
5.0 3.6334 6.9956 11.262 23,043 -

a=10in, b = 10in, h = Lin.
E/E; = 40.0

fundamental frequency of the plate with angular velocity is maximum for low E ,/E ; ratio and as

the anisotropy increases, there is less change in the fundamental frequency with increase in angular
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velocity of the plate. A plot of the variation of fundamental frequency of the plate with angular

velocity for various values of the modulus ratio is shown in Figure 34.
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Table 10. Variation in Fundamental Frequency of Rotating Plate with Modulus Ratio

[0/90/90/0] Laminated Composite Plate
& = (0d'lhWolE,
Angular Velocity E,/E:;
Q = Qah)JplE 3.0 10.0 20.0 30.0 40.0
0.0 1.6749 2.9221 3.9776 4.7120 5.2761
1.0 1.9831 3.1027 4.1054 - 5.3649
2.0 2.6566 3.5686 4.4547 5.1054 5.6175
3.0 3.4254 4.1903 4.9958 5.5353 5.9994
4.0 4.1897 4..8777 5.5448 6.0562 6.4709
5.0 4.9106 5.5782 6.1737 6.6266 6.9956

a=10in, b= 10in, h = 1lin.
a/h = 10
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5.0 CONCLUSIONS

A first-order shear deformation plate theory is used to analyze free vibrations in rotating plates.
Results for some representative cases of plates rotating with cantilever boundary conditions are

presented to serve as references for future experimental and analytical investigations.

There is an increase in the frequency of free vibration of rotating plates because of the stiffening of
the plate caused by the centrifugal forces acting on it. The frequency of vibration is always seen to
be higher than the angular velocity. There is a greater increase with angular velocity for laminated

plates than for isotropic plates.

When the variation of frequency with angular velocity is studied for different plate thicknesses, it
is seen that for thick plates, there is little change in frequency with angular velocity. The change
is more rapid as the length-to-thickness ratio is increased. For different modulus ratios, it is seen
that the frequencies of vibration are higher for plates with high modulus ratio though the increase

with angular velocity is more rapid for plates with low modulus ratios.

This study can provide a basis for further studies in vibration of rotating plates with more complex
geometries and incorporating aerodynamic loads. This can bring the problem closer to real-life

situations involving vibrations of structures and their control.
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Appendix A. Element Matrices

Following the derivation of equations of motion and the derivation of the finite element equations
for the dynamic analysis, the expressions for the element mass, stiffness and coriolis matrices have
been derived. For the stiffness matrix, only the centrifugal stifness matrix is given as the linear and
the non-linear stiffness matrices are the usual ones for the rectangular plate element based on the

first-order shear deformable plate theory.

Ii, Iz, I are as defined in equation [2.3.23]. ¢; and dzj are the interpolation functions as described

in Appendix A.

The element stiffness, corioilis and mass matrices for the plate are given in terms of the element

sub-matrices as follows :
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A.1.1 Stiffness Matrix :

A.1.1.1 Linear Stiffness Matrix (KL) :

W EY & ]
045 S <o SR o LV oo e e e
[KL] = (Ki}.?)L (Ki2j3)L (K§3)L (Kg3)l' (Kg.'i)L

&Ht & &Y wH &

&Y & &P &DE &D*

where (Kgﬂ)l‘ are the element submatrices for linear stiffness components.

A.1.1.2  Non-Linear Stiffness Matrix (K\L) :

( Kél)NL ( Kél)NL ( Kél)NL ( Kgl)NL ( KiSjl yVE
( 1<1: L K§2) NL ng)NL ( K;}Z)NL ( Kij2)NL
(k™1 = | Kilj VL K53)NL ( Ki3j3)NL ( K§3)NL ( K33)NL
( Kilj HNL Kl_2j4) NL Ki3ja)NL ( KgA)NL ( K§4)NL
( Ki} VL Ki2j5)NL ( KiBjS)NL ( K;}S)NL ( KiSjS)NL

where (Kg”)” L are the element submatrices for non-linear stiffness components.
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A.1.1.3  Centrifugal Stiffness Matrix (K<F) :

([(}}Z)CF
(KI4CF
1

(Ki} S)CF

where (Ki}")CF are the element submatrices for centrifugal stiffness components.

(K2YYCF
(KPHCF
(KBCF
&;HF

KPF

A.1.2 Coriolis Matrix :

!
Ciljz qzjz
[cl = |c¢ cF
Ci} 4 Ci2j4
Ciljs Cﬁs

where C3# are the element submatrices for coriolis components.
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&Hr
( Ki3j2)CF
( Ki3j3)CF
( Kga)cp

(Kri.}S)CF

a9 4
™ —

NN
a0
2 =g

-
=
Pl

( K;}I)CF
( K{}Z)CF
( K§3)CF
( K;}A)CF
( KgS)CF

( Kgl)CF
( ng)CF
( Ki5j3)CF
( Ki5j4)CF

(& 5\CF
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A.1.3 Mass Matrix :

M)l = | M3 MB M3 MP MP

where Mg are the element submatrices for mass components.

A.2  Centrifugal Stiffness Matrix ( K°F)

The sub-matrices of the element stiffness matrix can be expressed in the following form :

CF
(&' Jo = 1 (S + @) g4 dx
CF
&7 = [ n@00 64 dd

CF
(&5

]

J,. 11090 919y ey

CF
(&%)

Jo, = (% + 0 b1y dedy
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(KIS = L’ [2(Qny)¢,¢jdxdy
CF CF
&H" = L« L(Q:Q) ¢ ydedy = (K’
CF
& = J‘Q — L(Q} + QL) ydxdy

COREN TGS

COME IRAC RSP

KT = - nel+ oo
@7 = [ nee)ssey = &7
&7 = [ n@ayagads = @)
(K33) - J.Q‘—Il(Qi+Q§)¢,gbjdxdy
CoREE N RGN SPRTY”
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CF
CoRE IRACY SPTET

CF CF
&Y = [ -n@+ahsgdd = (&'

CF

~
N
g
9
]

L. L(Q,Q,)¢dcdy = (K2

Gl

COMEE AT RSP

& = [ - B+ ) sgded

&HT = L, L(2,:9,) ¢, dx dy

T = [ a@aoasds = &7
KT = | - h@ s ahgdd = &)
&HT = fg L(9,Q,) ¢4 dxdy = (KB
&7 = [ s@a)agdas = @7
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KT = | - h@h+ah g dcd

A.3  Coriolis Matrix (C)

The sub-matrices of the element coriolis matrix can be expressed in the following form :

- L‘—ﬂ]nzqs,-qudxdy

o = | e

gt = 0

= JQ‘—21202¢,-¢jdxdy

G = L.%“zcbz«wdxdy = -
c = o0
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B jg.—zllnmm,dxdy

Cé"‘ = J.Q' 2[2 Qz ¢‘ qu dx dy

¢ =0

31 13
Gt = [ -unuses = -q
= | -meepdy = -
G =0

34

G = J.g' - 25, Q, ¢;¢;dx dy

s - f9'2120x¢,¢jdxdy

1

G =0

G = JQ.'21202¢,¢jdxdy - -
G = L,ﬂzgy@fbjdx@ = -q
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Ci‘jts = jg,‘21392¢f¢1dxdy

¢ = fg.2lzﬂz¢,¢jdxdy = -c?
G =0
@3=.L"%%¢@¢@==—@5
ﬁ4=.&%%m@a@ - -
G’ = 0

A4 Mass Matrix (M)

The sub-matrices of the element mass matrix can be expressed in the following form :

11
Mi]

[ hoisyaxa
Ql
Mi}z = O
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M@ = 0

My = 0

22 _

ME = | Logdedy
QC

MP = 0

M = 0

25 _

My = flz ¢;¢;dx dy
Q.

Ml':;l = 0

M? = 0

33

My~ = J.11¢i¢jdxdy
Ql

M =0

MP = 0
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X
sih
I
Sl
5
he
&
&

M = 0

M7 =0

M = [ Leyas
Q'

M = 0

52

Ml] = j 12 ¢,¢jdxdy
Q'

MP =0

Mt = 0

55

My = L.Ia ¢ ¢;dx dy
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