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Academic Abstract 

 
Remote sensing techniques are important for detecting disease within the turfgrass canopy. Herein, we 
look at two such techniques to assess their viability in detecting and isolating turfgrass diseases. First, 
thermal imagery is used to detect differences in canopy temperature associated with the onset of brown 
patch infection in tall fescue. Sixty-four newly seeded stands of tall fescue were arranged in a randomized 
block design with two runs with eight blocks each containing four inoculum concentrations within a 
greenhouse. Daily measurements were taken of the canopy and ambient temperature with a thermal 
camera. After five consecutive days differences were detected in canopy – ambient temperature in both 
runs (p=0.0015), which continued for the remainder of the experiment. Moreover, analysis of true colour 
imagery during this time yielded no significant differences between groups. A field study comparing 
canopy temperature of adjacent symptomatic and asymptomatic tall fescue and creeping bentgrass 
canopies showed differences as well (p<0.0492). The second project attempted to isolate spring dead spot 
from aerial imagery of bermudagrass golf course fairways using a Python script. Aerial images from 
unmanned aerial vehicle flights were collected from four fairways at Nicklaus Course of Bay Creek 
Resort in Cape Charles, VA. Accuracy of the code was measured by creating buffer zones around code 
generated points and measuring how many disease centers measured by hand were eclipsed. Accuracies 
measured as high as 97% while reducing coverage of the fairway by over 30% compared to broadcast 
applications. Point density maps of the hand and code points also appeared similar. These data provide 
evidence for new opportunities in remote turfgrass disease detection. 
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Caleb Henderson 

 
General Audience Abstract 

 
 
Turfgrasses are ubiquitous, from home lawns to sports fields, where they are used for their durability and 
aesthetics. Disease within the turfgrass canopy can ruin these aspects of the turfgrass reducing its overall 
quality. This makes detection and management of disease within the canopy an important part of 
maintaining turfgrass. Here we look at the effectiveness of imaging techniques in detecting and isolating 
disease within cool-season and warm-season turfgrasses. We test the capacity for thermal imagery to 
detect the infection of tall fescue (Festuca arundenacea) with Rhizoctonia solani, the causal agent of 
brown patch. In greenhouse experiments, differences were detected in normalized canopy temperature 
between differing inoculation levels at five days post inoculation, and in field conditions we were able to 
observe differences in canopy temperature between adjacent symptomatic and non-symptomatic stands. 
We also developed a Python script to automatically identify and record the location of spring dead spot 
damage within mosaicked images of bermudagrass golf fairways captured via unmanned aerial vehicle. 
The developed script primarily used Hough transform to mark the circular patches within the fairway and 
recorded the GPS coordinates of each disease center. When compared to disease incidence maps created 
manually the script was able to achieve accuracies as high as 97% while reducing coverage of the fairway 
by over 30% compared to broadcast applications. Point density maps created from points in the code 
appeared to match those created manually. Both findings have the potential to be used as tools to help 
turfgrass managers. 
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Chapter 1 : Literature Review 
 

Introduction 

Grass is prevalent in our society from protecting the surface soil from erosion to providing surfaces 

for people to play and otherwise appreciate. Maintained turfgrass in the U.S is estimated to cover 

some 20 million ha with an annual economic impact estimated at $57.9 billion (Haydu et al, 2005). 

Turfgrass can be used for a variety of functional and aesthetic reasons, including controlling 

erosion of soil and providing a safe ground cover for sports fields and greenspaces. Stress to the 

canopy whether abiotic, including nutrient or water stress, or biotic, such as insect and disease 

damage to the plant is critical, as these can reduce safety for athletes playing on it and reduces 

aesthetic quality.  

 

Due to the high value of turfgrass, recognizing the presence of, or conditions conducive to, 

pathogen development are a key part of turfgrass management. This is due to the possibility of 

rapid decline of the host plant when conditions are conducive to pathogen growth. Being able to 

recognize these situations can help a turfgrass manager decide on the best course of treatment. As 

our understanding of factors that influence turfgrass heath have improved, so too has our need for 

collection of data on which to base management decisions. Remote sensing techniques can help in 

the collection and processing of these data to generate a more complete idea of the plant health for 

better treatment outcomes.  

 

Tall Fescue 

Tall fescue (Festuca Arundunacea Schreb) is a cool-season grass that covers approximately 35 

million acres (14,163,997 ha) of land throughout the United States (Ball 1991). This ubiquity is 
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due in part to its versatility with different varieties being used for everything from forage, to a 

managed turfgrass in home lawns and other greenspaces. Tall fescue is grown and used widely 

throughout the central band across the U.S. known as the transition zone, where summers can be 

too warm for less adapted cool-season grasses, but winters can be too cold for warm-season 

grasses. The ability of tall fescue to withstand heat and drought while maintaining green cover 

make it an ideal candidate for use as turfgrass (West 1996). 

 

There are many cultivars of tall fescue available each with their benefits and weaknesses, this 

makes choosing the correct cultivar for each use very important. For example, for a pasture area, 

where inputs may be low, you would want a hardy grass that is capable of resisting drought to 

allow for livestock to graze during the hot summer season. Whereas in a home lawn, aesthetics are 

the primary consideration, so you would prefer a thicker, denser canopy, even though that may 

require more management including frequent mowing, fertilizing, and watering. However, this 

dense canopy can provide an ideal environment for pathogen growth, especially brown patch, 

which is more rapidly spread in denser canopies (Giesler Yuen et al. 1996).  

 

Brown Patch 

Diseases caused by Rhizoctonia species of fungi should be considered for the successful 

management of amenity turfgrasses. There are several species of Rhizoctonia which are 

responsible for a variety of damage to turfgrass canopies including leaf and sheath spot caused by 

R. zeae Voorhees and R. oryzae Ryker & Gooch, and yellow patch caused by R. cerealis Van der 

Hoeven. Rhizoctonia solani Kühn is the causal agent of the most common Rhizoctonia diseases, 

brown patch and large patch on cool- and warm-season grasses, respectively. 
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Brown patch is the most common disease found on tall fescue. It occurs during hot, humid periods 

of the summer, when air and soil temperatures exceed 18ºC and 15ºC respectively and relative 

humidity exceeds 95% for at least 10 hours (Tredway and Burpee 2001). These conditions coincide 

with the time of year that tall fescue is at its most stressed and is commonly found in areas that are 

suffering from excessively wet soil. 

 

Leaf tissue of infected tall fescue exhibits small, tan lesions with a dark band around the perimeter. 

Symptoms at the canopy level include large circular to irregular regions of brown, blighted turf 

ranging anywhere from 5 to 60 cm or more in diameter (Smiley, 2005). In closely mown turfgrass 

systems patches can be surrounded by brown or grey rings called “smoke rings” which is evidence 

of active fungal growth in the foliage (Tredway and Burpee 2001). Brown patch does not typically 

damage all tillers within a patch which can allow for turfgrass to recover when disease pressure is 

reduced. 

 

Control of brown patch can be addressed through several methods. With moisture being necessary 

for development of brown patch one method for control is to limit the moisture present in the 

system (Tredway and Burpee 2001). This can be achieved through management of irrigation to 

reduce prolonged periods of leaf wetness. Methods of reducing leaf wetness including rolling of 

golf greens can be useful, as well as mowing or dragging of an object across the canopy often 

called “poling” (Tredway and Burpee 2001, Smiley 2005). Abundance of readily available 

nitrogen from fertilizers can also amplify frequency and severity of brown patch (Fidanza and 

Dernoeden 1996) where the authors speculate it may be due to either the promotion of thinner cell 
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walls, enhancement of nutritive leaf surface exudates that stimulate R. solani growth, or stimulated 

shoot growth which resulted in diversion of biochemicals used in plant defense to leaf production. 

However, this enhanced damage by readily accessible nitrogen can be reduced when combined 

fungicide applications (Fidanza and Dernoeden 1996). 

 

Preventative applications of fungicides such as azoxystrobin can help to reduce the likelihood of 

brown patch development when conditions are conducive (Settle, Fry et al. 2001). Once symptoms 

develop, curative applications of fungicide can help increase the rate of canopy recovery (Settle, 

Fry et al. 2001), however recovery is unlikely to occur until the environment is changed to one 

less hospitable to R. solani growth and development in favor of plant growth. 

 

Traditional scouting for turfgrass diseases relies on a combination of monitoring of environmental 

factors that can create favorable conditions for pathogens, and periodically observing the turfgrass 

for the onset of visual symptoms. With many turfgrass diseases occurring annually at similar times, 

this system does have its benefits of allowing for experienced turfgrass managers to know when 

to expect disease. However, these managed turfgrass areas can cover many acres, making it 

difficult to have a detailed visual inspection of all areas in a single day. One way to combat this is 

with remote sensing techniques. 

 

Remote sensing and digital image analysis in plant sciences 

Remote sensing is “the art and science of gathering information about the objects or area of the 

real world at a distance without coming into direct physical contact with the object under study” 

according to Shanmugapriya et al. (2019). This commonly takes the form of measuring and 
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recording regions or bands of the electromagnetic spectrum in the form of images. While in the 

past this may have taken limited bands within the visible spectrum, modern remote sensing can 

record data both within the visible spectrum and beyond (Bannari, Morin et al. 1995, Atzberger 

2013). In agriculture, these different bands are frequently used to gather information about the land 

coverage, estimated yield and the presence of stressors (Shanmugapriya, Rathika et al. 2019). 

Common bands used include red, green, and blue which are used to represent the visible parts of 

the electromagnetic spectrum, and the infrared which is generally spit up into near infrared, 

medium infrared and long-wave infrared, all of which generally fall outside of the visible spectrum 

and is often felt as heat (Zwinkels 2015). This has led to the development of numerous vegetation 

indices (Bannari, Morin et al. 1995, Shanmugapriya, Rathika et al. 2019). Vegetation indices are 

equations performed on the bands within an image to elucidate the target plant’s health. One 

commonly used index being the Normalized Difference Vegetative Index or NDVI developed by 

Tucker et al. (1979) which uses the equation: 

𝑁𝐷𝑉𝐼 =
𝑁𝑒𝑎𝑟	𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 − 𝑟𝑒𝑑
𝑁𝑒𝑎𝑟	𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 + 𝑟𝑒𝑑 

on each pixel within the image to estimate the health of the plant based on reflectance of the near 

infrared (750 -1400nm) and red (630-740nm) wavelengths of light. Other vegetation indices do 

exist entirely within the visible spectrum. Visible Atmospherically Resistant Index or VARI 

developed by Gitelson et al. (2002) with the equation: 

𝑉𝐴𝑅𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒 

which allows for estimation of plant health from true colour imagery. Indices like NDVI and VARI 

can provide a rapid and accurate snapshot of certain aspects of plant health and allow for increased 

information to be used for the management of cropping systems.  
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The infrared portion of the electromagnetic spectrum is between 700 nm-1 mm, and certain 

radiation within this portion is often felt as heat (Zwinkels 2015). Within plant sciences, this region 

has found use both in indices, such as NDVI discussed above, and alone to measure stresses in 

plants. Thermal infrared imagery is commonly used to measure water stress in plant systems as 

disruptions in a plants evapotranspiration can lead to changes in canopy temperature compared to 

healthy plants (Cohen, Alchanatis et al. 2005, Gerhards, Schlerf et al. 2018). Pathogen stress has 

also been measured using thermal imagery (Stoll, Schultz et al. 2008). 

 

In turfgrass specifically both vegetative indices and infrared imagery have been used to measure 

plant health remotely. Green et al. (1998) evaluated canopy reflectance change brought on by 

disease in tall fescue, and found a relationship between the 810 nm band of reflected light and the 

estimated disease severity for brown patch and gray leaf spot. Thermal imagery has been used in 

turfgrass but primarily as a means of estimating water content due to changes in evapotranspiration 

in the plant when water is limited (Hong, Bremer et al. 2019, Miller, Alonzo et al. 2020).  

 

A digital image is a type of array where each picture element (pixel) has a given value. One 

common method for collecting true colour imagery includes saving the blue, green, and red 

channels into these pixels to represent all other colours. From here the values can be converted 

into other formats such as HSV (hue, saturation, value) as needed for any given application. The 

process of analyzing the values and relationship between the pixels within an image with the intent 

to create something other than an image such as a disease map or recommendation constitutes 

digital image analysis (DIA) (UKEssays 2018). This process can elucidate differences that 
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otherwise would be difficult for people to quantify (Moya, Barrales et al. 2005). DIA has shown 

to be useful in the research of turfgrasses, especially in measuring color, canopy cover, and disease 

severity (Karcher and Richardson 2003, Karcher and Richardson 2005). Butler (2005) concluded 

that DIA was better for the purposes of evaluating spring dead spot than visual estimation in a 

variety of lighting conditions using imagery taken at fixed positions and angles. 

 

Algorithms are a frequently used part of DIA to identify features within images. Circles and lines 

are frequently the subject of these analyses in agriculture as they help to determine whether a given 

pattern is naturally occurring or not. One common way of finding these is using the Hough 

transform (Hough 1960), which helps identify imperfect instances of shapes within an image. The 

flexibility of this process has allowed it to be used for everything from weed identification in 

cropping systems to detection of disease on plant tissue (Wu, Ma et al. 2014, Bah, Hafiane et al. 

2017). With diseases on turfgrasses often occurring in large circular regions of blighted turf, the 

Hough transform is apt to be a valuable tool in detecting diseased areas within turfgrass systems. 

 

 

Bermudagrass 

Bermudagrasses (Cynodon spp.) are warm-season turfgrasses commonly grown in the southern 

United States as the top choices for sports fields (Puhalla et al. 2010). These hybrids are typically 

crosses of ecotypes of common bermudagrass (Cynodon dactylon L. Pers) which has aggressive 

growth habits and African bermudagrass (Cynodon transvaalensis Burtt Davy) which has a 

desirable canopy texture. This combination however is often sterile and must be propagated 

through sodding or sprigs.  This hybrid bermudagrass (Cynodon dactylon L. Pers x Cynodon 
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transvaalensis Burtt Davy) allows for both aesthetically pleasing turfgrass canopies and can be 

resistant to otherwise unfavorable conditions for bermudagrass. 

The increase in cold hardy varieties especially has contributed to the spread of bermudagrass into 

the transition zone where the decreased temperatures in the winter induce dormancy in warm-

season grasses including bermudagrass (Patton, Richardson et al. 2008). If conditions are 

particularly unfavorable areas can experience winterkill, where grass dies due to one or more 

factors during the winter. This can happen when temperatures reach below -7ºC, desiccation from 

prolonged dry temperatures and incasement of the plant by ice (Pessarakli 2008). Winterkill can 

also be caused by biotic damage to the canopy by pathogenic fungi which cause damage to dormant 

plant material. The most common example of this on bermudagrass in regions that experience 

winter dormancy is spring dead spot. 

 

Spring dead spot 

Spring dead spot (SDS) is a fungal disease caused by three ectotrophic root-infecting fungi; 

Ophiosphaerella narmari Wetzel, Hubert, & Tisserat, O. herpotrica Walker, and O. korrae 

Shoemaker & Babcock, which can be differentiated by their ascospore morphology (Wetzel III et. 

Al. 1999). This disease is found on bermudagrass in areas that have a period of winter dormancy 

(Smiley et al. 2005). The pathogens causing SDS infect the stolons and root material of 

bermudagrass primarily in the fall when soil temperatures are between 10ºC to 21ºC, at which 

point the plant’s growth is slowed in preparation for dormancy. 

 

While all three species have been observed causing damage within the continental U.S., O. 

herpotrica and O. korrae are more common, while O. narmari is more prevalent in Australia and 
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New Zealand (Wetzell-III, Skinner et al. 1999). Bermudagrass infected with Ophiosphaerella spp. 

is more sensitive to damage from frigid temperatures experienced during the winter compared to 

uninfected plants (Tredway, Tomaso-Peterson et al. 2009). This results in the death of plants which 

is not observable until those areas fail to break dormancy the subsequent spring (Treadway et al. 

2009; Walker at al. 2006). These appear as dead, circular, or arc-like patches of turfgrass ranging 

in size from several centimeters to over several meters in diameter. These patches of dead turf can 

often coalesce into large irregular shapes (Smith and Walker 2009; Treadway et al. 2009). Patches 

of SDS often reoccur and expand from the same location for multiple years (Couch 2000, Walker 

2009). 

 

Cultural practices to reduce winterkill damage including aeration/ topdressing to reduce thatch and 

increasing mowing height leading into winter dormancy have also proven to be useful in reducing 

the SDS damage (McCarthy and Miller 2002). Recovery from SDS damage is hastened by 

applying fertilizers, and by avoiding management practices that disrupt the damaged grass e.g., 

vertical mowing, which can reduce the rate of recovery (Hutchens 2020). Chemical practices can 

also be used though efficacy can be inconsistent depending on the species (Hutchens 2020). The 

best method of treatment for this disease however requires fungicide applications in the fall as the 

host plant is beginning to enter winter dormancy preventing the pathogen from causing damage. 

Due to the relatively consistent reoccurrence of damage in the same spot annually it presents a 

unique opportunity for site-specific management of the disease. 

 

 

Precision agriculture & precision turfgrass management 
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According to Pierce and Nowak (1999) precision agriculture (PA) is “the application of 

technologies and principles to manage spatial and temporal variability associated with all aspects 

of agricultural production for improving crop performance and environmental quality.” This 

involves the collection and interpretation of data from a variety of sources to implement custom, 

site-specific management practices for a given area (Bogiovanni and Lowenberg-Deboer 2004). 

In recent years the decrease in price and increased quality of small unmanned aerial vehicles 

(UAVs) has increased the speed and lowered the cost of high-resolution imagery, while increasing 

flexibility in flight heights and deployment speed (Jones et al. 2006). This has led to UAVs 

becoming a keystone in PA for biomass assessment and measuring weed infestation (Grenzdörffer, 

Engel et al. 2008). 

On the surface, turfgrass may appear different from other crops. This is due to turfgrass being 

grown in a perennial system and generally being measured qualitatively on aesthetic features while 

other crops are measured in more quantitative metrics such end yield. Despite this difference the 

management practices for both are exceedingly similar requiring control of competing weeds and 

disease, in addition to management of resources including water and fertilizer. This overlap in the 

management of resources within a system illustrates that turfgrass managers stand to benefit from 

PA principles as well. However, these principles must be adapted to the specialized needs of the 

turfgrass industry. This new field of advanced management practices is known as precision 

turfgrass management (Carrow, Krum et al. 2010).  

Precision turfgrass management (PTM) includes all aspects that influence the health of turfgrass. 

Moisture and nitrogen stress in turfgrass can be monitored remotely through spectral reflectance 

(Caturegli, Corniglia et al. 2016, Badzmierowski, McCall et al. 2019). The combination of these 
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and other factors can be used to create site-specific management units to direct treatment to exactly 

where it is needed. One example of this is previous research by Booth (2018) which showed site-

specific applications of penthiopyrad were able to reduce fungicides by up to 65% compared to 

full coverage blanket applications with no reduction in turf quality.  

 

Rationale for research 

The management of turfgrass generally takes place either preventatively or curatively, before or 

after an outbreak of disease respectively. Recently, high expectations for the quality of managed 

turfgrass combined with the increased scrutiny of chemical applications to greenspaces has 

increased pressure on turfgrass managers to do more with less. While initially paradoxical, 

advancements in the realms of precision agriculture and precision turfgrass management has 

allowed for increased information in the timing and efficiency in chemical pesticide usage with 

many of these methods requiring analysis of digital imagery. For preventative applications, timing 

of applications is key as it can be the difference between no visible damage and a disease outbreak 

ruining the playability and aesthetics of the canopy. This makes determining the presence of a 

pathogen of utmost importance. One method of detecting presence of pathogens within agronomic 

cropping systems is thermal imagery. We hope to determine if thermal imagery is potentially 

useful in detecting the presence of brown patch in a turfgrass system as well as the timing of these 

developments. This could be used as a remote method to identify a problem early in the progression 

of disease allowing for more rapid treatment.  

 

Previous research into site-specific control of SDS while promising in the results, the methods of 

selecting diseased areas from imagery currently are time consuming. This can serve as a roadblock 
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slowing adoption of these technologies in the field. Image analysis can help in this endeavor. 

Modern machine learning algorithms while highly accurate, often require a large amount of 

computational power. This again can serve as a barrier for adoption of these technologies. These 

factors combined present an opportunity for an accurate disease mapping method, which uses less 

computationally expensive methods. The proposed research aims to utilize digital image analysis 

to estimate plant health and aid in the mapping of disease outbreaks in tall fescue and bermudagrass 

before and after disease outbreak, respectively. This research can provide more tools for turfgrass 

managers to identify disease stress within their managed canopies and allow for more informed 

decision making. 
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Chapter 2 : Relative Thermal Changes Associated with Brown Patch Symptoms in Tall 
Fescue 

 
Abstract 

Tall fescue is a cool-season turfgrass that is commonly used in commercial and residential lawns, 

and lower budget recreational fields across temperate regions of the United States. Brown patch, 

caused by Rhizoctonia solani causes brown lesions on grass which coalesce into blighted regions 

of turf and is among the most problematic diseases on tall fescue. In this paper we aim to measure 

changes in canopy temperature of tall fescue infected with R. solani. Tall fescue stands inoculated 

with 3 mL of potato dextrose broth containing four levels of R. solani (high, medium, low, and 

control) were maintained in a greenhouse and monitored with daily true colour and thermal images. 

The cumulative normalized canopy temperatures of tall fescue increased with increasing inoculum 

levels. Tall fescue exposed to the highest pathogen concentrations had the warmest cumulative 

temperatures with non-inoculated control canopies having the coolest.  Daily assessments of 

normalized canopy temperature were not significant for four days after inoculation but were for 

each subsequent date. During this time no significant changes were observed in the visual indices 

and hand inspection of the canopies revealed lesions beginning to develop after seven days.  An 

accompanying field observational study looking at lawn height tall fescue (7.6 cm) and putting 

green height (0.45 cm) creeping bentgrass found consistently higher canopy temperatures in areas 

with symptomatic damage compared to non-symptomatic canopies in both turf types when 

measured in the afternoon. These findings suggest that thermal imagery may be useful for 

symptomatic and pre-symptomatic brown patch detection in turfgrass systems.  

 

Introduction 
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Tall Fescue (Festuca arundenacea Schreb.) is a ubiquitous cool-season turfgrass covering over 35 

million acres (14,163,997 ha) across the United States (Ball 1991) including home and commercial 

lawns, public greenspaces, and roadsides, where it is valued for its aesthetic qualities, and relative 

drought tolerance. Several fungi within the genus Rhizoctonia infect tall fescue causing a variety 

of diseases including brown patch which is caused by Rhizoctonia solani. This disease produces 

tan lesions with dark bands surrounding them on the leaves of the grass which can coalesce into 

circular brown patches of thinned turf scattered throughout the canopy. Rhizoctonia solani does 

not readily produce conidia, instead spreading primarily through fragments of mycelium and 

sclerotia that exist on the leaf litter. When relative humidity is consistently above 95% and 

nighttime temperatures remain above 18ºC, R. solani can begin to infect the host plant crown and 

leaves causing brown patch development. This timing coincides with the summer months, a time 

where the grass is already suffering from other stressors including heat, making it one of the most 

devastating diseases on tall fescue (Smiley 2005). 

 

Treatments for brown patch typically include broadcast applications of fungicides like 

azoxystrobin either as a preventative or recuperative measure. Recuperative fungicide 

applications, while they are typically effective, are applied after damage to the turfgrass canopy is 

thorough enough to be noticed. This damage can lead to reduced canopy density and colour for 

several days for full recovery (Fidanza and Dernoeden 1996). This reduction in turfgrass density 

is a problem as tall fescue is commonly used for its aesthetic quality. Preventative applications 

prior to symptom expression can help to reduce this problem, however this often requires more 

applications of fungicide, which in turn, means a higher cost for maintenance. This creates a 

scenario where turfgrass managers either spend more money, which may be limited, to maintain 



 18 

quality turf, or less money and maintain poorer quality turf. To help combat this dilemma more 

information is needed by turfgrass managers to help in decision making. This information can be 

obtained through remote sensing imagery techniques. 

 

True colour images, comprised of wavelengths between 400-700nm are the most common images 

taken (Zwinkels 2015). These images are commonly represented as of a combination of three 

primary bands of colour: red, green, and blue. These bands are frequently used to monitor and 

measure plant health remotely by performing calculations between these bands to increase contrast 

between healthy, unhealthy plant material, soil cover, etc. (Dutta Gupta, Ibaraki et al. 2012, Gupta, 

Ibaraki et al. 2014). Among these indices are the green-red vegetation index (GRVI) and visible 

atmospherically resistant index (VARI)(Eng, Ismail et al. 2019). Image analysis techniques such 

as these have been used in the past to estimate damage caused by Rhizoctonia spp. on turfgrasses 

including tall fescue (Sykes, Horvath et al. 2020). However, these assessments relied solely on 

light reflectance within the visible spectrum. 

 

Spectral imagery is another frequently used method to measure plant health remotely. Infrared 

light encompasses a wide range of wavelengths in the electromagnetic spectrum commonly broken 

into 3 groups: shortwave infrared (780-1500 nm), medium wave infrared (1500-3000 nm), and 

longwave infrared (3000 nm-1 mm)(Zwinkels 2015). These spectra are used to measure the 

thermal radiation emitted from objects and correspond to the object’s temperature. Near infrared 

is frequently combined with true colour bands to create the normalized difference vegetation index 

(NDVI). This is used to measure plant health remotely including pathogen stress in turfgrass 

(Green-II, Burpee et al. 1998). 
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Thermal imagery focuses primarily on wavelengths between roughly 9000-15000 nm and in plant 

science is commonly used as a means for measuring plant water content (Chaerle 2001, Cohen, 

Alchanatis et al. 2005). The use of thermal imagery has been extended to measure drought stress 

in turfgrass systems, with areas experiencing drought stress appearing warmer due to a reduction 

in transpiration (Hong, Bremer et al. 2019, Miller, Alonzo et al. 2020). Thermal imagery has also 

been used to measure pathogen stress in cropping systems including sugar beets, olives, poppy, 

and almonds, (Calderón, Navas-Cortés et al. 2013, Calderón, Montes-Borrego et al. 2014, 

Calderón, Navas-Cortés et al. 2015). However, this use remains unstudied in the turfgrass systems. 

Here we aim to determine the capabilities of thermal imagery in regard to measuring pathogen 

stress in a tall fescue canopy. The objective of this research was to determine if it is possible to 

detect early changes in canopy temperature of tall fescue stands infected with Rhizoctonia solani 

relative to true colour imagery in a greenhouse setting. We also compare canopy temperatures of 

symptomatic and non-symptomatic turfgrass stands at various points in the day. 

 

Materials and Methods 

Inoculum preparation: 

Three isolates [RS002, RS007, RS013] of Rhizoctonia solani were retrieved from cold storage 

isolate library collected throughout the state of Virginia and were grown at 25ºC on separate 100 

mm Petri dishes of full-strength potato dextrose agar [Difco Laboratories; Franklin Lakes, NJ] for 

two weeks to allow for recovery. Culture plates were observed to have white mycelial growth, and 

observation under a microscope revealed septate mycelium with right angle branching, and no 

conidia were present, which was consistent with morphological descriptions made by Smiley et al. 
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(2005) for Rhizoctonia cultures. A 5 mm boring tool was used to remove plugs of agar covered in 

the fungus from each inoculum plate and were transferred into two 50 mL polystyrene tubes 

[Corning; Corning, NY] each with approximately 50 ml of potato dextrose broth (PDB) [Difco 

Laboratories; Franklin Lakes, NJ] in a shaker table and maintained at 25ºC at 115 rpm for an 

additional week to grow inoculum. After one-week strands of hyphae could be seen extending 

from the plugs in the liquid broth. The broth was then homogenized in four 25 mL batches using 

a Waring blender [Conair Corporation, Stamford, CT] equipped with a 30 mL blending vessel. 

The inoculum from each container was then decanted into a beaker and mixed for increased 

homogeneity. Fifty mL of inoculum was reserved in a falcon tube as full-strength inoculum (IHigh), 

the remaining 50 mL was supplemented to 100 mL with sterile PDB resulting in a half strength 

inoculum (IMedium) the process was repeated again to produce a quarter strength inoculum (ILow). 

50 mL of sterile PDB was also reserved in a falcon tube to be used as a negative control (IControl).  

 

To measure the amount of pathogen used in inoculations, three pre-weighed 1.5 mL 

microcentrifuge tubes were filled with 1mL of liquid from a given inoculum level. Samples were 

then centrifuged at 13,000 rpm for 1 min to form a pellet at the bottom. Excess liquid was decanted 

off.  Pellets were resuspended in 0.5 mL of sterile de-ionized water to remove any excess broth 

and were centrifuged again for 1 minute at 13,000 rpm. The pellet was then allowed to dry for 

approximately 10 hr under a laminar flow hood. The tubes were then reweighed and the average 

mass of R. solani present within each inoculum level was recorded as 8.6 g for the IHigh, 4.2g for 

IMedium, and 2.1 g for ILow.  

 

Greenhouse Experiment: 
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Sixty-four 3.5 cm diameter cone-tainers were filled with Miracle-Gro potting mix [Scotts Miracle-

Gro; Marysville, OH] potting mix until full, and each was then seeded with approximately 0.85 g 

of Scott’s heritage uncoated tall fescue seed (33.85%TarHeel II, 33.83% Dynamic II, 28.98% 

Duration, 1.75% inert from seed, 1.5% other crop seed, 0.09% Weed seed) [Scotts Miracle-Gro; 

Marysville, OH]. This was chosen as it was a commercially available, uncoated seed blend that 

could represent a seed blend a homeowner would choose. The stands were watered daily for 6 

weeks to allow for germination and maturation of the canopy. These newly seeded stands of tall 

fescue were then separated into 8 experimental blocks consisting of 4 cone-tainers (n=32). The 

study was repeated once and separated in space within a greenhouse with each repetition of the 

study representing an experimental run. Each cone-tainer within a block was inoculated with 3 mL 

of either IHigh, IMedium, ILow ejected as a jet from a syringe from the middle of the canopy, down to 

soil; with the remaining cone-tainer inoculated with 3 mL of sterile potato dextrose broth as a 

control in the same fashion. The groups were then placed on a bench in a greenhouse equipped 

with a VeriSTEP control system [Wadsworth Control Systems; Arvada, CO ] set to maintain 32ºC 

temperatures during the day and 21ºC at night. Plants were watered with a sprinkler system twice 

daily at 1200 and 1800 hr to increase leaf wetness throughout the nights, and an evaporative 

humidifying system was used to promote a more humid environment in the greenhouse, though 

humidity was only averaged approximately 65% throughout the experiment according to the 

VeriSTEP control hub. 

 

Plant health was measured through a combination of imaging and physical inspection techniques. 

Images were taken daily beginning the day before inoculation (-1) through 10 days post-

inoculation between 0900 and 1100 hours. Data on Day 0 were collected immediately before (-0.5 
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h) and after (0) inoculation. Images were taken inside of a light box equipped with a string of LEDs 

and lined with black felt with both a Canon Rebel t6 DSLR camera [Canon inc.; Tokyo, Japan] 

equipped with an 18-55mm f/3.5-5.6 lens and a FLiR t650sc thermal camera [FLiR; Wilsonville, 

OR] equipped with a 45º lens (150 mm min focus) with the subject approximately 25 cm from the 

lens. During this time, all canopies were visually inspected, and the number of identifiable tan 

centered, dark-banded brown patch lesions present in the canopy were recorded for each sample. 

After data were collected each day, the order of the blocks were re-randomized to reduce the 

likelihood of any blocking edge effects within a run and each run was randomly assigned a location 

on a greenhouse bench. 

 

Ambient temperature in the greenhouse fluctuated between 18.9 - 28.6 ºC during the experimental 

period which in turn created a large degree of fluctuation in the temperature of the turfgrass 

canopy. To correct for this, we transformed the data similar to Caldéron et al. (2013) and subtracted 

the ambient temperature (Ta) from the recorded canopy temperature (Tc) (Tc-Ta). Ambient 

temperature was measured through the temperature of an index card within the light box which 

was included with the thermal image of the turfgrass canopy. This resulted in consistently negative 

values for Tc-Ta as the canopy temperature was always below ambient temperature.  

 

Re-isolation of pathogen: 

Re-isolation of R.solani. was then attempted from the leaves and crown of the grass plants. 

Samples of leaf and stem tissue were subjected to surface sterilization with 10% bleach for 10 

seconds and were placed in ¼ strength PDA plates amended with 0.25 g L-1 ampicillin. Organisms 

were allowed to grow for three days and those with growth patterns that resembled previous 
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cultures of Rhizoctonia spp. were removed with a 5 mm boring tool, placed on new ¼ strength 

PDA plates, and allowed to grow for at 25 ºC until new growth could be observed. Samples of 

each of these cultures were then observed under a microscope to check for morphological 

characteristics matching previous R. solani cultures e.g., right angle branching, lack of conidia.  

 

Lesion incidence count in canopy: 

All lesions on the leaves were recorded the day that they appeared, however in order to be 

attributed to brown patch instead of other damage, lesions were observed through the rest of the 

experiment; if a dark ring developed around the lesion the damage, the lesion was added to the 

count of brown patch lesions. This was done to prevent extraneous damage to the leaves from 

being attributed to disease. 

 

Field Observational Study: 

Stands of lawn height (7.6 cm) tall fescue and creeping bentgrass managed as a putting green (0.45 

cm) both with visually symptomatic, natural infestation of Rhizoctonia spp. located in Blacksburg, 

VA at the Virginia Tech Turfgrass Research Center were selected for analysis. A polyvinyl 

chloride frame creating two adjacent squares, each 0.126 m2 in size, was placed on the ground with 

one area being placed on a visually symptomatic area, and the other being placed over non-

symptomatic areas. Images were taken with a FLiR t650sc set approximately 1m above the ground 

level with each pair of symptomatic and non-symptomatic areas within the frame of the camera. 

Fifteen thermal images were collected per visit to each turfgrass canopy type, and both areas were 

visited twice per day once in the morning (0800 hr) and again in the early afternoon (1300 hr) or 

a total of 60 images per day for 7 days. These times were chosen to see if the ambient temperature 
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of the surroundings would influence any observed differences in temperature of symptomatic and 

non-symptomatic turfgrass canopies. Thermal images were then analyzed using ResearchIR 

[version 4.40.9, FLiR; Wilsonville, OR] software using the square region of interest tool to select 

the areas within the symptomatic and non-symptomatic frame and collect average temperature for 

those regions. Tall fescue and creeping bentgrass data were analyzed separately in JMP Pro. 

Analysis of variance of canopy temperature was performed for the presence of symptoms, time of 

day, collection date, and their interactions.  

 

Statistical analysis: 

Statistical analysis was performed using JMP Pro [version 15.0.0, SAS Institute; Cary, NC]. 

Transformed temperature data were subjected to analysis of variance for effects of treatment, day, 

run, treatment*day, treatment*run, run*day, and treatment*run*day.  Area under the progress 

curve (AUPC) was calculated for the inverse of Tc-Ta in ARM (version 2021.0; Gylling Data 

Management, Brookings, SD) to show cumulative changes in Tc-Ta throughout the duration of the 

study. Lesion incidence in the canopy was also subject to ANOVA for the effect of inoculation 

treatment, the total lesion count, as well as their interaction. Pathogen isolation from plant tissues 

was subject to chi-square analysis comparing frequency of re-isolation within the 4 inoculum 

treatment groups. 

 

Results: 

Greenhouse experiment: 

Analysis of variance of the main effects of inoculum density and experimental run showed 

significant effects on the AUPC of Tc-Ta (p<0.0001), while their interaction was not (p=0.4266) 
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(Table 1). The change in canopy temperature between Run 1 and Run 2 was approximately 0.5 ºC. 

While each run was completed within the same time frame, the spatial differences in greenhouse 

condition between runs were enough to represent two different growing environments. However, 

the impact of inoculum density on Tc-Ta  was similar across runs as evidenced by the significant 

cumulative treatment main effect (AUPC). Tc-Ta  increased with increasing inoculum loads (Table 

2). The impact of inoculum load on Tc-Ta  was significant by day (p<0.0001). Separation of means 

indicates that there were no significant differences in Tc-Ta  by inoculum load on days -1 through 

3 in either run (Fig 1). The impact of inoculum density on Tc-Ta  was discernable beginning on day 

4 for both Runs 1 and 2. These remained significant with each subsequent assessment through the 

remainder of the study. Once daily treatment effects were significant, Tc-Ta  increased as inoculum 

load increased. The impact of inoculum load did not impact any true colour metrics on any day for 

either run (p>0.0638).    

Source Nparm DF 
Sum of 
Squares F Ratio Prob > F 

Run 1 1 44.064784 61.2101 <.0001 
Inoculum Treatment 3 3 71.591779 33.1492 <.0001 
Day 1 1 25.951102 36.0485 <.0001 
Run*Day 1 1 9.46314 13.1452 0.0003 
Run*Inoculum Treatment 3 3 2.056314 0.9521 0.4148 
Day*Inoculum Treatment 3 3 43.388372 20.0902 <.0001 
Run*Day*Inoculum 
Treatment 3 3 0.994035 0.4603 0.7101 

Table 1.  An ANOVA table looking at the effect inoculum treatments, run, day, and all permutations of their 

interactions on Tc-Ta. 

 

  
Inoculum 

level 
Average 
AUPC 

Control -45.10938 A 
Low -40.85625 B 
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Medium -38.65719 B 
High -35.725 C 

Table 2. Area under the progress curve of ambient temperature – canopy temperature of tall fescue stands 

inoculated with high inoculum density (8.6g dry weight Rhizoctonia solani), medium inoculum density (4.2g 

dry weight R. solani), low inoculum density (2.1 g dry weight R. solani), and a negative control inoculum. Means 

followed by the same connecting letters were not significantly different according to Tukey’s HSD (α=0.05).  

 

 

Figure 1. Changes in (canopy temperature (Tc) – ambient temperature (Ta)) over time for tall fescue canopies 

mock-inoculated (control) or inoculated with high, medium, or low levels of Rhizoctonia solani. Vertical bars 

represent standard error. 

 

Re-isolation of pathogen: 

Overall, pathogen isolation was relatively low with no treatment group having isolation over 60%. 

Chi-square analysis of R. solani resolution did show significance between treatment groups with 

a likelihood ratio of 0.0044. There were no incidents of re-isolation from the control group. The 

low inoculum group (Ilow) showed the lowest frequency of re-isolation with only 25% of samples; 

both Imedium and IHigh showed higher rates of re-isolation with 58.8% and 56.3% respectively. 
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Lesion incidence count in canopy: 

Overall count of observed lesions attributed to brown patch remained low throughout the 

experiment with all confirmed lesions occurring after the 7-day mark with only 11 lesions being 

observed across 6 cone-tainers in run 1 and 8 lesions being counted in 7 cone-tainers in run 2; all 

lesions counted were found on samples within the 1, and ½ inoculum levels. The number of lesions 

were significant by inoculum density (p<0.0001) and the interaction of inoculum density by run 

(p=0.0195). However, lesion development across experimental runs was not significant 

(p=0.2507). The inoculum treatment however showed a significant difference on the total number 

of lesions counted between groups (p<0.0001). 

 

Field Observational study: 

Analysis of variance for canopy temperatures observed in the field on lawn height fescue 

(p<0.0001) and putting green height creeping bentgrass (p<0.0009) showed significant differences 

in the time of day,the day visited  and the time*day visited interaction. Time of day was separated 

for further analysis. The day visited were pooled together as while this was significant, due to 

difference in the daily temperature, the interaction between day visited and the presence of 

symptoms was not for either turf type (p>0.51555). This suggested that the trend in temperature 

difference was consistent throughout the changes in canopy temperature. This showed that there 

were no differences between symptomatic and non-symptomatic turfgrass canopy temperature in 

both creeping bentgrass (p=0.9503) and fescue(p=0.9113) when observed in the morning (0800 

hrs). When observed in the afternoon (1300 hrs) differences in temperature were observed in both 

groups (p<0.0492). 
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Figure 2. Box-whisker plots comparing the average canopy temperature of 15 symptomatic and 15 non-

symotpmatic areas of creeping bentgrass managed at 0.45 cm and a predominantly tall fescue canopy managed 

at 7.56 cm colleced across 7 days. 

 

Discussion: 

Data collected throughout the greenhouse experiment suggests that infection of turfgrass canopies 

does generate measurable changes in thermal imagery. The area under the progress curve for Tc-

Ta resulted in significant differences between inoculum densities as early as day 4 and persisted 

throughout the remainder of the experimental period. On the final day of the experiment (day 10) 

a Student’s t-test showed significant differences between all four treatment groups (data not 

shown) with the highest inoculum level showing an average Tc -Ta of -1.8 ºC while the average of 

the negative control was -3.6 ºC. This means that infected leaves were on average warmer when 

compared to ambient temperature than non-infected leaves. This suggests potential for increased 

canopy temperature within a region to correlate to the amount of disease present as well.  

 

A trend similar to this could be observed with the increasing frequency of pathogen re-isolation 

throughout the inoculum groups. The control had no Rhizoctonia re-isolated and maintained the 

ns 
p = 0.0258 p = 0.492 

ns 
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lowest average Tc -Ta. All other inoculum treatments showed different Tc -Ta averages from the 

control with Ilow being the next lowest Tc -Ta scaling up to IHigh. The same general trend is observed 

with the resolution frequencies. The presence of lesions combined with the ability to reisolate the 

pathogen does suggest that there was disease occurring during the experiment. 

 

Throughout the course of the greenhouse experiment the visual symptomology, as estimated 

through VARI, GRVI, and blue channel indices (B, B/G, B/R) indices, remained rather constant 

showing no significant changes through the course of the experiment. Lesion count overall was 

low with the first being observed at 7 days post inoculation, and all occurred in the IHigh and IMedium 

treatment groups during the experiment. This small amount of disease observed is likely due to 

complications in controlling the humidity of the greenhouse. While steps were taken to create 

prolonged leaf wetness and excessive heat, the humidity within the greenhouse was difficult to 

control due to the outside air being cool during the trial period. Any outside air that made its way 

into the greenhouse was quickly warmed and the relative humidity dropped. While an evaporative 

humidifying system was used it struggled to keep humidity above 60% well below the 95% relative 

humidity that is required for optimal growth (Smiley 2005) which is likely the cause of slow 

progression of symptoms. However, even with this delayed symptom development, temperature 

changes were measured 3 full days before the first lesions were observed. This suggests that for 

remote sensing applications thermal imaging could potentially show differences before they would 

be observed in true colour imagery. This change in canopy reflectance could be used by turfgrass 

managers to detect early stresses within the canopies.  
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The data from the field showing no significant differences between symptomatic and non-

symptomatic areas in the morning hours were initially surprising to us as we expected a difference 

in the warming patterns based on the greenhouse results. However, upon further reflection, at such 

early times in the morning the ground was covered in dew. This could act as a shield of sorts 

covering up any differences in temperature with an even amount of evaporation from the 

canopy(Monteith 1981). A similar effect of dew interacting with radiometric readings observed by 

Escorihuella et al. (2009) when it was observed that dew indirectly obstructed L-band soil moisture 

readings, believed to be caused by dew absorption into the leaves. By the measurements in the 

afternoon all of the dew had evaporated allowing for us to more directly measure the bare canopy 

with few interactions, allowing for the differences in temperature to become more apparent. 

 

In the field there are more complications which can be responsible for changes in the canopy 

temperature of grasses most notably moisture stress which is also responsible for changes in 

canopy temperature (Hong, Bremer et al. 2019, Miller, Alonzo et al. 2020). Scaling this up would 

require a way to separate biotic stress from other forms of stress in the turf canopy, the most 

obvious being drought stress. This could be achieved by looking at the pattern of reflectance 

changes and comparing them to the underlying features of the landscape; be it soil type, topography 

etc. Another potential complication is when these things are combined as is the case of localized 

dry spot. This can occur when fungi in the soil and thatch layers of the soil form dense, 

hydrophobic nets prohibiting the ingress of water, damaging grass (Wilkinson and Miller 1978). 

Management for each of these conditions is quite different, meaning that thermal imagery alone 

would likely be insufficient for any kind of diagnosis. However, it appears to be a potentially 
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powerful tool in monitoring damage in the turfgrass canopy, that could be used in conjunction with 

other monitoring methods to promote an overall healthy canopy. 

 

Conclusions: 

The onset of brown patch in tall fescue canopies can cause rapid decline of turf quality. Treatment 

after the onset of symptoms can take several days for the canopy to fully recover. This makes the 

early detection of symptoms an important step in managing the disease efficiently. In this relatively 

controlled greenhouse, we found that thermal imagery was able to observe differences between 

inoculum levels 3 days after inoculation. In field conditions thermal imagery does appear to have 

some utility in measuring pathogen stress in turfgrass systems, showing significant differences 

between the inoculation levels in the greenhouse and symptomatic vs non-symptomatic in the field, 

however only when the canopy can be observed with no dew. These observations suggest that 

thermal imagery could be a powerful tool to identify pathogen stress in turfgrass systems. Going 

forward it will be interesting to see if these changes are able to be observed through more distant 

types of imagery including unmanned aerial vehicles UAVs.  The scaling of temperatures with 

amount of inoculum suggest that this could have the potential to estimate pathogen load within the 

canopy. 
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Chapter 3 : Automated Isolation of Spring Dead Spot from Aerial Imagery 
 

Abstract: 

Turfgrass managers stand to gain a lot from advancements in precision agriculture and precision 

turfgrass management. While advanced methods of image analysis do exist and are able to show 

high accuracy in mapping pest incidence, they require access to advanced computation that is 

outside of the purview of many managers. Mapping of individual pests by hand is possible as 

well but these methods are very time consuming. This highlights the opportunity for less 

advanced, still accurate methods for mapping disease in turfgrass systems. To address this need, 

we developed a Python script that uses simple algorithms to map spring dead spot incidence in 

bermudagrass fairways. It does this by first attempting to remove non-turfgrass items within an 

image and then looking for circular patches within the remaining image. Looking at images 

collected across four fairways from a golf course in Virginia, we were able to determine that the 

program can reach accuracies of 97% when compared to hand drawn maps while reducing the 

treatable coverage of the fairway by over 30%. This was done while running entirely on a laptop 

in under five minutes for each mosaicked aerial image-set. Our computer automated detection of 

spring dead spot could allow turfgrass managers to more efficiently use fungicides which may be 

too cost-prohibitive for traditional broadcast applications. 

 

Introduction: 

Spring dead spot (SDS), a disease that affects bermudagrass (Cynadon dactylon L. Pers), is 

caused by the pathogenic fungi in the genus Ophiosphaerella. The disease is observed in areas 

where bermudagrass experiences a period of dormancy due to cold temperatures (Tredway, 

Tomaso-Peterson et al. 2009). Symptoms of SDS include patches of sunken, dead bermudagrass 
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that failed to recover from dormancy and can range in size from several cm to upwards of one m 

in diameter (Couch 2000). The resulting damage in the turfgrass canopy renders it dissatisfactory 

for many of the applications bermudagrass is used for, especially golf course fairways and sports 

fields where the differences in canopy uniformity can result in uneven play and safety concerns 

for athletes.  

 

While suppression of SDS is possible with several fungicides, results have proven either 

inconsistent or cost-prohibitive (Tredway, Tomaso-Peterson et al. 2009). Tebuconazole is 

relatively cost-effective at 36 USD ha-1 per application, (Landscape Supply, 2021), but is 

reported to have inconsistent results in controlling SDS (Booth 2018). Hutchens et al. (2020) 

observed fluctuations in tebuconazole efficacy based on population composition and concluded 

that isofetamid (Kabuto, PBI Gordon), mefentrifluconazole (Maxtima, BASF), penthiopyrad 

(Velista, Syngenta Crop Protection) and pydiflumetofen (Posterity, Syngenta Crop Protection) 

were most effective at controlling SDS. However, one application of any of the latter fungicides 

at the maximum labeled rate costs between 492-1532 USD ha-1. This difference in price and 

efficacy forces turfgrass managers to choose economics or effectiveness when considering 

options for disease management.  

 

One way to combat the high cost of effective treatment lies in precision turfgrass management 

practices, where site-specific chemical applications are made based on need within a given area, 

as opposed to treating all areas regardless of need. Booth (2018) reports that site-specific 

applications of penthiopyrad can reduce fungicide inputs by 65% while maintaining disease 

suppression similar to full-coverage applications. To make these applications, the authors used 
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GPS sprayer technology, and maps of disease centers derived from mosaicked imagery collected 

from an unmanned aerial vehicle (UAV). This reduction in material needs could help to address 

the cost of treatment for SDS. However, creating an accurate map of disease centers from UAV 

imagery can be time consuming, requiring an trained person to select individual disease centers 

within an image. This results in map generation taking upwards of two active hours per hole or 

sports field analyzed when assessing manually (Hutchens, personal communication 2019), 

making the adoption of this process less likely due to limitations in time and trained labor. 

 

One way to combat this challenge is the use of deep learning to identify stressors in the turfgrass 

canopy. Deep learning is a subfield of machine learning that uses computational models of 

multiple processing layers to learn and represent data with multiple levels of abstraction 

mimicking how the brain perceives and understands multimodal information and includes a 

variety of methods including neural networks (Voulodimos, Doulamis et al. 2018). Convolution 

neural networks can be trained for just such specific tasks and can boast accuracy of >99% 

detecting broadleaf weeds in the turfgrass canopy (Yu, Sharpe et al. 2019). Training and 

deploying these models requires high output computer resources, which leads many to turn to 

offsite computation services often called “the cloud” (Dickson 2020). However, many golf 

courses and recreational facilities are located in rural to semi-rural areas, where internet speeds 

are slower, which would limit the speed of data transfer to these cloud services. These 

combinations of factors serve as potential barriers to turfgrass professionals adopting the 

potential benefits of precision turfgrass management.  
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Limitations in rapid pest-incidence mapping provides an opportunity for less computationally 

intensive ways to identify pathogens within a turfgrass system. To fill this niche, we have 

developed a program that looks for patterns within colour imagery to identify regions that are 

likely afflicted with spring dead spot. This program takes in images with georeferencing 

mosaicked from UAV flights over managed turfgrass systems and creates a file with damaged 

locations for use with precision turfgrass disease management using GIS software. The objective 

of our research was to automate the process of SDS mapping, reducing the generation time while 

maintaining accuracy compared to maps generated by hand. 

 

Materials and methods: 

Image Acquisition: 

Aerial imagery was collected using a UAV on 28 May 2019 from four fairways exhibiting 

symptoms of spring dead spot at the Nicklaus Course of Bay Creek Resort in Cape Charles, VA 

(37.250, -76.008). Flights occurred between 1100 and 1500 hr local time to minimize shading. 

Images were captured using a 20 MP CMOS 4k sensor in true colour bands (RGB) with an 84º 

FOV fitted on a Phantom 4 Pro (DJI). Automated flight plans were created using waypoint 

navigation software (Drone Deploy, v 4.40.0). Image acquisition was completed using 75% front 

and 70% side overlap between images, with speed, direction, and 3D capture optimized for the 

flight plan. All flights occurred at an image capturing altitude of 50 m above ground level for a 

ground sample distance of 1.54 cm pixel-1. Spatial accuracy of mosaicked images were 

georeferenced using the coordinates of eight target ground control points per fairway collected 

with a Phoenix 300 differential GPS receiver (Raven Industries, Sioux Falls, SD, USA) corrected 

to within 1 dm using wide-area augmentation system by OmniSTAR HP subscription. Pix4D 
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(Prilly, Switzerland) was used to take the collection of images from each hole and generate one, 

mosaicked image which was georeferenced for each hole (full keypoints image scale, Point 

Cloud Generation: Optimal settings with image scale ½).  

 

Generation of hand validated SDS incidence points: 

 Mosaicked and georeferenced images were opened in ArcMap (ArcGIS Desktop 10.5.1, 

Environmental Systems Research Institute. Redlands, CA) and a boundary polygon was drawn 

around the fairway using the “freehand” tool. This was done using the contrast between turfgrass 

maintained as fairway and rough heights of cut as guidelines. Specific geolocations of thirty 

patches of SDS were collected using the previously described Phoenix 300 receiver and 

confirmed by trained turfgrass pathologists based on the visual characteristics and timing of the 

disease. These geolocated spring dead spot patches were used as ground validation of aerial 

imagery. A further subset of the patches within each fairway was further confirmed as one of the 

three species of Ophiosphaerella using real-time PCR as described by Tisserat et al. (1994) and 

Martinez et al. (2019). Areas where SDS damage was recorded onsite during image acquisition 

were observed in the image and used as a reference. Visible patches where symptoms were 

similar to the references were identified as SDS and the “marker” tool in ArcMap was used mark 

the centroid. All markings falling within the boundary of the fairway were then converted to a 

layer of points and saved for future analysis. 

 

Code generation of SDS incidence points: 

The script for detection of SDS damage was developed using the scripting language Python with 

the computer vision library OpenCV [version 4.3.0, Open Source Computer vision library], and 
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the raster transformation library GDAL [version 3.2.1, Open Source Geospatial foundation] for 

image analysis and handling of GPS information, respectively. The methodology was based on a 

three-step method, as illustrated in Figure 1, for identifying damage within the fairway consisting 

of: 1) pre-processing to remove areas outside of our region of interest, 2) smoothing the image 

and checking for circular lesions, and 3) geo-processing to extract the coordinates of the detected 

areas. These steps are described in more detail below. 

 

Figure 1. General diagram of the steps taken by the script in attempting to detect spring dead spot. The pre-

processing step utilizes a combination of thresholding and masking to remove a majority of areas outside of 

the fairway for greater efficiency in further steps. In the damage detection step areas of the image are smoothed 

and checked for round features assumed to be spring dead spot. The centers of these round features are then 

converted to GPS coordinates in the final geo-processing step and saved as comma separated values. 
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Image pre-processing: Managed turfgrass areas are often surrounded by other landscape 

features such as trees/ ornamentals, as well as manmade objects like cart paths, sand bunkers, 

and spectator bleachers. These features are often captured in the imagery due to the limitations of 

UAV flight paths as well as the composition of the area. If these features are not removed from 

the image, they increase the areas required for the detection algorithm to process and will 

increase the amount of time required for computing. Additionally, certain features such as white 

bunker sand, water features, or silver spectator bleachers can also cause light saturation within 

the field of view, making the contrast in the remainder of the image sometimes difficult to 

interpret. Removing such features for a more uniform stand of turfgrass will allow for image 

analysis software to be more consistent. 
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Figure 2.) A) True colour orthomosaicked image of golf course fairway. B) The value band created by 

converting the RGB image (A) to HSV can highlight other features. C) After thresholding the image many 

non-fairway features are disrupted leaving many small islands of pixels behind. D) The morphologyEX 

function in OpenCV erodes the edges of islands with a (125,125) square, removing small islands, leaving 

primary the fairway behind outlined in red. E) The binary mask with the fairway set to 0 and everything else to 

100. F) The isolated fairway resulting from the binary mask (E) being subtracted from the original image (A). 

 

To combat this the primary image was converted from BGR (true colour of blue, green, and red 

pixel values) format to HSV (hue, saturation, value). Thresholds were then set to remove areas 
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within the saturation band with levels below 21, and above 120 using the “threshold” function in 

OpenCV. These limits were chosen because areas with low saturation appear between white to 

grey, while areas with high saturation appear excessively vivid. By eliminating these two 

extremes we limit not only the amount of sand, and cart paths within the image but also more 

intensely colorful foliage including trees. A threshold was then set to remove any pixels in the 

value band with a level above 110, removing darker pixels within the image, further reducing 

coverage of trees which often have lower value levels than the turfgrass canopy of the fairway.  

 

While the previous process was able to remove a majority of the pixels associated with 

extraneous features outside of the target fairway, “islands” comprised of clusters of pixels of 

varying sizes were left behind after the threshold testing. These islands are unwanted noise 

outside of the target area and need to be removed to decrease the amount of time it takes for the 

script to run. To reduce the number of these islands the morphologyEX function in OpenCV was 

called to perform an opening operation with a kernel size of (125,125). The image was then 

converted to greyscale, then to binary where all pixels with values above 0 are set to full white 

(255), and all others are set to full black (0) (Fig. 2e). This prepares the islands for erosion, 

where the kernel square was removed from the edges of all islands within the image, eliminating 

many of the small island still present. The edges of the remaining islands were then dilated back 

to their original size. This left only large islands remaining, the largest of which comprised our 

target fairways. This island was then used as a mask over the original BGR image, setting all 

values outside to zero (Fig. 2f).  
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Damage detection: Detection of SDS within areas of interest followed pre-processing to remove 

non-target areas within the mosaicked image. Damage caused by SDS can manifest in many 

shades of brown from light tan foliage, to darker bare soil if enough damage occurs. To begin 

searching for this damage, the “bilateralFilter” function in OpenCV was called with a 9-pixel 

diameter neighborhood and sigma values of 50. These values were chosen to smooth out minor 

variations in the color of the canopy by blending the pixels, while also preserving the edges 

between colours. This ensured that any brown damaged areas were still able to stand out from 

the healthy green canopy. Canny edge detection (Canny, 1986) was applied to outline the 

boundaries between dissimilar colours in the image and removing all other features.  

 

Hough circle transformation (Hough, 1960) was then performed using OpenCV over the 

collection of boundaries within the image to check for circular shapes which would be 

characteristic of SDS. A size range for the radii of the circles was set to between 5-40 pixels, 

equating to roughly 6-50 cm on the ground based on sizes described by Couch (2000). These 

limits were chosen to reduce the risk of non SDS obstructions in the canopy e.g. leaves, golf 

balls, divots, carts etc. being identified as round and being mistaken for disease.  The  

coordinates of the centers of the circles within the image were then temporarily stored in an 

array. 

 

Geo-Processing: With the image having been georeferenced in previous steps, and the 

coordinates within the photo of disease centers saved the process of finding the latitude and 

longitude for disease centers is straight forward using the “GetGeoTransform” function within 

the GDAL raster transformation library. This gives us the geographic projection used to create 
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the orthomosaic and allows for calculations from pixel coordinates to decimal degree values for 

latitude and longitude coordinates. These GPS coordinates of each identified SDS patch were 

saved to an array and exported to the local hard drive as a comma separated value file. 

 

Validation of coded disease incidence: 

Validation began by importing decimal degree coordinates generated from the Python script for 

suspected SDS disease centers into ArcMap as a point layer. The boundary polygon drawn 

earlier to encompass the fairway was placed over the point layer and all points outside of this 

boundary were removed. This was done to ensure that both the hand-validated points (HVPs), 

and the code-generated points (CGPs) were limited to marking damage in the same area. 

 

With the target management fairways isolated, the ‘buffer’ tool in ArcMap was used to generate 

circles with radii 0.25, 0.5, 1, and 2 m around the CGPs into separate buffer maps. This was done 

to mimic several potential spray methods for SDS treatment, as described by Booth (2018). To 

measure the accuracy of the CGPs, the HVPs were assumed to have 100% coverage of all SDS 

within the fairway. We then used the erase tool in ArcMap to remove any HVPs that fall within a 

buffer zone on each map. Any HVPs that fell outside of the circular buffer zones were 

considered missed. The total number of missed HVPs were divided by the total number of HVPs 

to generate the accuracy of the CGPs at a given radius (Table 1). Buffer zones of the same size 

were generated around the HVPs and the percent of the fairway covered by these areas was 

measured for both the HVPs and CGPs (Table 2). To measure the percent of CGPs which were 

false positives buffer zones with the same radii used previously were generated around HVPs. 

Code generated points falling outside of the buffer zones were considered missed and were 
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divided by the total number of CGPs (Table 3). Finally, we used the point density tool with 

default parameters in ArcMap to generate 2-D point density maps from both HVPs as well as the 

CGPs for each of the fairways that we analyzed.   

 

Results: 

Pre-processing: 

The background reduction techniques employed during pre-processing, while removing large 

portions of the trees and man-made features present in the orthomosaicked images, were unable 

to completely isolate the target fairway from the less intensely managed grasses bordering them, 

leading to the points being generated outside of the target fairway. Correcting for this by 

removing points from the outside of the fairway allowed for a fair comparison between both 

datasets. 

 

Damage detection: 

Accuracy is measured as the percent of hand-validated points eclipsed by the circles of a given 

radius created around the code generated points. Automated patch detection was consistently the 

highest on Hole 5 with 73% of SDS falling within a 0.25 m radius of each code generated point. 

When expanded to a radius of 2 m the accuracy rose to 97.1%. Contrasting with Hole 3, the least 

accurate hole, had only 33% of SDS fall within the 0.25 m radius; at 2 m radius 71.2% of all 

SDS was covered. 

 

 

Patch radius from geographic center (m) 

 0.25 0.5 1 2 
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Hole Accuracy (%) 
2 54.5 70.5 84.8 95.5 
3 33.0 41.1 53.4 71.2 
5 73.0 85.4 92.7 97.1 
7 35.4 48.8 68.7 86.0 

 
Table 1. The relative accuracy of computer-generated points of spring dead spot relative to hand-validated 

points, using variable buffer sizes of the geographic center of points. Accuracy is measured as the percent of 

hand-validated points eclipsed by the circles of a given radius created around the code generated points.  

 

Comparing the fairway coverage of circles generated showed as much as a 15% more fairway 

covered by 2 m radii circles around CGPs (73.1%) compared to HVPs (58%) on Hole 5 (Table 

2). However, scaling this back to a 1m radius, while the CGPs still cover 15% more of the 

fairway than the HVPs, only covers 45.2% of the fairway while also detecting over 90% of SDS 

in the fairway. The percent coverage of the CGPs on are generally higher than for HVPs on all 

holes tested with the exception of Hole 3, which was lower for all radii tested. 

 Patch radius from geographic center (m) 

 0.25 0.5 1 2  0.25 0.5 1 2 
Hole % Fairway coverage (Hand points)  % Fairway coverage (Code points) 

2 5.2 16.8 40.6 71.8  6.4 19 45 77.6 
3 2 6.9 20.9 48.5  1.1 4 13.3 35.9 
5 3.9 12.5 31.1 58  6.7 20.6 45.2 73.1 
7 2.3 7.8 20.4 42.3   2.1 7.6 21.6 48.7 

Table 2. Portion of fairways deemed as having spring dead spot for hand-validated and computer-generated 

points using various radial buffers around the geographic centers of each patch. These data represented relative 

area treated if subjecting to targeted fungicide applications only where disease is present. 

 

The code used in this study tends to overestimate the number of points within a fairway (Figures 

3-6). This is corroborated by Table 3, which shows that the estimated SDS patches can be almost 

double the number of HVPs. Reasoning for this is partly due to there being no limit to how close 
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two disease centers can be within the code. This was done with the belief that even if two points 

are close and their circles do overlap, the area would still only require one treatment of fungicide. 

This limits the number of false negatives produced at the cost of a higher false positive count.  

 

Figure 3. Points identified as spring dead spot either by hand (left) or by the script (right) mapped onto the 

outline of the fairway of Hole 2. 
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Figure 4. Points identified as spring dead spot either by hand (left) or by the script (right) mapped onto the 

outline of the fairway of Hole 3. 

 

Figure 5. Points identified as spring dead spot either by hand (left) or by the script (right) mapped onto the 

outline of the fairway of Hole 5. 

 

Figure 6. Points identified as spring dead spot either by hand (left) or by the script (right) mapped onto the 

outline of the fairway of Hole 7. 

   Patch radius from geographic center (m) 

   0.25 0.5 1 2 
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Hole # of Hand 
points 

# of Code 
points % False positives  

2 2654 3788 51.30 33.38 21.60 10.19 
3 1473 878 38.27 32.92 26.65 15.38 
5 1569 2795 57.89 46.91 30.91 12.63 
7 963 940 65.11 54.57 44.47 23.19 

 

Table 3. A table comparing the number of code generated points to hand validated points. The % false 

positives were measured as the number of code generated points remaining after removing points within a 

given radius of the hand validated disease incidence points divided by the total number of code generated 

points. 

 

Similarities in disease incidence clusters were apparent in all fairways between point density 

maps created with hand-validation and code-generation (Figs. 7-10). Figure 9 shows both the 

CGP and the HVP density maps for Hole 2. Similar clusters of points can be observed in the 

upper portion of the fairway with a large cluster of heavy damage on the center left. In the lower 

portion of the fairway, we can see the effects of the scripts overestimation of damage effecting 

the density, showing large clusters of damage where the hand validated maps show none.  

 

Figure 7. Point density maps of either hand validated SDS points (left) or code generated points (right) for hole 

2. In the center the two maps are overlayed on one another. 
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Figure 8. Point density maps of either hand validated SDS points (left) or code generated points (right) for hole 

3. In the center the two maps are overlayed on one another. 

 

Figure 9. Point density maps of either hand validated SDS points (left) or code generated points (right) for hole 

5. In the center the two maps are overlayed on one another. 
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Figure 10. Point density maps of either hand validated SDS points (left) or code generated points (right) for 

hole 7. In the center the two maps are overlayed on one another. 

 

Discussion: 

Code-generated SDS detection overestimated and underestimated the incidence of disease on 

some fairways relative to HVPs. Cursory analysis of the number of points generated may show a 

large amount of inconsistency in between the CGPs and the HVPs, but the percent accuracy and 

point density maps suggest that the automation process described shows potential for improved 

precision management of SDS. While the system is primarily relying on recognizing patterns 

within the fairway to generate points, it appears to be quite capable with buffer zones around 

CGPs covering over 90% of confirmed SDS within the fairway while accounting for less than 

50% of the fairway that would need a future fungicide application.   
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The flexibility of saving SDS coordinates as points also allows flexibility in the method of 

deployment. Individual points can be sprayed with a specified radius in an attempt to reduce the 

amount of fungicide required for adequate suppression of SDS, in accordance with application 

methods described by Booth (2018). This system would be similar to the accuracy tests (Table 1) 

and let the user decide what would be more important to them, reducing the amount of fungicide 

sprayed or coverage of the diseased areas. Alternatively, the points could be used to generate 

point density maps (Figures 7-10). This can be used to separate areas that require treatment, and 

those that do not, creating site-specific management zones. This has benefits similar to broadcast 

applications, where areas that could develop disease in the coming spring could be sprayed as 

well. This could limit the development of new infection centers within zones reducing the total 

amount of damaged area, however potentially at the cost of increased fungicide coverage 

compared to spraying individual disease areas. 

 

 

The time to process imagery was greatly improved compared with those reported by Hutchens et 

al. (2020). The authors reported that original processing time for each image by hand ranged 

between 2-4 hours. All of the images processed via our proposed Python script took less than 

five minutes when performed on a 2020 model MacBook Pro [Apple Inc., Cupertino, CA] 

equipped with an Intel Core I-5 processor, 16 gb RAM. The ability for the script to run natively 

on relatively modest hardware highlights the reduced computing power required for this script. 

This is a large step down in requirements compared to more advanced, deep learning algorithms, 

which often require access to large server clusters (Thompson, Greenewald et al. 2020). 

 



 56 

There is still room for improvement in the proposed system. As the code exists currently, the 

only metrics being checked are a change in colour that is somewhat round. While this is 

sophisticated enough to tease out SDS when it is present in individual patches, in extreme cases 

patches coalesce into large, blighted regions in the turf canopy. If this were to be present in 

imagery to be analyzed by this code it would likely not be identified as the whole patch would be 

too large and irregularly shaped to trigger the marking process. Also, SDS patches occurring 

within areas with low contrast to the background e.g., heavily trafficked, dry area, etc., would 

likely fail to trigger edge detection and again would not be identified. This is congruent with 

reports by Ali (2016) because without a distinct border between the features of the image 

bilateral filtering will only blend areas together. This prevents Canny edge detection from being 

able to find edges, and this affects the Hough circle transforms ability to find circles. More 

advanced image capturing techniques including multispectral imagery could help to highlight 

these areas more from the background. Spectral indices can be used to amplify contrast in 

damaged areas from the rest of the healthy canopy (Green-II, Burpee et al. 1998, Bannari, Asalhi 

et al. 2002). This would allow for less increased limits on the Hough transform for detecting the 

circular damage allowing for an expanded range for SDS damage. 

 

Conclusions: 

While the future of precision turfgrass management may lie in more advanced pest detection 

methods such as convolutional neural networks, these methods are not accessible to the average 

turfgrass manager today. Turfgrass managers could individually map spring dead spot incidence 

in images by hand however this method is prohibitively time consuming. This highlights the 

need for a fast method of disease detection that is also light weight enough to run on more 
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readily accessible computing hardware. Our Python script uses open source libraries and pattern 

recognition algorithms to detect and map spring dead spot within mosaicked images of golf 

course fairways. We found that while the script may generate substantially more or fewer points 

than were marked by hand, the location and density of the points are similar. Measuring 

accuracy, we found that using 0.25 radii circles surrounding the code generated points accuracy 

ranged from 33-73%, however increasing this to 2 m radii resulted in accuracies between 71-

97%.  

 

This system for identifying SDS damage from aerial imagery while fast, is not currently as 

accurate as a deep learning models have the potential to be. Developing a model for this purpose 

could provide a more accurate alternative for turfgrass managers with access to greater 

computational power. Also, as computational power becomes cheaper and more available, 

having such a model ready can allow for a smooth transition from one model to another. This 

script can serve as a readily available tool for turfgrass managers to benefit from the application 

of precision turfgrass management today. The script was run on a commercially available laptop 

and was finished in under 5 minutes, reducing the time required for disease mapping compared 

to manual SDS selection. This is also a reduction in the compute power required to train and 

deploy more advanced deep learning methods. 
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