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Radial oscillations of encapsulated microbubbles in viscoelastic liquids

Damir B. Khismatullin® and Ali Nadim®
Department of Aerospace and Mechanical Engineering, Boston University, 110 Cummington Street,
Boston, Massachusetts 02215

(Received 19 July 2001; accepted 9 July 2002; published 5 September 2002

The small-amplitude radial oscillations of a gas microbubble encapsulated by a viscoelastic solid
shell and surrounded by a slightly compressible viscoelastic liquid are studied theoretically. The
Kelvin—\oigt and 4-constant Oldroyd models are used to describe the viscoelastic properties of the
shell and liquid, respectively. The equation for radial oscillation is derived using the method of
matched asymptotic expansions. Based on this equation, we present the expressions for damping
coefficients and scattering cross sections at the fundamental frequency and at twice that frequency.
The numerical maximization of the amplitude-frequency response function shows that the resonance
frequency for the encapsulated microbubble highly depends on viscous damping, and therefore,
significantly differs from the undamped natural frequency. The effects of the shell and liquid
parameters on the resonance frequency and scattering cross sections are analg9é@. ©
American Institute of Physics[DOI: 10.1063/1.1503353

I. INTRODUCTION els are claimed to be “validated by extensive experimental
results” by fitting the models, i.e., tha priori unknown

Despite the fact that microbubbles covered with a bio-values of shell elasticity and viscosity, to experimental mea-
compatible surface-active layer have been the subject of insurements. In our view, such models cannot be accurately
tense experimental research and commercial development fgged to interpretn vivo measurements and our goal in the
use as contrast agents for medical ultrasound diagndsfics, paper is to provide a more accurate description which can
a rigorous theoretical description for the pulsations of suchyctually be used with confidence for this purpose. To date, no
encapsulated bubbles in blood flow is not available. Existingheoretical studies on radial oscillations of encapsulated mi-
theoretical models are based upon various forms of thgropubbles in compressible viscoelastic liquids are available.
Rayleigh—PlesseRP) equation for spherical bubble oscilla- The effects of acoustic radiation are considered by Chin and
tions, and attempt to take into account, often on the basis q§,;ns!3 However, their model is simply a modified Trilling
unjustified conjectures, the elasticity and viscosity of the SUrgquation which is appropriate only for the pulsation of free
factant layer which is treated as a viscoelastic solid Siell. microbubbleswithout encapsulationin Newtonian liquids.
In particular, in the de Jong modél” encapsulation provides A microbubble in a liquid undergoes forced radial oscil-
additional damping of bubble oscillations and makes thgations when the ultrasound wave, the wavelength of which
bubble more “rigid.” In doing so, a shell friction is included s much larger than the bubble radius, impinges upon it. The
in the damping coefficient and a shell elasticity term is added;j;¢ of the bubble decreases in the positive half cycle of the
in the Rayleigh—PlesselRP) equation. Neither a normal ja50und wave and increases in the negative one. The pul-
stress balance at the bubble surface nor a rheological €qugsiing microbubble emits secondary ultrasound waves in the
tion for the shell is considered. The heart of the Churchgirounding liquid(blood), i.e., it behaves as a source of
modef is the modified RP equation which is derived from ¢4 The microbubble, therefore, enhances the backscatter
con;ervatlon of radial momentum assuming the existence %fignal from blood and provides bright blood pool contrast,
two interfaces: One between the gas and the shell and aRgecially if it is driven at its resonance frequency. The most
other between the shell and the surrounding liquid, i.e., takagre ctive “scatterer of ultrasound is a free microbubble: Its
ing into account the finite thickness of the encapsulatingeqonant scattering cross sections are of the order of a thou-
layer. The shell itself is mod_eled as a wsco_elastlc_ sollld. sand times greater than its geometrical cross setibiow-

The standard RP eql_Janon hold_s only if _the liquid SUever, such a microbubble dissolves very quickly after intra-
rounding a gas bubble is Newtonian and incompressibleyq,qs injection before entering the systemic circulation.

These assumptmns may be.r.easonable n Cefta'” 'n.organé:ncapsulation extends the lifetime of the microbubble but
agqueous media but notll;or living matter and, in p""rt'CUI""r’degrades its scattering propertfedlso, the natural fre-
human tissue and blodd!?Nonetheless, the RP-based mod-quency of microbubble oscillations is augmeritétby the

elasticity of the encapsulating layer. The response of the sur-
dAuthor to whom correspondence should be addressed. Present addresgunding tissue suppresses the backscattered signal of the

Department of Mathematics, Virginia Tech, VA 24061-0123. ; i
. . microbubble at the fundamentédriving) frequency. Fortu-
Ypresent address: Department of Mathematics, Claremont Graduate Univer- d g) d y

sity, Claremont, CA91711 and Keck Graduate Institute, CIaremont,nateIYv a pulsatlng gas bubble is a hlghly nonlinear ?yStem'-
CA91711. At rather large values of the acoustic pressure amplitude, it
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generates a wide spectrum of harmonics and
subharmonicd®!” When the bubble oscillations are reso-
nant, the backscattered signal has harmonic and subharmonic
components with decreasing intensity but strong enough to
be used for diagnostic purposes. This has made possible the
method of “second-harmonic imaging:” Ultrasound is trans-
mitted at the fundamental frequency and received at twice
that frequency? Of vital importance for contrast harmonic
imaging is, therefore, to know the correct expressions for the
resonance frequency and the scattering cross sections at the
driving frequency and at twice the driving frequency. These
expressions are given and analyzed in the present paper.
There are other, more impressive areas of microbubble
applications. The encapsulated bubbles with an average size
less than that of a red blood cék10 um in size are ca-
pable of penetrating even into the smallest capillaries and
releasing drugs and genes, incorporated either inside them or
on their surface, under the action of ultrasodfiéf These FIG. 1. Schematic sketch of an encapsulated bubble.
microbubbles can transport a specific drug to a specific site
within the body(for instance, an anticancer drug to a specific
tumon. The tissue-specific drug delivery will be more effec-
tive if targeting ligands are attached to the microbubble surll- GOVERNING EQUATIONS

face. The ligandgbiotin or antibody bind to the receptors Consider spherically symmetric radial flow in an un-

(avidin or antigen situated at the blood vessel walls of the 5 nded viscoelastic liquid which surrounds a gas bubble
target site and force the microbubble to attach to the blooggyered by an encapsulating layer. The layer is modeled as
vessel wallS"" The attachment of microbubbles to the walls g incompressible viscoelastic solid shell and taken to be of
can assure targeted drug delivery. Under exposure to suffiijte thickness, i.e., we assume the existence of two inter-
ciently high-amplitude ultrasound, these microbubbles wouldzces: One between the gas and the encapsulating layer and
rupture, spewing drugs or genes, which are contained in thethe other between the layer and the surrounding liggid.
encapsulating layer, to the target tissue. Commercial devel). |n writing the governing equations, we take into account
opment of these ideas is in its initial phase, but methods fothe compressibility of the liquid but neglect the effects of
preparing such microbubbles have already been patéhtedgravity and other body forces; we also assume that the pres-
The ultrasound-induced breakup has been observed for seyure is spatially uniform inside the bubble, the shell is in-
eral ultrasound contrast agents, including albumin- andompressible, gas diffusion affects neither the velocity nor
phospholipid-covered microbubbl&An understanding of the stress fields, the temperature in the liquid remains con-
microbubble behavior is also important for a range of appli-stant during the oscillations, the gas within the bubble is
cations in biotechnology. The colloidal gas aphrons, whichpolytropic, the partial pressure of the vapor is small com-
are microbubbles encapsulated by surfactant multilayers, aigared with the gas pressure, and the bubble motion is purely
coming into use for the recovery of cells and proteins as weltadial, i.e., there is no rotation or shape deformation. Under
as for the enhancement of gas transfer in bioreaéfors. these assumptions, the radial flow of the liquid around an
The remainder of the paper is structured as follows. Secencapsulated bubble is described in spherical coordinates
tion Il gives the governing equations for the radial flow of (r,®,¢) by the equations of continuity
the viscoelastic liquid around an encapsulated microbubble.

Surrounding liquid

The 4-constant Oldroyd and Kelvin—\Voigt constitutive equa- 2P d(pur) n 2pur -0 1)
tions are used to model the liquid and the shell, respectively. It ar r '

In Sec. Ill we construct the equation for radial oscillations of 3,,q radial momentum

an encapsulated microbubble in a compressible viscoelastic

liquid using the method of matched asymptotic expansions. vy o ap

The small-amplitude bubble oscillations are examined in gt vr7)=—§+(V-x)r, @

Sec. IV. We derive the formulas for the first- and second- . . -
harmonic amplitudes of oscillation and present the exprest—he barotropic equation of state for the liquid
sions for the resonance frequency and the first- and second- p,=p,(p,), (3
harmonic scattering cross sections there. In Sec. V the i ) _

damping coefficients for the encapsulated microbubble, th@ POIYtropic pressure-volume relationship for the gas
effects of damping on the resonance frequency as well as the 3k

dependencies of the resonance frequency and scattering cross P;= Pio , 4
sections on the shell and liquid parameters are analyzed. Sec-
tion VI concludes the paper. the initial conditions

=l
a
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t=0: a=a,, R=R,, v,=0, p=po, pi=pio, Sideration. The constant temperature in the liquid may be
(5)  explained by noting that the specific heat of the liquid is very
large compared with that of the gas, i.e., “the liquid may be

and the boundary conditions at the interfaces and infinit .
y y regarded as a thermostat that absorbs and gives off heat to

o _da - = 204 the bubble walls without changing its temperaturé.How-
r=a: V=gt Pi=Ps™ Xrr +T' (6) ever, heat conduction through the bubble wall affects the
bubble dynamics very strongly. Fortunately, the heat influx
dR 20’2 i 1 -
r=R: v,=—, p— — Do— (s)_ <92 7) equation for the gas can be replaced by an approximate poly
- Ut P Ar T RS X R’ tropic pressure-volume relationship in the case of a calori-
cally perfect gas, uniform internal pressures, and small-
r—%: 0,0, P—Po. 8 ot !

amplitude bubble oscillatiorfS:2¢2°A polytropic exponeni
Heret is time,r the radial coordinatep the density,p the  then takes the value from (isothermal behavigrto vy,
pressurey, the radial component of the velocity,the stress  (adiabatic behavior withy, being the ratio of constant-
tensor,a(t) the inner radius of the bubbldd(t) the outer pressure to constant-volume specific heats for the gad
radius of the bubblétogether with the encapsulating layer the energy dissipation due to thermal effects is accounted for
p; the internal pressure of the bublilgas pressujeandx a  in the damping coefficient of radial oscillaticis® (effects
polytropic exponent. The subscript 0 refers to the unperof heat conduction on bubble oscillations are considered in
turbed state of the bubble. The subscriptand s identify ~ Sec. \j. In reality, the shell is not a solid material because
liguid and shell parameters. Surface tension at the ifges-  the microbubble is encapsulated by a layer of surface-active
shel) and outer(shell-liquid) interfaces is denoted hy, and  molecules(lipids or proteing, which are mobile. This is the
o5, respectively. Equationél) and (2) are integrated with reason why we consider the nonzébut smal) surface ten-
respect ta from a(t) to  using the parameters appropriate sion at the outer interface. Given the small size of the bubble
for the shell(p=ps, P=ps, x=x'¥) and the liquid(p and hence the decreased mobility of surface-active molecules
=p1, p=pi,» x=x) in the regions §,R) and R,»). Tak-  due to the small surface area of the interface, the assumption
ing into account thakee = x,, for a purely radial flow and  that the encapsulating layer isvéscoelasticsolid is reason-
that the shell is incompressible, these equations can be reble. Problems of shape deformation or rotation of the

written in the form bubble are beyond the scope of the present paper. Finally, we
P 5 neglect body forces and the partial pressure of the vapor for
Dy 0 forre(aR), the sake of simplicity.

or r We employ the Kelvin—\Voigt constitutive equation to

9 1
op, . A pwy) . 2010, (99 model the shelf!i.e., we assume that

=0, for re(R,x»),

ot r XO=2(Gey+ uey), (11)
) v d ' 2 where
po| o0, 2 == P A 2
y=3(Vu+Vu') and y= 3(Vv+ Vv (12
for re(a,R), . . .
e( ( 13)) are the strain and rate-of-strain tensargndv the displace-
v, v, ap, W 2 o0 ment and velocity vector$, and s the shear modulus and
Pl Tor o | = T T F[X” ~Xoel the shear viscosity of the shell. It is common practice to
employ the Kelvin—\Voigt model for estimating the stresses
for re(R,©).  in cell membrane® The same model was used by Church

to account for viscous properties of elastic solid shells. Gen-

It is worth commenting on the validity of the above as- . . . : .
rally, the stress tensor in a linear viscoelastic solid has non-

sumptions. Gas pressure may be considered uniform if the = = . : o
Mach number of the bubble wall motion, calculated with 9€V1atoric terms proportional to tf and tr(y), where “ir
respect to the speed of sound in the gas’ is much less th notes the trace of a tensor. However, these terms vanish
unity, and the wavelength of sound in the (izjas is much large ue Fo the gssumption of shell incompressibility. This is. fully
than the characteristic bubble radfi€® Significant pressure confirmed in the case of purely radial flow. Indeed, if we

nonuniformities would develop in a collapsing bubble and alrestrlct our attention to purely radial pulsations of the mi-

frequencies that are large compared with the resonance fr robubble, the strain and rate-of-strain tensors are only de-

quency of free bubble oscillatioRS.The second condition Ined by the radial components of the displacement and ve-

for uniformity of the gas pressure implies that all pressureIOCity vectors. From Eq(9) and boundary condition) and

perturbations, leading to or generated by pulsations of thtg) it follows that the radial velocity of shell particles is

bubble, propagate in the gas, and hence in the liquid, as |0n%|ven by
waves. We can then consider a region of the liquid near the a2da R2dR
bubble surface, and thus the shell, to be incompressible. i B T (13

Since gas diffusion in and out of the bubble manifests itself
over time scales much longer than the period of bubble osh is easy to show that if the volume of the shell is constant
cillations, we eliminate the gas transfer problem from con-during radial oscillations, the difference between the spheri-
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cal volumesV=4(r+u,)%3 andVo=4xr%3 associated where, is the shear viscosity of the liquid. The second part
with a shell particlg(initially at positionr) after and before is the isotropic tensopw)=f,l with f, being in general a
radial deformation is equal t(fil(t)=4w(a3—a§)/3 or function of invariants of the rate-of-strain tensbr.e., f,
Co(t)=4m(R*—R3)/3 [note C,(t)=C,(t)]. Hereu, is the  =fo(I1,15,13), wherel,=tr(¥), l,={[tr(»)]>—tr(¥?)}/2,
radial displacement;, a., R, andr+u,, a, R are, respec- andl;=Det(y). To a first approximation
tively, the unstrained and strained positions of the shell par- D= e tr(3)] 1
ticle, the inner interface, and the outer interface. For infini-  ~ ot (a7
tesimal displacements, i.e., whep<a, and hencda—a,| K, is the second(or dilatationa) viscosity of the liquid.
<ap, we then have Apart from the Newtonian and linear viscoelastic cases, the

2a-a) RAR-R) shear stress tensor has a finite trétee., tf 7)]+0. There-

— e _ e fore, if the liquid is compressible and/or the constitutive

t re re equation for the liquid is nonlinear, there is a “viscous” con-
and tribution to the mean pressur@,,=—t#"]/3 [«
=—pl+x" is the total stress tensor in the liqlithat re-
2a’%(a—ay,) sults in its variation from the thermodynamic presspyén

Y= T2Y00= T T3 the liquid.
(14) We assume that the liquid surrounding the encapsulated

) i 2a° da microbubble is viscoelastic or more specifically, the liquid

Yn="2Y00= T 73 Gi- obeys the 4-constant Oldroyd constitutive equatibRrom

o . _ (16) it follows that in the compressible case this equation
Taking into account thayge = v,, and yee= Y., due to  should contain additional terms involving #:
spherical symmetry, one may obtain from Ed2) that

t(9) =¥+ Yoo+ Ypo=0 and U6) =¥+ Yoo+ ¥oe=0. i\ 2o iy [ Lol
Finally, rr - and® ®-components of the stress tensor take the Dt 3 Y73 (ML=
forms 1 D 1
Xrr =—2X@@=—r—3 Gs(a—ae)+,usa, for re(a,R)

(15 Here\, N, and\; are the material constar(the constants
N, and\, are often referred to as relaxation and retardation

which agrees with formul&10) in Ref. 5.(Note once again times, respectively D./Dt is the codeformationalcontra-

that ype = X, for pure radial flows. variant convectedtime derivative

It should be noted that the unstrained inner radius of the Db Do

bubble a, is not ordinarily equal to the equilibrium radius cr__ 7

a,. This implies that there are nonzero stresées pre- Dt Dt

stressesin the shell even if the microbubble does not change;ng p/Dt=g/ot+v-V is the material time derivative.

its volume. The pre-stresses in the shell can be a result of 98Siraightforward analysis shows that if the liquid flow is

diffusion. Suppose that a free microbubble of radéusis  pyrely radial, the first two diagonal components of the shear
covered in a saturated liquid by a layer of surface-activesiress tensor are in the form

material forming the shell layer. Initially, the stresses in the
layer are zero. Then the microbubble begins to dissolve du
to interfacial tension which creates an over-pressure in th
gas inside the bubble relative to the pressure in the liquid.
The contraction of the bubble leads to the straining of the  _ 4_1“4[1_ Etr[f(l)]—Z)\ Uy N D](&vr Ur)
shell, and hence to nonzero stresses inside the shell. The 3 2 '
stresses, or more precisely the component of the stress tensor (208
in the radial directioriradial stresf increase with decreasing
bubble volume and act in opposition to interfacial tension,
When the radius of microbubble reaches the valye a,,

the radial stress in the layer is counterbalanced by interfacial

(VW) ¢p=¢-(Vv), é=7or ¥, (19

| |
Tgr) - 2)\17 TSr)

D
+)\1§

| Ur g
20, o

D
1+)\1D_t

tension and the microbubble stops shrinking. This counter-  _ _ 2m 1 Etr[14|)]_2)\22+)\22} (&_ ﬂ).
balance may be one of the reasons why encapsulated mi- 3 2 r Dtj\ar r
crobubbles are more stable than free ohes. (20b)

In a compressible liquid the stress tengd? consists of ) ) 0 o
two parts. The first part is the shear stress tenébrthat ~ Since tf#]=7+27g}, is not equal to zero, the shear
depends on the rate-of-strain tensor. If the liquid is NewtonSIress tensor can be represented as the sum of deviatoric

ian, this tensor looks as follows: (tracelessand nondeviatoric tenscfs
gy, |5 T . 7N =719 4 2 AN, 21)
B 3 (16 Substituting(21) into Egs.(20) and taking into account that
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id= 10 (22)  We restrict our attention to the weakly compressible case for

2T
" which the equation of statg8) contains only linear terms

one can obtain the system of two coupled differential equa- - p dp
tions for #|% and tf 7] pI=pio+ —5—, C2=|-—| | (25)
C| dpl 0
4N, [ dv, v, D (1d) . . Lo -
——|—+ = H\la iy (C, is the speed of sound in the liquidThen, substituting
3 \ar - 2r Egs. (25) into Egs.(24) and(9), defining the dimensionless
2 2\, \[dv, v, | variables
- o =L )
3()\3 3)(&r r)trh(] T Ut up a5 R
r*:_y * v*:_u a*:_y *x
a a ) a a
JAml Mafove o) Dlfav v ’ ’ ’ (269
3 3\ dr 2r 2Dt|\ ar r)’ ) 0
2 p'*:&1 (‘):X_! T(l):_i pl*:ﬂi (26b)
(233 Po * Po * Po Pio
2Nq(dv, 2v, D | and denoting
[1 3 ( ar t | Phapy ] u U\, Ay A3
2 M=o P M Ty
oy [Pr_Ur| gy BmiMz(dvr e (23b ! 0 L ! .
Wogr — )7 3 \la r quaoploU Re— agpsoU (279
Such traceless stress tensor formulation for viscoelastic fluid M Ms
flow is more suitable for analytical calculations. Also, as + Gs . Uk, . 2071 L. 202
shown by Oliveira® this formulation provides stability Gs o Tooas T poas’ 72 poas’
of numerical computations. Finally, therr- and (27b

®0O-components of the stress tensor for the radial flow of thgyne can reduce the governing equations to the form:
4-constant Oldroyd liquid around the encapsulated mi-

i dv 2v
crobubble can be written as re(a, R,): &r* += * _p, (283
()= d) Etr[,ﬂ)HK v, 200 o
Xrr rr 3 "\ ar r | - 81)_*+ (91)_*
(249 @RI GG
X(I) _ 1T(Id)+ 1tr[7(|)]+K v, ZU,) * *
00~ T 5 2 M rra ¥
2" 3 or r _ Pio| IPsx + (?chSZr + 3X§<33r
wherer e (R,») and !9 and tf #] are governed by Egs. po| I, Or, re |’
(23). (280
The reason we have adopted the 4-constant Oldroyd con- 432
stitutive equation is to enable us to understand what would_ ¢ (a, |R,): (8) — %
* x %% ) Xaerr 3
happen if the medium which surrounds the microbubble is "
not just viscous but also has some elastic properties. Even a o da,
though blood by itself may show Newtonian behavior, as in X|Gila,— = Slg d }
large arteries, blood together with the surrounding tissue pro- o/  pioR& dt,
vide a medium which globally has both viscosity and elas- (280

ticity. In that case, the simplest model that would capture o[ P P
these effects would be the linear Maxwell model, but it is not' = € (R« ) M gt Uk ar,
too much harder to include a retardation time and try to

derive results which might have wider applicabiligur re- 5 1 a(riv*)

sults can be used for the interpretation of experimental data +[1+M(p,—1)] r_z TZO'
on small-amplitude oscillations of microbubbles in dilute * * (280)
polymer solutions Finally, since we extend the analysis be-

yond just linearized theory, use of convective time deriva- _ ) v, v,

tives makes sure that we do not miss any effects associatéd < (Ry ) [1+M%(pix —1)] EJFU* ar,

with the convective contribution to the time rates of change.

We thus adopt the 4-constant Oldroyd model as a good first __ 9 _ }tr[r(l)]

step in trying to account for both viscous and elastic effects T Pix 3 *

in a general medium and still being able to make analytical

* 2 (1d)
progress. Further explanations are given in Sec. V. n 9|y 9(rvy) n Tt
Equations(3), (4), (9), (10), (15), (23), (24) and bound- are s ar, Iy
ary conditions(6)—(8) comprise the full system of equations (d)
. . . T 37
for the radial flow of a compressible viscoelastic liquid near 4 (280

the microbubble encapsulated by a viscoelastic solid shell. I
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4De| dv v D I ]
e (R [1_T(ar*+2r* +Deg—|7ent
* * * =
2De 2\[dv, v, | o
=——F\| 73 - = ) r -
3 ( 3) ( o, I, )tr[TEk ]
4 4\De v, U,
SR I I i (et 20
3Re 3 \or, 2r,
D |[dv, v,
+ =
)\DeDt*M&r* r*), (28f)
2De[dv, 2v, D
My €(Ry,): [1_—(— —_— +De—}tr D
* * 3 \oar, re Dt, [ * ]

Wy e\ 4 8\De
B N

ar, T,
(&v v )2 FIG. 2. Schematic of the internal and external zones.
- (289
Iy Ta and the radial motion is due to contraction and expansion
da, oF of the bubble, but the nonlinear convective effects are
— . — — S, . cpe
Me=a,: Vs =gt Di*—pS*—XigpL—a : significant;
* *

(3) r, e(Riy,Re: An intermediate zone, where both the

pioa;3K (28h liquid compressibility and the nonlinear convective ef-
Pix :—Po , fects are fairly large.
dR, In the first two zones one can construct asymptotic analytical

=Rt e = dt ’ solutions, the matching of which provides a solution in the

(28i) third overlap zone. In what follows the indexes “ex” and

4y Et 07— ﬁ ariv,) “in” refer to the external and internal zones of the liquid.
Pre = Torr 3r[ ol 2 o
*
* A. Far from the bubble
*
= Pes _Xisgr_ 0_2, Inasmuch as,>1 in the far field, one can introduce a
R, parameter <1 such that
r,—o: pv,—0, —1. 28] T
* * Pis ( J) r, :_*’ (29)
t,=0: a,=1, R,=Rp/a;, v,=0, p,=1. (28K &

wherer . is the radial coordinate that 3(1) in the far field.
This means that systel28) has two small parameter$/
ande. Let us assumé ~¢ and

Here M is the Mach number, De the Deborah number, Re
and Re are the Reynolds numbers for the liquid and for the
shell, respectively. The characteristic velodity= \po/p|g IS
of the order of the bubble-wall veloc#yand\ is the ratio of _ (e 9Pex_ IPex
. Lo . . Ve =V, '= =¢ ,
two (retardation and relaxatipntime constants, which is ar, ar,
greater than zero but smaller than unity for a viscoelastiGyhere ¢, is the velocity potential in the external zone. We
liquid.* An asterisk denotes nondimensional quantities. substitute(29) and (30) into Egs.(28) and restrict our atten-
tion to the leading order terms. From E¢28d) and (28e),
we then have

(30

11l. MATCHED ASYMPTOTIC EXPANSION
2apl(iX) e? i 72 JPex _ & Pex _ 57pI($X)
Because we consider small-amplitude oscillations of the at T_f ar.\ *ar, "ot T, ar,
microbubble covered by a thin sheR( —a, <a,) with the (31

bubble-wall Mach numbeW much less than unity, the space Thus, nonlinear and viscous effects are negligibly small in
between the outer bubble interface and infinity can be dithe region far from the bubble and the motion of the liquid is
vided into three zoné§%*/(see Fig. 2 wave-like becausé31) is reduced to the following linear

(1) 1, €[Rep,®), Re>R, : The external zonéfar from the ~ acoustic equations:
bubble, where the liquid compressibility is significant Posx €2 9 (_, e
but the nQnIinear inerti_al_ forces produced by convective _ati = Mz’Fi T, Iy _JF*
accelerations are negligibly small;

(2 r, e[R, ,Ry,]: The internal zonénear the bubble wall (ex)_ IPex — o t*F(T)d'f
where the liquid can be considered to be incompressible Pix at, " Pex™ Pex 0

1 (9(20"@;

= —F5 —| I
2.2
My ar, |\ * ar,
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with the well-known solution

) t pim _ 7(1d) _ —tr[a-(')]
‘Pex:r_[l//l(t*_Mr*)+'ﬁ2(t*+Mr*)]+f F(ﬁf)d’.f;
* 0
(32 [ JIREE —tr[a-(')]]
1 e =Ry
PIFI=1- lYA(t — M)+ ys(t +MT (39) 1 1]d /[ ,da,
| o o Rdt | %t
where the prime denotes differentiation with respect to the . )
argumentF (1) is an arbitrary function of time, and, and B i 1 a* da, 2+3fr* T*"r“rdT (39)
1 characterize the acoustic waves which move towards and ri R4 dt R, T '

away from the bubble surface, respectively. (in) ) -
Equation(39) providespy,”’ anywhere in the liquid near the

B. Near the bubble wall bubble, upon invoking the; equation qf momentum for 'the
. shell and boundary conditions on the interfaces. Let us inte-
Nowr, ~1 and the only small parameter in syst€28)  grate (38) over r, from a, to R, and substitute] ps,
is M. Upon neglecting the terms of ordéd?, Eq. (28d) —x, . —a, from (28h and[ps, —x%. 1, _r_from (28i)
takes the form o

into the resultlng expression. We then have
1 d dg; dp;
2 in _ _ (iny_“7in in 1
o o) 0 w3 - rt- )
r,=R,
i.e., the standard incompressible formulation is valid near the
outer bubble wall. As seen from E(B4) and boundary con- _pso)| 1 1|d [ ,da,
ditions (28h) and (28i), the radial velocity in the liquid near "ol IR, a,]dt, s dt,
the bubble surface, like in the shell, obeys forms),
whence it follows that [ 1 1 da*)z]
ey v o
RZ dr,  aZ da, Re 2 dt,
Pin= Ps= — d = d (39 (s)
M t, ry dt, Ry X* ”
. . : +Pix — —+— +3 (40)
wheree;, and ¢4 are the velocity potentials in the inner zone

and the shell. In the incompressible case E28f) and(289 Equations(39) and(40) can be combined into the following

become formula for the pressure in the liquid in the near field of the
D bubble:
[1 De(?—(PQE-FDe A1) . )
p{M=p, Ul+a_2)_@[( - a, S
2\ [ Pin N o a, Ry Pio Ry« * dt;
=—De n-3 o2 t[ 7]
3 Apa*( ( 2] a dza*
2 Tt SaT
‘Pln I @in 2 Ry 2R, t,
1-ADe—— +\De——|——, (363
Ra ary Dt, | 4 * 4
(B _2ada® g tr[,m]
D ) <pm (a) 6\De i) 2 2rd  r, /Lt Trr
1+ De——|t]A)]=3D {4 — — |,
Dt, (9[‘ Re ary X(S) )
+3 f AT f Tt |, (41)
a*

and Eq.(28¢ does not contain the dilatational viscosity term
where

(1d)
9 [den  1(00n|® i aa) D) 37*”
+= +p(im — ) _ _
ar, 1 t, 2 ar, Py Thrr tr[T( ] r, Ap:plop Pso.
(37 S0

(42)

Here p{i" is the liquid pressure in the internal zone. Obvi- C. Equation for radial oscillation
ously, one can put Eq28b) in the same form ag37)

0 [@ (9(,DS+1((9(,DS>

arg | piolat,  2\ar

Equations(35), (41) and(32), (33) represent asymptotic
3)(&52( solutions of(28) in the region near the bubble surface and far
from the bubble, respectively. To obtain an equation for ra-
(39) dial oscillation of the encapsulated microbubble, one needs
to match these solutions in the overlap zane=[R;,,Rey]
Upon integrating(37) from R, to r, and using(35), we  on the assumption that this zone is at infinity, {~) with
obtain respect to the inner solution and near the bubble canter

+Psx — X*Zr]

M
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—0) for the external solution. Matching conditions should be, | Aa, d?a, [3 A 2, a’
physically relevant and must not change if other features of—(( R ay dt2 + 2 5t R ( T OR3
flow, like the presence of vortices, had to be accounted for”1° * * *
This implies that matching of the velocity potentials, as was da, |2
done by Prosperetti and Le3Zrfor instance(see also Ref. X\ gt ) } =Pax ~ Pocx (47)
39), is not appropriate if the flow is not potential. Note that *
vortices appear in blood flow in large and curved ves&&ls.  \yhere
Due to acoustic streaming a rotational field may be produced
in the vicinity of ultrasound contrast agetsThe physically ook YL w 19
correct matching conditions are the equality of volumetricpa, =Pix —| — + R +3 f f”dﬂ—f i”d‘},
flow rates 47r2v, and liquid pressurep,, :?’ * a Re T 48
477!’,%vgn)|r*ﬁx=47ﬂ’iviex)|r*ﬁo, (434 _piOa_gK
I*x * !
(m)|l‘ —0 p(e )|r —0- (43b) po
For the incompressible inner region, flow rate depends only,,, =1—M ( 2#+ —ZQ) (49)
on time d,  dt
(i) 590 B , da, We have thus obtained the generalized Rayleigh—Plesset
4oV, _.=4mr} ar =4ma, - (RP) equation for the radial motion of an encapsulated mi-
F e * crobubble. In dimensional variables Eg.7) is of the same
Therefore, upon using30) and (32) condition (433 can be form as derived by Churcfsee(5) in Ref. 5]. However, in
rewritten in the form the compressible formulation thg, is not the liquid pres-
sure at infinity but is related to the pressure in the matching
zone, i.e., far from the bubble compared to its radius but near
* dt _{ Pt =M1 = oty =M1y ) the bubble surface when compared with the wavelength and
the distance between the bubble center and the transducer
FMr [ =1t =Mr )+ g5t +Mr) T o location. Note that the contribution of liquid viscoelasticity
to the bubble oscillation is given by the following integral
= ¥t dalte), from R, to infinity:
whence it follows that _(9)
dag f L
(t)=—da(t)-Qt,), Qt)=aig=. (44 Re T

whence it follows that the compressibility corrections to Eq.
(18), which are not small in the zone far from the bubble,
should be taken into account.

For many decades theoretical analyses of bubble dynam-

and the final asymptotic formulas for the velocity potential in
the far and near fields are

‘Pexzc[‘h(t* M) = oty —Mry) ics were based on the incompressible Rayleigh—Plesset equa-
tion, according to which the driving pressure was applied at
—Q(t, —Mr, )]+ Jt*F(T)dT, an infinitely distant position. Nonetheless, there was good
agreement between the solution of the RP equation and the
(45) experimental data only if the pressure measured by a hydro-
Q) phone at the location of the bubble was used as the driving
Pin~ re pressure in the RP equation. This has been somewhat of a

paradox among experimentalists and theoreticians about the
location and magnitude of the pressure that actually drives
the motion of the bubbl& This paradox can be resolved

Using (33) and(45), we find the asymptotic solution for
the liquid pressure in the far field

1 only if a finite speed of sound and spherical convergence of

p=1- r—[lﬂé(t* +Mr )=ty —Mr,) acoustic waves in the liquid are accounted for. Any pressure
* disturbance generated in a liquid by a transducer at infinity
—Q'(t,—Mr,)]. (46) never reaches the bubble. Even if the distance between the

transducer and the bubble is finite, we should take into ac-
count an increase in the wave amplitude as the bubble sur-
Q) | =0, face is approached until the wave reaches the ifineom-
*I’I’ r — 0 . . ..

pressible¢ zone. Hence, the pressure at infinity should be
substitution of Eqs(41) and(46) into the matching condition replaced in the RP equation by the pressure that is measured
(43b) leads to the following equation for radial oscillation of at the outer edge of the inner zone, i.e., at the distance
the encapsulated microbubble: =R, to ensure that this equation is in good agreement with

Taking into account that
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experimental results. Mo¥shas shown that the appropriate
driving pressure is that within roughly 25 bubble radii from
the bubble, i.e.Rj,~25R, .

From a theoretical point of view, the driving pressure
P (t) =pPoP-4 IS given by(49). In order to specifyiy,(t),
and hencep.., , we should consider the evolution of the
pressurepg(t,) atr, =R; (R; is the dimensionless distance
between the transducer and the bubble cénBarbble oscil-

lations are then described by the RP equation and the follow- p,, =1—2M ——~

ing difference equation fo#, [derived from(46)] with both
lagging and leading time<:*°

Po. ,
pR(t*>=po—ﬁf[wz<t*+MRt>

— 5ty =MR)—=Q'(t, =MRy]. (50

In this paper, we do not consider the boundary condit&)
and assume that the functiai(t, ) is sinusoidal

\4
Yo(t,)=V¥ sinwt, =— §[i expiwt, +c.cl, (51

whereW is a constant is the nondimensional angular driv-
ing frequency, and c.c. means complex conjugate.

The termsz(t*)/dti in (49) involves the third-order
derivative of the bubble radiua, . This difficulty can be
obviated in the small Mach number regimd 1).5"*1t is
apparent that

1 dQ A, -1 Aja,| d?%a,
a, dai, ( R, | |I""R ™ aE
3 A, a*( ) )2
~2R? t,
1 Apa* da, \?

The first two terms on the right-hand side &?2) can be
replaced by the right-hand side of E@7). In view of the
fact that if the Mach number is small, the following rough
estimate is valid®

ne)/

substitution of(47) into (52) and subsequent differentiation
yields

d?a,
Ay o
*odt]

da,

Mg, <l
dr, &=~

2
d-Q d psoM
Maz— Mdt[a Fo(Pax —Pix) ]+ P
da, dza* 1d
N\ Fage, ) &g Tzar'
da, d
X E) +O[M2a[a*FoQ”(t*)] , (53

where

D. B. Khismatullin and A. Nadim

Folt, )_P|o( Aja, !

R, ’
A8y
Fi(t,)=Fo(ty)| 1+ R (54)
*
and
d2
¢2
T (55)

*

The incident pressung,,. is not equal to the driving pressure
P, but takes into account the convergent waves coming to
the bubble from the transducer. It can be considered as the
liquid pressure at the location of the bubble center in the
absence of the bubbfé pecauséi) this pressure results from
the external solunorpfex) at r, —0, (ii) there is no inner
zone in the case of pure liquid. The correction term on the
right-hand side of Eq(53) is negligible compared to the
terms which have been kept, provided that, /dt, is itself
small®®

To eliminate the variableg!?, and {9, we should
calculate the integrals i¥8). From (280 it follows that the
first integral can be evaluated as

f*xf?r g HRE-2)
a, T 3a3R;
«| e 1- ae " Pso da, (56)
S Qpd, pioR&a, dt, |’

where the unstrained equilibrium radius is

ao(T’z\— ) RO
T+ . (5

a.=ag(l+2), zZ=

el

When deriving(56), we have taken into account that for an
incompressible shell, the outer radius of the bubBlg, can
be expressed in terms of the inner radiag as R,
=3\/a*3 +(ro/ap)® with r0=3\/R03—a03 being a constant. The
formula fora, has been obtained from the conditidi28b),
(280, (28h), and (28i) at t, =0 under the assumption that
pi0=5p0 (the encapsulated microbubbles are permeable to
gas.

The calculation of the second integral is more intricate
because of the presence of the material derivaiiv®t,
and the trace of the shear stress tengaf 1 in (28f). How-
ever, in the case of small deviations of the bubble radius
from the equilibrium valuea, (t,)=1+x(t,), v, ~X(t,),
when the nondimensional perturbatiaft, )<1, from Eq.
(289) it follows that tf 7] is of the order ofx?(t, ). This
means that in Eq28f) the term

2De 2\[dv, v, N
3 G- e,

M

is a cubic nonlinearity, which cannot affect the first and sec-
ond harmonics of bubble oscillatidisee details in the Ap-
pendi®y. Of course, in the case of large-amplitude bubble
oscillations (bubble collapse, sonoluminescence, )etthe
trace of the shear stress tensor should be taken into
account!® But because we consider the linear and quadratic
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nonlinear effects only, we remove this term from the consti- 1036

tutive equation(28f). Note that it is exactly zero if\g N=¢ Re[qu(t )= d2(ty)], (62)
=2\,/3. Then, Eq(28f) can be simplified by using the La- 4

grangian coordinatg':ri —ai and taking into account that which represents the contribution from convective terms of

Uy =Q(t*)/r2 in the inner zon¢see Eq.(363]: the constitutive equation to the second harmonic of bubble
oscillation.
o _ 4 T-t, Finally, substituting expressiofb3) into Eq. (47), we
Tarr ™ DeRg[y+a: (t,) ]2’3 " ex obtain the equation
~ 2
QD oe' @ ape?(® | o Psol (4, B 0 d3) d7a,
= dt. (58  po R, Ldt, ) 7* dt?
y+ai (1B [y+a (D" *
. . . . . 3 A,a a’ d a,\?
Substituting(58) into the second integral i48) and inte- +|= - |- (a,F,)
grating overy from R3(t,)—a3(t,) to = result in the for- 2" R* 2Ry 2 dt dt
mula d
=Pax —Pix TM —[a, Fo(Pax —Pi1x) ], (63a
3foc T*r f ;{ ) dt,
ty)= ——dr= ex Hq(t,t,
q( *) R* T DeRQ [ l( ) p _piO 3k U'I + 0’;) 4(R8_a8)
- ~ ax—n Q% T\ TR | T Tai3n3
+H(T.t,)]dT, (599 Po B R 3a0R,
a pso  da,
X|GE 1— ——| + +q(t 63b
Hq( s 08y proRea, dt at,). (63

T _[Q(T)+kDeQ’(T) \DeQ?(D) ]

373\ .3 T A3 .3 2
A (O-a(t)  la(t-a ()] Under the conditionspg=pjo, When A,=0 andF,
y [ . ai (T)_ai(t*)rﬁ] =F,=1, Eq.(63) simplifies to the equation for the oscilla-

1+ (59  tion of a free bubble
Ha(tt,) =~

R3 (1
» (D da,
dt,

d?a, 3 M d da, \?2
3115 ol ]
datz = 2 3 dt, /| dt,

2\DeQ?(T) (1 Mat,

RE(Dlad (1) —ad(t,)]? da, d
(1+M )(pa* pl*)+Ma* dt (pa* pl*)-
(590 (64

N P P OREH (S T
R: (D) '
- If the liquid is Newtonian and the shell thickness is zero, the
Note that the integrand 693 is not singular at=t, if  dimensional version of Eq64) is of the same order as the
deviations of the bubble radius from the equilibrium valuekeller—Miksis equatiofy [see alsd6.8) in Ref. 37.
are small. Upon retaining linear and quadratic nonlinear
terms, integral59) takes the form

1+

IV. FIRST- AND SECOND-HARMONIC RESPONSE

3 3
5a . .
A. Equations for perturbations
a(t,)= " ReRS (1 ﬁsx)%(t ) ' . -
Let us consider small-amplitude oscillations of the en-
a3 capsulated microbubble in the sinusoidal acoustic fiBlj,
+2- 2R3 A2(te) | (603 i.e., when the incident pressure
d d ] dx 1-Pysinot, =1+ A[i expliot, ) +c.cl
=1—-Ppsin =1+ —[iexpi c.cl,
1+ De g aa(te) =| 1+\Deg| 5 Pis AT 2 @
dt, | dt, 65)
(60b) Pa=—2w’MWV.
d d
1+ De qz(t )= 1+}‘D6F T The dimensionless amplitude of this field is small such that
*

Par=¢,P, whereP~0O(1) ande,<1. The solution of Eq.
An alternative derivation of60) is given in the Appendix. If ~ (63) can then be expanded in powers of the parameger

we make use of the linear Jeffreys constitutive equation, Eq. a3 3 2
(608 will look as follows: a,=1+x, R,=—| 1+ —3x+—3| 1— —3|x2+0(x3 |,
0 R0 RO RO
R { (t)+] 2- 3a3) (t )} (61 o6
+
q ReR3| RS % X=X(t, j8p)=epXa(t,) +e2Xp(t, )+ o, (66b)

The difference between E@60a and the latter equation is WhICh are then inserted int@0) and (63). At orderse,, and
the quadratic nonlinear term s we then obtain the equations for the first- and second-
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order perturbations in the inner radius of the microbubble, 4a3A
X1(t,) andx,(t,), respectively. Under the assumption that  D(w)=1y,—| @+ RQRS) 2
qu(ty) =epai7(t,) +e5ai2(t, ) +o(ed) and pip=po, the
first-order equations look as follows: 4a3De(1—\)(1+ ADew?) w 723
d2, dx 4ad d] RqRy(1+DEw?) ' (
g2 "ot T Rere| M AT, | } () 423 [ De(1—\)(De—A)w?
Pli—Aw) S(w)=do+ ReR3 1+ D€ w? (729
=— Texpl wt, +c.c., (679 .
As seen from(72), the smaller the difference between the
d dx relaxation and retardation timdfarger \), the smaller the
1+ De— q(l)(t )= t (67b  liquid elasticity effects on bubble oscillations will be.
dt, | dt, The nonlinear componert,(t, ) of the integralq(t,)
Here which can be represented as(t,)=¢5as"(t,)+o(e}),
should be included in the second-order equations. From the
pioM ( A,ap| 7t second equation if60b) and solution(69), it follows that
A= 1+ , (683
Pso Ro »(2w)
ash(t, )——AZeX[Z(Zth )+c.c.
Pso Ayap  4A ag 8
ag=— L=t — ——H (680
° b0 Ry  Re Ry |’ where the functionw is given by (70). Making use of the

above results and expanding @isﬁ), we then obtain the

oag a3 a3 following second-order equations:
7O=3K—01€—?+4G: 1- = 1+ 1+? Z
0 0 0 d’,  dx, 4a3 d] o
(68C) ag— .o dt2 +6Odt +’)/0X2+ RqRa 1+Adt* ql (t*)
P (1 %) 4o (680) P2
0 poRe | T R3O = 5 [do(@)+ do(@)Afp(w)exp2int,) +ccl, (739

and Z is given by (57). Note that Eq.(673 is simply a
damped harmonic oscillator equation feg(t,) which is
forced by the right-hand side and is coupledqﬁ (),
which in turn accounts for viscoelastic behavior of the exte-
rior liquid through(67b). We seek the solution d67) in the

1+\D d dx2
Cat, | dt,

(2)
(t)= aC

(73b)

dt,

lows:
form
Aag| t A ag
Xa(te) | [ Xqe(ty) A : F(°)=(1+ 0 (1+ 2 0), 74
(1)(t ) qn(tz) 3|0, expliwt, )+c.c. (69) 1 Ro Rg (743
4
with the complex amplitude8; andQ; that can be consid- bl )= (1+A%0?) [ Pso 1 A2 w2
ered as functions of the dimensionless angular frequency 0T ID2() + w?8%(w)]| LETP R
The solution(69) contains the homogeneous term, or the 6 ’
complementary functiofix,¢(t,) d.¢(t,)]". This term de- 20aDe(1-Mw (74b)
scribes free oscillations of the bubble which are exponen- RQR (1+DEw?) |’
tially damped in time. We consider only forced oscillations .
and take the complementary function to be zexgi(t,) B . 2 ipso Ajag 3
=q,¢(t, ) =0. Equation(67b) is then reduced to an algebraic pa(0) =y Hidiot ey 1o 1+ R} Aw
relationship betwee®; andA;
2(1+2iAw)v(2w)a] a3\ 4ajv(w)
2 2 - — +
21 )= De(1— )\)ai++[|);(1+)\De2w ). 70 RaRS 2R3 " TReRE

' N : 0 53] 2AFP

Substitution of(69) into Eq.(67a gives, in view of(70), the 2R0 —2iAo| Fi/— 2R + Arn(0) (749

formula for the first-harmonic amplitud&,; of bubble oscil-

lations po[5 44,8, 3Apag
a=—|s+—————F
Ap(w)= 1+iAw 1 Y pol2 Ro 2R;
= w —_—_—
P P D(w)+|w5(w) 8A a’ 3a3
——|1- 3| 1+ = -F?] |, (740
where Re; Ro Ro

The new coefficients in this system can be expressed as fol-
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3x(8x+1) ,  03ap ZaS) d|Asp(w)] 79
’)/ = e—— 0‘ — —_—— ——
1 2 1 Rg Rg dw
3 338 9a8 If De>0 and 0<\ <1, the left-hand side of Eq79) reduces
+4G} ( 1- R 1+ E;+Z 1+ Ee;—) } (749  to a polynomial of degree five im?, and hence it does not
0 0 0 have analytical solutions. Thus, in the viscoelastic liquid case
4p a3 3 the resonance frequency of bubble oscillations can only be
o= F\S)O ( - R—‘; 1+ R3 +2A(y1—FPye). (74 found by the numerical maximization of the function
P1OREs 0 |Ap(w)| (see the next sectipnHowever, it is possible to
Evidently, the solution of73) is a sum of zeroth and second find the roots of Eq(79) analytlcally if A\ =1. We then have
harmonics a quadratIC equatlon |ﬂ)
X(t,) AO 1[A, A2l w208 02— (2a,y0— 85+ A?y5) =0,
(2)(t W~ lo Al exp2iwt, )+c.c. (75) .
0 2 4agA 4a3
a,=agt ——3 6,= 0+ . (80)

Again Ag, Ay, Qq, Q, are the amplitudes that may depend
on the angular frequency. Substituting solutior(75) into
Egs. (73), we obtain the relationship®,=r(2w)A, and If

Q=0 and the formulas for the zeroth- and second-harmonic 8,>08,c= (2%70+A273)1/2, (81)
amplitudesA, and A, of bubble oscillations:

RRS H RqR3

Eq. (80) does not have real roots, and hence the bubble does

Ao dolw) Az A 3 bo(0)Alp(w) not resonate at all. Otherwise, iS given by the positive
P2 4y, ' P?2T 2p(@)= 2[D(2w)+2iwd(2w)]’ real root of(80). Upon neglecting the liquid compressibility
(76) (A=0), the dimensional resonance frequency is found to be
-2
B. Resonance frequency and scattering cross fros1= { fg_ 22sz A,
sections Tagplo Ro
Many investigators on bubble dynamics neglect the ef- 1 (1 a3\ po @ 2} 12 @2
fects of viscosity and other dissipative effects on the reso- Res R? PsoRQ R3 :

nance frequency of bubble oscillation. Mdsee for instance
Ref. 8 assume that this frequency is equal to tmelamped ~As follows from (80), the encapsulated microbubble pulsates
natural frequency, despite the fact that théampecdhatural ~ in & compressiblesiscous liquid resonantly at the frequency

frequencyf,, differs both fromf, and from the resonance 1 po | 2
frequencyf,.swhen damping is allowed fofHere, we define fresz=m p_o)
0 0
A2 1/2) 1/2
2 2
1+ a—i(ZyoaM—éﬂ-f—Az'yo } ] .

fy as the frequency of undamped unforced oscillatidpas
that for damped unforced oscillationfs,s as the forcing fre-
guency which results in the maximum response amplitude
for the damped bubbleLet us consider the first-harmonic

1+

response function, i.e., the absolute value of the function (83

Arp(w) At the same time, the natural frequency,
A 1+ A202 1/2 =Uw,/(2may) of bubble oscillations is generally defined
’F =|Ap(w)|= D2(w) T 025 ®) (770 from the conditionD(w)+iwd(w)=0 with w being acom-

plex variable: w= w,+iw; (the imaginary part; describes

If the liquid and the shell are inviscidiw) is equal to zero attenuation of free bubble oscillations with time, the real part
and the amplitude of bubble oscillation goes to infiritg.,  , is the nondimensional angular natural frequen&yen if
resonance takes placat w= w5 such thatD (w59 =0. the liquid is considered to be viscous and incompressihle,
The same condition holds for free oscillations, i.e., the di-is not equal to the resonance frequency

mensional resonance frequendyess=U weso/ (27a0)

-2
equal to the natural frequendy=U wy/(27a,) in the case f. [fresl+ Zpg ( 8,8
of undamped oscillation agpio Ro
1 PoYo v 1 ao Pio ag 2\ v
mag| pso(1+A,a0/Ro) Re, RS Pso G Ro

In a viscous liquid the bubble resonates at the frequency Of particular interest for ultrasound contrast imaging is
fres= Uwed (27ay) that is always less thah.i,. The non-  calculation of scattering cross sections, and o, by the
dimensional angular resonance frequengy; is the point at  encapsulated microbubble at the drivitfgndamental fre-
which the function|A;p(w)| has its maximal value. This quencyf=Uw/(2may) and at twice the driving frequency
point is one of the roots of the equati¢the extremum con- 2 f, respectively. These scattering cross sectiaisch have
dition) dimensions of areaare related to the ratio of the total acous-
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tic power scattered by the bubble at the first and seconéhe liquid and solid densitiep;,=998 kgni® and pq,

harmonics to the intensity of the incident acoustic field
Amadril, Amadril,
- Os2=—

: (89)

Os1—=
lo lo

wherel ;=|Pg|%(2p,C)) andl,=|Pg,|%(2p,C,) are the in-

=1100 kgm 3, the interfacial tensions;=0.04 kg s 2 and
0,=0.005 kg 2, the liquid viscosity is equal to the high-
shear-rate viscosity of bloodw,;=0.004 kgm!s ! (see
Ref. 40, and the retardation time,=0s. The inner radius
of the microbubbleay and the shell thicknest=R,—a, are

tensities of the scattered acoustic wave at the first and second

harmonics,|o=p5P4/(2p,C)) = 5p5P?/(2pC)) is the in-
tensity of the incident acoustic wave. Note thigt or P is

taken to be real. Th®4, andPg, are the first- and second-
harmonic amplitudes of the scattered wave. As seen fror,

(46), the scattered pressure field ps(t, ,r,.)=—poQ’ (t,

—Mr,)/r, . Because the amplitude of bubble oscillation is

small, we can expangs in powers of the small paramete

~ po d%aj(®)
ps(t*ar*)__3r* dgz

d2
—ssd—gz[xxgwxi(s)]—ong

E=t,—Mr, .
Substituting(69) and (75) into (86) yields

(86)

Ps

2

Ps1

pPs(t, ,r,)= 5 expiwt, + exp 2 wt, +c.c.,

where

exp(—ikr,)

T’
AL

A2+?

Pa=¢gp w?PoAy

exp(—2ikr,)

P52=48[23 wzpo y ksz-

M

varied from 1 to 5um and from 15 to 200 nm, respectively.
The values of the speed of sound in the liquid, the relaxation
time, and the shell viscosity and elasticity &g= (incom-
ressible cage1500, and 500 ms, A ;=0 (Newtonian lig-
uid), 0.01, 0.1, and Jus, us=0.5, 1.77, and 5kgm' s 1,
G,=15, 88.8, and 150 MPa.

The values chosen for the parameters are in line with the
experimental data for ultrasound contrast agents. Specifi-
cally, such microbubbles are restricted to have a size between
1 and 10um.*® The larger bubbles cannot pass through the
pulmonary circulation. The scattered field from the smaller
bubbles is extremely smdif:*® This directly follows from
the formulas for scattering cross sectid8$): o5; and o
~a894, i.e., at given driving frequency the acoustic re-
sponse from a larger bubble is higher. The thickness of the
shell around the microbubbles depends on theifsirel the
type of surface-active material. Albunex® bubbles are cov-
ered by the shell of approximately 15 nm in thickn2s$.
Quantison™ bubbles have the thickest shek=@00 nm)’

It should be noted that there are no direct measurements of
the shell viscosity and elasticity for ultrasound contrast
agents. The shell viscosity is estimated, for example, by fit-
ting the experimental data for the attenuation of acoustic
signals in the microbubble suspension to the predictions of
the simplistic theoretical model of de Johgf Also, these
parameters may depend on the shell thickiteaad other
factors. We therefore consider different values of the shell

Finally, insertion of Eqs(87), (71) and the second equation viscosity and elasticity. Nevertheless, the second chgige
in (76) into Eq. (85) gives the following expressions for the =177 kgm s and G,=88.8 MPa) corresponds to em-
scattering cross sections at the first and second harmonicspirical values for de Jong’s shell stiffness and shell damping

og=4mage’|Ap(w)|?,

A2 ((1)) 2
0o=64ra2P2w% Amp(w) + 1P2
=16mazPiw®|Ap|'T, (88)
where
2
r=1+ Pa(w) | 89)

D(20)+2iwd(2w)|

The first expression a88) is consistent with Church’s deri-

vation [see formula(26g in Ref. 5. However, the formula
for the second-harmonic scattering cross secfi@éb) in

parameter§?® The values of the interfacial tensions and den-
sities are the same as in Ref. 5. Due to the presence of nucle-
ation agents and/or other microbubbles of contrast-agent sus-
pension, blood surrounding an encapsulated microbubble
provides a medium which is more compressible than blood
free of bubbles. This is the reason why we choose the value
500 m/s for the sound speed in the liquid.

Our expectation that the 4-constant Oldroyd constitutive
equation(with the nonzero relaxation and retardation tignes
can provide reasonable predictions for the radi@rerging-
converging flow of blood in large vesselgsand of dilute
polymer solutionsinduced by high-frequency oscillations of

Ref. 5] was in error because it did not take into account the2 gas microbubble is based on the following facts:

nonlinear relationship between the pressure field scattered k{y)

the bubble and radial oscillations of the bubble.

V. RESULTS AND DISCUSSIONS

Blood is a fluidized suspension of small elastic cells
(red cells, white cells, plateletsurrounded by blood

plasma. The cell deformability and aggregation result
in the stress relaxation and well-documented shear
thinning of blood at small and moderate shear

In this section, we calculate the total damping coeffi-
cient, the resonance frequency, and the scattering cross sec-
tions for the air-filled encapsulated bubble in blood. In all
calculations the unperturbed liquid pressyrg=0.1 MPa,

ratest?°2~>°Plasma by itself is a colloidal suspension
of proteins in an electrolyte solution, which shows
small deviation from the behavior of a pure liquid, at
least in some patients suffering from leukertfia’
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(ii)

(iii)

(V)

Due to complex structure, neither whole blood nor
blood plasma is a Newtonian liquid, even though vis-
cometric observations show negligible deviations
from the Newtonian law, as for instance, in the case of
blood flow in large vessef®. The modern viscometric
techniques operate at the shear ratésss than
30000 s 1) which are not enough to determine the
small elasticity, corresponding, for example, to the re-
laxation time of the order of a microsecond. The most
experimental data on blood viscosity have been ob-
tained at shear rates less than 12000 &ee Refs.
52, 58, and 58 Blood viscosity has also been mea-
sured using oscillatory flow apparatus operated at the
frequency of several H2-%?However, the character-
istic time for the radial flow around the resonantly
pulsating bubble of radius &m is less than a micro-
second. In particular, if the equilibrium liquid pres-
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on microbubble oscillations. The tissue viscoelasticity
should be taken into account if the distance between
the microbubble center and the tissue does not exceed
the wavelength of acoustic waves. In that case, tissue
will be located in either the internal or intermediate
zones(see Sec. I To calculate the shear stress ten-
sor 7" in these zones and the tent, ) of Egs.(63),

we then need to assume that the liquid surrounding
the microbubble is a medium consisting of both blood
and tissue. For the problem of bubble oscillation, the
4-constant Oldroyd model is a good first step in trying
to account for viscoelastic effects in such medium. It
should be noted that the radial oscillations of a gas
bubble in tissue by itself have already been investi-
gated using the Upper-Convective Maxwell and linear
Jeffreys model§% 7473

sure p,=0.1 MPa, liquid densityp,o=10% kg/m?, At a shear rate of about 1500% the apparent blood
and bubble radiugy=1 um, the characteristic time ViScosity is about 0.004 kgnts™* (see Ref. 52 According

t, =ay/\po/ap=0.1 us. Even small elasticity may, © existing experimental results, it does not change at further
therefore, affect the bubble pulsations because thihcreasing shear raf8 However, modern viscometric tech-
Deborah numbebe=\, /t, is of the order of unity, nigues are not capable of determining the small elasticity of
if the relaxation time,;=0.1 us. Incidentally, this blood (in large vessels which may affect the microbubble
fact allows the use of a gas microbubble for the meaPulsations. One can model this small elasticity as well as the
surement of very small elasticity of the liquid: the elasticity of surrounding tissue by adding elastic terms to the

liquid will be different from that in a slightly vis- COsity of 0.004 kgm*s™*. This should work if the charac-

coelastic liquid. It is worth noting that such ultrasonic teristic time for bubble pulsation is much less than the char-
spectrometry is already used in food engineeffhg. ~ acteristic time for shear flow at which the well-documented
Rheological behavior of blood in large vessels hasshear thinning takes pladérom 1/1500 s to 10)s because
been investigated using the Oldroyd constitutiveQUr PUrpose is not to consider elastic effects due to cell ag-
equations, among which are the 4-constantdregation. We would like only to understand how small

Oldroyd®%° 5-constant Oldroy8® and Oldroyd-B  blood elasticity(for example, plasma elasticjtpr/and tissue
models®”%8As shown by Chmiel and WalitZ there  €lasticity affects microbubble pulsations under the conditions
is a good agreement between the predictions of th&vhen blood is usually considered to be Newtonian. This is
4-constant Oldroyd model and experimental data unWhy we analyze bubble oscillations assuming that the zeroth
der the assumption that the parameters of the modélrder shear viscosity in the constitutive equation is equal to
are functions of invariants of the rate-of-strain tensor.0-004 kgm*s™*. We neglect the retardation term in the

technique® 7" and for suspensions of normal red Strain relaxation is a decrease in the contribution from liquid

blood cells in albumin, in which the cell aggregates €lasticity to bubble pulsations.
are not formed and elasticity is only due to the cell
deformatiorP?

The fact that the relaxation and retardation times de- In order to obtain the correct expressions for linear
crease with increasing shear rate directly follows fromgamping coefficients, one needs to divide both the numerator
the experimental data on the aggregation and disagand denominator of71) by 1+iA » and turn back to dimen-

gregation of red blood cells in shear flé%As noted  sjonal variables. The formula for the first-harmonic ampli-
by Cokelet® the characteristic time for red cell ag- tude A;4=a,A; then takes the form

gregation is of the order of 1 min in the absence of  , _ - 5r
superimposed shear but becomes of the order of 10 s 10~ 80P Asp( .) p
at a shear rate of about 10% At high shear rates, the 'Po

A. Damping coefficients

relaxation time is expected to be determined by the
red cell deformation which gives the values below
0.06 s.

Not only do blood viscosity and elasticity affect the

 psodo(1+A,80/Rg)
y 1
Q- 0%+ S,(Q)+S,(Q)+2iQB(Q) |

(90)

dynamics of microbubbles in blood vessels, but alsoHere Q= (ag *\po/pio) @ is the angular driving frequency,

the viscoelastic properties of surrounding tissgies

QO=(a51x/p0/p|o)wo=27Tfo is the angular undamped

particular, blood vessel wajlsnay have some impact natural frequencyj , is given by(42), and
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P A, “20%3 It should be mentioned that the formulas for the viscous
SaC(Q)=—2(1+R— c? damping coefficients(92a8 and (92b) are equivalent to
Pso 0 ! Church’s expressiong30a and (30b) in Ref. 5. However,
P A,ag “202%a3] "t if the shell and the liquid have different densities, as was
X| 1+ | 1+ <z | - (918  assumed by Church, the acoustic radiation damping coeffi-
Pso 0 ! cient B, differs from that for a free bubble and formula
4pa, A,a0) TN =N Q2 (300 of Ref. 5 is, therefore, inexact in that case. Note that
Sel(2)= o 1+ Ry 12202 (91D the liquid compressibility should be taken into account for

small bubbles at higlinatura) frequencies. The fact is that

are functions of) which can be interpretEd as contributions both the acoustic contribution to the bubble St|ffn&§|n
of acoustic radiation and elasticity of the liquid to the stiff- £q. (918 and the acoustic radiation damping coefficignt

ness of the bubble. The total damping coefficigif)) that

in (920 increase with decreasing the bubble radigsinder

also depends on the driving frequency is the sum of fouthe assumption tha=Q,, p;o=ps. and the shell thick-

components:  B(Q)=Byiss+ Buisat Bad ) —ABe(2),  nessd=R,—ay is fixed.
where From (90) and the conditior\ ;>\, it follows that elas-
24 Aay| tad ticity of the liquid enhances the stiffness of the bubble and
Buisi=——> L =3, (929  reduces viscous damping of bubble oscillation. However,
Pso3o Ro Ro AB(Q) is always less tharB,s;, i.e., viscous damping
24e A2 -1 ag cannot be canceled'even in the case of Iargg rglaxa}tion times.
ﬂviszz7(l+ R (1— ?) (92b) Hereafter, we consideB,s;—AB () as a liquid viscous
Psoco 0 0 damping coefficient angB,;s, as a shell viscous damping
Pro A2, 10723, coefficient. Elasticity of the shell raises the stiffness of the
Bac(Q):—<1+ R 2C bubble through an increase in the undamped natural fre-
Pso 0 ! quency, and yet it does not influence damping. Also, oscilla-
P A,ap\ 20%ag| "t tions of encapsulated microbubbles highly depend on the dif-
X1+ 1+ 4 <z | (920  ference in density between the shell and the liquid. If the
Pso ° ! shell is more dense than the liquig§/ps<<1), the ampli-
2@y A, TINI(N =) 02 tude and attenuation of encapsulated-microbubble oscilla-
ABel(€2) = psoRS ( 1+ Ro 1+2302 (920 tions are smaller than those of free-microbubble oscillations.

As noted above, the effects of heat conduction through

are the liquid and shell parts of the viscous damping coeffiyhe microbubble walls can be incorporated in analysis of mi-

cient, the acoustic radiation damping coefficient, and the,opypple oscillation by considering the polytropic exponent
contribution of the liquid elasticity tg3({2), respectively.

Note that thermal effects were ignored upon deriving). In
the case of a free bubbléo=psy, ay=Ry), when A,

« instead of a ratio of specific heats for the gasand by
accounting for the thermal dissipation in the linear damping
coefficient. Thes(() is then equal to

= Byis2=0, the viscous and acoustic radiation damping coef-

ficients are identical to those derived by Prospef8tti:
an 21-1
C

Qo

— B= a)- L[
ﬁvis_ﬁvisl_ma IBac( )_ ch +

(93

and the acoustic contribution to the bubble stiffn&g,(1),
is equal to the third term in the right-hand side of EtR) in
Ref. 28

B(Q)=Byis1 T BuiszT Bad ) + B1(Q2) —ABe (), (99

where B1(Q) is the frequency-dependent thermal damping
coefficient. We take into account thermal effects by reference
to the expressions for and 8+(Q) given by Prosperefi for

small-amplitude oscillations of free gas bubbles. There are

1 no effects of encapsulation on the polytropic exponent if the
(94) specific heats of the shell are very large compared with those
of the gas, and therefore,

02?a3
cr

0%a3
S, Q)= <z 1+
i

|
Y[ 1+3(vg—1)G_(VPg)]
[1+3(yg—1)G_(VPg)1?+9(y,— 1) G (\Pg) —2/Pg]?

Here v, is the ratio of constant-pressure to constant-volume specific heats for tr%('gaq;/Z) is given in Eq«(3.28 of Ref.
29,

(96)

1 ~ .
K= §Rea{F(| Pgl2)}=

2083 2Q0pyCcqeas
g Kg
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is the Peclet number for the gasg, the thermal diffusivity of the gass, the thermal conductivity of the gas, the specific
heat of the gas at constant pressure, and

1 | sinh/Pg*sin/Pg
G.(\Pg)= J/Pg,| cosh/Peg,—cos/Pg,|

As with the damping coefficient due to the liquid viscositys;, the thermal damping coefficiegt((2) for encapsulated
microbubble oscillations differs from that for free bubble oscillations by the fagtoif pso(1+ A ,a0/Rp)]

“LIm{F(iPgy/2)}
Q

A,
Ro
- 9PoYg(1+4,20/Ro) 1[G (\Pgy) — 2/Pg]
20208579~ VO[3 (VPey) + Uiyg— DT +9[G.(VPe)~2IPg ]}

1+

Po
0)=
Al 2Psoa§

(99)

Figure 3 illustrates the dependence of the total damping
coefficientB(Q)) as well as the liquid viscous, shell viscous, s>
acoustic radiation, and thermal damping coefficigigs;

—ABe(Q), Buisz, Bad2), B7(€2)] on the driving frequency
Q) for the encapsulated bubble of radiagg=1 uwm in accor-  This givesus>22u, for a microbubble of radius Lum with
dance with Eqs(92), (95), and(98). The liquid surrounding @ 15 nm thick shell. For the above values of viscosities
the microbubble is considered to be viscoelastic with the(us/w =442.5) the total damping of microbubble oscilla-
relaxation time A\;=0.1us. The shell around the mi- tionsis determined practically by the shell parameters even if
crobubble is thin §=15nm) and very viscous{us the liquid is Newtonian. Obviously, thg,s; and the differ-
=1.77 kg/(ms)]. The total damping of such microbubbles, ence betwee,;s; and 8,s, become greater with increasing
as discussed by Churéhis dominated by viscous effects. the shell thickness, i.e., one can neglect liquid viscous, ther-
Indeed, in the range of medical ultrasound frequencies (mal, and radiation effects when considering the attenuation
=1-10 MHz) thermal damping is three orders of magnitudeof oscillations for ultrasound contrast agents with thicker
less than viscous damping due to the shell. While radiatioshells (Fig. 4). Moreover, if the liquid is viscoelastic, the
damping rises with increasing the driving frequency, itliquid viscous damping drops sharply as the driving fre-
comes into play only at frequencies above 10 MHz. Wherguency increaseg=ig. 3. This happens even at small relax-
comparing the liquid and shell contributions to viscousation times §,=0.1 us) when elastic effects seem to be
damping, one can see tha}is;> Byis, if negligible(Fig. 5. From(920) it follows that the liquid elas-
ticity has a minor effect on viscous damping i,
<1/(27f). This gives\;<0.01 us for the frequencies be-

R3 -1
—-1] .
Qp

e 8 :
W 0E 1om o
a f :
= B _ r
2w T L 3
Bs E / = 100k 2
g L / g e
@ 0l . =1 C
w 'O E = C
£ F / g
g- C P o 1wE
___________ o an E
g 1wk 4 S E o
E / N = r
gt e G Y i B
10! 10 10' 10 107 % F
i'_' -

Driving frequency, / (MHz)

108 Lol Lol Lo

10 10 10

FIG. 3. Damping coefficients versus driving frequency for an encapsulated
air bubble of radius um. The solid line is the total damping coefficiefit Driving frequency, f (MHz)

The dashed and dash-dot lines correspond to the acoustic radiation and

thermal damping coefficien8,. and 3+, the thick and thin dotted lines are  FIG. 4. Total damping coefficient as a function of driving frequency for an
the shell and liquid viscous damping coefficierBgs;— ABe and Byisz - encapsulated microbubble of radiusuin. The curves labeled 1-3 are for
Parametersp,=0.1 MPa, d=Ry—ay=15 nm, u,;=0.004 kg/(ms), wus values of shell thicknesd=15, 100, and 200 nm, respectively. The total
=1.77 kg/(ms), A\;=0.1us, \,=0s, p,o=998 kg/n?, Pso damping coefficient for a free microbubble of the same radius is marked off
=1100 kg/ni, C,=1500 m/s,o;=0.04 kg/$, o,=0.005 kg/3. by the dashed line.
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numerical result

— = f,w_..= fml
........... F= 1o

Newtonian liquid

Resonance frequency (MHz)

Liquid viscous damping coefficients (s')

10 Lol Lol L 0
10 10 10!

a

Driving frequency, /' (MHz) Bubble radius, a, (zm)

FIG. 5. Liquid viscous damping coefficient as a function of driving fre- FIG. 6. Resonance frequen¢solid) for an encapsulated microbubble in an
quency for an encapsulated microbubble in a viscoelastic liquid with differ-incompressible Newtonian liquid, as a function of bubble radius, compared
ent values of the relaxation time. The curves labeled 1-3 are for values o#ith the undamped natural frequen@otted. The dashed line is the ana-
the relaxation timev;=0.01 us, 0.1, and Jus, respectively. The remaining lytical solution (82). The shell elasticity is 15 MP&C;=«, \;=\,=0s.
parameters are the same as in Fig. 3. Other parameters are as in Fig. 3.

tween 1 and 10 MHz. All these suggest that viscosity of the

shell is the most important parameter for defining the attenuere exists a critical radita, such that any microbubble of
ation of microbubble oscillation. radiusa,< a,. does not resonate at all. The critical radius for
the air-filled microbubble surrounded by blood and encapsu-
lated by a 15 nm thick shell with elasticity of 15 MPa and
In view of Eq. (90), the amplitude-frequency response viscosity of 1.77 kgm's ! is 2.6 um. This value is above

B. Resonance frequency

function|A,p| can be written as a mean bubble radius for many commercial contrast-agent
|A1p(Q)] suspension& Third, unlike the undamped natural frequency,
the dependence of the resonance frequency on the bubble
_ Po radius is not monotonic. There exists a maximal value of the
a psoag(1+Apa0/Ro) resonance frequency. If the driving frequency exceeds this
2 value, no bubbles oscillate resonantly. It immediately follows
1 that for each value of the driving frequency below the maxi-
[Q2— 0%+ S,{ Q) +S(Q)2+4028%(Q) | mal one there are two resonant bubble sizest one as be-

(99) fore). It should be noted that the resonance frequency of
bubble oscillation is not the frequency at which the scattering

WhereB(Q) takes into account the thermal diSSipation and iSCfOSS section has a local maximb(mee the next Secti@n

given by(95). Also, ()o=27f, is calculated according to the The |atter frequency is a monotonic function of the bubble

formula (78) wherein the polytropic exponenmtis given by a4ius which goes to infinity at the critical value of the ra-

Eq. (96). We perform the numerical maximization of the ;s

amplitude-frequency response funct.ion' in order to fin_d the Because the thermal damping coefficient is nearly con-
resonance frequendy,of bubble oscillation. The numerical stant and very smalicompared with the viscous damping

results are shown in Figs. 6-8. coefficient$ for micron bubbles at medical ultrasound fre-
Previously, the resonance frequerfgy for the encapsu- . . )
encies(Fig. 3), the resonance frequency is scarcely af-

lated microbubbles was taken to be equal to the undampe?fJ o . .
natural frequencyf, (see Refs. 8 and 15However, this ected. by the thermal .dISSIpatIOI‘\. The analytical spluu.on
works only for reasonably large bubbles, when the viscou§8,2) W'th,Kzl'l’ which is mar!(ed off by the da§hed line in
damping coefficients are much less than the undamped natffi9- 6. differs from the numerical result only slightly. Note
ral frequency. The ratio 0By, + Buiss 0 fo, and hence the that if t_he liquid is considered to be mcgmpress@le and
difference betweerf o and f, rise as the bubble size de- Newtonian, the only reason why the numerical solution may
creases. Numerical analysis confirms this. The resonance aRg different from the formulg82) is the thermal dissipation.
undamped natural frequenciesolid and dotted linesfor the ~ For the parameters as in Fig. 6, the inclusion of thermal
encapsulated microbubble in an incompressible Newtoniaflamping leads to an increase in the critical bubble radius
liquid (C;=%, A;=\,=0s), as functions of the inner from 2.55to 2.6um (less than 2% Upon neglecting thermal
bubble radius, are depicted in Fig. 6. First, this figure showslamping and elasticity of the liquid, the critical radiag,

that the assumptiof.= f, does not work for the encapsu- can be found analytically fron81) which, in view of (90),
lated microbubble having a radius below/Bn. Second, can be rewritten as follows:
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FIG. 8. Effects of liquid compressibility and viscoelasticity on the reso-
nance frequency of microbubble oscillation. Pltasand (b) are resonance
frequency as a function of bubble radius for different valueCpfat A,
=\,=0s and of\; at C;=1500 m/s anc\,=0's, respectively. The shell
elasticity is 88.8 MPa, other parameters are as in Fig. 6.

The existence of resonant peaks in the experimental scat-
tering cross section curve@t the driving frequengyfor
contrast-agent suspensions with a mean radius belowrd.6
indicates that the value of the shell elasticity is more than 15
MPa and/or the value of the shell viscosity is less than
1.77 kgm s 1. As seen in Figs. (& and 7b), the critical
bubble radius and the maximal value of the resonance fre-
quency increase with increasing the shell elasticity and de-
creasing the shell viscosity. Also, the critical radius is larger
for the microbubbles with thicker shellfig. 7(c)]. The fact

FIG. 7. Resonance frequency versus bubble radius for an encapsulated mihat the critical bubble radius depends on the shell param-

crobubble in a compressible Newtonian liquid, & 1500 m/s) for different
values of(a) shell elasticity,(b) shell viscosity, andc) shell thickness. For
plots(a) and(c) us=1.77 kg/(ms); for (b) and(c) Gs=88.8 MPa; for(a)

and (b) d=15 nm. Other parameters are given above.

2

A

p Ms™ M

2
Pso@oc

I T diag,

-1
{“S_ (1+d/ag,)®

where() is also a function ofy.. .

eters gives us a possibility to evaluate one of them. For ex-
ample, we can measure the shell thickness by atomic force
microscopy and the shell viscosity by fitting the experimen-
tal data for the ultrasound attenuation in the contrast-agent
suspension to the theoretical calculations base@8n Of
course, we should sur((2) over all available bubble sizes
for this. Note that(95) includes the contribution of liquid
elasticity to the total damping coefficient, which was not
taken into account previously. Having these data and know-
ing the values of the gas and liquid parameters, we only need
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to find the critical bubble radius in order to evaluate the shell 70
elasticity. LA
The effects of the liquid compressibility on the reso-
nance frequency are small as compared to the shell effects.
There is a decrease in the maximal resonance frequency and
no change in the critical bubble radius with decreasing the

speed of sound in the liquifFig. 8@)]. Figure &a) shows
that the resonance frequency of a 2-micron bubble equals
about 4.15 MHz if the liquid is considered to be incompress-
ible and equals about 4.11 MHz if the speed of sothd
=1500 m/s. Nonetheless, the difference 0.04 MHz cannot L :
be considered very smdlielative to experimental measure- - 1.9“.5| TN P IR
ment sensitivity. The elasticity of the liquid influences the 1 2 2 4 5
resonance frequency, though its effects are much smaller Bubble radius, a, (#m)
than the effects of the shell elasticity becayge< . In a
viscoelastic liquid the maximal resonance frequency is a|F|G 9. Maximum frequency o (solid) for an encapsulated microbubble

. . . . " in an incompressible Newtonian liquid, as a function of bubble radius, com-
ways |arger than in a Newtonian “qu[ﬂ:'g 8(b)] The criti- pared with the undamped natural frequerigy(dashe¢l The same param-
cal bubble size deviates slightly from the value obtained ireters as in Fig. 6.
the case of a Newtonian liquid. It is necessary to say that the
liquid elasticity has the greatest impact on the resonance fre-
quency ath;~0.1 us [the dotted line in Fig. &)]. The ef-  presence of2*4 in the numerator of Eq10239. In the case of
fects of the liquid elasticity are diminished with a further an incompressible Newtonian liquid, when thermal effects
increase in\; (compare the dotted and dash—dot lines are neglected, it is easy to obtain that

f2

max— fmaxl f (104)

res

— mametical result
— = — =Ty

Rl Q‘ .........

Maximum frequency (MHz)

C. Scattering cross sections f

In order to incorporate thermal damping into the formula
for the second-harmonic amplitude, we rewrite the secondf ViScous damping is smallarge bubbles we can neglect

equation in(76) in the form the difference betweefi,c andf, and thenf ., is apprc')x[-
mately equal to the undamped natural frequency. This is not

b5 (Q)AT(Q) true for microbubbles with the radius less tharuf for

Azp(Q)= Q5—402+S,(20)+S,(2Q)+4iQB(2Q)° which f . greatly differs fromf, (see above From Eq.

(101 (104 and the existence of the critical bubble radas at
which f =0 it follows that the frequency,,,, tends to in-

where finity as the bubble radius approaches., though the un-
Po A 80| "1 2i(Aae/U)Q]¢,(Q) damped natural frequency goes to infinityegt=0. The re-
* — . . .
¢5(Q)= Pl 1+ Ry 1+4(Aag/UZ02 sult is practically unaffected if thermal effects are allowed

for. Figure 9 shows the dependence of the maximum fre-
The thermal damping coefficier@; is inside A;p(Q)) and  quencyf,, on the bubble radiug, for the encapsulated

B(2Q). The first- and second-harmonic scattering cross sednicrobubble in an incompressible Newtonian liquid, as ob-
tions oy, and o, are then given by the following expres- tained from the numerical maximization of the scattering

sions: Cross sectiowg, . The frequency goes to infinity at the point
ay=2.52 um which is very close to the critical value for the
o _4 Plo °Q4|A Q)2 (1023 resonance frequenci2.6 um). Experimentalists define the
st p? 1P resonance radius of the bubble from the resonant peaks in the
scattering cross-section curves. However, it is difficult to
US2_167TP|030P Q%A Lp(Q)|*T, (102 construct the dependence @f; on a, because of polydis-

pO persity of real microbubble suspensions. However, there is
no problem to measure the scattered pressure field for a par-

with ticular value of the driving frequency. Therefore, specialists
5(Q) ’2 in acoustic scattering make use of the plots of scattering
=1 cross section versus frequency for defining the maximum

QZ 4Qz+830(29)+Se'(29)+4'9'8(29)| 103 frequencyfax (Which is considered as the resonance fre-
(103 quency. The resonance radius of the bubble can then be
Note thatP, is nondimensional. found from thef ,,,,—a, curves’® Previously, the assumption
The resonance frequency of bubble oscillation is usuallyf .=, was used for calculatlng the resonance bubble ra-
evaluated from the curves for the scattering cross section alius, i.e., the undamped natural frequency was considered to
the driving frequency. It is taken to be equal to the frequencybe the frequency at which the scattering cross section had a
f max @t which o, has a local maximum. However, the fre- local maximum. As seen in Fig. 9, this assumption, which
quencyf ., differs from the resonance frequency due to theworks only for large bubbles, leads to underestimating the
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FIG. 10. First-harmonic scattering cross section versus driving frequency.
The solid line is forag=2.945 um, the dashed line faa,=1.945um. The
surrounding liquid is incompressible and Newtonian.

resonant size of microbubbles. For the parameters of this
figure, the undamped natural frequency gives the resonant
radius of 1.945um at the driving frequency =3.5 MHz.
However, the actual resonant radius is 2.94% (Fig. 9.
Indeed, for a microbubble with the radius of 2.94& the
scattering cross sectiomg; has a maximum at the driving
frequency of 3.5 MHz. However, there is no resonant peak in
og at 3.5 MHz for a 1.945%um bubble(Fig. 10. Moreover,

the scattering cross section never reaches a local maximum
for such a microbubble because its radius is below the criti-
cal value.

Figures 11 and 12 show the effects of the shell param-
eters (elasticity, viscosity, and thicknessand of the com-
pressibility and viscoelasticity of the surrounding liquid on
the second-harmonic scattering cross sectign. First, an
increase in the shell elasticity results in increasing the mag-
nitude of the resonant peak iny, [Fig. 11(a)]. This contra-
dicts one of Church’s conclusions that “the magnitude and
the sharpness of the peaks in the cross section curves tend to
decrease as the shell rigidity increasésif'is easy to check
that the derivative ob;, or o, with respect tdG, is always
positive, i.e., the scattering cross sections increase with in-
creasing shell elasticity. Of course, the scattering is weaker
for microbubbles with more viscous shell§ig. 11(b)].
Therefore, viscosity of the shell is the main reason why the
encapsulated microbubbles scatter more poorly than free mi-
crobubbles. It should be noted that the second-harmonic
resonance, which takes place if the driving frequency is
equal tof /2, appears only for reasonably small values of
the shell viscositysee the dashed line in Fig. (bl]. As seen
in Fig. 11(c), the microbubbles with thick shells are poor

Radial oscillations of encapsulated microbubbles
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FIG. 11. Second-harmonic scattering cross section versus bubble radius for
an encapsulated microbubble in a compressible Newtonian liquid for differ-

scatterers in comparison with those with thin shells. This isnt values ofa) shell elasticity,(b) shell viscosity, andc) shell thickness.
because an increase in the shell thickness leads to the iRa=0.3, other parameters are given in Fig. 7.

creased impact of the shell viscosity on microbubble oscilla-
tions.

The liquid parameters weakly affect the scattering by thedamping [Fig. 12a)]. The resonant scattering by the mi-
encapsulated microbubbles as compared to the shell pararmrobubbles is higher in a viscoelastic liquid than in a New-
eters. The magnitude of the resonant peak in the scatterirtgnian liquid. The larger the relaxation time, the higher the
cross section curves tends to decrease with decreasing thesonant peakFig. 12b)]. It is worth noting that the mag-
speed of sound in the liquid because of acoustic radiatiomitude of the resonance peak @t=c differs from that at
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We have shown that if the bubble is smé#2 xm in
size and is covered by a shell 15 nfar more in thickness,
the total damping of its radial oscillation is determined by
the shell viscosity. In the viscoelastic liquid case, the contri-
bution of the liquid viscosity to the total damping coefficient
is below that for a Newtonian liquid and sharply decreases
with frequency even at small values of the relaxation time.
The numerical maximization of the amplitude-frequency re-
sponse function reveals that the resonance frequency for the
encapsulated bubble of radiag<<5 um highly depends on
the shell and liquid viscosities, and therefore, significantly
differs from the undamped natural frequency. Hence, the
presently accepted assumptifp= f, fails over a range of
ultrasound contrast agents. Moreover, at given values for the
shell and liquid parameters there exists a critical value of the
bubble radius such that any smaller microbubble does not
resonate. This critical radius is about Lu&n for the mi-
crobubble surrounded by blood and encapsulated by 15 nm
thick shell having elasticityG;=88.8 MPa and viscosity
ws=1.77 kgm s 1. Recall that these values correspond to
those obtained by fitting the de Jong theory with experimen-
tal data for Albunex® bubbletee Refs. 6 and)5

Usually, experimentalists consider the frequency at
which the first-harmonic scattering cross section is maximal
as the resonance frequency of bubble oscillation. This is not
true for micron bubbles. Upon neglecting thermal effects and
considering the liquid to be Newtonian and incompressible,
this maximum frequency ., can be expressed in terms of
the undamped natural and resonance frequencie§;,as
zfglf,es. When the bubble radius approaches the critical
value, this maximum frequency tends to infinity, whereas the
resonance frequency tends to zero. Also, the assumption

f max=Tfo, Which is used for evaluating the resonance bubble
size from the experimental data on the scattering cross sec-
tion (vs the driving frequendy is no longer valid for the
encapsulated microbubbles. In the range of medical ultra-
sound frequencies it leads to significant underestimation of
C,=1500 m/s by a factor of about 1.5. The same differencéhe resonance bubble size.
is seen between a Newtonian liquid and a viscoelastic liquid ~ The resonant peaks in the scattering cross section curves
with the relaxation time 10° s. Moreover, the relaxation are very sensitive to the shell parameters but not to the liquid
time for blood may be higher. For example, the characteristi®arameters. The effects of liquid compressibility and vis-
time for red cell deformation may reach 0.06sge Ref. 58  coelasticity on the scattering by the encapsulated mi-
The effects of liquid compressibility and elasticity are there-crobubbles are, therefore, small. There is a slight increase in
fore detectable by current experimental techniZﬁJe_ the magnitude of the peaks with decreasing the liquid viscos-
ity or the speed of sound in the liquid and with increasing the
relaxation time. But these effects are detectable based on the
sensitivity of current experiments. The experimental results,
In this study, the equation for radial oscillations of anwhich indicate that the encapsulated microbubbles scatter ul-
encapsulated gas bubble in a compressible viscoelastic liquiasound more poorly than free ones, are due to the shell
has been derived using the method of matched asymptotigscosity. It is not true that the shell elasticity is responsible
expansions. The Kelvin—Voigt and 4-constant Oldroyd mod-or that. The scattering cross sections increase with increas-
els were adopted to describe the viscoelastic properties of tHag the shell elasticity. If the shell becomes thicker, the scat-
encapsulating layer and of the liquid, respectively. Based ottering deteriorates. This can also be explained by the in-
this equation, the small-amplitude forced oscillations of thecreased impact of the shell viscosity on microbubble
encapsulated microbubble were analyzed. The formulas fapscillations.
the first- and second-harmonic amplitudes of bubble oscilla-
tion and the expressions for the scattering cross sections SACKNOWLEDGMENTS
the driving frequency and at twice that frequency were pre-  This material is based upon work supported by the North
sented. Atlantic Treaty Organization under Grant No. DGE-0000779

FIG. 12. Effects of(a) liquid compressibility andb) viscoelasticity on the
second-harmonic scattering cross section. The pararRgte0.3. For plot
(& Ny=A,=0s, for(b) C,=1500 m/s anc\,=0s.
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dx2 dx;\ 4nDe/[dx;\?
dat, T 24ay, ) TRer \dt, ) (A63)

APPENDIX: SMALL-AMPLITUDE ANALYSIS OF THE 8T *

CONSTITUTIVE EQUATION P 6Dedx; 24\De/ dx, 2

o i +the——|Yo=——73 ——T1i——5—% |3 (A6b)
The effects of liquid compressibility are negligible near Ity ry dt Rer, \dt,

the bubble surface. In that case, the 4-constant Olrdroyd co

"hese equations are uncoupled because the only interaction
stitutive model is reduced to the system of equatifsee d P y

term in Eq.(Ala)

Eqgs.(39)]: .
eQ(t
o DeQt)| d  2\] 4 2( - g)#tr[ﬂﬁl)],
1+De T r2 ar + r— It *
* * * is of ordersg. Therefore, this term should be taken into
De Q(t ) ) account only in the equations for the third- and higher-order
=2\ 7= § * 7] stress perturbations. This means that the trace of the shear
stress tensor affects neither the first harmonic nor the second
B dQ Q (te )} (Ala) harmonic of bubble oscillation. Indeed, the integral
Rqrs dt, e | IR
*Ir
1+ De d DeQ(t ) 9 }t 0] q(ty) SJR*(t*) = dr,
aty re the contribution of liquid viscoelasticity to bubble oscilla-
6DeQ(t ) 22\ DeQ (t,) tions, does not depend on the third-order stress perturbation
= 79— : (Alb)  Tj if we restrict our attention to the quadratic nonlinear
r* Rar, ry terms. This is becausg is of order of unity and the integral
where the function is not singular at any value df, , at least, in the case of
small-amplitude oscillations. Using Eq&A3) and (A4), we
da, can write this integral in the form
Q)= (t) G (A2)

= gy Tyt
att=3[ I gro6)),

If the amplitude of the incident acoustic field is small, i.e., Ry (1)

the bubble undergoes small-amplitude oscillations 3 (AT)

adg
R, (t,)= 1+8pR3X1(t )+0(e2)|.

a, (ty)=1+x4(ty),

(A3)  The first- and second-order stress perturbatibpgnd T,,
which are the solutions of the first equation(#6) and Eq.

we can seek the solution of Eq&1) as expansion in powers (A6, can be represented as
of a small parametes h, (t h.(t t
T1: 1(3*) ' T2= 2(3*) + 92(6*) , (A8)
75:?2=epT1+ssT2+O(sg’), tr[ﬂ'SJ)]=spY1+s'23Y2+O(sg). M M M
(A4)  where the functionb(t, ), h,(t,), andg,(t,) are solutions
pf the following ordinary differential equations:

X1(t,) =epXy(ty) +epx(t, )+ O(e3),

To obtain the equations for stress perturbations we substitu

(A3) and(A4) into the systentAl) and separate the resulting d 4 d)\dx,
expressions in the orders ef,. The first-order equations 1+De ha(t,)= Reg 1+\De €4t dt,’ (A9)
look as follows:
d 4 d
9 9 Xm 1+De hy(t,)= 1+)\Dea
(1+ De—)le— 1+)\De—) Y,=0. Re
Ity Rer3 dt,
(AS) dX2 Xm
X T 2X4 TRIE (A10)
From the second equation @&5) it follows that the trace of * *
the shear stress tenso[at(f)] is a quadratic nonlinear term 4\De|dx,|?
2 : 1+Deyg;)9a(ty) =Deg— “hy(t,)+ :
(of order £7). The second-order equations then have the Rq \dt,

form (Al1)
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Substitution of(A8) into (A7) and further integration of the
result yield

3 6

ao 5 3o
q(t*)zspﬁhl(t*)—'—sp - RS hy(te)Xa(ty)
0 0
+a—gh (t )+—ag (t,)|[+0(ed) (A12)
Rg 2\ % 2Rgg2 * p/*

Expression(A12) takes the form of Eq(60) after some re-
arrangement and reverting to the variah(e, ).
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