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Radial oscillations of encapsulated microbubbles in viscoelastic liquids
Damir B. Khismatullina) and Ali Nadimb)
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The small-amplitude radial oscillations of a gas microbubble encapsulated by a viscoelastic solid
shell and surrounded by a slightly compressible viscoelastic liquid are studied theoretically. The
Kelvin–Voigt and 4-constant Oldroyd models are used to describe the viscoelastic properties of the
shell and liquid, respectively. The equation for radial oscillation is derived using the method of
matched asymptotic expansions. Based on this equation, we present the expressions for damping
coefficients and scattering cross sections at the fundamental frequency and at twice that frequency.
The numerical maximization of the amplitude-frequency response function shows that the resonance
frequency for the encapsulated microbubble highly depends on viscous damping, and therefore,
significantly differs from the undamped natural frequency. The effects of the shell and liquid
parameters on the resonance frequency and scattering cross sections are analyzed. ©2002
American Institute of Physics.@DOI: 10.1063/1.1503353#
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I. INTRODUCTION

Despite the fact that microbubbles covered with a b
compatible surface-active layer have been the subject o
tense experimental research and commercial developmen
use as contrast agents for medical ultrasound diagnostic1–3

a rigorous theoretical description for the pulsations of su
encapsulated bubbles in blood flow is not available. Exist
theoretical models are based upon various forms of
Rayleigh–Plesset~RP! equation for spherical bubble oscilla
tions, and attempt to take into account, often on the basi
unjustified conjectures, the elasticity and viscosity of the s
factant layer which is treated as a viscoelastic solid she4,5

In particular, in the de Jong model4,6,7encapsulation provide
additional damping of bubble oscillations and makes
bubble more ‘‘rigid.’’ In doing so, a shell friction is include
in the damping coefficient and a shell elasticity term is add
in the Rayleigh–Plesset~RP! equation. Neither a norma
stress balance at the bubble surface nor a rheological e
tion for the shell is considered. The heart of the Chu
model5,8 is the modified RP equation which is derived fro
conservation of radial momentum assuming the existenc
two interfaces: One between the gas and the shell and
other between the shell and the surrounding liquid, i.e., t
ing into account the finite thickness of the encapsulat
layer. The shell itself is modeled as a viscoelastic solid.

The standard RP equation holds only if the liquid s
rounding a gas bubble is Newtonian and incompressi
These assumptions may be reasonable in certain inorg
aqueous media but not for living matter and, in particu
human tissue and blood.9–12Nonetheless, the RP-based mo
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els are claimed to be ‘‘validated by extensive experimen
results’’ by fitting the models, i.e., thea priori unknown
values of shell elasticity and viscosity, to experimental m
surements. In our view, such models cannot be accura
used to interpretin vivo measurements and our goal in th
paper is to provide a more accurate description which
actually be used with confidence for this purpose. To date
theoretical studies on radial oscillations of encapsulated
crobubbles in compressible viscoelastic liquids are availa
The effects of acoustic radiation are considered by Chin
Burns.13 However, their model is simply a modified Trilling
equation which is appropriate only for the pulsation of fr
microbubbles~without encapsulation! in Newtonian liquids.

A microbubble in a liquid undergoes forced radial osc
lations when the ultrasound wave, the wavelength of wh
is much larger than the bubble radius, impinges upon it. T
size of the bubble decreases in the positive half cycle of
ultrasound wave and increases in the negative one. The
sating microbubble emits secondary ultrasound waves in
surrounding liquid~blood!, i.e., it behaves as a source
sound. The microbubble, therefore, enhances the backsc
signal from blood and provides bright blood pool contra
especially if it is driven at its resonance frequency. The m
effective scatterer of ultrasound is a free microbubble:
resonant scattering cross sections are of the order of a t
sand times greater than its geometrical cross section.14 How-
ever, such a microbubble dissolves very quickly after int
venous injection before entering the systemic circulati
Encapsulation extends the lifetime of the microbubble
degrades its scattering properties.6 Also, the natural fre-
quency of microbubble oscillations is augmented5,15 by the
elasticity of the encapsulating layer. The response of the
rounding tissue suppresses the backscattered signal o
microbubble at the fundamental~driving! frequency. Fortu-
nately, a pulsating gas bubble is a highly nonlinear syst
At rather large values of the acoustic pressure amplitude

ess:

er-
t,
4 © 2002 American Institute of Physics
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generates a wide spectrum of harmonics a
subharmonics.16,17 When the bubble oscillations are res
nant, the backscattered signal has harmonic and subharm
components with decreasing intensity but strong enoug
be used for diagnostic purposes. This has made possible
method of ‘‘second-harmonic imaging:’’ Ultrasound is tran
mitted at the fundamental frequency and received at tw
that frequency.18 Of vital importance for contrast harmoni
imaging is, therefore, to know the correct expressions for
resonance frequency and the scattering cross sections a
driving frequency and at twice the driving frequency. The
expressions are given and analyzed in the present pape

There are other, more impressive areas of microbub
applications. The encapsulated bubbles with an average
less than that of a red blood cell~<10 mm in size! are ca-
pable of penetrating even into the smallest capillaries
releasing drugs and genes, incorporated either inside the
on their surface, under the action of ultrasound.19,20 These
microbubbles can transport a specific drug to a specific
within the body~for instance, an anticancer drug to a spec
tumor!. The tissue-specific drug delivery will be more effe
tive if targeting ligands are attached to the microbubble s
face. The ligands~biotin or antibody! bind to the receptors
~avidin or antigen! situated at the blood vessel walls of th
target site and force the microbubble to attach to the bl
vessel walls.21 The attachment of microbubbles to the wa
can assure targeted drug delivery. Under exposure to s
ciently high-amplitude ultrasound, these microbubbles wo
rupture, spewing drugs or genes, which are contained in t
encapsulating layer, to the target tissue. Commercial de
opment of these ideas is in its initial phase, but methods
preparing such microbubbles have already been patent22

The ultrasound-induced breakup has been observed for
eral ultrasound contrast agents, including albumin- a
phospholipid-covered microbubbles.23 An understanding of
microbubble behavior is also important for a range of ap
cations in biotechnology. The colloidal gas aphrons, wh
are microbubbles encapsulated by surfactant multilayers
coming into use for the recovery of cells and proteins as w
as for the enhancement of gas transfer in bioreactors.24

The remainder of the paper is structured as follows. S
tion II gives the governing equations for the radial flow
the viscoelastic liquid around an encapsulated microbub
The 4-constant Oldroyd and Kelvin–Voigt constitutive equ
tions are used to model the liquid and the shell, respectiv
In Sec. III we construct the equation for radial oscillations
an encapsulated microbubble in a compressible viscoela
liquid using the method of matched asymptotic expansio
The small-amplitude bubble oscillations are examined
Sec. IV. We derive the formulas for the first- and secon
harmonic amplitudes of oscillation and present the exp
sions for the resonance frequency and the first- and sec
harmonic scattering cross sections there. In Sec. V
damping coefficients for the encapsulated microbubble,
effects of damping on the resonance frequency as well as
dependencies of the resonance frequency and scattering
sections on the shell and liquid parameters are analyzed.
tion VI concludes the paper.
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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II. GOVERNING EQUATIONS

Consider spherically symmetric radial flow in an u
bounded viscoelastic liquid which surrounds a gas bub
covered by an encapsulating layer. The layer is modeled
an incompressible viscoelastic solid shell and taken to be
finite thickness, i.e., we assume the existence of two in
faces: One between the gas and the encapsulating laye
the other between the layer and the surrounding liquid~Fig.
1!. In writing the governing equations, we take into accou
the compressibility of the liquid but neglect the effects
gravity and other body forces; we also assume that the p
sure is spatially uniform inside the bubble, the shell is
compressible, gas diffusion affects neither the velocity n
the stress fields, the temperature in the liquid remains c
stant during the oscillations, the gas within the bubble
polytropic, the partial pressure of the vapor is small co
pared with the gas pressure, and the bubble motion is pu
radial, i.e., there is no rotation or shape deformation. Un
these assumptions, the radial flow of the liquid around
encapsulated bubble is described in spherical coordin
(r ,Q,w) by the equations of continuity

]r

]t
1

]~rv r !

]r
1

2rv r

r
50, ~1!

and radial momentum

rS ]v r

]t
1v r

]v r

]r D52
]p

]r
1~“•x!r , ~2!

the barotropic equation of state for the liquid

pl5pl~r l !, ~3!

a polytropic pressure-volume relationship for the gas

pi5pi0S a0

a D 3k

, ~4!

the initial conditions

FIG. 1. Schematic sketch of an encapsulated bubble.
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t50: a5a0 , R5R0 , v r50, pl5p0 , r l5r l0 ,
~5!

and the boundary conditions at the interfaces and infinity

r 5a: v r5
da

dt
, pi5ps2x rr

(s)1
2s1

a
, ~6!

r 5R: v r5
dR

dt
, pl2x rr

( l )5ps2x rr
(s)2

2s2

R
, ~7!

r→`: v r→0, pl→p0 . ~8!

Here t is time, r the radial coordinate,r the density,p the
pressure,v r the radial component of the velocity,x the stress
tensor,a(t) the inner radius of the bubble,R(t) the outer
radius of the bubble~together with the encapsulating layer!,
pi the internal pressure of the bubble~gas pressure!, andk a
polytropic exponent. The subscript 0 refers to the unp
turbed state of the bubble. The subscriptsl and s identify
liquid and shell parameters. Surface tension at the inner~gas-
shell! and outer~shell-liquid! interfaces is denoted bys1 and
s2 , respectively. Equations~1! and ~2! are integrated with
respect tor from a(t) to ` using the parameters appropria
for the shell ~r5rs0 , p5ps , x5x(s)) and the liquid ~r
5r l , p5pl , x5x( l )) in the regions (a,R) and (R,`). Tak-
ing into account thatxQQ5xww for a purely radial flow and
that the shell is incompressible, these equations can be
written in the form

]v r

]r
1

2v r

r
50, for r P~a,R!,

~9!
]r l

]t
1

]~r lv r !

]r
1

2r lv r

r
50, for r P~R,`!,

rs0S ]v r

]t
1v r

]v r

]r D52
]ps

]r
1

]x rr
(s)

]r
1

2

r
@x rr

(s)2xQQ
(s) #,

for r P~a,R!,
~10!

r l S ]v r

]t
1v r

]v r

]r D52
]pl

]r
1

]x rr
( l )

]r
1

2

r
@x rr

( l )2xQQ
( l ) #,

for r P~R,`!.

It is worth commenting on the validity of the above a
sumptions. Gas pressure may be considered uniform if
Mach number of the bubble wall motion, calculated w
respect to the speed of sound in the gas, is much less
unity, and the wavelength of sound in the gas is much lar
than the characteristic bubble radius.25,26Significant pressure
nonuniformities would develop in a collapsing bubble and
frequencies that are large compared with the resonance
quency of free bubble oscillations.26 The second condition
for uniformity of the gas pressure implies that all press
perturbations, leading to or generated by pulsations of
bubble, propagate in the gas, and hence in the liquid, as
waves. We can then consider a region of the liquid near
bubble surface, and thus the shell, to be incompressib27

Since gas diffusion in and out of the bubble manifests its
over time scales much longer than the period of bubble
cillations, we eliminate the gas transfer problem from co
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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sideration. The constant temperature in the liquid may
explained by noting that the specific heat of the liquid is ve
large compared with that of the gas, i.e., ‘‘the liquid may
regarded as a thermostat that absorbs and gives off he
the bubble walls without changing its temperature.’’25 How-
ever, heat conduction through the bubble wall affects
bubble dynamics very strongly. Fortunately, the heat infl
equation for the gas can be replaced by an approximate p
tropic pressure-volume relationship in the case of a cal
cally perfect gas, uniform internal pressures, and sm
amplitude bubble oscillations.26,28,29A polytropic exponentk
then takes the value from 1~isothermal behavior! to gg

~adiabatic behavior withgg being the ratio of constant
pressure to constant-volume specific heats for the gas! and
the energy dissipation due to thermal effects is accounted
in the damping coefficient of radial oscillations29,30 ~effects
of heat conduction on bubble oscillations are considered
Sec. V!. In reality, the shell is not a solid material becau
the microbubble is encapsulated by a layer of surface-ac
molecules~lipids or proteins!, which are mobile. This is the
reason why we consider the nonzero~but small! surface ten-
sion at the outer interface. Given the small size of the bub
and hence the decreased mobility of surface-active molec
due to the small surface area of the interface, the assump
that the encapsulating layer is aviscoelasticsolid is reason-
able. Problems of shape deformation or rotation of
bubble are beyond the scope of the present paper. Finally
neglect body forces and the partial pressure of the vapor
the sake of simplicity.

We employ the Kelvin–Voigt constitutive equation t
model the shell,31 i.e., we assume that

x(s)52~Gsg1msġ !, ~11!

where

g5 1
2 ~“u1“u†! and ġ5 1

2 ~“v1“v†! ~12!

are the strain and rate-of-strain tensors,u andv the displace-
ment and velocity vectors,Gs andms the shear modulus an
the shear viscosity of the shell. It is common practice
employ the Kelvin–Voigt model for estimating the stress
in cell membranes.32 The same model was used by Churc5

to account for viscous properties of elastic solid shells. G
erally, the stress tensor in a linear viscoelastic solid has n
deviatoric terms proportional to tr(g) and tr(ġ), where ‘‘tr’’
denotes the trace of a tensor. However, these terms va
due to the assumption of shell incompressibility. This is fu
confirmed in the case of purely radial flow. Indeed, if w
restrict our attention to purely radial pulsations of the m
crobubble, the strain and rate-of-strain tensors are only
fined by the radial components of the displacement and
locity vectors. From Eq.~9! and boundary conditions~6! and
~7! it follows that the radial velocity of shell particles i
given by

v r5
a2

r 2

da

dt
5

R2

r 2

dR

dt
. ~13!

It is easy to show that if the volume of the shell is consta
during radial oscillations, the difference between the sph

ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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cal volumesV54p(r 1ur)
3/3 and V054pr 3/3 associated

with a shell particle~initially at position r ) after and before
radial deformation is equal toC1(t)54p(a32ae

3)/3 or
C2(t)54p(R32Re

3)/3 @note C1(t)5C2(t)#. Hereur is the
radial displacement;r , ae , Re and r 1ur , a, R are, respec-
tively, the unstrained and strained positions of the shell p
ticle, the inner interface, and the outer interface. For infi
tesimal displacements, i.e., whenur!a0 and henceua2aeu
!a0 , we then have

ur5
a2~a2ae!

r 2 5
R2~R2Re!

r 2

and

g rr 522gQQ52
2a2~a2ae!

r 3 ,

~14!

ġ rr 522ġQQ52
2a2

r 3

da

dt
.

Taking into account thatgQQ5gww and ġQQ5ġww due to
spherical symmetry, one may obtain from Eq.~12! that
tr(g)5g rr 1gQQ1gww50 and tr(ġ)5ġ rr 1ġQQ1ġww50.
Finally, rr - andQQ-components of the stress tensor take
forms

x rr
(s)522xQQ

(s) 52
4a2

r 3 FGs~a2ae!1ms

da

dt G , for r P~a,R!

~15!

which agrees with formula~10! in Ref. 5. ~Note once again
that xQQ5xww for pure radial flows.!

It should be noted that the unstrained inner radius of
bubbleae is not ordinarily equal to the equilibrium radiu
a0 . This implies that there are nonzero stresses~or pre-
stresses! in the shell even if the microbubble does not chan
its volume. The pre-stresses in the shell can be a result o
diffusion. Suppose that a free microbubble of radiusae is
covered in a saturated liquid by a layer of surface-act
material forming the shell layer. Initially, the stresses in t
layer are zero. Then the microbubble begins to dissolve
to interfacial tension which creates an over-pressure in
gas inside the bubble relative to the pressure in the liq
The contraction of the bubble leads to the straining of
shell, and hence to nonzero stresses inside the shell.
stresses, or more precisely the component of the stress te
in the radial direction~radial stress!, increase with decreasin
bubble volume and act in opposition to interfacial tensio
When the radius of microbubble reaches the valuea0,ae ,
the radial stress in the layer is counterbalanced by interfa
tension and the microbubble stops shrinking. This coun
balance may be one of the reasons why encapsulated
crobubbles are more stable than free ones.5

In a compressible liquid the stress tensorx( l ) consists of
two parts. The first part is the shear stress tensort( l ) that
depends on the rate-of-strain tensor. If the liquid is Newt
ian, this tensor looks as follows:33

t( l )52m lF ġ2
tr~ ġ !I

3 G , ~16!
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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wherem l is the shear viscosity of the liquid. The second p
is the isotropic tensorn( l )5 f 0I with f 0 being in general a
function of invariants of the rate-of-strain tensor,34 i.e., f 0

5 f 0(I 1 ,I 2 ,I 3), where I 15tr(ġ), I 25$@ tr(ġ)#22tr(ġ2)%/2,
and I 35Det(ġ). To a first approximation

n( l )5kvtr~ ġ !I , ~17!

kv is the second~or dilatational! viscosity of the liquid.
Apart from the Newtonian and linear viscoelastic cases,
shear stress tensor has a finite trace,35 i.e., tr@t( l )#Þ0. There-
fore, if the liquid is compressible and/or the constituti
equation for the liquid is nonlinear, there is a ‘‘viscous’’ co
tribution to the mean pressurepm52tr@p( l )#/3 @p( l )

52pl I1x( l ) is the total stress tensor in the liquid# that re-
sults in its variation from the thermodynamic pressurepl in
the liquid.

We assume that the liquid surrounding the encapsula
microbubble is viscoelastic or more specifically, the liqu
obeys the 4-constant Oldroyd constitutive equation.35 From
~16! it follows that in the compressible case this equati
should contain additional terms involving tr(ġ):

t( l )1l1

Dc

Dt
t( l )1l3F ġ2

1

3
tr~ ġ !I G tr@t( l )#

52m l H ġ2
1

3
tr~ ġ !I1l2

Dc

Dt F ġ2
1

3
tr~ ġ !I G J . ~18!

Herel1 , l2 , andl3 are the material constants~the constants
l1 andl2 are often referred to as relaxation and retardat
times, respectively!, Dc /Dt is the codeformational~contra-
variant convected! time derivative

Dcf

Dt
5

Df

Dt
2~“v!†

•f2f•~“v!, f5t or ġ, ~19!

and D/Dt5]/]t1v•“ is the material time derivative
Straightforward analysis shows that if the liquid flow
purely radial, the first two diagonal components of the sh
stress tensor are in the form

F11l1

D

DtGt rr
( l )22l1

]v r

]r
t rr

( l )

5
4m l

3 H 12
l3

2
tr@t( l )#22l2

]v r

]r
1l2

D

DtJ S ]v r

]r
2

v r

r D ,

~20a!

F11l1

D

DtGtQQ
( l ) 22l1

v r

r
tQQ

( l )

52
2m l

3 H 12
l3

2
tr@t( l )#22l2

v r

r
1l2

D

DtJ S ]v r

]r
2

v r

r D .

~20b!

Since tr@t( l )#5t rr
( l )12tQQ

( l ) is not equal to zero, the shea
stress tensor can be represented as the sum of devia
~traceless! and nondeviatoric tensors36

t( l )5t( ld)1 1
3tr@t( l )#I . ~21!

Substituting~21! into Eqs.~20! and taking into account tha

ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 20 Nov 2013 20:13:33



ua

u
as

th
m

.

co
u
i

v
i
r

as
ur
o
t

a
te
e-
a

iat
ge
fir
ct

ica

s
a
e

for

s

3538 Phys. Fluids, Vol. 14, No. 10, October 2002 D. B. Khismatullin and A. Nadim

 This ar
tQQ
( ld)52 1

2 t rr
( ld) , ~22!

one can obtain the system of two coupled differential eq
tions for t rr

( ld) and tr@t( l )#

F12
4l1

3 S ]v r

]r
1

v r

2r D1l1

D

DtGt rr
( ld)

52
2

3 S l32
2l1

3 D S ]v r

]r
2

v r

r D tr@t( l )#

1
4m l

3 F12
4l2

3 S ]v r

]r
1

v r

2r D1l2

D

DtG S ]v r

]r
2

v r

r D ,

~23a!

F12
2l1

3 S ]v r

]r
1

2v r

r D1l1

D

DtG tr@t( l )#

52l1S ]v r

]r
2

v r

r D t rr
( ld)2

8m ll2

3 S ]v r

]r
2

v r

r D 2

. ~23b!

Such traceless stress tensor formulation for viscoelastic fl
flow is more suitable for analytical calculations. Also,
shown by Oliveira,36 this formulation provides stability
of numerical computations. Finally, therr - and
QQ-components of the stress tensor for the radial flow of
4-constant Oldroyd liquid around the encapsulated
crobubble can be written as

x rr
( l )5t rr

( ld)1
1

3
tr@t( l )#1knS ]v r

]r
1

2v r

r D ,

~24!
xQQ

( l ) 52
1

2
t rr

( ld)1
1

3
tr@t( l )#1knS ]v r

]r
1

2v r

r D ,

wherer P(R,`) andt rr
( ld) and tr@t( l )# are governed by Eqs

~23!.
The reason we have adopted the 4-constant Oldroyd

stitutive equation is to enable us to understand what wo
happen if the medium which surrounds the microbubble
not just viscous but also has some elastic properties. E
though blood by itself may show Newtonian behavior, as
large arteries, blood together with the surrounding tissue p
vide a medium which globally has both viscosity and el
ticity. In that case, the simplest model that would capt
these effects would be the linear Maxwell model, but it is n
too much harder to include a retardation time and try
derive results which might have wider applicability~our re-
sults can be used for the interpretation of experimental d
on small-amplitude oscillations of microbubbles in dilu
polymer solutions!. Finally, since we extend the analysis b
yond just linearized theory, use of convective time deriv
tives makes sure that we do not miss any effects assoc
with the convective contribution to the time rates of chan
We thus adopt the 4-constant Oldroyd model as a good
step in trying to account for both viscous and elastic effe
in a general medium and still being able to make analyt
progress. Further explanations are given in Sec. V.

Equations~3!, ~4!, ~9!, ~10!, ~15!, ~23!, ~24! and bound-
ary conditions~6!–~8! comprise the full system of equation
for the radial flow of a compressible viscoelastic liquid ne
the microbubble encapsulated by a viscoelastic solid sh
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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We restrict our attention to the weakly compressible case
which the equation of state~3! contains only linear terms

r l5r l01
pl2p0

Cl
2 , Cl

25S dpl

dr l
D

0

, ~25!

~Cl is the speed of sound in the liquid!. Then, substituting
Eqs. ~25! into Eqs.~24! and ~9!, defining the dimensionles
variables

r * 5
r

a0
, t* 5

Ut

a0
, v* 5

v r

U
, a* 5

a

a0
, R* 5

R

a0
,

~26a!

p
•* 5

p
•

p0
, x

*
(•)5

x(•)

p0
, t

*
( l )5

t( l )

p0
, r l* 5

r l

r l0
, ~26b!

and denoting

M5
U

Cl
, De5

Ul1

a0
, l5

l2

l1
, h5

l3

l1
,

~27a!
Rel5

a0r l0U

m l
, Res5

a0rs0U

ms
,

Gs* 5
Gs

p0
, kv* 5

Ukv

p0a0
, s1* 5

2s1

p0a0
, s2* 5

2s2

p0a0
,

~27b!
one can reduce the governing equations to the form:

r * P~a* ,R* !:
]v*
]r *

1
2v*
r *

50, ~28a!

r * P~a* ,R* !:
]v*
]t*

1v*
]v*
]r *

5
r l0

rs0
F2

]ps*
]r *

1
]x

* rr
(s)

]r *
1

3x
* rr
(s)

r *
G ,

~28b!

r * P~a* ,R* !: x
* rr
(s) 52

4a
*
2

r
*
3

3FGs* S a* 2
ae

a0
D1

rs0

r l0 Res

da*
dt*

G ,
~28c!

r * P~R* ,`!: M2S ]pl*
]t

1v*
]pl*
]r *

D
1@11M2~pl* 21!#

1

r
*
2

]~r
*
2 v* !

]r *
50,

~28d!

r * P~R* ,`!: @11M2~pl* 21!#S ]v*
]t*

1v*
]v*
]r *

D
52

]

]r *
H pl* 2

1

3
tr@t

*
( l )#J

1
]

]r *
Fkv*

r
*
2

]~r
*
2 v* !

]r *
G1

]t
* rr
( ld)

]r *

1
3t

* rr
( ld)

r *
, ~28e!
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r * P~R* ,`!: F12
4De

3 S ]v*
]r *

1
v*
2r *

D1De
D

Dt*
Gt* rr

( ld)

52
2De

3 S h2
2

3D S ]v*
]r *

2
v*
r *

D tr@t
*
( l )#

1
4

3Rel
F12

4lDe

3 S ]v*
]r *

1
v*
2r *

D
1lDe

D

Dt*
G S ]v*

]r *
2

v*
r *

D , ~28f!

r * P~R* ,`!: F12
2De

3 S ]v*
]r *

1
2v*
r *

D1De
D

Dt*
G tr@t

*
( l )#

52DeS ]v*
]r *

2
v*
r *

D t
* rr
( ld)2

8lDe

3Rel

3S ]v*
]r *

2
v*
r *

D 2

, ~28g!

r * 5a* : v* 5
da*
dt*

, pi* 5ps* 2x
* rr
(s) 1

s1*

a*
,

~28h!

pi* 5
pi0a

*
23k

p0
,

r * 5R* : v* 5
dR*
dt

,

~28i!

pl* 2t
* rr
( ld)2

1

3
tr@t

*
( l )#2

kn*

r
*
2

]~r
*
2 v* !

]r *

5ps* 2x
* rr
(s) 2

s2*

R*
,

r * →`: v* →0, pl* →1. ~28j!

t* 50: a* 51, R* 5R0 /a0 , v* 50, pl* 51. ~28k!

Here M is the Mach number, De the Deborah number, Rl

and Res are the Reynolds numbers for the liquid and for t
shell, respectively. The characteristic velocityU5Ap0 /r l0 is
of the order of the bubble-wall velocity25 andl is the ratio of
two ~retardation and relaxation! time constants, which is
greater than zero but smaller than unity for a viscoela
liquid.35 An asterisk denotes nondimensional quantities.

III. MATCHED ASYMPTOTIC EXPANSION

Because we consider small-amplitude oscillations of
microbubble covered by a thin shell (R* 2a* !a* ) with the
bubble-wall Mach numberM much less than unity, the spac
between the outer bubble interface and infinity can be
vided into three zones27,37~see Fig. 2!:

~1! r * P@Rex,`), Rex@R* : The external zone~far from the
bubble!, where the liquid compressibility is significan
but the nonlinear inertial forces produced by convect
accelerations are negligibly small;

~2! r * P@R* ,Rin#: The internal zone~near the bubble wall!,
where the liquid can be considered to be incompress
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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and the radial motion is due to contraction and expans
of the bubble, but the nonlinear convective effects a
significant;

~3! r * P(Rin ,Rex): An intermediate zone, where both th
liquid compressibility and the nonlinear convective e
fects are fairly large.

In the first two zones one can construct asymptotic analyt
solutions, the matching of which provides a solution in t
third overlap zone. In what follows the indexes ‘‘ex’’ an
‘‘in’’ refer to the external and internal zones of the liquid.

A. Far from the bubble

Inasmuch asr * @1 in the far field, one can introduce
parameter«!1 such that

r * 5
r̃ *
«

, ~29!

wherer̃ * is the radial coordinate that isO(1) in the far field.
This means that system~28! has two small parameters:M
and«. Let us assumeM;« and

v* 5v
*
(ex)5

]wex

]r *
5«

]wex

] r̃ *
, ~30!

wherewex is the velocity potential in the external zone. W
substitute~29! and~30! into Eqs.~28! and restrict our atten-
tion to the leading order terms. From Eqs.~28d! and ~28e!,
we then have

M2
]pl*

(ex)

]t
1

«2

r̃
*
2

]

] r̃ *
S r̃

*
2 ]wex

] r̃ *
D50,

]2wex

]t* ] r̃ *
52

]pl*
(ex)

] r̃ *
.

~31!

Thus, nonlinear and viscous effects are negligibly small
the region far from the bubble and the motion of the liquid
wave-like because~31! is reduced to the following linea
acoustic equations:

]2wex*

]t
*
2 5

«2

M2r̃
*
2

]

] r̃ *
S r̃

*
2

]wex*

] r̃ *
D 5

1

M2r
*
2

]

]r *
S r

*
2

]wex*

]r *
D ,

pl*
(ex)512

]wex*

]t*
, wex5wex* 1E

0

t
* F~ t̃ !d t̃

FIG. 2. Schematic of the internal and external zones.
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with the well-known solution

wex5
1

r *
@c1~ t* 2Mr * !1c2~ t* 1Mr * !#1E

0

t
* F~ t̃ !d t̃,

~32!

pl*
(ex)512

1

r *
@c18~ t* 2Mr * !1c28~ t* 1Mr * !#, ~33!

where the prime denotes differentiation with respect to
argument,F( t̃ ) is an arbitrary function of time, andc2 and
c1 characterize the acoustic waves which move towards
away from the bubble surface, respectively.

B. Near the bubble wall

Now r * ;1 and the only small parameter in system~28!
is M . Upon neglecting the terms of orderM2, Eq. ~28d!
takes the form

1

r
*
2

]

]r *
S r

*
2 ]w in

]r *
D50, v* 5v

*
(in)5

]w in

]r *
, ~34!

i.e., the standard incompressible formulation is valid near
outer bubble wall. As seen from Eq.~34! and boundary con-
ditions ~28h! and ~28i!, the radial velocity in the liquid nea
the bubble surface, like in the shell, obeys formula~13!,
whence it follows that

w in5ws52
R

*
2

r *

dR*
dt*

52
a
*
2

r *

da*
dt*

, ~35!

wherew in andws are the velocity potentials in the inner zon
and the shell. In the incompressible case Eqs.~28f! and~28g!
become

F12De
]2w in

]r
*
2 1De

D

Dt*
Gt* rr

( ld)

52DeS h2
2

3D S ]2w in

]r
*
2 D tr@t

*
( l )#

1
2

Rel
F12lDe

]2w in

]r
*
2 1lDe

D

Dt*
G ]2w in

]r
*
2 , ~36a!

F11De
D

Dt*
G tr@t

*
( l )#53DeS ]2w in

]r
*
2 D t

* rr
( ld)2

6lDe

Rel
S ]2w in

]r
*
2 D 2

,

~36b!

and Eq.~28e! does not contain the dilatational viscosity ter

]

]r *
H ]w in

]t*
1

1

2 S ]w in

]r *
D 2

1pl*
(in)2t

* rr
( ld)2

1

3
tr@t

*
( l )#J 5

3t
* rr
( ld)

r *
.

~37!

Here pl*
(in) is the liquid pressure in the internal zone. Obv

ously, one can put Eq.~28b! in the same form as~37!

]

]r *
H rs0

r l0
F]ws

]t*
1

1

2 S ]ws

]r *
D 2G1ps* 2x

* rr
(s) J 5

3x
* rr
(s)

r *
.

~38!

Upon integrating~37! from R* to r * and using~35!, we
obtain
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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pl*
(in)2t

* rr
( ld)2

1

3
tr@t

*
( l )#

5H pl*
(in)2t

* rr
( l ) 2

1

3
tr@t

*
( l )#J

r
*

5R
*

1F 1

r *
2

1

R*
G d

dt*
S a

*
2 da*

dt*
D

2F 1

r
*
4 2

1

R
*
4 G a

*
4

2 S da*
dt*

D 2

13E
R
*

r
* t

* r̃ r̃
( ld)

r̃
d r̃. ~39!

Equation~39! providespl*
(in) anywhere in the liquid near the

bubble, upon invoking the equation of momentum for t
shell and boundary conditions on the interfaces. Let us in
grate ~38! over r * from a* to R* and substitute@ps*
2x

* rr
(s) # r

*
5a

*
from ~28h! and @ps* 2x

* rr
(s) # r

*
5R

*
from ~28i!

into the resulting expression. We then have

H pl* 2t
* rr
( ld)2

1

3
tr@t

*
( l )#J

r
*

5R
*

5
rs0

r l0
H F 1

R*
2

1

a*
G d

dt*
S a

*
2 da*

dt*
D

2F 1

R
*
4 2

1

a
*
4 G a

*
4

2 S da*
dt*

D 2J
1pi* 2S s1*

a*
1

s2*

R*
D 13E

a
*

R
* x

* r̃ r̃
(s)

r̃
d r̃. ~40!

Equations~39! and~40! can be combined into the following
formula for the pressure in the liquid in the near field of t
bubble:

pl*
(in)5pi* 2S s1*

a*
1

s2*

R*
D 2

rs0

r l0
H S 11

Dra*
R*

Da*
d2a*
dt

*
2

1F3

2
1

Dra*
R*

S 22
a
*
3

2R
*
3 D G S da*

dt*
D 2J 1

a
*
2

r *

d2a*
dt

*
2

2S a
*
4

2r
*
4 2

2a*
r *

D S da*
dt*

D 2

1t
* rr
( ld)1

1

3
tr@t

*
( l )#

13F E
a
*

R
* x

* r̃ r̃
(s)

r̃
d r̃1E

R
*

r
* t

* r̃ r̃
( ld)

r̃
d r̃G , ~41!

where

Dr5
r l02rs0

rs0
. ~42!

C. Equation for radial oscillation

Equations~35!, ~41! and~32!, ~33! represent asymptotic
solutions of~28! in the region near the bubble surface and
from the bubble, respectively. To obtain an equation for
dial oscillation of the encapsulated microbubble, one ne
to match these solutions in the overlap zoner * P@Rin ,Rex#
on the assumption that this zone is at infinity (r * →`) with
respect to the inner solution and near the bubble center *
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 This ar
→0) for the external solution. Matching conditions should
physically relevant and must not change if other features
flow, like the presence of vortices, had to be accounted
This implies that matching of the velocity potentials, as w
done by Prosperetti and Lezzi37,38 for instance~see also Ref.
39!, is not appropriate if the flow is not potential. Note th
vortices appear in blood flow in large and curved vessels.40,41

Due to acoustic streaming a rotational field may be produ
in the vicinity of ultrasound contrast agents.42 The physically
correct matching conditions are the equality of volumet
flow rates 4pr

*
2 v* and liquid pressurespl* :27

4pr
*
2 v

*
(in)ur

*
→`54pr

*
2 v

*
(ex)ur

*
→0 , ~43a!

pl*
(in)ur

*
→`5pl*

(ex)ur
*

→0 . ~43b!

For the incompressible inner region, flow rate depends o
on time

4pr
*
2 v

*
(in)ur

*
→`54pr

*
2 ]w in

]r *
U

r
*

→`

54pa
*
2 da*

dt*
.

Therefore, upon using~30! and ~32! condition ~43a! can be
rewritten in the form

a
*
2 da*

dt*
5$2c1~ t* 2Mr * !2c2~ t* 1Mr * !

1Mr * @2c18~ t* 2Mr * !1c28~ t* 1Mr * !#%r
*

→0

52c1~ t* !2c2~ t* !,

whence it follows that

c1~ t* !52c2~ t* !2Q~ t* !, Q~ t* !5a
*
2 da*

dt*
, ~44!

and the final asymptotic formulas for the velocity potential
the far and near fields are

wex5
1

r *
@c2~ t* 1Mr * !2c2~ t* 2Mr * !

2Q~ t* 2Mr * !#1E
0

t
* F~ t̃ !d t̃,

~45!

w in52
Q~ t* !

r *
.

Using ~33! and~45!, we find the asymptotic solution fo
the liquid pressure in the far field

pl*
(ex)512

1

r *
@c28~ t* 1Mr * !2c28~ t* 2Mr * !

2Q8~ t* 2Mr * !#. ~46!

Taking into account that

t
* rr
( l ) ur

*
→`50,

substitution of Eqs.~41! and~46! into the matching condition
~43b! leads to the following equation for radial oscillation
the encapsulated microbubble:
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f
r.
s

d

ly

rs0

r l0
H S 11

Dra*
R*

Da*
d2a*
dt

*
2 1F3

2
1

Dra*
R*

S 22
a
*
3

2R
*
3 D G

3S da*
dt*

D 2J 5pa* 2p`* , ~47!

where

pa* 5pi* 2S s1*

a*
1

s2*

R*
D 13F E

a
*

R
* x

* r̃ r̃
(s)

r̃
d r̃1E

R
*

` t
* r̃ r̃
( ld)

r̃
d r̃G ,

~48!

pi* 5
pi0

p0
a
*
23k ,

p`* 512M S 2
d2c2

dt
*
2 1

d2Q

dt
*
2 D . ~49!

We have thus obtained the generalized Rayleigh–Ple
~RP! equation for the radial motion of an encapsulated m
crobubble. In dimensional variables Eq.~47! is of the same
form as derived by Church@see~5! in Ref. 5#. However, in
the compressible formulation thep` is not the liquid pres-
sure at infinity but is related to the pressure in the match
zone, i.e., far from the bubble compared to its radius but n
the bubble surface when compared with the wavelength
the distance between the bubble center and the transd
location. Note that the contribution of liquid viscoelastici
to the bubble oscillation is given by the following integr
from R* to infinity:

E
R
*

` t
* r̃ r̃
( ld)

r̃
d r̃,

whence it follows that the compressibility corrections to E
~18!, which are not small in the zone far from the bubb
should be taken into account.

For many decades theoretical analyses of bubble dyn
ics were based on the incompressible Rayleigh–Plesset e
tion, according to which the driving pressure was applied
an infinitely distant position. Nonetheless, there was go
agreement between the solution of the RP equation and
experimental data only if the pressure measured by a hy
phone at the location of the bubble was used as the driv
pressure in the RP equation. This has been somewhat
paradox among experimentalists and theoreticians abou
location and magnitude of the pressure that actually dri
the motion of the bubble.43 This paradox can be resolve
only if a finite speed of sound and spherical convergence
acoustic waves in the liquid are accounted for. Any press
disturbance generated in a liquid by a transducer at infin
never reaches the bubble. Even if the distance between
transducer and the bubble is finite, we should take into
count an increase in the wave amplitude as the bubble
face is approached until the wave reaches the inner~incom-
pressible! zone. Hence, the pressure at infinity should
replaced in the RP equation by the pressure that is meas
at the outer edge of the inner zone, i.e., at the distancer *
5Rin to ensure that this equation is in good agreement w
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 This ar
experimental results. Moss44 has shown that the appropria
driving pressure is that within roughly 25 bubble radii fro
the bubble, i.e.,Rin'25R* .

From a theoretical point of view, the driving pressu
p`(t)5p0p`* is given by ~49!. In order to specifyc2(t),
and hencep`* , we should consider the evolution of th
pressurepR(t* ) at r * 5Rt ~Rt is the dimensionless distanc
between the transducer and the bubble center!. Bubble oscil-
lations are then described by the RP equation and the foll
ing difference equation forc2 @derived from~46!# with both
lagging and leading times:27,45

pR~ t* !5p02
p0

Rt
@c28~ t* 1MRt!

2c28~ t* 2MRt!2Q8~ t* 2MRt!#. ~50!

In this paper, we do not consider the boundary condition~50!
and assume that the functionc2(t* ) is sinusoidal

c2~ t* !5C sinvt* 52
C

2
@ i expivt* 1c.c.#, ~51!

whereC is a constant,v is the nondimensional angular driv
ing frequency, and c.c. means complex conjugate.

The termd2Q(t* )/dt
*
2 in ~49! involves the third-order

derivative of the bubble radiusa* . This difficulty can be
obviated in the small Mach number regime (M!1).37,45It is
apparent that

1

a*

dQ

dt*
5S 11

Dra*
R*

D 21H S 11
Dra*
R*

Da*
d2a*
dt

*
2

1F3

2
1

Dra*
R*

S 22
a
*
3

2R
*
3 D G S da*

dt*
D 2

1
1

2 S 11
Dra

*
4

R
*
4 D S da*

dt*
D 2J . ~52!

The first two terms on the right-hand side of~52! can be
replaced by the right-hand side of Eq.~47!. In view of the
fact that if the Mach number is small, the following roug
estimate is valid:45

S M
d2Q

dt
*
2 D Y S a*

d2a*
dt

*
2 D;M

da*
dt*

;«a!1,

substitution of~47! into ~52! and subsequent differentiatio
yields

M
d2Q

dt
*
2 5M

d

dt
@a* F0~pa* 2pI* !#1

rs0M

r l0

3F S F1

da*
dt*

Da*
d2a*
dt

*
2 1

1

2

d

dt
~a* F1!

3S da*
dt*

D 2G1OH M2
d

dt
@a* F0Q9~ t* !#J , ~53!

where
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F0~ t* !5
r l0

rs0
S 11

Dra*
R*

D 21

,

F1~ t* !5F0~ t* !S 11
Dra

*
4

R
*
4 D ~54!

and

pI* 5122M
d2c2

dt
*
2 . ~55!

The incident pressurepI* is not equal to the driving pressur
p`* but takes into account the convergent waves coming
the bubble from the transducer. It can be considered as
liquid pressure at the location of the bubble center in
absence of the bubble,37 because~i! this pressure results from
the external solutionpl*

(ex) at r * →0, ~ii ! there is no inner
zone in the case of pure liquid. The correction term on
right-hand side of Eq.~53! is negligible compared to the
terms which have been kept, provided thatda* /dt* is itself
small.45

To eliminate the variablesx
* rr
(s) and t

* rr
( ld) , we should

calculate the integrals in~48!. From ~28c! it follows that the
first integral can be evaluated as

E
a
*

R
* x

* r̃ r̃
(s)

r̃
d r̃52

4~R0
32a0

3!

3a0
3R

*
3

3FGs* S 12
ae

a0a*
D1

rs0

r l0Resa*

da*
dt*

G , ~56!

where the unstrained equilibrium radius is

ae5a0~11Z!, Z5
1

4Gs*
S s1* 1

a0s2*

R0
D R0

3

R0
32a0

3 . ~57!

When deriving~56!, we have taken into account that for a
incompressible shell, the outer radius of the bubble,R* , can
be expressed in terms of the inner radiusa* as R*
5A3 a

*
3 1(r 0 /a0)3 with r 05A3 R0

32a0
3 being a constant. The

formula for ae has been obtained from the conditions~28b!,
~28c!, ~28h!, and ~28i! at t* 50 under the assumption tha
pi05p0 ~the encapsulated microbubbles are permeable
gas!.5

The calculation of the second integral is more intrica
because of the presence of the material derivativeD/Dt*
and the trace of the shear stress tensor tr@t

*
( l )# in ~28f!. How-

ever, in the case of small deviations of the bubble rad
from the equilibrium value:a* (t* )511x(t* ), v* ;x(t* ),
when the nondimensional perturbationx(t* )!1, from Eq.
~28g! it follows that tr@t

*
( l )# is of the order ofx2(t* ). This

means that in Eq.~28f! the term

2De

3 S h2
2

3D S ]v*
]r *

2
v*
r *

D tr@t
*
( l )#,

is a cubic nonlinearity, which cannot affect the first and s
ond harmonics of bubble oscillation~see details in the Ap-
pendix!. Of course, in the case of large-amplitude bubb
oscillations ~bubble collapse, sonoluminescence, etc.!, the
trace of the shear stress tensor should be taken
account.46 But because we consider the linear and quadr
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nonlinear effects only, we remove this term from the con
tutive equation~28f!. Note that it is exactly zero ifl3

52l1/3. Then, Eq.~28f! can be simplified by using the La
grangian coordinatey5r

*
3 2a

*
3 and taking into account tha

v* 5Q(t* )/r
*
2 in the inner zone@see Eq.~36a!#:

t
* rr
( l ) 52

4

DeRel@y1a
*
3 ~ t* !#2/3E

0

t
* expS t̃ 2t*

De
D

3H Q~ t̃ !1lDeQ8~ t̃ !

@y1a
*
3 ~ t̃ !#1/3

2
lDeQ2~ t̃ !

@y1a
*
3 ~ t̃ !#4/3J d t̃. ~58!

Substituting~58! into the second integral in~48! and inte-
grating overy from R

*
3 (t* )2a

*
3 (t* ) to ` result in the for-

mula

q~ t* !53E
R
*

` t
* r̃ r̃
( ld)

r̃
d r̃5

6

DeRel
E

0

t
* expS t̃ 2t*

De
D @H1~ t̃ ,t* !

1H2~ t̃ ,t* !#d t̃, ~59a!

H1~ t̃ ,t* !5H Q~ t̃ !1lDeQ8~ t̃ !

a
*
3 ~ t̃ !2a

*
3 ~ t* !

2
lDeQ2~ t̃ !

@a
*
3 ~ t̃ !2a

*
3 ~ t* !#2J

3H 12F11
a
*
3 ~ t̃ !2a

*
3 ~ t* !

R
*
3 ~ t̃ !

G 2/3J , ~59b!

H2~ t̃ ,t* !52
2lDeQ2~ t̃ !

R
*
3 ~ t̃ !@a

*
3 ~ t̃ !2a

*
3 ~ t* !#2

3H 12F11
a
*
3 ~ t̃ !2a

*
3 ~ t* !

R
*
3 ~ t̃ !

G21/3J . ~59c!

Note that the integrand in~59a! is not singular att̃ 5t* if
deviations of the bubble radius from the equilibrium val
are small. Upon retaining linear and quadratic nonlin
terms, integral~59! takes the form

q~ t* !52
4a0

3

RelR0
3 F S 12

5a0
3

2R0
3 xD q1~ t* !

1S 22
a0

3

2R0
3D q2~ t* !G , ~60a!

F11De
d

dt*
Gq1~ t* !5F11lDe

d

dt*
G dx

dt*
,

~60b!F11De
d

dt*
Gq2~ t* !5F11lDe

d

dt*
Gx dx

dt*
.

An alternative derivation of~60! is given in the Appendix. If
we make use of the linear Jeffreys constitutive equation,
~60a! will look as follows:

q~ t* !52
4a0

3

RelR0
3 Fq1~ t* !1S 22

3a0
3

R0
3 D q2~ t* !G . ~61!

The difference between Eq.~60a! and the latter equation i
the quadratic nonlinear term
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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i-

r

q.

N5
10a0

6

RelR0
6 @xq1~ t* !2q2~ t* !#, ~62!

which represents the contribution from convective terms
the constitutive equation to the second harmonic of bub
oscillation.

Finally, substituting expression~53! into Eq. ~47!, we
obtain the equation

rs0

r l0
H S 11

Dra*
R*

2MF1

da*
dt*

Da*
d2a*
dt

*
2

1F3

2
1

Dra*
R*

S 22
a
*
3

2R
*
3 D 2

M

2

d

dt*
~a* F1!G S da*

dt*
D 2J

5pa* 2pI* 1M
d

dt*
@a* F0~pa* 2pI* !#, ~63a!

pa* 5
pi0

p0
a
*
23k2S s1*

a*
1

s2*

R*
D 2

4~R0
32a0

3!

3a0
3R

*
3

3FGs* S 12
ae

a0a*
D1

rs0

r l0Resa*

da*
dt*

G1q~ t* !. ~63b!

Under the conditionsrs05r l0 , when Dr50 and F0

5F151, Eq. ~63! simplifies to the equation for the oscilla
tion of a free bubble

S 12M
da*
dt*

Da*
d2a*
dt

*
2 1

3

2 S 12
M

3

da*
dt*

D S da*
dt*

D 2

5S 11M
da*
dt*

D ~pa* 2pI* !1Ma*
d

dt*
~pa* 2pI* !.

~64!

If the liquid is Newtonian and the shell thickness is zero, t
dimensional version of Eq.~64! is of the same order as th
Keller–Miksis equation47 @see also~6.8! in Ref. 37#.

IV. FIRST- AND SECOND-HARMONIC RESPONSE

A. Equations for perturbations

Let us consider small-amplitude oscillations of the e
capsulated microbubble in the sinusoidal acoustic field~51!,
i.e., when the incident pressure

pI* 512PA sinvt* 511
PA

2
@ i exp~ ivt* !1c.c.#,

~65!
PA522v2MC.

The dimensionless amplitude of this field is small such t
PA5«pP, whereP;O(1) and«p!1. The solution of Eq.
~63! can then be expanded in powers of the parameter«p

a* 511x, R* 5
R0

a0
F11

a0
3

R0
3 x1

a0
3

R0
3 S 12

a0
3

R0
3D x21O~x3!G ,

~66a!

x5x~ t* ;«p!5«px1~ t* !1«p
2x2~ t* !1 ¯ , ~66b!

which are then inserted into~60! and ~63!. At orders«p and
«p

2 we then obtain the equations for the first- and seco
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order perturbations in the inner radius of the microbubb
x1(t* ) and x2(t* ), respectively. Under the assumption th
q1(t* )5«pq1

(1)(t* )1«p
2q1

(2)(t* )1o(«p
2) and pi05p0 , the

first-order equations look as follows:

a0

d2x1

dt
*
2 1d0

dx1

dt*
1g0x11

4a0
3

RelR0
3 F11L

d

dt*
Gq1

(1)~ t* !

52
P~ i 2Lv!

2
expivt* 1c.c., ~67a!

F11De
d

dt*
Gq1

(1)~ t* !5F11lDe
d

dt*
G dx1

dt*
. ~67b!

Here

L5
r l0M

rs0
S 11

Dra0

R0
D 21

, ~68a!

a05
rs0

r l0
F11

Dra0

R0
1

4L

Res
S 12

a0
3

R0
3D G , ~68b!

g053k2s1* 2
s2* a0

4

R0
4 14Gs* S 12

a0
3

R0
3D F11S 11

3a0
3

R0
3 DZG ,

~68c!

d05
4rs0

r l0Res
S 12

a0
3

R0
3D 1Lg0 , ~68d!

and Z is given by ~57!. Note that Eq.~67a! is simply a
damped harmonic oscillator equation forx1(t* ) which is
forced by the right-hand side and is coupled toq1

(1)(t* ),
which in turn accounts for viscoelastic behavior of the ex
rior liquid through~67b!. We seek the solution of~67! in the
form

F x1~ t* !

q1
(1)~ t* !G5Fx1 f~ t* !

q1 f~ t* !G1 1

2 F A1

Q1
Gexp~ ivt* !1c.c. ~69!

with the complex amplitudesA1 andQ1 that can be consid
ered as functions of the dimensionless angular frequencv.
The solution~69! contains the homogeneous term, or t
complementary function@x1 f(t* ) q1 f(t* )#Á. This term de-
scribes free oscillations of the bubble which are expon
tially damped in time. We consider only forced oscillatio
and take the complementary function to be zero:x1 f(t* )
5q1 f(t* )50. Equation~67b! is then reduced to an algebra
relationship betweenQ1 andA1

Q1

A1
5n~v!5

De~12l!v21 iv~11lDe2v2!

11De2v2 . ~70!

Substitution of~69! into Eq.~67a! gives, in view of~70!, the
formula for the first-harmonic amplitudeA1 of bubble oscil-
lations

A1

P
[A1P~v!52 i

11 iLv

D~v!1 ivd~v!
, ~71!

where
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,
t

-

-

D~v!5g02S a01
4a0

3L

RelR0
3Dv2

1
4a0

3De~12l!~11LDev2!v2

RelR0
3~11De2v2!

, ~72a!

d~v!5d01
4a0

3

RelR0
3 F12

De~12l!~De2L!v2

11De2v2 G . ~72b!

As seen from~72!, the smaller the difference between th
relaxation and retardation times~larger l!, the smaller the
liquid elasticity effects on bubble oscillations will be.

The nonlinear componentq2(t* ) of the integralq(t* )
which can be represented asq2(t* )5«p

2 q2
(1)(t* )1o(«p

2),
should be included in the second-order equations. From
second equation in~60b! and solution~69!, it follows that

q2
(1)~ t* !5

n~2v!

8
A1

2 exp~2ivt* !1c.c.

where the functionn is given by ~70!. Making use of the
above results and expanding toO(«p

2), we then obtain the
following second-order equations:

a0

d2x2

dt
*
2 1d0

dx2

dt*
1g0x21

4a0
3

RelR0
3 F11L

d

dt*
Gq1

(2)~ t* !

5
P2

4
@f0~v!1f2~v!A1P

2 ~v!exp~2ivt* !1c.c.#, ~73a!

F11De
d

dt*
Gq1

(2)~ t* !5F11lDe
d

dt*
G dx2

dt*
. ~73b!

The new coefficients in this system can be expressed as
lows:

F1
(0)5S 11

Dra0

R0
D 21S 11

Dra0
4

R0
4 D , ~74a!

f0~v!5
~11L2v2!

@D2~v!1v2d2~v!#F2g12
rs0

r l0
S 11

Dra0
4

R0
4 Dv2

1
20a0

6De~12l!v2

RelR0
6~11De2v2!G , ~74b!

f2~v!5g11 id1v1a1v22
irs0

r l0
S 11

Dra0
4

R0
4 DLv3

2
2~112iLv!n~2v!a0

3

RelR0
3 S 22

a0
3

2R0
3D 1

4a0
3n~v!

RelR0
3

3F 5a0
3

2R0
3 22iLvS F1

(0)2
5a0

3

2R0
3D G1

2LF1
(0)v

A1P~v!
, ~74c!

a15
rs0

r l0
F5

2
1

4Dra0

R0
2

3Dra0
4

2R0
4

2
8L

Res
S 12

a0
3

R0
3D S 11

3a0
3

R0
3 2F1

(0)D G , ~74d!
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g15
3k~3k11!

2
2s1* 1

s2* a0
4

R0
4 S 12

2a0
3

R0
3 D

14Gs* S 12
a0

3

R0
3D F11

3a0
3

R0
3 1ZS 11

9a0
6

R0
6 D G , ~74e!

d15
4rs0

r l0Res
S 12

a0
3

R0
3D S 11

3a0
3

R0
3 D 12L~g12F1

(0)g0!. ~74f!

Evidently, the solution of~73! is a sum of zeroth and secon
harmonics

F x2~ t* !

q1
(2)~ t* !G5F A0

Q0
G1 1

2 F A2

Q2
Gexp~2ivt* !1c.c. ~75!

Again A0 , A2 , Q0 , Q2 are the amplitudes that may depe
on the angular frequencyv. Substituting solution~75! into
Eqs. ~73!, we obtain the relationshipsQ25n(2v)A2 and
Q050 and the formulas for the zeroth- and second-harmo
amplitudesA0 andA2 of bubble oscillations:

A0

P2 5
f0~v!

4g0
,

A2

P2 [A2P~v!5
f2~v!A1P

2 ~v!

2@D~2v!12ivd~2v!#
.

~76!

B. Resonance frequency and scattering cross
sections

Many investigators on bubble dynamics neglect the
fects of viscosity and other dissipative effects on the re
nance frequency of bubble oscillation. Most~see for instance
Ref. 8! assume that this frequency is equal to theundamped
natural frequencyf 0 despite the fact that thedampednatural
frequency f n differs both from f 0 and from the resonanc
frequencyf reswhen damping is allowed for.~Here, we define
f 0 as the frequency of undamped unforced oscillations,f n as
that for damped unforced oscillations,f res as the forcing fre-
quency which results in the maximum response amplit
for the damped bubble.! Let us consider the first-harmoni
response function, i.e., the absolute value of the func
A1P(v)

UA1

P U5uA1P~v!u5F 11L2v2

D2~v!1v2d2~v!G
1/2

. ~77!

If the liquid and the shell are inviscid,d~v! is equal to zero
and the amplitude of bubble oscillation goes to infinity~i.e.,
resonance takes place! at v5v res0 such thatD(v res0)50.
The same condition holds for free oscillations, i.e., the
mensional resonance frequencyf res05Uv res0/(2pa0) is
equal to the natural frequencyf 05Uv0 /(2pa0) in the case
of undamped oscillation

f res05 f 05
1

2pa0
F p0g0

rs0~11Dra0 /R0!G
1/2

. ~78!

In a viscous liquid the bubble resonates at the freque
f res5Uv res/(2pa0) that is always less thanf res0. The non-
dimensional angular resonance frequencyv res is the point at
which the functionuA1P(v)u has its maximal value. This
point is one of the roots of the equation~the extremum con-
dition!
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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duA1P~v!u
dv

50. ~79!

If De.0 and 0,l,1, the left-hand side of Eq.~79! reduces
to a polynomial of degree five inv2, and hence it does no
have analytical solutions. Thus, in the viscoelastic liquid c
the resonance frequency of bubble oscillations can only
found by the numerical maximization of the functio
uA1P(v)u ~see the next section!. However, it is possible to
find the roots of Eq.~79! analytically if l51. We then have
a quadratic equation inv2

L2am
2 v412am

2 v22~2amg02dm
2 1L2g0

2!50,

am5a01
4a0

3L

RlR0
3 , dm5d01

4a0
3

RelR0
3 . ~80!

If

dm.dmc5~2amg01L2g0
2!1/2, ~81!

Eq. ~80! does not have real roots, and hence the bubble d
not resonate at all. Otherwise,v res is given by the positive
real root of~80!. Upon neglecting the liquid compressibilit
(L50), the dimensional resonance frequency is found to

f res15H f 0
22

2p0

p2a0
2r l0

S 11
Dra0

R0
D 22

3F 1

Res
S 12

a0
3

R0
3D 1

r l0

rs0Rel

a0
3

R0
3G2J 1/2

. ~82!

As follows from ~80!, the encapsulated microbubble pulsat
in a compressibleviscous liquid resonantly at the frequenc

f res25
1

2pa0L S p0

r l0
D 1/2

3H 11F11
L2

am
2 ~2g0am2dm

2 1L2g0
2!G1/2J 1/2

.

~83!

At the same time, the natural frequencyf n

5Uvn /(2pa0) of bubble oscillations is generally define
from the conditionD(v)1 ivd(v)50 with v being acom-
plex variable:v5vn1 iv i ~the imaginary partv i describes
attenuation of free bubble oscillations with time, the real p
vn is the nondimensional angular natural frequency!. Even if
the liquid is considered to be viscous and incompressiblef n

is not equal to the resonance frequency

f n5H f res1
2 1

p0

p2a0
2r l0

S 11
Dra0

R0
D 22

3F 1

Res
S 12

a0
3

R0
3D 1

r l0

rs0Rel

a0
3

R0
3G2J 1/2

. ~84!

Of particular interest for ultrasound contrast imaging
calculation of scattering cross sectionsss1 and ss2 by the
encapsulated microbubble at the driving~fundamental! fre-
quency f 5Uv/(2pa0) and at twice the driving frequenc
2 f , respectively. These scattering cross sections~which have
dimensions of area! are related to the ratio of the total acou
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tic power scattered by the bubble at the first and sec
harmonics to the intensity of the incident acoustic field5

ss15
4pa0

2r
*
2 I 1

I 0
, ss25

4pa0
2r

*
2 I 2

I 0
, ~85!

whereI 15uPs1u2/(2r lCl) andI 25uPs2u2/(2r lCl) are the in-
tensities of the scattered acoustic wave at the first and se
harmonics,I 05p0

2PA
2/(2r lCl)5«p

2p0
2P2/(2r lCl) is the in-

tensity of the incident acoustic wave. Note thatPA or P is
taken to be real. ThePs1 and Ps2 are the first- and second
harmonic amplitudes of the scattered wave. As seen f
~46!, the scattered pressure field isps(t* ,r * )52p0Q8(t*
2Mr * )/r * . Because the amplitude of bubble oscillation
small, we can expandps in powers of the small parameter«p

ps~ t* ,r * !52
p0

3r *

d2a
*
3 ~j!

dj2

'2«p

d2x1~j!

dj2

2«p
2 d2

dj2 @x2~j!1x1
2~j!#2O~«p

3!,

j5t* 2Mr * . ~86!

Substituting~69! and ~75! into ~86! yields

ps~ t* , r * !5
Ps1

2
expivt* 1

Ps2

2
exp 2ivt* 1c.c.,

where

Ps15«p v2p0A1

exp~2 ikr * !

r *
,

~87!
Ps254«p

2 v2p0S A21
A1

2

2 D exp~22ikr * !

r *
, k5vM .

Finally, insertion of Eqs.~87!, ~71! and the second equatio
in ~76! into Eq. ~85! gives the following expressions for th
scattering cross sections at the first and second harmon

ss154pa0
2v4uA1P~v!u2,

ss2564pa0
2PA

2v4UA2P~v!1
A1P

2 ~v!

2
U2

516pa0
2PA

2v4uA1Pu4G, ~88!

where

G5U11
f2~v!

D~2v!12ivd~2v!
U2

. ~89!

The first expression of~88! is consistent with Church’s deri
vation @see formula~26a! in Ref. 5#. However, the formula
for the second-harmonic scattering cross section@~26b! in
Ref. 5# was in error because it did not take into account
nonlinear relationship between the pressure field scattere
the bubble and radial oscillations of the bubble.

V. RESULTS AND DISCUSSIONS

In this section, we calculate the total damping coe
cient, the resonance frequency, and the scattering cross
tions for the air-filled encapsulated bubble in blood. In
calculations the unperturbed liquid pressurep050.1 MPa,
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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the liquid and solid densitiesr l05998 kg m23 and rs0

51100 kg m23, the interfacial tensionss150.04 kg s22 and
s250.005 kg s22, the liquid viscosity is equal to the high
shear-rate viscosity of blood:m l50.004 kg m21 s21 ~see
Ref. 40!, and the retardation timel250 s. The inner radius
of the microbubblea0 and the shell thicknessd5R02a0 are
varied from 1 to 5mm and from 15 to 200 nm, respectivel
The values of the speed of sound in the liquid, the relaxat
time, and the shell viscosity and elasticity areCl5` ~incom-
pressible case!, 1500, and 500 m s21, l150 ~Newtonian liq-
uid!, 0.01, 0.1, and 1ms, ms50.5, 1.77, and 5 kg m21 s21,
Gs515, 88.8, and 150 MPa.

The values chosen for the parameters are in line with
experimental data for ultrasound contrast agents. Spe
cally, such microbubbles are restricted to have a size betw
1 and 10mm.48 The larger bubbles cannot pass through
pulmonary circulation. The scattered field from the smal
bubbles is extremely small.48,49 This directly follows from
the formulas for scattering cross sections~88!: ss1 andss1

;a0
6V4, i.e., at given driving frequency the acoustic r

sponse from a larger bubble is higher. The thickness of
shell around the microbubbles depends on their size8 and the
type of surface-active material. Albunex® bubbles are c
ered by the shell of approximately 15 nm in thickness.5,50

Quantison™ bubbles have the thickest shell (d5200 nm).7

It should be noted that there are no direct measurement
the shell viscosity and elasticity for ultrasound contra
agents. The shell viscosity is estimated, for example, by
ting the experimental data for the attenuation of acou
signals in the microbubble suspension to the predictions
the simplistic theoretical model of de Jong.4,51 Also, these
parameters may depend on the shell thickness15 and other
factors. We therefore consider different values of the sh
viscosity and elasticity. Nevertheless, the second choice~ms

51.77 kg m21 s21 and Gs588.8 MPa) corresponds to em
pirical values for de Jong’s shell stiffness and shell damp
parameters.4,5 The values of the interfacial tensions and de
sities are the same as in Ref. 5. Due to the presence of nu
ation agents and/or other microbubbles of contrast-agent
pension, blood surrounding an encapsulated microbub
provides a medium which is more compressible than blo
free of bubbles. This is the reason why we choose the va
500 m/s for the sound speed in the liquid.

Our expectation that the 4-constant Oldroyd constitut
equation~with the nonzero relaxation and retardation time!
can provide reasonable predictions for the radial~diverging-
converging! flow of blood in large vessels~and of dilute
polymer solutions! induced by high-frequency oscillations o
a gas microbubble is based on the following facts:

~i! Blood is a fluidized suspension of small elastic ce
~red cells, white cells, platelets! surrounded by blood
plasma. The cell deformability and aggregation res
in the stress relaxation and well-documented sh
thinning of blood at small and moderate she
rates.12,52–55Plasma by itself is a colloidal suspensio
of proteins in an electrolyte solution, which show
small deviation from the behavior of a pure liquid,
least in some patients suffering from leukemia.56,57
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 20 Nov 2013 20:13:33



o
is
ns
o

e
re
s

ob

a-
th
-
ly
-
-

,
th

ea
e
ia

ic

a
ve
n

th
un
d
or
a
d
d
es
el

de
m
a

-
o
0

th
w

e
ls

t

ity
en
eed
sue
te
n-

ing
od
he
ng

It
as
ti-
ar

her
-
of

the
the
is-

-
ar-
ed

ag-
all

ns
is

roth
l to
e

-
uid

ar
ator

li-

,
d

3547Phys. Fluids, Vol. 14, No. 10, October 2002 Radial oscillations of encapsulated microbubbles

 This ar
~ii ! Due to complex structure, neither whole blood n
blood plasma is a Newtonian liquid, even though v
cometric observations show negligible deviatio
from the Newtonian law, as for instance, in the case
blood flow in large vessels.40 The modern viscometric
techniques operate at the shear rates~less than
30 000 s21) which are not enough to determine th
small elasticity, corresponding, for example, to the
laxation time of the order of a microsecond. The mo
experimental data on blood viscosity have been
tained at shear rates less than 12000 s21 ~see Refs.
52, 58, and 59!. Blood viscosity has also been me
sured using oscillatory flow apparatus operated at
frequency of several Hz.60–62However, the character
istic time for the radial flow around the resonant
pulsating bubble of radius 1mm is less than a micro
second. In particular, if the equilibrium liquid pres
sure p050.1 MPa, liquid densityr l05103 kg/m3,
and bubble radiusa051 mm, the characteristic time
t* 5a0 /Ap0 /a050.1 ms. Even small elasticity may
therefore, affect the bubble pulsations because
Deborah numberDe5l1 /t* is of the order of unity,
if the relaxation timel150.1 ms. Incidentally, this
fact allows the use of a gas microbubble for the m
surement of very small elasticity of the liquid: th
acoustic field scattered by the bubble in a Newton
liquid will be different from that in a slightly vis-
coelastic liquid. It is worth noting that such ultrason
spectrometry is already used in food engineering.63

~iii ! Rheological behavior of blood in large vessels h
been investigated using the Oldroyd constituti
equations, among which are the 4-consta
Oldroyd,64,65 5-constant Oldroyd,66 and Oldroyd-B
models.67,68As shown by Chmiel and Walitza,65 there
is a good agreement between the predictions of
4-constant Oldroyd model and experimental data
der the assumption that the parameters of the mo
are functions of invariants of the rate-of-strain tens
This model can also be used for blood-mimicking m
terials utilized to testing medical ultrasoun
techniques69–71 and for suspensions of normal re
blood cells in albumin, in which the cell aggregat
are not formed and elasticity is only due to the c
deformation.52

~iv! The fact that the relaxation and retardation times
crease with increasing shear rate directly follows fro
the experimental data on the aggregation and dis
gregation of red blood cells in shear flow.72 As noted
by Cokelet,53 the characteristic time for red cell ag
gregation is of the order of 1 min in the absence
superimposed shear but becomes of the order of 1
at a shear rate of about 10 s21. At high shear rates, the
relaxation time is expected to be determined by
red cell deformation which gives the values belo
0.06 s.

~v! Not only do blood viscosity and elasticity affect th
dynamics of microbubbles in blood vessels, but a
the viscoelastic properties of surrounding tissues~in
particular, blood vessel walls! may have some impac
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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on microbubble oscillations. The tissue viscoelastic
should be taken into account if the distance betwe
the microbubble center and the tissue does not exc
the wavelength of acoustic waves. In that case, tis
will be located in either the internal or intermedia
zones~see Sec. III!. To calculate the shear stress te
sort( l ) in these zones and the termq(t* ) of Eqs.~63!,
we then need to assume that the liquid surround
the microbubble is a medium consisting of both blo
and tissue. For the problem of bubble oscillation, t
4-constant Oldroyd model is a good first step in tryi
to account for viscoelastic effects in such medium.
should be noted that the radial oscillations of a g
bubble in tissue by itself have already been inves
gated using the Upper-Convective Maxwell and line
Jeffreys models.46,74,73

At a shear rate of about 1500 s21, the apparent blood
viscosity is about 0.004 kg m21s21 ~see Ref. 52!. According
to existing experimental results, it does not change at furt
increasing shear rate.40 However, modern viscometric tech
niques are not capable of determining the small elasticity
blood ~in large vessels!, which may affect the microbubble
pulsations. One can model this small elasticity as well as
elasticity of surrounding tissue by adding elastic terms to
Newtonian constitutive equation with the high-shear-rate v
cosity of 0.004 kg m21 s21. This should work if the charac
teristic time for bubble pulsation is much less than the ch
acteristic time for shear flow at which the well-document
shear thinning takes place~from 1/1500 s to 10 s!, because
our purpose is not to consider elastic effects due to cell
gregation. We would like only to understand how sm
blood elasticity~for example, plasma elasticity! or/and tissue
elasticity affects microbubble pulsations under the conditio
when blood is usually considered to be Newtonian. This
why we analyze bubble oscillations assuming that the ze
order shear viscosity in the constitutive equation is equa
0.004 kg m21 s21. We neglect the retardation term in th
constitutive equation (l250) for the sake of simplicity.
From Eqs.~72! it follows that the only effect of the rate-of
strain relaxation is a decrease in the contribution from liq
elasticity to bubble pulsations.

A. Damping coefficients

In order to obtain the correct expressions for line
damping coefficients, one needs to divide both the numer
and denominator of~71! by 11 iLv and turn back to dimen-
sional variables. The formula for the first-harmonic amp
tudeA1d5a0A1 then takes the form

A1d5a0PA1P~V!

52
ip0P

rs0a0~11Dra0 /R0!

3F 1

V0
22V21Sac~V!1Sel~V!12iVb~V!G . ~90!

Here V5(a0
21Ap0 /r l0)v is the angular driving frequency

V05(a0
21Ap0 /r l0)v052p f 0 is the angular undampe

natural frequency,Dr is given by~42!, and
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Sac~V!5
r l0

2

rs0
2 S 11

Dra0

R0
D 22 V4a0

2

Cl
2

3F11
r l0

2

rs0
2 S 11

Dra0

R0
D 22 V2a0

2

Cl
2 G21

, ~91a!

Sel~V!5
4m la0

rs0R0
3 S 11

Dra0

R0
D 21 ~l12l2!V2

11l1
2V2 , ~91b!

are functions ofV which can be interpreted as contributio
of acoustic radiation and elasticity of the liquid to the sti
ness of the bubble. The total damping coefficientb~V! that
also depends on the driving frequency is the sum of f
components: b(V)5bvis11bvis21bac(V)2Dbel(V),
where

bvis15
2m l

rs0a0
2 S 11

Dra0

R0
D 21 a0

3

R0
3 , ~92a!

bvis25
2ms

rs0a0
2 S 11

Dra0

R0
D 21S 12

a0
3

R0
3D , ~92b!

bac~V!5
r l0

rs0
S 11

Dra0

R0
D 21 V2a0

2Cl

3F11
r l0

2

rs0
2 S 11

Dra0

R0
D 22 V2a0

2

Cl
2 G21

, ~92c!

Dbel~V!5
2m la0

rs0R0
3 S 11

Dra0

R0
D 21 l1~l12l2!V2

11l1
2V2 , ~92d!

are the liquid and shell parts of the viscous damping coe
cient, the acoustic radiation damping coefficient, and
contribution of the liquid elasticity tob~V!, respectively.
Note that thermal effects were ignored upon deriving~71!. In
the case of a free bubble~r l05rs0 , a05R0), when Dr

5bvis250, the viscous and acoustic radiation damping co
ficients are identical to those derived by Prosperetti:28

bvis5bvis15
2m l

r l0a0
2 , bac~V!5

V2a0

2Cl
F11S Va0

Cl
D 2G21

,

~93!

and the acoustic contribution to the bubble stiffness,Sac(V),
is equal to the third term in the right-hand side of Eq.~12! in
Ref. 28

Sac~V!5
V4a0

2

Cl
2 F11

V2a0
2

Cl
2 G21

. ~94!
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It should be mentioned that the formulas for the visco
damping coefficients~92a! and ~92b! are equivalent to
Church’s expressions@~30a! and ~30b! in Ref. 5#. However,
if the shell and the liquid have different densities, as w
assumed by Church, the acoustic radiation damping co
cient bac differs from that for a free bubble and formul
~30d! of Ref. 5 is, therefore, inexact in that case. Note th
the liquid compressibility should be taken into account
small bubbles at high~natural! frequencies. The fact is tha
both the acoustic contribution to the bubble stiffnessSac in
Eq. ~91a! and the acoustic radiation damping coefficientbac

in ~92c! increase with decreasing the bubble radiusa0 under
the assumption thatV5V0 , r l05rs0 , and the shell thick-
nessd5R02a0 is fixed.

From ~90! and the conditionl1.l2 it follows that elas-
ticity of the liquid enhances the stiffness of the bubble a
reduces viscous damping of bubble oscillation. Howev
Dbel(V) is always less thanbvis1, i.e., viscous damping
cannot be canceled even in the case of large relaxation tim
Hereafter, we considerbvis12Dbel(V) as a liquid viscous
damping coefficient andbvis2 as a shell viscous dampin
coefficient. Elasticity of the shell raises the stiffness of t
bubble through an increase in the undamped natural
quency, and yet it does not influence damping. Also, osci
tions of encapsulated microbubbles highly depend on the
ference in density between the shell and the liquid. If t
shell is more dense than the liquid (r l0 /rs0,1), the ampli-
tude and attenuation of encapsulated-microbubble osc
tions are smaller than those of free-microbubble oscillatio

As noted above, the effects of heat conduction throu
the microbubble walls can be incorporated in analysis of
crobubble oscillation by considering the polytropic expone
k instead of a ratio of specific heats for the gasgg and by
accounting for the thermal dissipation in the linear damp
coefficient. Theb~V! is then equal to

b~V!5bvis11bvis21bac~V!1bT~V!2Dbel~V!, ~95!

wherebT(V) is the frequency-dependent thermal dampi
coefficient. We take into account thermal effects by refere
to the expressions fork andbT(V) given by Prosperetti29 for
small-amplitude oscillations of free gas bubbles. There
no effects of encapsulation on the polytropic exponent if
specific heats of the shell are very large compared with th
of the gas, and therefore,
k5
1

3
Real$F̃~ iPeg/2!%5

gg@113~gg21!G2~APeg!#

@113~gg21!G2~APeg!#219~gg21!2@G1~APeg!22/Peg#2
. ~96!

Heregg is the ratio of constant-pressure to constant-volume specific heats for the gas,F̃( iPeg/2) is given in Eq.~3.28! of Ref.
29,

Peg5
2Va0

2

ng
5

2Vrgcga0
2

kg
~97!
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is the Peclet number for the gas,ng the thermal diffusivity of the gas,kg the thermal conductivity of the gas,cg the specific
heat of the gas at constant pressure, and

G6~APeg!5
1

APeg
F sinhAPeg6sinAPeg

coshAPeg2cosAPeg
G .

As with the damping coefficient due to the liquid viscositybvis1, the thermal damping coefficientbT(V) for encapsulated
microbubble oscillations differs from that for free bubble oscillations by the factorr l0 /@rs0(11Dra0 /R0)#

bT~V!5
p0

2rs0a0
2 S 11

Dra0

R0
D 21 Im$F̃~ iPeg/2!%

V

5
9p0gg~11Dra0 /R0!21@G1~APeg!22/Peg#

2rs0a0
2~gg21!V$@3G2~APeg!11/~gg21!#219@G1~APeg!22/Peg#2%

. ~98!
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Figure 3 illustrates the dependence of the total damp
coefficientb~V! as well as the liquid viscous, shell viscou
acoustic radiation, and thermal damping coefficients@bvis1

2Dbel(V), bvis2, bac(V), bT(V)# on the driving frequency
V for the encapsulated bubble of radiusa051 mm in accor-
dance with Eqs.~92!, ~95!, and~98!. The liquid surrounding
the microbubble is considered to be viscoelastic with
relaxation time l150.1 ms. The shell around the mi
crobubble is thin (d515 nm) and very viscous@ms

51.77 kg/(m•s)#. The total damping of such microbubble
as discussed by Church,5 is dominated by viscous effects
Indeed, in the range of medical ultrasound frequenciesf
51 – 10 MHz) thermal damping is three orders of magnitu
less than viscous damping due to the shell. While radia
damping rises with increasing the driving frequency,
comes into play only at frequencies above 10 MHz. Wh
comparing the liquid and shell contributions to visco
damping, one can see thatbvis1@bvis2 if

FIG. 3. Damping coefficients versus driving frequency for an encapsul
air bubble of radius 1mm. The solid line is the total damping coefficientb.
The dashed and dash–dot lines correspond to the acoustic radiation
thermal damping coefficientsbac andbT , the thick and thin dotted lines ar
the shell and liquid viscous damping coefficientsbvis12Dbel and bvis2 .
Parameters:p050.1 MPa, d5R02a0515 nm, m l50.004 kg/(m•s), ms

51.77 kg/(m•s), l150.1 ms, l250 s, r l05998 kg/m3, rs0

51100 kg/m3, Cl51500 m/s,s150.04 kg/s2, s250.005 kg/s2.
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3

a0
3 21D 21

.

This givesms@22m l for a microbubble of radius 1mm with
a 15 nm thick shell. For the above values of viscosit
(ms /m l5442.5) the total damping of microbubble oscilla
tions is determined practically by the shell parameters eve
the liquid is Newtonian. Obviously, thebvis1 and the differ-
ence betweenbvis1 andbvis2 become greater with increasin
the shell thickness, i.e., one can neglect liquid viscous, th
mal, and radiation effects when considering the attenua
of oscillations for ultrasound contrast agents with thick
shells ~Fig. 4!. Moreover, if the liquid is viscoelastic, the
liquid viscous damping drops sharply as the driving fr
quency increases~Fig. 3!. This happens even at small rela
ation times (l1>0.1 ms) when elastic effects seem to b
negligible~Fig. 5!. From~92d! it follows that the liquid elas-
ticity has a minor effect on viscous damping ifl1

!1/(2p f ). This givesl1,0.01ms for the frequencies be

d

nd
FIG. 4. Total damping coefficient as a function of driving frequency for
encapsulated microbubble of radius 1mm. The curves labeled 1–3 are fo
values of shell thicknessd515, 100, and 200 nm, respectively. The tot
damping coefficient for a free microbubble of the same radius is marked
by the dashed line.
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tween 1 and 10 MHz. All these suggest that viscosity of
shell is the most important parameter for defining the atte
ation of microbubble oscillation.

B. Resonance frequency

In view of Eq. ~90!, the amplitude-frequency respons
function uA1Pu can be written as

uA1P~V!u

5
p0

rs0a0
2~11Dra0 /R0!

3H 1

@V0
22V21Sac~V!1Sel~V!#214V2b2~V!

J 1/2

,

~99!

whereb~V! takes into account the thermal dissipation and
given by~95!. Also, V052p f 0 is calculated according to th
formula ~78! wherein the polytropic exponentk is given by
Eq. ~96!. We perform the numerical maximization of th
amplitude-frequency response function in order to find
resonance frequencyf resof bubble oscillation. The numerica
results are shown in Figs. 6–8.

Previously, the resonance frequencyf res for the encapsu-
lated microbubbles was taken to be equal to the undam
natural frequencyf 0 ~see Refs. 8 and 15!. However, this
works only for reasonably large bubbles, when the visc
damping coefficients are much less than the undamped n
ral frequency. The ratio ofbvis11bvis2 to f 0 , and hence the
difference betweenf res and f 0 rise as the bubble size de
creases. Numerical analysis confirms this. The resonance
undamped natural frequencies~solid and dotted lines! for the
encapsulated microbubble in an incompressible Newton
liquid ~Cl5`, l15l250 s), as functions of the inne
bubble radius, are depicted in Fig. 6. First, this figure sho
that the assumptionf res5 f 0 does not work for the encapsu
lated microbubble having a radius below 5mm. Second,

FIG. 5. Liquid viscous damping coefficient as a function of driving fr
quency for an encapsulated microbubble in a viscoelastic liquid with dif
ent values of the relaxation time. The curves labeled 1–3 are for value
the relaxation timel150.01ms, 0.1, and 1ms, respectively. The remaining
parameters are the same as in Fig. 3.
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub

128.173.125.76 On: Wed,
e
-

s

e

ed

s
tu-

nd

n

s

there exists a critical radiusa0c such that any microbubble o
radiusa0,a0c does not resonate at all. The critical radius f
the air-filled microbubble surrounded by blood and encap
lated by a 15 nm thick shell with elasticity of 15 MPa an
viscosity of 1.77 kg m21 s21 is 2.6mm. This value is above
a mean bubble radius for many commercial contrast-ag
suspensions.48 Third, unlike the undamped natural frequenc
the dependence of the resonance frequency on the bu
radius is not monotonic. There exists a maximal value of
resonance frequency. If the driving frequency exceeds
value, no bubbles oscillate resonantly. It immediately follo
that for each value of the driving frequency below the ma
mal one there are two resonant bubble sizes~not one as be-
fore!. It should be noted that the resonance frequency
bubble oscillation is not the frequency at which the scatter
cross section has a local maximum~see the next section!.
The latter frequency is a monotonic function of the bubb
radius which goes to infinity at the critical value of the r
dius.

Because the thermal damping coefficient is nearly c
stant and very small~compared with the viscous dampin
coefficients! for micron bubbles at medical ultrasound fr
quencies~Fig. 3!, the resonance frequency is scarcely
fected by the thermal dissipation. The analytical soluti
~82! with k51.1, which is marked off by the dashed line
Fig. 6, differs from the numerical result only slightly. Not
that if the liquid is considered to be incompressible a
Newtonian, the only reason why the numerical solution m
be different from the formula~82! is the thermal dissipation
For the parameters as in Fig. 6, the inclusion of therm
damping leads to an increase in the critical bubble rad
from 2.55 to 2.6mm ~less than 2%!. Upon neglecting therma
damping and elasticity of the liquid, the critical radiusa0c

can be found analytically from~81! which, in view of ~90!,
can be rewritten as follows:

-
of

FIG. 6. Resonance frequency~solid! for an encapsulated microbubble in a
incompressible Newtonian liquid, as a function of bubble radius, compa
with the undamped natural frequency~dotted!. The dashed line is the ana
lytical solution ~82!. The shell elasticity is 15 MPa,Cl5`, l15l250 s.
Other parameters are as in Fig. 3.
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2

rs0a0c
2 S 11

Dr

11d/a0c
D 21Fms2

ms2m l

~11d/a0c!
3G5

V0

&
,

~100!

whereV0 is also a function ofa0c .

FIG. 7. Resonance frequency versus bubble radius for an encapsulate
crobubble in a compressible Newtonian liquid (Cl51500 m/s) for different
values of~a! shell elasticity,~b! shell viscosity, and~c! shell thickness. For
plots ~a! and~c! ms51.77 kg/(m•s); for ~b! and~c! Gs588.8 MPa; for~a!
and ~b! d515 nm. Other parameters are given above.
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The existence of resonant peaks in the experimental s
tering cross section curves~at the driving frequency! for
contrast-agent suspensions with a mean radius below 2.6mm
indicates that the value of the shell elasticity is more than
MPa and/or the value of the shell viscosity is less th
1.77 kg m21 s21. As seen in Figs. 7~a! and 7~b!, the critical
bubble radius and the maximal value of the resonance
quency increase with increasing the shell elasticity and
creasing the shell viscosity. Also, the critical radius is larg
for the microbubbles with thicker shells@Fig. 7~c!#. The fact
that the critical bubble radius depends on the shell par
eters gives us a possibility to evaluate one of them. For
ample, we can measure the shell thickness by atomic fo
microscopy5 and the shell viscosity by fitting the experime
tal data for the ultrasound attenuation in the contrast-ag
suspension to the theoretical calculations based on~95!. Of
course, we should sumb~V! over all available bubble size
for this. Note that~95! includes the contribution of liquid
elasticity to the total damping coefficient, which was n
taken into account previously. Having these data and kn
ing the values of the gas and liquid parameters, we only n

mi-

FIG. 8. Effects of liquid compressibility and viscoelasticity on the res
nance frequency of microbubble oscillation. Plots~a! and~b! are resonance
frequency as a function of bubble radius for different values ofCl at l1

5l250 s and ofl1 at Cl51500 m/s andl250 s, respectively. The shel
elasticity is 88.8 MPa, other parameters are as in Fig. 6.
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to find the critical bubble radius in order to evaluate the sh
elasticity.

The effects of the liquid compressibility on the res
nance frequency are small as compared to the shell effe
There is a decrease in the maximal resonance frequency
no change in the critical bubble radius with decreasing
speed of sound in the liquid@Fig. 8~a!#. Figure 8~a! shows
that the resonance frequency of a 2-micron bubble eq
about 4.15 MHz if the liquid is considered to be incompre
ible and equals about 4.11 MHz if the speed of soundCl

51500 m/s. Nonetheless, the difference 0.04 MHz can
be considered very small~relative to experimental measure
ment sensitivity!. The elasticity of the liquid influences th
resonance frequency, though its effects are much sm
than the effects of the shell elasticity becausem l!ms . In a
viscoelastic liquid the maximal resonance frequency is
ways larger than in a Newtonian liquid@Fig. 8~b!#. The criti-
cal bubble size deviates slightly from the value obtained
the case of a Newtonian liquid. It is necessary to say that
liquid elasticity has the greatest impact on the resonance
quency atl1;0.1 ms @the dotted line in Fig. 8~c!#. The ef-
fects of the liquid elasticity are diminished with a furth
increase inl1 ~compare the dotted and dash–dot lines!.

C. Scattering cross sections

In order to incorporate thermal damping into the formu
for the second-harmonic amplitude, we rewrite the sec
equation in~76! in the form

A2P~V!5
f2* ~V!A1P

2 ~V!

V0
224V21Sac~2V!1Sel~2V!14iVb~2V!

,

~101!

where

f2* ~V!5
p0

rs0a0
2 S 11

Dra0

R0
D 21@122i ~La0 /U !V#f2~V!

114~La0 /U !2V2 .

The thermal damping coefficientbT is inside A1P(V) and
b(2V). The first- and second-harmonic scattering cross s
tions ss1 and ss2 are then given by the following expres
sions:

ss15
4pr l0

2 a0
6

p0
2 V4uA1P~V!u2, ~102a!

ss25
16pr l0

2 a0
6PA

2

p0
2 V4uA1P~V!u4G, ~102b!

with

G5U11
f2* ~V!

V0
224V21Sac~2V!1Sel~2V!14iVb~2V!

U2

.

~103!

Note thatPA is nondimensional.
The resonance frequency of bubble oscillation is usu

evaluated from the curves for the scattering cross sectio
the driving frequency. It is taken to be equal to the frequen
f max at which ss1 has a local maximum. However, the fre
quencyf max differs from the resonance frequency due to t
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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presence ofV4 in the numerator of Eq.~102a!. In the case of
an incompressible Newtonian liquid, when thermal effe
are neglected, it is easy to obtain that

f max5 f max15
f 0

2

f res
. ~104!

If viscous damping is small~large bubbles!, we can neglect
the difference betweenf res and f 0 and thenf max is approxi-
mately equal to the undamped natural frequency. This is
true for microbubbles with the radius less than 5mm for
which f res greatly differs from f 0 ~see above!. From Eq.
~104! and the existence of the critical bubble radiusa0c at
which f res50 it follows that the frequencyf max tends to in-
finity as the bubble radius approachesa0c , though the un-
damped natural frequency goes to infinity ata050. The re-
sult is practically unaffected if thermal effects are allow
for. Figure 9 shows the dependence of the maximum
quency f max on the bubble radiusa0 for the encapsulated
microbubble in an incompressible Newtonian liquid, as o
tained from the numerical maximization of the scatteri
cross sectionss1 . The frequency goes to infinity at the poin
a052.52mm which is very close to the critical value for th
resonance frequency~2.6 mm!. Experimentalists define the
resonance radius of the bubble from the resonant peaks in
scattering cross-section curves. However, it is difficult
construct the dependence ofss1 on a0 because of polydis-
persity of real microbubble suspensions. However, there
no problem to measure the scattered pressure field for a
ticular value of the driving frequency. Therefore, speciali
in acoustic scattering make use of the plots of scatter
cross section versus frequency for defining the maxim
frequency f max ~which is considered as the resonance f
quency!. The resonance radius of the bubble can then
found from thef max2a0 curves.75 Previously, the assumption
f max5f0 was used for calculating the resonance bubble
dius, i.e., the undamped natural frequency was considere
be the frequency at which the scattering cross section h
local maximum. As seen in Fig. 9, this assumption, wh
works only for large bubbles, leads to underestimating

FIG. 9. Maximum frequencyf max ~solid! for an encapsulated microbubbl
in an incompressible Newtonian liquid, as a function of bubble radius, co
pared with the undamped natural frequencyf 0 ~dashed!. The same param-
eters as in Fig. 6.
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 This ar
resonant size of microbubbles. For the parameters of
figure, the undamped natural frequency gives the reso
radius of 1.945mm at the driving frequencyf 53.5 MHz.
However, the actual resonant radius is 2.945mm ~Fig. 9!.
Indeed, for a microbubble with the radius of 2.945mm the
scattering cross sectionss1 has a maximum at the driving
frequency of 3.5 MHz. However, there is no resonant pea
ss1 at 3.5 MHz for a 1.945mm bubble~Fig. 10!. Moreover,
the scattering cross section never reaches a local maxim
for such a microbubble because its radius is below the c
cal value.

Figures 11 and 12 show the effects of the shell para
eters ~elasticity, viscosity, and thickness! and of the com-
pressibility and viscoelasticity of the surrounding liquid o
the second-harmonic scattering cross sectionss2 . First, an
increase in the shell elasticity results in increasing the m
nitude of the resonant peak inss2 @Fig. 11~a!#. This contra-
dicts one of Church’s conclusions that ‘‘the magnitude a
the sharpness of the peaks in the cross section curves te
decrease as the shell rigidity increases.’’5 It is easy to check
that the derivative ofss1 or ss2 with respect toGs is always
positive, i.e., the scattering cross sections increase with
creasing shell elasticity. Of course, the scattering is wea
for microbubbles with more viscous shells@Fig. 11~b!#.
Therefore, viscosity of the shell is the main reason why
encapsulated microbubbles scatter more poorly than free
crobubbles. It should be noted that the second-harmo
resonance, which takes place if the driving frequency
equal tof max/2, appears only for reasonably small values
the shell viscosity@see the dashed line in Fig. 11~b!#. As seen
in Fig. 11~c!, the microbubbles with thick shells are po
scatterers in comparison with those with thin shells. This
because an increase in the shell thickness leads to th
creased impact of the shell viscosity on microbubble osci
tions.

The liquid parameters weakly affect the scattering by
encapsulated microbubbles as compared to the shell pa
eters. The magnitude of the resonant peak in the scatte
cross section curves tends to decrease with decreasing
speed of sound in the liquid because of acoustic radia

FIG. 10. First-harmonic scattering cross section versus driving freque
The solid line is fora052.945mm, the dashed line fora051.945mm. The
surrounding liquid is incompressible and Newtonian.
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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damping @Fig. 12~a!#. The resonant scattering by the m
crobubbles is higher in a viscoelastic liquid than in a Ne
tonian liquid. The larger the relaxation time, the higher t
resonant peak@Fig. 12~b!#. It is worth noting that the mag-
nitude of the resonance peak atCl5` differs from that at

y.

FIG. 11. Second-harmonic scattering cross section versus bubble radiu
an encapsulated microbubble in a compressible Newtonian liquid for dif
ent values of~a! shell elasticity,~b! shell viscosity, and~c! shell thickness.
PA50.3, other parameters are given in Fig. 7.
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Cl51500 m/s by a factor of about 1.5. The same differen
is seen between a Newtonian liquid and a viscoelastic liq
with the relaxation time 1026 s. Moreover, the relaxation
time for blood may be higher. For example, the characteri
time for red cell deformation may reach 0.06 s~see Ref. 53!.
The effects of liquid compressibility and elasticity are the
fore detectable by current experimental technique.76

VI. CONCLUSIONS

In this study, the equation for radial oscillations of a
encapsulated gas bubble in a compressible viscoelastic li
has been derived using the method of matched asymp
expansions. The Kelvin–Voigt and 4-constant Oldroyd mo
els were adopted to describe the viscoelastic properties o
encapsulating layer and of the liquid, respectively. Based
this equation, the small-amplitude forced oscillations of
encapsulated microbubble were analyzed. The formulas
the first- and second-harmonic amplitudes of bubble osc
tion and the expressions for the scattering cross section
the driving frequency and at twice that frequency were p
sented.

FIG. 12. Effects of~a! liquid compressibility and~b! viscoelasticity on the
second-harmonic scattering cross section. The parameterPA50.3. For plot
~a! l15l250 s, for ~b! Cl51500 m/s andl250 s.
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We have shown that if the bubble is small~;2 mm in
size! and is covered by a shell 15 nm~or more! in thickness,
the total damping of its radial oscillation is determined
the shell viscosity. In the viscoelastic liquid case, the con
bution of the liquid viscosity to the total damping coefficie
is below that for a Newtonian liquid and sharply decrea
with frequency even at small values of the relaxation tim
The numerical maximization of the amplitude-frequency
sponse function reveals that the resonance frequency fo
encapsulated bubble of radiusa0,5 mm highly depends on
the shell and liquid viscosities, and therefore, significan
differs from the undamped natural frequency. Hence,
presently accepted assumptionf res5 f 0 fails over a range of
ultrasound contrast agents. Moreover, at given values for
shell and liquid parameters there exists a critical value of
bubble radius such that any smaller microbubble does
resonate. This critical radius is about 1.5mm for the mi-
crobubble surrounded by blood and encapsulated by 15
thick shell having elasticityGs588.8 MPa and viscosity
ms51.77 kg m21 s21. Recall that these values correspond
those obtained by fitting the de Jong theory with experim
tal data for Albunex® bubbles~see Refs. 6 and 5!.

Usually, experimentalists consider the frequency
which the first-harmonic scattering cross section is maxim
as the resonance frequency of bubble oscillation. This is
true for micron bubbles. Upon neglecting thermal effects a
considering the liquid to be Newtonian and incompressib
this maximum frequencyf max can be expressed in terms o
the undamped natural and resonance frequencies asf max

5f0
2/fres. When the bubble radius approaches the criti

value, this maximum frequency tends to infinity, whereas
resonance frequency tends to zero. Also, the assump
f max5f0, which is used for evaluating the resonance bub
size from the experimental data on the scattering cross
tion ~vs the driving frequency!, is no longer valid for the
encapsulated microbubbles. In the range of medical ul
sound frequencies it leads to significant underestimation
the resonance bubble size.

The resonant peaks in the scattering cross section cu
are very sensitive to the shell parameters but not to the liq
parameters. The effects of liquid compressibility and v
coelasticity on the scattering by the encapsulated
crobubbles are, therefore, small. There is a slight increas
the magnitude of the peaks with decreasing the liquid visc
ity or the speed of sound in the liquid and with increasing
relaxation time. But these effects are detectable based on
sensitivity of current experiments. The experimental resu
which indicate that the encapsulated microbubbles scatte
trasound more poorly than free ones, are due to the s
viscosity. It is not true that the shell elasticity is responsib
for that. The scattering cross sections increase with incre
ing the shell elasticity. If the shell becomes thicker, the sc
tering deteriorates. This can also be explained by the
creased impact of the shell viscosity on microbubb
oscillations.
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APPENDIX: SMALL-AMPLITUDE ANALYSIS OF THE
CONSTITUTIVE EQUATION

The effects of liquid compressibility are negligible ne
the bubble surface. In that case, the 4-constant Olrdroyd
stitutive model is reduced to the system of equations@see
Eqs.~36!#:

F11De
]

]t*
1

DeQ~ t* !

r
*
2 S ]

]r *
1

2

r *
D Gt* rr

( ld)

52S h2
2

3D DeQ~ t* !

r
*
3 tr@t

*
( l )#

2
4

Rel r
*
3 FQ~ t* !1lDe

dQ

dt*
2lDe

Q2~ t* !

r
*
3 G , ~A1a!

F11De
]

]t*
1

DeQ~ t* !

r
*
2

]

]r *
G tr@t

*
( l )#

52
6DeQ~ t* !

r
*
3 t

* rr
( ld)2

24lDeQ2~ t* !

Rel r
*
6 , ~A1b!

where the function

Q~ t* !5a
*
2 ~ t* !

da*
dt*

. ~A2!

If the amplitude of the incident acoustic field is small, i.
the bubble undergoes small-amplitude oscillations

a* ~ t* !511x1~ t* !,
~A3!

x1~ t* !5«px1~ t* !1«p
2x2~ t* !1O~«p

3!,

we can seek the solution of Eqs.~A1! as expansion in power
of a small parameter«p

t
* rr
(ld)5«p T11«p

2 T21O~«p
3!, tr@t

*
( l )#5«p Y11«p

2 Y21O~«p
3!.

~A4!

To obtain the equations for stress perturbations we subst
~A3! and~A4! into the system~A1! and separate the resultin
expressions in the orders of«p . The first-order equations
look as follows:

S 11De
]

]t*
DT152

4

Rel r
*
3 S 11lDe

]

]t*
D dx1

dt*
, Y150.

~A5!

From the second equation of~A5! it follows that the trace of
the shear stress tensor tr@t

*
( l )# is a quadratic nonlinear term

~of order «p
2). The second-order equations then have

form
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S 11De
]

]t*
DT2

52
De

r
*
2

dx1

dt*
S ]

]r *
1

2

r *
DT12

4

Rel r
*
3 S 11lDe

]

]t*
D

3S dx2

dt*
12x1

dx1

dt*
D1

4lDe

Rel r
*
6 S dx1

dt*
D 2

, ~A6a!

S 11De
]

]t*
DY252

6De

r
*
3

dx1

dt*
T12

24lDe

Rel r
*
6 S dx1

dt*
D 2

. ~A6b!

These equations are uncoupled because the only intera
term in Eq.~A1a!

2S h2
2

3D DeQ~ t* !

r
*
3 tr@t

*
( l )#,

is of order «p
3 . Therefore, this term should be taken in

account only in the equations for the third- and higher-or
stress perturbations. This means that the trace of the s
stress tensor affects neither the first harmonic nor the sec
harmonic of bubble oscillation. Indeed, the integral

q~ t* !53E
R
*

(t
*

)

` t
* r̃ r̃
( ld)

r̃
d r̃,

the contribution of liquid viscoelasticity to bubble oscilla
tions, does not depend on the third-order stress perturba
T3 if we restrict our attention to the quadratic nonline
terms. This is becauser * is of order of unity and the integra
is not singular at any value oft* , at least, in the case o
small-amplitude oscillations. Using Eqs.~A3! and ~A4!, we
can write this integral in the form

q~ t* !53E
R
*

(t
*

)

` «pT11«pT2

r̃
d r̃1O~«p

3!,

~A7!

R* ~ t* !5
R0

a0
F11«p

a0
3

R0
3 x1~ t* !1O~«p

2!G .
The first- and second-order stress perturbationsT1 and T2 ,
which are the solutions of the first equation of~A5! and Eq.
~A6a!, can be represented as

T15
h1~ t* !

r
*
3 , T25

h2~ t* !

r
*
3 1

g2~ t* !

r
*
6 , ~A8!

where the functionsh1(t* ), h2(t* ), andg2(t* ) are solutions
of the following ordinary differential equations:

S 11De
d

dtDh1~ t* !52
4

Rel
S 11lDe

d

dtD dx1

dt*
, ~A9!

S 11De
d

dtDh2~ t* !52
4

Rel
S 11lDe

d

dtD
3S dx2

dt*
12x1

dx1

dt*
D , ~A10!

S 11De
d

dtDg2~ t* !5De
dx1

dt*
h1~ t* !1

4lDe

Rel
S dx1

dt*
D 2

.

~A11!
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Substitution of~A8! into ~A7! and further integration of the
result yield

q~ t* !5«p

a0
3

R0
3 h1~ t* !1«p

2F2
3a0

6

R0
6 h1~ t* !x1~ t* !

1
a0

3

R0
3 h2~ t* !1

a0
6

2R0
6 g2~ t* !G1O~«p

3!. ~A12!

Expression~A12! takes the form of Eq.~60! after some re-
arrangement and reverting to the variablex(t* ).
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