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ABSTRACT 

 

Modeling pavement deterioration and predicting the pavement performance is crucial for 

optimum pavement network management. Currently only a few models exist that incorporate the 

structural capacity of the pavements into deterioration modeling. This thesis develops pavement 

deterioration models that take into account, along with the age of the pavement, the pavement 

structural condition expressed in terms of the Modified Structural Index (MSI). The research 

found MSI to be a significant input parameter that affects the rate of deterioration of a pavement 

section by using the Akaike Information Criterion (AIC). The AIC method suggests that a model 

that includes the MSI is at least 10
21

 times more likely to be closer to the true model than a 

model that does not include the MSI. The developed models display the average deterioration of 

pavement sections for specific ages and MSI values. 

 

Virginia Department of Transportation (VDOT) annually collects pavement condition data on 

road sections with various lengths. Due to the nature of data collection practices, many biased 

measurements or influential outliers exist in this data. Upon the investigation of data quality and 

characteristics, the models were built based on filtered and cleansed data. Following the 

regression models, an empirical Bayesian approach was employed to reduce the variance 

between observed and predicted conditions and to deliver a more accurate prediction model. 
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CHAPTER 1.  INTRODUCTION 

1.1 Background 

Accurate pavement deterioration prediction is key for efficiently and effectively managing the 

allocated budget for keeping an agency’s road network operated at an “optimal” serviceability 

level. Therefore, it is important to have accurate pavement condition prediction models. 

The deterioration of pavement over time can be defined by comparing and evaluating the 

changes in the pavement condition, and by examining its history of serviceability. The pavement 

condition is commonly classified as functional or structural condition (Park et al., 2007). 

Functional condition measures the service provided to the road users. Functional condition 

indicators are generally oriented to service, user perception, safety and sufficiency. Examples 

include roughness, surface deterioration, friction, and macro and micro-texture of the pavement. 

On the other hand, the structural condition is generally not directly perceived by the users but 

rather indicate the physical condition and structural load-carrying capacity of the pavement (Park 

et al., 2007).   

Although they reveal two different properties of the pavement, the two types of indicators are 

interrelated. Research has shown that the structural condition of the pavement directly affects the 

functional performance (Bryce et al., 2013). A poor structural pavement condition results in 

greater negative rate of change in the functional condition.  

Pavement indices, such as IRI (International Roughness Index), PCR (Pavement Condition 

Rating), PCI (Pavement Condition Index) and CCI (Critical Condition Index) are commonly 

used to provide information on the overall pavement condition. However, none of them 

explicitly takes the structural capacity into account. The International Roughness Index (IRI) 

summarizes the roughness qualities of the pavement as a longitudinal profile that impact vehicle 

response (Sayers, 1986). The composite pavement indices, such as PCR, PCI and CCI, reflect the 

overall condition of the pavement by considering the composite effects of different distress 

types, their severity and extent. 

In this study, the functional condition of the pavement is captured in terms of CCI, which is 

currently used by the Virginia Department of Transportation (VDOT) and uses a scale of 0-100. 

The CCI is calculated as the lower of the two indices: LDR (Load Related Distress Rating) and 

NDR (Non-load Related Distress Rating). LDR and NDR are used only for asphalt-surfaced 
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flexible pavements. CCI value of 100 represents a pavement with no visible distress, while a 

pavement with a CCI value of zero indicates a pavement in heavily distressed condition. In 

general, pavement sections with a CCI value below 60 (poor and very poor) are considered 

‘deficient’ and should be further evaluated for maintenance and rehabilitation actions (VDOT, 

2006). TABLE 1 summarizes the scale used by VDOT to rate pavements based on CCI. 

TABLE 1  Pavement Condition Definitions. Virginia Department of Transportation, C. O., 

Asset Management Staff (2006). "State of Pavement - Interstate and Primary Flexible 

Pavements." URL: http://virginiadot.org/info/resources/2006_Condition_Report.pdf 2015. 

Index Scale 

(CCI) 

Pavement 

Condition 

Likelihood of 

Corrective Action 

90 and Above Excellent Very Unlikely 

70-89 Good Unlikely 

60-69 Fair Possibly 

50-59 Poor Likely 

49 and Below Very Poor Very Likely 

 

Previous work has shown that good functional condition of pavement does not necessarily 

indicate good structural condition (Zaghloul et al., 1998) and that there is a very weak correlation 

between the surface condition and the structural condition of the pavement (Flora 2009; Bryce et 

al. 2013). This is thought to be at least partially due to the fact that maintenance practices tend to 

enhance the functional parameters of the road, while the structural capacity of the pavement 

remains virtually unchanged. However, Bryce at al. (2013) posed that the structural condition has 

a significant effect on the rate of deterioration of the pavement and, the CCI change over time 

was affected by the pavement Modified Structural Index (MSI) values. The MSI is a structural 

index developed for use in network-level pavement evaluation. The pavement sections with low 

MSI values (in poor structural condition) deteriorated more rapidly than the pavement sections 

with higher MSI values (in adequate structural condition). 

1.2 Problem Statement 

Since the accuracy in the pavement condition prediction, with respect to the actual condition, 

directly influences pavement management decisions, it is important to model the performance of 

the pavement as accurately as possible. Recent studies have shown that pavements in poor 

http://virginiadot.org/info/resources/2006_Condition_Report.pdf
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structural condition tend to have a faster functional deterioration rate compared to pavements 

with adequate structural condition, when the same treatment is applied to both pavements 

(Zaghloul et al., 1998; Flora 2009; Bryce et al. 2013). The current deterioration models used by 

VDOT at the network-level were developed based on expert opinion and windshield pavement 

condition evaluations (Stantec, 2007). These models are maintenance category specific but do 

not take into account the structural capacity of the pavement as a factor. However, project-level 

decisions often include structural capacity as a key parameter. Incorporating structural capacity 

as a factor that affects pavement deterioration may help make network-level recommendations 

match as close as possible the project-level decisions. Lack of consistency at these levels may 

result in sub-optimal resource allocations and financial inefficiencies. 

1.3 Objective 

The objective of this thesis is to develop a new set of deterioration models for the Virginia 

Department of Transportation (VDOT) Pavement Management System (PMS). These models 

incorporate the impact of the structural condition into the deterioration rate for flexible pavement 

sections of VDOT. This development may help to minimize the difference between network-

level and project-level treatment decisions. The new models will help VDOT achieve more 

accurate network-level pavement performance predictions and resource allocations.   

1.4 Scope 

This study is a continuation of a previously completed research study by Bryce et al. (2013) 

which introduced a network-level structural capacity index for VDOT. This index, MSI, can be 

used to link pavement deterioration rate to its structural condition.  

The inclusion of the MSI of the pavement section is expected to allow better predictions of the 

pavement condition. This will help determine the type and timing of treatment or rehabilitation 

that will be required, resulting in more reliable network-level programs. 

The thesis starts with a literature review about pavement deterioration models (Chapter 2) 

followed by an investigation of the quality of the data, identification of the data characteristics, 

and selection of appropriate data cleansing and filtering procedures (Chapter 3). The condition 

data extracted from the VDOT Pavement Management System database only includes flexible 

pavements on the Interstate system, as it was the only network with structural capacity data 

available. Chapter 4 presents the various model types, forms, and modeling approaches 



4 

considered, compares the various models considered, and identifies the models deemed most 

appropriate for modeling the deterioration of Virginia's Interstate pavements. Chapter 5 presents 

the findings of the study, concludes the analysis and derives recommendations both for 

implementation and for future research. 

1.5 Methodology 

Due to many factors affecting the pavement performance, it requires a complex study to predict 

the future performance.  The development of enhanced performance prediction models in this 

thesis starts with an extensive literature review. Secondly, the data to be used in this study, 

obtained from VDOT, is analyzed and then filtered from outliers and noise to avoid feeding the 

models with biased information. The knowledge regarding existing deterioration curves and 

applicable modeling techniques, obtained in the literature review phase, is used to create several 

regression models with the filtered data. The models are evaluated based on the defined model 

selection criteria. To improve the prediction accuracy of the overall pavement network, 

application of Empirical Bayesian method was also considered by completing a detailed 

investigation of Empirical Bayesian approach and determining a prior distribution for the data. 

Lastly, the Empirical Bayesian method is used to develop a model with improved predictions.  

The improvements done by each model are compared to find the optimal modeling solution.   

1.6 Significance 

Pavement performance prediction is important for managing pavement assets. Haas et al. (1994) 

proposed that the incorporation of a structural index into the network-level PMS database and 

into the condition prediction models can be helpful to determine average network structural 

conditions, predict deterioration behaviors, evaluate future structural inadequacies, plan for 

future work program, and assess future funding requirements. Implementation of enhanced 

deterioration curves into the pavement management system will improve the overall performance 

of the system by providing predictions that are more accurate, leading to higher-efficiency 

maintenance and rehabilitation activity programs.  

The approach followed better represents the actual observed data as the negative binomial 

distribution better fit the measured data. The approach also accounts for error in the recorded 

condition as well as natural performance variation and difference between different pavement 

sections. 
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CHAPTER 2.  LITERATURE REVIEW 

This chapter begins with a review of existing literature about pavement performance, pavement 

deterioration, and the factors that affect pavement performance. Then it briefly explains the 

functional and structural performance of pavement, plus their indicators. It continues with a 

summary of the currently in-use deterioration models and delivers a discussion on the applicable 

modeling approaches to predict pavement deterioration.  

2.1 Pavement Performance  

The pavement performance should be defined differently depending on if it is used at the project, 

network, or strategic level (Lytton, 1987). At the project level, the distress data, decrease in 

serviceability index, skid resistance and damage done by traffic can define the performance. At 

the network level, performance is usually defined by the overall condition of the network, the 

condition and trends of individual projects, and the level of performance that is provided by each 

functional type and class of road. At the strategic level, the focus is on the overall performance 

of the pavement network for each geographical subdivision rather than the conditions and trends 

of the individual projects. This strategic level is mostly concerned with policy and economics, 

including cost and fund allocation, concerning equity in taxation and in delivering adequate 

service to citizens. The overall performance of a network is an important indicator to show the 

needs for funding and the effects of pavement performance on user costs. 

The major purpose of monitoring pavement performance is to objectively examine and determine 

the current condition of pavements, as well as its historical trends, to evaluate this information 

for developing a management action plan. An action plan includes all planning and decision-

making steps related to the maintenance, rehabilitation, construction, and reconstruction of 

pavements. Deterioration prediction models enhance the capability of a pavement management 

system since the accuracy of the predictions is the key that drives support for decision-making. 

All the data provided through monitoring and inventory activities are used to model the 

performance. Then the alternative activities are analyzed, designed, planned, compared, ranked 

and optimized. As a result, achieving an optimal budget and fund allocation becomes easier. 

FIGURE 1 illustrates these concepts in an example of systematic framework. 
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FIGURE 1  Framework for Pavement Performance Prediction. Li, N., Haas, R., and Xie, 

W.-C. (1997). "Development of a new asphalt pavement performance prediction model." 

Canadian Journal of Civil Engineering, 24(4), 547-559. Used with permission of Canadian 

Science Publishing, 2015. 
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2.2 Pavement Performance Factors 

Pavement performance is defined as the ability of a pavement to satisfactorily serve traffic over 

time (AASHTO, 2003). FIGURE 2 displays numerous factors that have been used in predicting 

pavement performance. Factors that are generally included in the pavement performance 

prediction models can be grouped into several categories such as traffic loading associated 

factors (loading variables), material properties and composition variables, environmental 

associated factors and construction and maintenance variables. There are also other independent 

factors, such as geometric features, that cannot be grouped in these categories (Huang, 1993). 

 

FIGURE 2  Factors and interactions that can affect pavement. Tighe, S., Haas, R., and 

Ponniah, J. (2003). "Life-cycle cost analysis of mitigating reflective cracking." 

Transportation Research Record: Journal of the Transportation Research Board(1823), 

73-79, Used under fair use, 2015. 
 

Traffic-loading associated factors have the most impact on pavement performance. These factors 

include traffic volume in the form of Annual Average Daily Traffic (AADT), axle load, 

Equivalent Single Axle Loads (ESALs), wheel load dynamic effects, truck axle types, tire 

pressure, design loads and overloading effects, load application time and mechanism, loading 

area shape and configuration, and position of the wheel in transverse section (Rada, 2013). 

Factors due to material properties and composition variables are the main engineering properties 

of the materials such as bearing capacity or strength of the material, mechanical properties in 
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terms of durability, stability, flexibility, impermeability etc., skid resistance of the pavement, 

elastic and resilience modulus, viscosity, dilatancy, stiffness and Poisson ratio (Fwa, 2005).  

Environmental factors may show great differences depending on the geographic location. Some 

of the main environmental factors that affect pavement performance are temperature, moisture 

and humidity, precipitation, ground water characteristics, solar radiation, suction, and freeze and 

thaw effect (Fwa, 2005). 

Construction variables are the factors that are based on the design and construction phase of the 

pavement and associated variability. These include layer thicknesses and variability along the 

section, compaction and residual stress induced by compaction during the construction, 

variability in gradation, asphalt and moisture content changes, size, amount, shape and location 

of construction joints, quality of the initial construction work. Factors such as construction 

quality variations are usually defined on the qualitative level, and are difficult to include in a 

mathematical model to predict pavement performance. Others such as layer thickness and 

strength can be aggregated to a single number (if an empirical design procedure is followed), 

which is called Structural Number (SN), to represent the overall structural strength of the 

multiple flexible pavement layers (AASHTO, 1993). Maintenance activities also affect the 

pavement performance. 

Other factors that were not grouped above are usually the geometric features of the roadway such 

as longitudinal and transverse slopes and curvature, drainage system, maintenance activities and 

surface characteristics.  

2.3 Pavement Deterioration Indicators 

Both functional and structural performance are important to track the deterioration of pavements. 

Different indicators are used to characterize the pavement structural or functional condition, and 

composite indices provide a measure of general performance. FIGURE 3 summarizes the 

different pavement condition data collected by state agencies, depending on the management 

level. 
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FIGURE 3  Summary of current practices for pavement data collection in North America. 

Flintsch, G. W., and McGhee, K. K. (2009). Quality management of pavement condition 

data collection, Transportation Research Board, Used under fair use, 2015. 

2.4 Functional Condition Indicators on Flexible Pavements 

Functional condition of flexible pavements can be evaluated according to one or several different 

criteria. With the lack of a universally used deterioration indicator, each agency may choose their 

indicator to define pavement deterioration for their management. 

Functional condition is defined primarily with the following metrics: serviceability, distresses, 

roughness/riding quality, surface friction/macrotexture and microtexture, safety, and noise. 

Serviceability is a more general term frequently used to describe the user’s satisfaction with the 

ride. Studies have shown that roughness contributes to most of a driver’s perception about the 

serviceability of a pavement (Haas et al., 1994). Roughness defines the vertical changes in the 

pavement longitudinal profile, transverse profile, and cross slope. However, the longitudinal 

profile in the wheel path is the one main indicator that is used to describe the roughness or riding 

quality of a pavement. 

Distresses, namely surface rutting and fatigue cracking, are the most commonly modeled 

performance indicator for flexible pavements (Prozzi, 2001). Bleeding, transversal cracking, 

longitudinal cracking, edge cracking and block cracking are some of the other distress types. 
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Distresses are typically measured by type, frequency, and extent. The distresses are then 

weighted according to its importance to the pavement condition for calculating a summary index. 

TABLE 2 summarizes the different types of distresses considered in Long Term Pavement 

Performance (LTPP) program on asphalt concrete pavement surfaces. 

TABLE 2  Asphalt Concrete Pavement Surface Distresses Considered in LTPP. Federal 

Highway Administration, Miller, S., Bellinger Y. (2014). “Distress Identification Manual 

for the Long-Term Pavement Performance Program (Fifth Revised Edition)” Report 

FHWA-HRT-13-092, Used under fair use, 2015. 

 

In the literature, there are many indices developed using the abovementioned indicators to reflect 

the overall or partial functional condition of the pavements in a summarized format. The first 

approach to define the functional performance was Present Serviceability Index (PSI), which was 

developed based on the AASHO road test (AASHO, 1962). It is defined on a scale from 0 to 5 

with 0 being very poor condition and 5 being excellent. Later on, Hajek et al. (1986) presented 

the Pavement Condition Index (PCI), which indicates both roughness and pavement surface 

distresses for asphalt concrete surfaces on a scale from 0 to 100. The PCI includes further detail 

in data measurement and calculation compared to PSI, and delivers more accurate information 

about pavement condition on a wider scale. Another composite index covering both distress and 

roughness is the Pavement Condition Rating (PCR), a model based on point deduction for 

observed condition defects, and it was defined on a scale of 0 to 100. (George et al., 1989). 

Besides the composite indices, there are others focused on single aspects of functional condition. 

The International Roughness Index (IRI) is based only on the roughness of the pavement to 

describe the riding quality (Sayers, 1986).  

The Critical Condition Index (CCI), which is used by Virginia Department of Transportation, is 

an index reflecting the surface-observable distresses by taking different distress types, their 

severity and extent into account. CCI, on a scale of 0 to 100, is determined as the lower of two 
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rating values, Load Related Distress Rating (LDR) and Non-Load Related Distress Rating 

(NDR), which are calculated based on the pavement surface distresses. Usually, a CCI value 

lower than 60 indicates poor or very poor condition; the sections with such values are considered 

deficient and need action in terms of maintenance or rehabilitation treatments. 

In addition to the indices explained above, many others have been developed that are not used as 

widely. Some of them are the Present Serviceability Rating (PSR), Profile Index (PI), cracking 

index, distress index, mean panel rating, overall pavement condition, overall pavement index 

(OPI), pavement condition evaluation system (PACES), pavement condition survey, pavement 

distress index (PDI), pavement quality index, etc. (Ammons, 2012). These indices show different 

characteristics in terms of parameters, scale, computation practices, level of detail, and output 

styles. They all represent the efforts made in the literature on better describing the pavement 

performance. 

2.5 Determination and Expression of Structural Capacity of Flexible Pavements 

Structural capacity of a pavement is another indication of its performance and generally 

determines its capability to deal with traffic loading and environmental factors that influence the 

deterioration. Structural capacity evaluation of pavement is important and is in use especially to 

plan maintenance and rehabilitation activities or to decide on loading restrictions in extreme 

climate conditions or areas. A recent study by Bryce (2013) confirmed that incorporation of 

structural condition in network-level pavement management decisions allow these decisions to 

match better with the ones made during project-level assessment than those based only on 

functional condition and surface distress. As the functional properties of a pavement alone do not 

provide enough information to describe the overall pavement condition, consideration of the 

structural condition becomes necessary in network-level pavement management decisions. 

Measurement of structural capacity can be done through destructive and non-destructive 

methods. Non-destructive surveying methods, such as deriving the pavement thickness through 

Ground Penetrating Radar (GPR), and using high-speed deflectometers are emerging 

applications that can help improving data collection practices for pavement structural capacity. 

The improvement in taking measurements at high speeds has started to allow agencies to 

improve their data collection practices and PMS databases significantly (Saarenketo and 

Scullion, 2000). 



12 

A major indicator of pavement structural condition is the deflection. Deflection measurements 

are used as inputs in various pavement condition assessment tools, including structural capacity 

prediction models to calculate the remaining service life of pavements (Gedafa et al., 2010a). 

The Falling Weight Deflectometer (FWD) is currently the most prevalent device used to measure 

pavement deflections (Hadidi and Gucunski, 2010). The FWD device applies an impulse load to 

the pavement surface on a circular plate and then measures surface deflections through sensors 

located at the loading center and at fixed radii from the loading center (Noureldin et al., 2003). 

The measured deflections plot a deflection basin (or bowl) as seen in FIGURE 4 to reflect the 

overall structural capacity of the pavement.  

 

FIGURE 4  Typical deflection basin (bowl) obtained from a FWD loading. Saltan, M., and 

Terzi, S. (2008). "Modeling deflection basin using artificial neural networks with cross-

validation technique in backcalculating flexible pavement layer moduli." Advances in 

Engineering Software, 39(7), 588-592, Used under fair use, 2015. 
 

In addition, continuous deflection devices exist that measure the pavement deflection and collect 

data while constantly moving. The Rolling Wheel Deflectometer (RWD) and Traffic Speed 

Deflectometer (TSD) are the two most promising devices to deliver the information needed by 

highway agencies (Flintsch et al., 2013). TSD is an articulated truck that uses four Doppler lasers 

on a servo-hydraulic beam to measure and record the deflection velocity of a loaded pavement. 

TSD technology allows data collection at speeds as high as 45 mph (70 km/h). RWD measures 
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the deflection by comparing the loaded and unloaded condition records of pavement surface, 

which are measured with two different sets of lasers on the same prone truck (Flintsch et al., 

2013). 

There are various indices to summarize pavement structural capacity. One of them is the 

Structural Strength Indicator (SSI). SSI uses the center deflection measurements obtained from 

FWD tests to develop a function based on cumulative distributions of deflections for a given 

pavement family. The SSI function is based on the distribution equation in Equation 1 and 

determined as in the form of Equation 2 (Flora, 2009). 

𝑆𝑆𝐼 = 100 ∗ [1 − 𝐹 [(𝛿𝑖𝑗𝑘)
1

]]       (1) 

Where 𝐹 [(𝛿𝑖𝑗𝑘)
1

] is the cumulative probability distribution of (𝛿𝑖𝑗𝑘)
1
, the deflection measured 

at the center sensor. 

𝑆𝑆𝐼𝑗𝑘 = (1 − 𝑎𝑒
𝛽

(𝛿1)𝛾)         (2) 

Where j, k denotes the pavement family, and α, β, and γ are the coefficients. 

 α, β, and γ are found by minimizing errors between Eq. 1 and Eq. 2 

Another structural capacity indicator, the Structural Capacity Index (SCI), was developed by the 

Texas Department of Transportation to be used as a network level index. The inputs used in the 

calculation are the existing Structural Number (SN), estimated from FWD testing results and 

layer thicknesses, and the required structural number. SCI is the ratio of the effective SN 

(existing) to the design SN (required). To put simply, an SCI value greater than one signifies that 

the pavement is in sound structural condition for design traffic (Zhang et al., 2003). 

The Kansas Department of Transportation and Kansas State University prepared a way to 

determine structural capacity by using a set of regression equations that estimates the remaining 

service life (RSL) of a pavement, with FWD data as the input and sigmoidal curves as the model 

(Gedafa et al., 2010). The equations can be seen below: 

 

𝑅𝑆𝐿 = 𝛿 +
𝛼

1+𝑒𝛽−𝛾𝑑0
             (3) 

Where; 

𝛿 = 𝛿0 + 𝛿1𝐷 + 𝛿2𝐸𝐴𝐿 + 𝛿3𝐸𝑇𝐶𝑅 + 𝛿4𝐸𝐹𝐶𝑅 + 𝛿5𝑅𝑢𝑡 + 𝛿6𝑆𝑁𝑒𝑓𝑓  (4) 

𝑎 = 𝑎0 + 𝑎1𝐷 + 𝑎2𝐸𝐴𝐿 + 𝑎3𝐸𝑇𝐶𝑅 + 𝑎4𝐸𝐹𝐶𝑅 + 𝑎5𝑅𝑢𝑡 + 𝑎6𝑆𝑁𝑒𝑓𝑓  (5) 

𝛽 = 𝛽0 + 𝛽1𝐷 + 𝛽2𝐸𝐴𝐿 + 𝛽3𝐸𝑇𝐶𝑅 + 𝛽4𝐸𝐹𝐶𝑅 + 𝛽5𝑅𝑢𝑡 + 𝛽6𝑆𝑁𝑒𝑓𝑓  (6) 
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𝛾 = 𝛾0 + 𝛾1𝐷 + 𝛾2𝐸𝐴𝐿 + 𝛾3𝐸𝑇𝐶𝑅 + 𝛾4𝐸𝐹𝐶𝑅 + 𝛾5𝑅𝑢𝑡 + 𝛾6𝑆𝑁𝑒𝑓𝑓  (7) 

 

The factors δn, αn, βn and γn (for n=1,2,3,4,5& 6) are constants derived from regression models 

for different pavement types. EAL is the Equivalent Axle Load per day, ETCR is the Equivalent 

Transverse Cracks, EFCR is the Equivalent Fatigue Cracking, Rut is the rut depth in inches and 

SNeff is the effective structural number of the pavement. 

The Modified Structural Index (MSI), developed by Bryce in 2013, is a network-level structural 

capacity index that minimizes errors between network-level predictions and project-level work 

done on the flexible pavements of the Virginia Department of Transportation. The equation is 

based on FWD data, traffic volume and resilient modulus. It is modified from the SCI of the 

Texas Department of Transportation, and is finalized with three different equations depending on 

the road classification as the interstates, divided primary roads, un-divided primary roads,and 

high-volume secondary roads. The final form of the MSI for bituminous interstate pavements is 

as follows (Bryce et al., 2013): 

𝑀𝑆𝐼 =
0.4728∗(𝐷0−𝐷1.5𝐻𝑝)

−0.4810
∗𝐻𝑝0.7581

0.05716∗(log(𝐸𝑆𝐴𝐿)−2.32∗log(𝑀𝑅)+9.07605)2.3677     (8) 

 

Where   D0  = Peak Deflection under the 9,000 lbs load 

D1.5Hp = Deflection at 1.5 times the pavement depth 

ESAL= Cumulative Equivalent 18-kip Single Axle Load 

MR = Resilient Modulus 

 

The MSI is calculated for each location separately by including only the values of the parameters 

at that specific location. Thus, as an index without limiting values, the MSI delivers the absolute 

condition of the pavement independent from the condition relative to the other locations in the 

pavement network. On the other hand, lack of a certain scale prevents the MSI matching with 

other index scales such as condition ratings used in the pavement management system. However, 

a set of thresholds were developed by Bryce (2013) to solve this issue and to facilitate the 

incorporation of MSI into scaled condition indices. 

2.6 Existing Deterioration Models 

Because highway agencies control large pavement networks, it is very important to have a 

systematic approach to monitor these assets and keep the entire network at a serviceable 

condition. The systematic approach ensures accurate performance modeling, resource 
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optimization and strategic planning. In this framework, it is crucial to have the capability to 

predict the future condition of pavement assets.  

Despite the continuous efforts that have been made in the pavement engineering field, 

improvements are still needed to predict pavement life more accurately (Molenaar, 2003). Aside 

from the sheer number of factors influencing pavement performance, the unpredictability of 

these factors, such as unusual weather conditions, unanticipated traffic volumes, variations in 

pavement structure etc., makes it difficult to reach accurate deterioration models. Most of the 

existing deterioration models are based on various assumptions, involve simplifications, and 

have several limitations.  

Several classifications have been used over the years. The most common classification 

recognizes two basic types of pavement performance prediction models: deterministic and 

probabilistic. While the deterministic models give a discrete result as the prediction, probabilistic 

models deliver a distribution of possible results (Lytton, 1987). Later on, Tighe and Haas (2003) 

grouped the many deterioration models into three classes: empirical, mechanistic-empirical and 

subjective/experience based models. 

Deterministic-based models cover a wide range of traditional models such as primary response 

models, structural performance models, functional performance models, damage models and 

load equivalence factors. Subdivisions of probabilistic models are survivor curves, Markov 

models and Semi-Markov models (Lytton, 1987). Pavement management level is a crucial factor 

to select the right model, as each of them requires a different level of detail for the inputs and a 

different level of effort for data collection, processing and computation. Lytton (1987) 

summarized the types of performance models according to which pavement management level 

the models are used in, as shown in TABLE 3. 

Empirical models generally relate measured or predicted parameters such as deflection, traffic, 

etc., to the pavement age and to a deterioration indicator (e.g. loss of serviceability) by using 

regression analysis. Deterministic regression models and stochastic Markov chains are the most 

common empirical models. Models that use soft computing such as artificial neural networks, 

fuzzy logic, and neuro-fuzzy systems are also considered empirical models.  

Mechanistic models deliver pavement responses, such as calculated stress and strain attributes 

that can be used as parameters for the empirical models. However, a merely mechanistic 

performance prediction model has not been developed yet. Mechanistic-empirical models 
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calibrate the mechanistic factors, which are the physical causes of stresses in pavement structure, 

with the observed performance. Subjective or experience-based models usually estimate 

deterioration versus age with a combination of different variables and procedure applications, 

such as Markov transition matrices or Bayesian models. Pavement performance prediction 

models can also be classified as having continuous or discrete variables. 

TABLE 3  Pavement Management Levels where Performance Models are Used. Lytton, R. 

L. "Concepts of pavement performance prediction and modeling." Proc., 2nd North 

American Conference on Managing Pavements, Used under fair use, 2015. 

Levels of 

Pavement 

Management 

Types of Performance Models 

Deterministic Models Probabilistic Models 

Primary 

Response 
Structural Functional Damage 

Survivor 

Curves 

Transition Process 

Models 

Deflection, 

Stress, Strain, 

Temperature, 

Thermal Stress, 

Moisture, 

Energy Frozen 

and Unfrozen, 

Water Content 

Distress, 

Pavement 

Condition 

Index 

Serviceability 

Index, Skid 

Loss, Wet 

Weather 

Safety Index 

Load 

Equivalence, 

Marginal 

Load 

Equivalence 

  

Markov 
Semi-

Markov 

National 

Network 

      
   

State/Provincial 

Network 

  
     

District 

Network 

  
     

Project           

 

The following sections present various deterioration models currently in use. Because this study 

focuses on deterministic prediction models, the following research primarily covers deterministic 

models. 

Present Serviceability Rating Model 

A model generated to predict the PSR, by using various input variables, is seen below (Lee et al., 

1993): 

𝑙𝑜𝑔10(4.5 − 𝑃𝑆𝑅) = 1.1550 − 1.8720 ∗ 𝑙𝑜𝑔10𝑆𝑁 + 0.3499 ∗ 𝑙𝑜𝑔10𝐴𝐺𝐸 + 0.3385 ∗

𝑙𝑜𝑔10𝐶𝐸𝑆𝐴𝐿        (9) 
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Where   SN = Structural Number 

  AGE = age of pavement since construction or major rehabilitation (years), and 

 CESAL = cumulative 18-kip ESALs applied to pavement in heaviest traffic lane 

(millions) 

 

The Structural Number is an index that accounts for roadbed soil conditions, pavement layer 

thickness, and layer properties. Inclusion of a pavement’s Structural Number allows the model to 

consider the pavement structural condition and properties in addition to the pavement age and the 

carried traffic load, while predicting the functional condition in the future. 

Mississippi PCR Models  

PCR, as a composite index developed for Mississippi Department of Transportation (MDOT), 

defines the performance in terms of roughness and distresses (George, 2000).  There are different 

PCR model equations to predict the pavement deterioration depending on if there is an asphalt 

overlay, no overlay, or if the pavement is composite. Equation 10 represents the model with an 

asphalt overlay: 

𝑃𝐶𝑅 = 90 − 𝑎[exp(𝐴𝐺𝐸𝑏) − 1]. log [
𝐸𝑆𝐴𝐿

𝑀𝑆𝑁𝑐]      (10) 

 

Where  AGE = time in years since last construction 

  ESAL = yearly 18-kip single axle load 

  MSN = modified structural number for subgrade support, and 

  a, b, c = regression constants 

 

While predicting a composite index, this model also considers the structural capacity with the 

input of the Modified Structural Number that partially covers the inclusion of subgrade support.  

Distress Maintenance Rating Model 

Distress Maintenance Rating (DMR) is another composite index revealing the distress intensity 

and frequency on the pavement surface (Sadek et al., 1996). The non-linear equation to predict 

DMR in the future is as follows: 

𝐷𝑀𝑅 = 100 − 5.06 ∗ 𝐴𝐺𝐸0.48𝑌𝐸𝑆𝐴𝐿1.29𝐷𝐸𝑃𝑇𝐻−0.20    (11) 

 

Where  AGE = pavement age since last overlay (years) 

  YESAL = average yearly ESALs (millions), and 

  DEPTH = thickness of last overlay (cm) 

 

As a model that dates back to 1996, the structural condition is not considered thoroughly in this 

equation. The only related independent variable is the thickness of the last overlay. Furthermore, 

the subgrade soil characteristic is not included in this prediction model. 
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2.7 Applicable Modeling Approaches 

As listed and explained in the previous section, many deterioration models are currently in use 

that attempt to deliver the best estimations for future pavement performance. Even though there 

have been many studies on the subject, accurate and precise prediction of pavement life is still 

not possible (Molenaar, 2003). This fact indicates the need for innovative approaches to improve 

the predictions. 

Due to the nature of the process, which involves a high level of subjectivity and uncertainty, soft 

computing techniques such as neural networks, fuzzy logic systems, genetic algorithms, and 

neurofuzzy systems are increasingly used over the traditional regression methods (Flintsch and 

Chen, 2004). In addition to these techniques, another improvement method for the prediction 

accuracy is the Bayesian regression, which is based on incorporating existing knowledge and 

observed data with the predictions (Zellner, 1971). On the other hand, models developed through 

traditional regression analysis are still widely used for pavement performance prediction and 

have potential to satisfy the accurate model criteria. In addition to investigating regular models 

such as exponential, sigmoidal and logistic function, this study also covers suitability and 

adoption of several growth curves commonly used outside the pavement industry.  

Probabilistic models deliver the prediction in the form of a probability distribution. The 

application of such models requires the determination of the probability distribution of the 

pavement condition (Ortiz-Garcia et al., 2006). As in many studies of discrete outcomes, the 

sampling distribution of pavement data often results in an over dispersion than would be 

expected from a Poisson distribution where the variance occurs higher than the mean value. 

Therefore, it is necessary to use models that accommodate the over-dispersion (Byers, 2003). To 

this end, negative binomial distribution was also examined in this study as a part of applicable 

modeling approaches. 

Artificial Neural Networks 

Artificial Neural Networks (ANN) modeling is based on the structure of a human brain in that it 

can learn when fed a range of examples and can deliver valid answers accordingly from a noisy 

dataset (Zhang et al., 1998). They are capable of considering variations in the observed data, 

which is not possible by traditional regression methods. These models are commonly used in a 

wide range of modeling practices such as process monitoring, fall diagnosis, natural events and 
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artificial intelligence (Dimitrova, 1996). Attoh-Okine (1995a), amongst others, applied ANN in 

predicting the performance of pavements.  

Fuzzy Logic 

Fuzzy logic was introduced by Zadeh (1965) to be used in modeling. It consists of an extended 

set of conventional (Boolean) logic combining fuzzy qualitative and partial linguistic variables to 

create truth-values such as true, false, not true, very true, quite true, not very true and not very 

false etc. It has been used with different applications in pavement engineering such as treatment 

prediction (Kaur and Pulugurta, 2008), investigation of fatigue behavior of asphalt concrete 

pavements (Tigdemir et al., 2002), and modeling of deflection behavior against dynamic loading 

in flexible pavements (Saltan et al., 2007). 

Genetic Algorithms 

Genetic algorithm is a deterioration modeling approach inspired by Darwin’s theory of evolution 

(Shekharan, 2000). Chromosomes, which are called the population, represent sets of solutions 

and each set is comprised of genes or alleles. The alleles take numeric values to represent the 

parameters of pavement deterioration. After the alleles are processed through three genetic 

operators- reproduction, crossover and mutation- the solution from the genetic algorithm delivers 

the improved deterioration model. 

One of the main advantages of adopting the genetic algorithm is its ability to reach global 

maximum-or-minimum values. Secondly, it does not require specification of derivatives, which 

allows the direct use of the payoff or subjective function. 

Empirical Bayesian (EB) Approach 

The Bayesian theory is a modeling technique for pavement management by improving 

predictions. It combines both objective and subjective data. This approach enables the 

incorporation of existing knowledge into the prediction so that previous experience can be used 

rather than ignored (Zellner, 1971). Models are developed by regression analysis, but each of the 

variables used in the model is described in terms of a probability distribution (AASHTO, 2012). 

On the other hand, requiring the prior distribution to be stated before including the observations 

is found too exacting to be realistic (Belsley, 1991).  

The Empirical Bayesian method, which is based on estimating the prior distribution from the 

data, has not been used for pavements yet. The Empirical Bayes approach can deliver better 

estimates than the actual measurement even if the variance error is overestimated to some 



20 

degree. Hartigan (1969) and Efron (1973) stated that the linear Bayes estimators improve the 

estimate of the condition versus consideration of the measurement alone, regardless of the true 

distribution of data or the true distribution of the error in the measurement. Application of the 

empirical Bayesian allows updating of the model’s posterior probability results when additional 

observed data become available. 

This method can be useful for agencies that have recently implemented a new pavement 

management system, or that lack reliable historical data. Additionally, it may help to overcome 

the influence of low-quality data in the system (AASHTO, 2012). 

General Equations for Models based on Regression Analysis 

Nonlinear regression models can be grouped, according to their basic behavior, into families 

such as exponential models, power models, sigmoid models etc.(Ratkowsky and Giles, 1989). 

Note that most of the existing deterioration models, mentioned in the previous section, use the 

forms of regressions models listed below in their general form. 

Exponential Growth 

The exponential growth model is used when the growth rate of a mathematical function’s value 

is proportional to the function’s current value. It is used in a wide range of fields such as biology, 

physics, engineering, economics, and computer science. The most common form of an 

exponential growth curve is as follows: 

 

𝑦 = 𝑎 − (𝑎 − 𝑑) ∗ 𝑒−𝑠𝑡        (14) 

 

Where   a = Upper asymptote 

  d = Lower asymptote 

  t = Time 

  m = Time of maximum growth 

  s = Growth rate 

 

 

 

Sigmoidal 

The sigmoidal model has been preferred very frequently in pavement deterioration modeling 

because of its flexibility to fit the boundary conditions and incorporate parameters. Numerous 

studies in many application fields have resulted in the discovery, reinvention, and adaption of 

nonlinear S-shaped curves, which brought its various forms in to literature. This forms include 



21 

the Logistic curve, Verhulst-Pearl equation, Pearl curve, Richard’s curve (Generalized Logistic), 

Growth curve, Gompertz curve, S-curve, S-shaped pattern, Saturation curve, Sigmoid curve, 

Weibull curve, Foster’s curve, Bass model, and many others (Rowe et al., 2009). 

Below is a simple S-curve equation: 

𝑦 = 𝑎 ∗ [
𝑡𝑏

𝑐+𝑡𝑏]          (15) 

Where a, b and c are the regression coefficients. 

 

Logistic 

Logistic function is one of the most common equations in modeling, and is used in many 

different fields. The disadvantage of the model is that it is capable of computing “t” over a small 

range of real numbers. The simple logistic function can be defined as the equation below: 

𝑦 =
1

1+𝑒−𝑡
          (16) 

The cumulative distribution function of the continuous logistic probability distribution is the 

logistic function, seen as follows: 

𝑦 =
𝑎

1+𝑒
−

𝑡−𝑚
𝑠

+ 𝑑         (17) 

 

Where   a = Upper asymptote 

  d = Lower asymptote 

  t = Time 

  m = Time of maximum growth 

  s = Growth rate 

 

Weibull  

Weibull (1951) described a non-symmetric sigmoidal model as a continuous statistical 

probability distribution, which is widely used in modeling survival rates. The cumulative 

distribution function for Weibull to be used in modeling can be described as follows: 

𝑦 = 𝑎 − (𝑎 − 𝑑) ∗ 𝑒(−(𝑠𝑡)𝑚)        (18) 

 

Where   a = Upper asymptote 

  d = Lower asymptote 

  t = Time 

  m = Parameter that controls the x-ordinate for the point of inflection 

  s = Growth rate 
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It should be noted that, when the parameter “m” equals one, the Weibull equation is basically an 

exponential growth curve. 

Gompertz 

Gompertz (1825) suggested a sigmoid function as a type of mathematical model for time series, 

where the growth is slowest at the start and end of a time period. The equation is widely used in 

biology and medicine to define aging, or spreading of cancer cells, or in demographics to 

describe population in a confined space, birth rates etc (Rowe et al., 2008). The basic equation of 

a Gompertz curve is as seen below: 

𝑦 = 𝑎𝑒−𝑏𝑒−𝑐𝑡
+ 𝑑         (19) 

 

Where   a = Upper asymptote 

  d = Lower asymptote 

  t = Time 

  b,c = Positive coefficients (c sets the growth rate) 

 

Richards 

Richards (1959) developed a flexible sigmoid function, which is also known as the generalized 

logistic curve. It is commonly used for growth modelling and easily fits various S-shaped curves 

(Mubareki and Sallam, 2014). The general representation of a Richards’ curve is as seen below: 

𝑦 = 𝑑 +
𝑎−𝑑

(1+𝜆𝑒−𝑠𝑡)1/𝑚
        (20) 

 

Where   a = Upper asymptote 

  d = Lower asymptote 

  t = Time 

  m = Sets asymptote near which maximum growth 

  s = Growth rate 

  𝜆 = Related to initial y value 

 

Negative Binomial  

Negative binomial is an extension of the Poisson series that allows the expected σ
2 

to be different 

than the mean, µ, the parameter of the Poisson distribution. Hence, this generalization of Poisson 

allows the mean and variance to be different (over-dispersion) by including a disturbance or error 

term (Byers et al., 2003). It is widely used in cases of over-dispersion and frequent-zero counts 

when linear models lack the distributional properties to adequately describe data and Poisson 

distribution cannot account for the over-dispersion (Poch and Mannering, 1996). The range of its 

applications includes driving accidents, neurologic lesions, leukocytes, healthcare utilization, and 
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counts of rare animals (Byers et al., 2003). The probability mass function of negative binomial 

distribution is as follows: 

𝑓(𝑘; 𝑟, 𝑝) ≡ Pr(𝑋 = 𝑘) = (
𝑘 + 𝑟 − 1

𝑘
) 𝑝𝑘(1 − 𝑝)𝑟            𝑓𝑜𝑟 𝑘 = 0,1,2, … (21) 

2.8 Criteria to Select a Good Model 

The general concepts that are involved in the model selection are model basics, necessary input 

information, mathematical configuration, goodness-of-fit statistics, consideration of maintenance 

and rehabilitation interventions, model limitations, and boundary conditions. 

Several methods exist to assess the precision and accuracy of the regression models. The 

standard error of estimate, the coefficient of determination, the residual analysis, correlation 

coefficient, and F-test are some of the commonly used regression diagnostics (Draper and Smith 

1981; Smith and Rose, 1995). However, coefficient of determination (R2) is not always as 

reliable of a parameter to measure the goodness-of-fit for non-linear analysis as it is for linear 

regression analysis (Tran and Hall, 2005). The reasonableness, appearance of forecast models, 

ease of use and number of coefficients in the model are the qualitative criteria used in this study 

to consider the goodness of a fit.  

Good database records of constructions, maintenance and rehabilitation activities and 

measurements is one factor that can easily increase the reliability of a model.  Additionally, 

inclusion of more significant variables, calibration with observations and improved model 

understanding are factors that can increase the accuracy of pavement performance prediction 

models. 

2.9 Summary of the Literature Review 

Pavement performance, which consequently shows the success or failure of any pavement asset, 

is defined differently depending on the level of decisions in which it is used. While project-level 

decisions require more detailed numeric results like skid resistance or distress data, at higher 

levels, namely strategic- or network-level, the performance is generally stated by overall 

performance indicators. 

Pavement performance monitoring and prediction allows determination of the current network 

condition as well as development of long and short-term management plans, including all the 
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maintenance, rehabilitation, construction and reconstruction activities. Hence, budget and 

resource allocation is optimized. 

Many factors affecting the performance of pavement can be grouped into four categories: traffic 

loading associated factors, material properties and composition variables, environmental factors, 

and construction variables. There are also independent factors that influence the performance, 

such as geometric features and maintenance activities. 

Functional and structural indicators exist that reflect the deterioration of pavement. The scaled 

expression of the deterioration can also be based on functional and/or structural condition. 

Therefore, many various indices to evaluate and monitor pavement deterioration have been 

developed using only functional or structural condition indicators, or by combining both. 

Structural capacity of pavement has proved to have an effect on deterioration rate. The 

measurement can be done with several techniques; however, the most common methods are 

Falling Weight Deflectometer, Rolling Wheel Deflectometer and Traffic Speed Deflectometer. 

Deterioration models are crucial in pavement management since accurate performance prediction 

enables agencies to optimize their budget with better planning and scheduling. To this end, great 

effort has been put into developing deterioration models in the pavement engineering field. Still, 

there is need for improvement in terms of accuracy and practicality. The number of deterioration 

models that include the structural condition is somewhat limited. On the other hand, several 

modeling techniques have recently been used to improve the accuracy and to facilitate the 

computation (e.g. Empirical Bayesian, Artificial Neural Networks, Fuzzy Logic systems and 

genetic algorithms). Additionally, various modeling approaches and developed equations have 

shown potential to be applicable in pavement deterioration modeling. 

To decide on the quality and competence of a model, many factors should be considered. Input 

requirements, mathematical configuration, data collection needs, reasonableness, appearance of 

forecast model, ease of use, goodness-of-fit statistics, and ability to satisfy boundary conditions 

and key points of the deterioration behavior are some of the criteria to evaluate the ability of a 

model. 
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CHAPTER 3.  DATA COLLECTION AND PROCESSING 

 

This chapter examines the available data including the collection practices, the data 

characteristics and quality, the strength and limitations of the dataset and its possible impacts on 

the model to be developed. This examination is followed by data processing upon the results of 

these analyses. Data processing comprises of the selection and application of suitable data 

reduction, cleansing and filtering procedures.   

3.1 Data Collection 

The pavement surface condition data used in the project was extracted from VDOT’s Pavement 

Management System (PMS) database. The average CCI for each year of measurement along with 

the age of the pavement section at the measurement year was obtained for interstate pavement 

sections where structural condition information was available (flexible pavement sections only). 

The average MSI value for the pavement section was computed for each section following the 

methodology proposed by (Bryce et al., 2013). A constant structural index value was assigned to 

each PMS section for the entire analysis period, 2007 to 2012.  

The database used for this thesis was developed by combining the MSI, CCI, LDR, NDR data 

with pavement age and section information. Pavement condition and maintenance history along 

with FWD data were available for most of the interstate network (2,185.8 miles) of flexible 

pavements under the management of VDOT.   

Data points with an MSI value of 3 or higher were removed since such a high value is not 

realistic for any pavement (Bryce et al., 2013). This filtering resulted in the removal of just one 

section from the database, which included 4 measurements. The final compiled database 

included 3,465 data points, which were grouped into 933 PMS sections of varying lengths. The 

average length for a section is 2.34 miles; however, the range varies from 0.05 miles to 11.88 

miles, with a standard deviation of 2.07 miles. The minimum, maximum, mean values, and the 

standard deviation for each variable are summarized in TABLE 4. 
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TABLE 4  Summary Pavement Data 

 
Min Max Mean Median Std. Dev. 

MSI 0.40 2.88 1.16 1.07 0.39 

Age 1 26 7.6 7 4.2 

CCI 5 100 76.42 82 19.03 

 

The distribution of the age of the sections at the year of measurement is presented in FIGURE 5. 

The plot shows that there is a concentration of sections within the age interval of 5 to 10 years, 

with 7 being the most common age. Approximately three-quarters of the sections (76%) are 

younger than 11 years and there are very few sections older than 20 years. Some of the resulting 

older sections are thought to be due to missing recorded treatments. VDOT is currently working 

on reviewing this information since the erroneous ages have been identified as a critical factor. 

 

FIGURE 5  Distribution of Pavement Ages. 

FIGURE 6 shows the distribution of MSI values and FIGURE 7 shows the distribution of CCI 

values for the dataset used. The MSI mode corresponds to values between 1.0 and 1.1 and 37.9% 

of the sections have an MSI value lower than 1. Only a few sections have an MSI higher than 
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2.0.  FIGURE 7 shows that most of the CCI values are at the high end of the scale (e.g., larger 

than 60). This is expected as the roadway agencies try to keep their roads at an acceptable level 

and apply the necessary treatments when the roadway reaches the desired condition. Therefore, 

the number of measurements showing low values is expected to be low. More than half (52%) of 

the measurement showed a CCI value higher than 80 points, while only 11% had a CCI value 

lower than 50. 

 

FIGURE 6  MSI Distribution. 

 

FIGURE 7  CCI Distribution. 
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The complement of the CCI, as defined in the Equation 22, is introduced as the Deterioration 

Index (DI) to allow a more comprehensive and flexible preliminary analysis. The distribution of 

DI, shown in FIGURE 8, shows that a vast majority of the measurements has a deterioration 

index lower than 50 points. 

CCIDI 100      (22)

 

FIGURE 8  DI Distribution. 

3.2 Data Filtering 

The primary objective of the data analysis is to quantify the impact of the MSI value on the 

change of a section’s functional condition over the years.  To obtain the best possible models, it 

is important to have reliable data and remove outliers and questionable data.  FIGURE 9 shows 

all the CCI values as a function of pavement age. The mean of each age group and the two plus 

and minus standard deviation range are also shown. Clearly, the two-standard-deviation range 

(which is used for the 95% confidence interval of normally distributed data [1.96 is the correct 

range but is often taken as 2 for simplicity]) does not give an adequate representation of the data 

as it extends beyond the 100 limit on the CCI. This is to be expected as FIGURE 7 shows that 

the CCI values have a very non-symmetrical distribution and are not normally distributed.   

 



29 

 

FIGURE 9  CCI vs. pavement age with mean and mean +/- 2 standard deviation lines. 

From years 1 to 10, the average CCI decreases with increasing age as expected. However, from 

year 11 onwards, the average CCI practically stays at the same level as year 10 (after year 16, the 

CCI varies significantly due to the limited data). This contradicts engineering common sense that 

pavements will continue to deteriorate with time. A possible explanation in this case is that 

poorly performing pavements are treated before reaching year 11, and that sections that are 

treated are not updated in the PMS. The average CCI for pavements 11 years and older is a 

biased representation of the performance of all pavements as only good performing pavements 

are allowed to reach that age. To reduce the biasing effect that pavement treatment has on model 

estimation, the regression model was fitted to data from observations of pavement sections that 

had the last treatment performed less than 10 years prior to the observation, which actually 

covers 76% of the original data. Furthermore, it should be noted that the information about the 

age of the pavement is not very reliable, especially for the very old pavements, because of 

missing applied treatments. 
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Another possible reason for the very high dispersion of the data is the actual variability in the 

measurement and location within a section in each year’s measurement.  The measured spots 

may not coincide exactly for each year and the measured value may vary because of possible 

different characteristics within a section due to the construction practices, material 

misapplication, weather or environmental impacts, etc.  To explore the influence of short 

sections, FIGURE 10 shows CCI differences in two consecutive measurements in every section 

versus the length of the section. The length of sections varies within a very large range, therefore 

estimating the error in measurement for each section becomes very difficult. The figure seems to 

indicate that the year-to-year variability becomes more stable for longer sections. 

 

FIGURE 10  CCI differences in two consecutive measurements versus the length of the 

section. 

3.3 Preliminary Exploratory Analysis 

Visualization was used as a preliminary step to analyze the dataset created. Curve-fitting tools 

and 3D graphs available within the MATLAB software allowed clarification of the relation 

between the variables. 

The raw data plotted in FIGURE 11 (a) depicts the high variability in the dataset. For example, it 

shows that sections exist with high MSI values that perform better at later ages than the sections 

with lower MSI values. However, it also shows a visible trend of faster deterioration for lower 



31 

MSI values. FIGURE 11 (b) shows a locally weighted smoothing linear regression with a 

moving average, roughly indicating that the trend mentioned above was observed. The 

dependence of the CCI on MSI can be observed at the two extreme planes: 

 

 

   (a) Raw Data. 

 

. 

Locally weighted smoothing 
linear regression: 
       f(x,y) = lowess (linear) 
smoothing regression 
computed from p where x is 
normalized by mean 7.691 and 
std 4.302 and where y is 
normalized by mean 1.135 and 
std 0.3719 
Coefficients:       p = coefficient 
structure 
Goodness of fit: 
  SSE: 8.532e+05 
  R-square: 0.2251 
  Adjusted R-square: 0.2243 
  RMSE: 16.67 

 

(b) Locally weighted smoothing linear regression  

FIGURE 11 3D visualization of the complete dataset  
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FIGURE 12 superimposes basic one-degree linear polynomial (a) and exponential (b) curve-

fitting models to the filtered data. The plots show that the sections with higher MSI values tend 

to deteriorate slower than the weaker sections with lower MSI. 

 

(a) Linear polynomial fit  

Linear model Poly11: 
f(x,y) = p00 + p10*x + p01*y 
Coefficients (with 95% 
confidence bounds): 
p00 =       92.87  (90.65, 95.1) 
p10 =      -3.147  (-3.368, -2.927) 
p01 =       4.422  (2.888, 5.955) 
Goodness of fit: 
SSE: 6.171e+05 
R-square: 0.2346 
Adjusted R-square: 0.234 
RMSE: 15.3 

 

 

Model using the exponential trend. 

General model: 
f(x, y)  =  100 − a ∗ exp(−b ∗ x + (y^d)) 
Coefficients (with 95% confidence bounds): 

a =        2.838  (2.56, 3.115) 
b =      −0.1567  (−0.1691, −0.1444) 
d =      −0.4552  (−0.5378, −0.3726) 

 
Goodness of fit: 

SSE: 6.094e + 05 
R − square: 0.2442 

Adjusted R − square: 0.2436 
RMSE: 15.2 

(b) Exponential fit  

FIGURE 12  3-D visualization of the filtered dataset. 

The impact of adding MSI as a variable in the model can be observed by comparing the 

goodness-of-fit statistics of the (b) Exponential fit  
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FIGURE 12 with a similar model that does not include MSI given in equation (23) and depicted 

in FIGURE 13. The results suggest that inclusion of MSI slightly improves the performance of 

the model as it increased the adjusted coefficient of determination (R
2
) and produced a lower 

Root Mean Squared Error (RMSE) and Summed Square of Residuals (SSE). The improvement is 

slight especially considering the variability within the data. However, the example model shown 

in Equation 24 is a simple and straightforward equation derived from Equation 23 to include 

MSI, and is open to modifications to improve the prediction performance. 

𝐶𝐶𝐼 = 100 − 𝑎 ∗ exp (−𝑏 ∗ 𝐴𝐺𝐸) (23) 

 

The MSI-inclusive form of the exponential pavement deterioration is given in the following 

equation: 

𝐶𝐶𝐼 = 100 − 𝑎 ∗ exp (−𝑏 ∗ 𝐴𝐺𝐸 + (𝑀𝑆𝐼)𝑐) (24) 

 

General model: 
     f(x) = 100-a*exp(-b*x) 
Coefficients (with 95% confidence 
bounds): 
       a =       7.772  (7.002, 8.542) 
       b =      -0.153  (-0.1655, -
0.1405) 
 
Goodness-of-fit: 
  SSE: 6.288e+05 
  R-square: 0.2201 
  Adjusted R-square: 0.2198 
  RMSE: 15.44 

FIGURE 13  Deterioration model with pavement age as the only parameter. 

3.4 Additional Data Filtering 

The data showing the pavement condition consists of highly censored data because of 

maintenance treatments that are often applied to pavements in the worst condition. This can lead 

to a biased deterioration model. Most of the sections are treated before reaching an old age once 

they reach an unacceptable serviceability level, even if they deteriorated in accordance with 

expectations. Therefore, data collected from old pavement sections do not represent the average 

pavement condition of all the sections, making it biased. For example, there are many old 

pavement sections that perform unexpectedly good. Although some of them could actually be 
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very good performing sections despite their age, it is suspected that many of them are the result 

of wrongly computed pavement ages due to treatments that have not been recorded in the system. 

This has been partially confirmed by VDOT looking at raw pictures of the pavement sections. 

Due to the limited number of parameters used in the models, the impact of biased data can be 

severe. Hence, data filtering to select the model input becomes necessary in order to have an 

accurate model. 

The data filtering approach of the model development phase is mainly based on bias 

identification and correction. If censoring of the events is not properly accounted for, the model 

may suffer from censoring bias (Paterson, 1987; Prozzi and Madanat, 2000).  

FIGURE 14 shows the number of occurrences of differences between two consecutive 

measurements in one section after the pavement age was limited to 10 years. It shows that 1452 

of the differences are negative, indicating a decrease in measured CCI in a year, while 857 of 

them are positive, showing an increase in measured CCI without any recorded construction 

activity. Theoretically, an increase in pavement CCI value without any recorded maintenance 

activity is unusual, and a significant increase is likely due to an error in measurement or a 

missing record of applied treatments. Even after the pavement age is limited to 10 years, it is 

possible to see increases as high as 70 points in the dataset while most of such increases are less 

than 30 points. While the mean of the decreases in CCI is 8.95 points with a standard deviation 

of 8.99, the mean of increases is 9.21 with a standard deviation of 13.60. The higher mean and 

standard deviation of CCI increases further support the hypothesis that some of these increases 

are unrealistically high, probably because of unrecorded maintenance activities.  

To analyze the impact of such variations, both the deteriorations between two consecutive 

measurements and the increases were limited to a maximum value of 40 points. The mean and 

standard deviation of the differences are tabulated in TABLE 5. 

TABLE 5 Statistics of Differences between Two Consecutive Measurements when the 

Difference is Limited to +/-40 Points 

 Mean Standard Deviation 

Differences Between Two Consecutive Measurements -2.43 9.65 

Positive Differences (Increases in CCI) 6.71 7.56 

Negative Differences (Deterioration) -8.06 6.91 
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The limitation at 40 points maximum eliminated the biased data at some extent, indicated by the 

decreases in both the mean and the standard deviation of CCI increases. However, in order to 

eliminate the impact of the questionable data, the maximum allowed CCI increase without any 

recorded maintenance activities was selected to be 10 points. 

 

FIGURE 14  Differences in two consecutive CCI measurements within each section (a 

negative difference indicates a decrease in CCI). 

Therefore, the data were further filtered by removing the sections that have more than a 10-point 

increase in CCI values between two consecutive measurements without any recorded 

construction work. The application of a CCI jump filter removed 188 sections (20% of total 

sections) and left 2043 measurements, without CCI jumps higher than 10 points and maximum 

age limited to 10 years, which were used to develop the model (59% of the original data). 
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CHAPTER 4.  MODEL DEVELOPMENT 

As noted in previous chapters, the purpose of this study was to develop enhanced deterioration 

models that incorporate the pavement structural capacity to improve the accuracy of pavement 

condition predictions. This chapter focuses on the model development phase. The available panel 

data allows the estimation of the pavement condition either as one time series regression for each 

section or as one cross-sectional regression at each point in time. Beside these frequently used 

techniques, there may be other more appropriate techniques. If the parameters of the 

deterioration model are assumed constant across all the sections and over the entire time interval, 

the estimation can be done by combining all data into a single regression, thereby pooling the 

data (Prozzi, 2001). This approach was adopted in this thesis for modeling CCI progression. 

4.1 Modeling Approach and Key Considerations 

While developing the deterioration model, which is targeted to be applicable at the network level 

and easy to implement into current pavement management system, there are several key points to 

consider. The most important characteristic is that the model should predict the deterioration 

observed on the pavements in-service as close as possible. In addition, the model should be 

practical and use only data that is available from network-level inspections. Therefore, the model 

was limited to two input variables: pavement section age and MSI value.   

As discussed in Chapter 2, the MSI is a comprehensive structural index that considers the 

pavement structural number, traffic load in ESALs and subgrade modulus (Bryce et al., 2013).  

Furthermore, the model should satisfy the following boundary conditions: 

 The initial condition index value equals 100. 

 The condition index value cannot be negative. 

 The slope of the deterioration curve should always be negative unless a treatment is 

applied, due to the irreversible nature of deterioration process. 

Two different approaches were tested to find the most appropriate, promising model and then 

compared in terms of quantitative and qualitative criteria. 

The first approach consisted of modeling the pavement condition (CCI) using regression analysis 

and a variety of models identified in the literature review. Data selection and filtering is crucial 

as they significantly determine the form and coefficients of the regression model.  
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The second approach modeled the pavement deterioration. The distribution of Deterioration 

Index (DI) was modeled using a negative binomial distribution and the predictions were then 

enhanced using an Empirical Bayesian approach to update the estimates and obtain an improved 

estimate of the individual pavement section’s future condition. 

4.2 Modeling Pavement Condition  

Several model formulations were investigated to identify the most effective way of incorporating 

the MSI into the CCI prediction curves. These formulations include various equations used in 

applied sciences and existing pavement deterioration models: polynomial models, sigmoidal and 

true sigmoidal, exponential growth, simple logistic, Richards, Gompertz and Weibull equations. 

4.2.1 CCI Regression Models 

Various equations were tried for modeling CCI as a function of age and MSI. Given the known 

behavior of the pavement condition over time, and the nature of the current deterioration curves, 

some of the equations emerged as better solutions to the curve-fitting problem. The empirical 

equations selected as appropriate to model the deterioration of the pavement included: sigmoidal 

function, logistic growth curve, Gompertz model, Richards model, exponential growth curve and 

their derivations. The best-fit equations were determined for each of these models and 

superimposed to the filtered dataset in 3D curves using MATLAB. These plots allowed 

visualization of how well the model can explain the data to select the most suitable models and 

identify areas that need improvement. To this end, some adjustments were made on the general 

equations and different coefficients were used.  

Sigmoidal Functions  

Sigmoidal functions offer flexibility to describe the deterioration of a section in various shapes 

such as concave, convex, s-shaped or almost linear.  This allowed modeling the faster decrease in 

CCI values of pavement sections with lower MSI values by fixing the parameters in the equation 

accordingly. The MSI and age parameters are placed in accordance with the theory that higher 

pavement age and lower MSI value lead to faster deterioration. The resulting best-fit sigmoidal 

function is presented in FIGURE 15. The figure also reports the 95% confidence range for the 

coefficients with various goodness-of-fit statistics.   

𝐶𝐶𝐼 = 100 ∗ [
𝐴𝐺𝐸𝑎

𝑏+𝐴𝐺𝐸𝑎+𝑀𝑆𝐼𝑐]  (25) 
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The sigmoidal model meets the boundary conditions and seems to follow the general trend of 

pavement deterioration. Nevertheless, the adjusted coefficient of determination of 0.2942 

indicates room for improvement.  

 

General model: 
     f(x,y) = 100*((x^a)/(b+(x^a)+(y^c))) 
Coefficients (with 95% confidence 
bounds): 
       a =      -1.377  (-1.502, -1.252) 
       b =     -0.9786  (-0.9839, -0.9733) 
       c =   -0.008822  (-0.01208, -
0.005565) 
 
Goodness of fit: 
  SSE: 3.979e+05 
  R-square: 0.2949 
  Adjusted R-square: 0.2942 
  RMSE: 13.97 

FIGURE 15  3D plot of the sigmoidal model and filtered data. 

FIGURE 16 visualizes the model’s sensitivity to MSI by displaying the deterioration for 

different MSI values. However, in this case the mathematical formulation of the model prevents 

discovering the deterioration of a hypothetical section with a theoretical infinite MSI. Therefore, 

it is not possible to comment on how much the model accounts for the factors that are not 

included as a parameter. 
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FIGURE 16 Pavement Deterioration with Sigmoidal Model for Different MSI Values. 

Logistic Model 

The logistic function is another widely used equation to describe deterioration and growth. An 

adjusted logistic curve equation is fitted to the data in FIGURE 17. It is generally known that 

higher pavement age and lower MSI values result in faster deterioration rates. Therefore, these 

parameters are placed inversely and coefficients are inserted to ensure the boundary conditions. 

As a result, the function, as given in equation (26), successfully meets the boundary conditions 

but the goodness-of-fit indicators are relatively weak.   

𝐶𝐶𝐼 =
100

[1+𝑒
−𝑎∗(𝑀𝑆𝐼𝑏

𝐴𝐺𝐸𝑐⁄ )
]

        (26)  
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General model: 
CCI=(100)/(1+exp(-a*(MSI^b)/(AGE^c))) 
Coefficients (with 95% confidence 
bounds): 
       a =       6.472  (5.46, 7.484) 
       b =      0.3543  (0.2466, 0.4621) 
       c =      0.8939  (0.8065, 0.9813) 
 
Goodness of fit: 
  SSE: 4.114e+05 
  R-square: 0.2709 
  Adjusted R-square: 0.2702 
  RMSE: 14.2 

FIGURE 17  3D plot of the logistic model and filtered data. 

Gompertz Model 

The Gompertz equation (27), a special case of the generalized logistic function where the 

deterioration rate and the asymptote values can very easily be adjusted by the coefficients, 

seemed theoretically suitable to model the pavement deterioration: 

𝑦 = 𝑎𝑒−𝑏𝑒−𝑐𝑡
          (27) 

This equation is generally used in biology and medicine to define aging or spreading of cancer 

cells. FIGURE 18 shows the results of fitting it to the pavement deterioration case where “Age” 

is the time, and MSI values are indirectly proportional to the rate of deterioration: 

 

 
General model: 
     CCI = a*exp(-b*exp(-c*(AGE/MSI))) 
Coefficients (with 95% confidence 
bounds): 
       a =       5.949  (-41.2, 53.1) 
       b =      -2.799  (-10.71, 5.112) 
       c =     0.01255  (-0.02567, 
0.05078) 
Goodness of fit: 
  SSE: 3.795e+05 
  R-square: 0.2566 
  Adjusted R-square: 0.2559 
  RMSE: 13.9 

 

FIGURE 18  3D plot of the Gompertz equation (27) and filtered data. 
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Richards’ Curve 

Another promising equation to describe the deterioration behavior is the Generalized Logistic 

Curve (Richards’ Curve) given in equation (28). This equation is a commonly used growth 

model to fit a wide range of S-shaped curves. It generally is used with 4 or 5 parameters. The 

resulting curve is symmetrical about the point of inflection. 

𝑦 = 𝛽 +
𝐿∞

(1+𝑇𝑒−𝑘(𝑡−𝑡𝑚))
1

𝑇⁄
        (28) 

where   β is the lower asymptote 

  L is the upper asymptote 

  k sets the growth rate 

  tm is the time of maximum growth 

  T is a parameter that sets the point of inflection 

 

To include MSI and pavement age in a simpler way, an adjusted version of Richards’ Curve is 

used to develop a model. MSI is inserted as the growth rate parameter defining the deterioration 

rate, in this case with lower asymptote being 0 and upper asymptote being 100. The pavement 

age parameter, which was relaxed by the addition of a coefficient, is set as the parameter that 

affects the point of inflection. The results are summarized in FIGURE 19. The resulting model is 

reasonable in appearance and satisfies the desired boundary conditions. The goodness-of-fit 

statistics indicate a relatively good statistical significance.  

 

 

General model: 
  CCI = 
100/((1+a*AGE*exp(MSI))^(b/MSI)) 
Coefficients (with 95% confidence 
bounds): 
  a =     0.02234  (0.01099, 0.0337) 
  b =      0.7203  (0.4195, 1.021) 
 
Goodness of fit: 
  SSE: 4.069e+05 
  R-square: 0.2788 
  Adjusted R-square: 0.2785 
  RMSE: 14.12 

 

FIGURE 19  3D plot of the Richards' Curve and filtered data. 
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Exponential Growth Function 

Exponential growth function is frequently used in applied sciences and engineering when the 

growth rate is proportional to the function’s current value. For this study, it is clear that the 

pavement condition of the next year for any given section is dependent on the pavement 

condition of the same section at the present year. For this reason, the negative exponential 

growth function was tested. The best-fit equation (29) is presented in FIGURE 20. FIGURE 21 

shows the model’s sensitivity to the MSI values. 

𝐶𝐶𝐼 = 100 − [1 + 𝑀𝑆𝐼𝑏]𝐴𝐺𝐸∗𝑎       (29)  

 

 
General model: 
  CCI = 100-((1+(MSI^b))^a*AGE) 
Coefficients (with 95% 
confidence bounds): 
  a = 1.741  (1.698, 1.783) 
  b = -0.541  (-0.6495, -0.4325) 
 
Goodness of fit: 
  SSE: 3.92e+05 
  R-square: 0.3053 
  Adjusted R-square: 0.3049 
  RMSE: 13.86 

FIGURE 20  3D plot of the exponential growth function and filtered data. 
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FIGURE 21: Pavement Deterioration according to the Exponential Growth Function for 

Different MSI Values. 

Adjusted Stantec Model 

Stantec (2007) developed the general form of equation (30) that is currently in use by VDOT to 

predict pavement deterioration for each combination of pavement type/performance 

index/treatment. This equation is as follows: 

𝐼𝑛𝑑𝑒𝑥 = 𝐼0 − 𝑒(𝑎−𝑏∗𝑐𝑡)        (30) 

Where        𝐼0 = Index immediately after rehabilitation (age zero) 

       a, b, c = model coefficients 

      t = Ln(1/Age) 

The coefficients to the power “t” allow the equation to adapt to both, the rate of deterioration of a 

pavement section, and the change in the rate of deterioration in time. Therefore, this capability 

makes the equation a strong candidate to explain the behavior of the functional performance over 

the time while considering the structural capacity. The approach followed by Stantec was to use 

the windshield survey data and develop pavement performance models, assuming all pavement 

sections had corrective maintenance (CM) as a last treatment. The assumption of a last treatment 

was necessary, as the windshield data did not reflect the “strength” of the last treatment. 

A very close correlation between coefficients “a” and “b” is visible in the report prepared by 

Stantec (2007). These coefficients seem to get very close numerical values in every case. 
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Therefore, a modified equation (31) was developed in this study to simplify the equation and 

avoid unnecessary coefficients:  

𝐶𝐶𝐼 = 100 − 𝑒(𝑎(1−𝑏𝑡)) (31) 

 Where  CCI = Critical Condition Index 

   100 = CCI immediately after rehabilitation (age zero) 

a,b = model coefficients 

   t = Ln(1/Age) 

 

The data analysis of this study showed that pavement sections with a higher MSI tend to 

deteriorate slower. To this end, MSI should be a factor that effectively decelerates the decrease 

of CCI. This was implemented by including the inverse of MSI to a power coefficient ‘c’ to relax 

the rate of deceleration, as indicated in equation (32) and visualized in FIGURE 22.  

𝐶𝐶𝐼 = 100 − 𝑒𝑥𝑝 [𝑎 ∗ (1 − (
𝑏

𝑀𝑆𝐼𝑐)
𝑙𝑛(

1

𝐴𝐺𝐸
)

)] (32) 

 Where    CCI = Critical Condition Index 

    MSI = Modified Structural Index 

     100 = CCI immediately after rehabilitation (age zero) 

   a,b,c = model coefficients 

 

 

General model: 
     CCI = 100-exp(a*(1-
((b/(MSI^c))^log(1/AGE)))) 
Coefficients (with 95% confidence 
bounds): 
       a =       6.908  (5.326, 8.49) 
       b =       1.369  (1.23, 1.508) 
       c =     0.05514  (0.02811, 0.08217) 
Goodness-of-fit: 
  SSE: 3.975e+05 
  R-square: 0.2955 
  Adjusted R-square: 0.2948 
  RMSE: 13.96 

 

FIGURE 22  3D plot of the Adjusted Stantec model and filtered data. 

FIGURE 23 illustrates the impact of MSI variability on the modeled deterioration rate. It is 

important to note that the model suggests a zero deterioration rate for pavement sections with a 

theoretical infinite MSI value. This is not a desired characteristic of a model since, in reality, 

there are many other factors that affect the deterioration even at the sections with perfect 
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structural condition. It is practically impossible to have a zero deterioration rate with given 

VDOT traffic load and no maintenance activities. 

 

FIGURE 23: Pavement Deterioration according to the Adjusted Stantec model for 

Different MSI values. 

4.3 Comparison of Regression Models and Selection 

The various regression models are compared in TABLE 6.   

TABLE 6  Comparison of Pavement Deterioration Regression Models 

Model Equation ( CCI = ) 
# of 

Coefs 
R

2
 Adj. R

2
 RMSE 

Sigmoidal 100*((AGE^a)/(c+(AGE^a)+(MSI^b))) 3 0.295 0.294 13.97 

Logistic 100/(1+exp(-a*(MSI^b/AGE^c))) 3 0.271 0.270 14.20 

Gompertz a*exp(-b*exp(-c*(AGE/MSI))) 3 0.257 0.256 13.90 

Richards' 

Curve 
100/((1+a*AGE*exp(MSI))^(b/MSI)) 2 0.279 0.279 14.12 

Exponential 

Growth 
100-((1+(MSI^b))^a*AGE) 2 0.305 0.305 13.86 

Adjusted 

Stantec 
100-exp(a*(1-((b/(MSI^c))^log(1/AGE)))) 3 0.296 0.295 13.96 
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Even though the goodness-of-fit indicators such as adjusted R-squared and RMSE are relatively 

poor compared to common statistical standards, they are quite comparable to other network-level 

models, considering the nature of pavement prediction models. In particular, the Exponential 

Growth model shows the best statistics, followed closely by the Adjusted Stantec and Sigmoidal 

models. The Adjusted Stantec model, being a modification of current VDOT deterioration 

models, is easy to implement. It is compared to the Exponential Growth model for different MSI 

values, as seen FIGURE 24.   

 

FIGURE 24: Pavement Deterioration for Different MSI Values with Exponential Growth 

and Adjusted Stantec Models. 

Although the two models perform very similarly for pavements older than seven years, the 

Exponential Growth model shows a faster deterioration in the early life. Additionally, the 

deterioration curve of the theoretical infinite MSI in the Adjusted Stantec model produces an 

almost zero deterioration rate. FIGURE 25 poses the model residuals as CCI versus MSI in the 

three best performing models. The magnitudes of negative residuals are significantly higher than 

the positives. The reason behind this difference could be the data filtration and removal of 

extraordinarily well-performing aged pavement sections while keeping the extraordinarily 

poorly-performing sections. It should also be noted that having extraordinarily poorly-

performing sections in this data was rare. 
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(a)                                                                       (b) 

 

(c) 

FIGURE 25 Plot of the CCI vs MSI Residuals for Three Best Performing Models  

(a) Exponential Growth Model (b) Adjusted Stantec Model (c) Sigmoidal Model 

4.3.1 Additional Validation on Data Filtering 

The issue of censored data was further reviewed using two of the best performing models. At this 

point of study, it was easier to see the impact of filtering and verify that correct pavement age 

interval was chosen with a selected deterioration model. To validate the approach, the Adjusted 

Stantec Equation (being the most similar to the model currently in use) was modeled with 22 

different datasets, each having pavement age limited to between 5 and 26. The changes in 

quantitative goodness-of-fit indicators, namely R-squared and RMSE, are noted along with the 
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coefficients for each model determined through curve-fitting approach. These changes are 

plotted in FIGURE 26 and FIGURE 27. 

 

FIGURE 26  RMSE and R-squared values of the models with limited maximum ages. 

 

FIGURE 27  Coefficients in the models with limited maximum ages. 

The pavement performance prediction framework, shown in FIGURE 1, indicates the 

importance of combining experiment results and expert judgement with observed pavement 

performance data. As both sources are available at this stage, engineering judgment and detailed 
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analysis of the data allow refining of the input data. A change in the behavior of both models is 

observed when the maximum age to be included in the model is limited to 10 years. The 

coefficients a, b, and c hit their extreme values with maximum age limitation at 10 years, and the 

coefficient of  determination decreases dramatically below 9-year limit.  

4.4 Modeling Pavement Deterioration  

Since the best performance models are in the form of the “100 minus” function, it seemed 

reasonable to model deterioration instead of CCI. To determine the most suitable approach for 

modeling, the statistical distribution of the pavement condition deterioration was evaluated.  

 

(a)Normal Distribution (b) Negative Binomial 

FIGURE 28  DI Histogram with Fitted Distributions. 

To evaluate the CCI distribution, the DI (which is the complement of the CCI) was defined, as 

shown, in Equation 22. FIGURE 28 shows that the Negative Binomial distribution is a better fit 

to DI distribution than the normal distribution, making negative binomial more mathematically 

convenient to model. The probability density function of the Negative Binomial distribution, 

which is also a compound Poisson-gamma distribution, can be found in Appendix A along with 

the Poisson and Gamma distributions. FIGURE 29 shows that the negative binomial distribution 

matches closely with the empirical distribution of the pavement condition data, especially at 

early stages following construction. The condition data for the ten years after the pavement 

construction is slightly different from the negative binomial distribution. 
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Because the distribution of the pavement DI was well represented by a Negative Binomial 

distribution, the default pavement deterioration model was obtained using Negative Binomial 

regression, a form of the Generalized Linear Model (GLM) regression. In addition to providing a 

good fit to the observed data, the Negative Binomial model directly considers that variation in 

the observed pavement condition comes from two source; the first source is variation in 

performance of different pavement sections, while the second source is variation due to error in 

the measurement and reporting of the pavement condition.  

Besides the fact that the DI values are distributed as a Negative Binomial distribution, one 

additional advantage of Negative Binomial regression is that its natural link function is the 

exponential function, which was used in 2007 by Stantec to develop the default pavement 

deterioration models. The final model used is given by Equation 33a and 33b. The equation has 

the same origin as the final model developed through the regression analysis. 

  







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
      (33a) 

 𝐷𝐼 = 𝐴𝐺𝐸𝑎 ∗  𝑒𝑥𝑝 [𝑏 + 𝑐 ∗ (1
𝑀𝑆𝐼3⁄ )]      (33b)  

Maximizing the likelihood function determined model parameters. After investigating different 

linear relationships in the exponential function, the final chosen model was the best fit with the 

maximized likelihood. Additionally, the model satisfies the boundary condition that the DI at 

year zero equals zero (CCI at year zero equals 100). 
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FIGURE 29  Comparison of Empirical Distribution of the Pavement DI Negative Binomial 

Distribution Fit for Different Pavement Ages; Top Left: 1 Year; Top Right: 4 Years; 

Bottom Left: 7 Years; Bottom Right: 10 Years. 

The Negative Binomial regression model gives coefficients for the model parameters (T, MSI, 

and intercept) which, when substituted in Equation 33, give the mean response, µ, for the DI. 

Another parameter obtained from the Negative Binomial regression is the over-dispersion 

parameter, . This parameter considers the performance variability of different pavement 

sections. For the Negative Binomial model, the variance ( 2

s ) of the pavement sections 

condition can be calculated from the mean response (µ) and the over-dispersion parameter ( ), 

as shown in Equation 34. Under the Poisson error assumption, the variance of the error in DI 

reporting is equal to the mean response, µ. One way to justify the dependence of the variance on 

the pavement condition is to consider that it is easier to rate pavements in good condition than it 

is to rate pavements in bad condition. This will lead to ratings of pavements in a poorer condition 

having higher variability (i.e. error). This seems plausible, as there are many reasons that can 

cause a pavement section to be in poor condition but there is essentially one way for a pavement 

section to be in perfect condition. The data supports this observation as more variability is 

observed for pavement sections that are in worse condition. The standard deviation of the CCI 

measurements that are resulted lower than 70 points is 11.92 points, while the standard deviation 
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of the measurements that are higher than 70 points is 8.20. Therefore, the total variance, 2

mod , of 

the model can be calculated as shown in Equation 35. 

22  s
          (34) 

   12

mod
         (35) 

The estimate of the model parameters (Equation 33) β0, β1, and β2 were 1.3672, 0.0830, and 

0.8350, respectively, obtained from the weighted Negative Binomial regression with the data 

limited from 1 to 10 years (representing 76% of all the data). The over-dispersion parameter () 

was equal to 0.3135.  

The Akaike Information Criterion (AIC), which penalizes adding variables to the model, was 

used to validate incorporating the MSI in the model. The AIC assesses the fitness of a model 

based on the log-likelihood value of the model, L, and a penalty term related to the number of 

parameters, p. The AIC is calculated as shown in Equation 36. 

  pLAIC 2ln2          (36) 

The AIC does not give an indication as to whether the model is the true model that generated the 

data. It can only be used to compare models and evaluate which one is more likely to be closer to 

the true model. This is done by calculating the exponential of half the relative difference between 

the AIC of two models being considered, as given in Equation 37. 








 


2
exp 2min AICAIC

w

        (37) 

Where “w” is the relative likelihood of model 2 being the model closer to the true (unknown) 

model that generated the data, compared to the model with the lowest AIC (model 1) (Burnham 

and Anderson, 2004). The two models evaluated in this thesis are the model with only the 

pavement age as a predictor of pavement condition (Equation 38) and the model with pavement 

age and MSI as predictors of pavement condition (Equation 39). The results of the AIC test are 

tabulated in TABLE 7. 

TABLE 7 Akaike Information Criterion Results 

Model AIC 

with MSI 10712.1 

without MSI 10811.9 

w= 2.14E-22 
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𝐶𝐶𝐼 = 100 − (𝐴𝐺𝐸𝑎) ∗ 𝑒
(𝑏+𝑐

1

𝑀𝑆𝐼3)
       (38) 

𝐶𝐶𝐼 = 100 − (𝐴𝐺𝐸𝑎) ∗ 𝑒𝑏        (39) 

The AIC weight, w, for the model with MSI and the model without MSI was less than 10
-21

, 

indicating that the model with the MSI is at least 10
21

 more likely to be closer to the true 

pavement deterioration than the model without the MSI.  

Deterioration curves for different MSI values are shown in FIGURE 30. Note that for MSI larger 

than 1, the predicted performance is practically the same whereas the performance changes 

significantly as the MSI decreases below 1. The limit for MSI increasing to infinity reflects the 

fact that pavement deterioration is not solely dependent on the MSI; other factors such as 

environmental loading and top down cracking also play a role in pavement deterioration, and 

these factors lead to deterioration no matter how strongly a pavement is designed. 

 

FIGURE 30  Pavement Deterioration for Different MSI values. 

4.5 Application of Empirical Bayesian System to Negative Binomial Model 

The negative binomial model with MSI values delivers improved estimates compared to those 

that do not account for MSI. However, the model does not consider the different performance of 

individual pavement sections that arises from other factors that are not included in the model. 

This difference in performance between individual sections can be observed in the individual 



54 

measurements. The Empirical Bayes approach that estimates the prior distribution from the data 

itself can be useful to help accounting for this difference.  

The Empirical Bayes approach arises from multi-parameter estimation problems where pooling 

information across the similar experiments results in a better estimate for each incident. By 

incorporating the variance and the condition information of all the sections into section-specific 

observations, every point estimate will be shifted towards the grand mean from its original 

section-specific estimate. The logic behind this shift is the similarity of the problem at each 

section. The prediction problems are independent for each section since each one shows different 

characteristics to affect the deterioration rate to some extent. However, the problem in each 

section is also very similar; the deterioration behavior model is general and replicable for each 

section, especially when considering that structural capacity is one of the parameters of the 

model and not predicted or fixed for the entire network.  

In the Empirical Bayes approach, the parameters of the prior are estimated from the data, in this 

case by the Negative Binomial regression. The mean (µ), variance ( 2

mod ), and over-dispersion 

() are related to the parameters of the Negative Binomial model as follows: 
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The Poisson-Gamma model gives rise to a Bayesian model with the Gamma distribution prior. 

Practically, the prior represents the variability of the performance of different pavement sections. 

Once the DI data are observed, the posterior distribution of the true pavement condition can be 

calculated using Bayes’ formula. The practical interpretation of Bayes’ formula is that it 

combines the experience that can be learned from observing the historical performance of all 

pavement sections with specific observations to come up with an improved estimate of the 

pavement condition. The information from the prior and observation are combined using 

Equation 43, with details on how Equation 43 is obtained presented in Appendix A. 
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EBEB DICCI 100
         (44) 

 priorprior

EBEB CCICCI  
 11        (45) 

The EB updated DI (or CCI as noted in Equation 44) becomes the base to estimate for next 

year’s performance. Subtracting the modeled deterioration from the updated CCI gives this 

estimation as shown in Equation 45. The EB estimate in Equation 43 assumes that the 

measurement error for reporting the CCI follows a Poisson distribution. The difference sequence 

method, described in Appendix B, was used to independently evaluate the variance of the error 

in reporting the CCI. It was found that this error variance is larger than what is predicted by the 

Poisson distribution. A concern could then be raised towards the applicability of the EB 

approach since the model assumptions (i.e. Poisson error distribution) are violated. It turns out 

that, even if the Poisson-Gamma model assumption is completely incorrect, the EB estimate is 

still a better estimate than the actual measurement as long as the variance of the error is not 

significantly overestimated. This is a results of the fact that linear Bayes estimators (e.g. the 

Poisson-Gamma model) guarantees to improve the estimate of the condition versus consideration 

of the measurement alone, regardless of the true distribution of pavement performance or the true 

distribution of the error in the measurement (Hartigan 1969 and Efron 1973). The improvement 

of the linear Bayes estimator is such that the mean square error is reduced by a factor of: 
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If the error variance, 2

Error , is underestimated (as is the case when assuming a Poisson error 

distribution) then the improvement of the EB estimate will be less than optimal. Therefore, the 

EB estimate in Equation 43 is conservative and can be improved if the appropriate value for the 

error variance is used. The linear EB estimator is calculated using Equation 47, which can be 

used for any two distributions and without knowledge of the appropriate distribution form. 
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Note the similarities between Equation 43 and Equation 47; it can be shown that if 

22

PoissonError    (i.e. the error predicted from the Poisson distribution is different than the error 

in the data), then Equation 43 can still be used with   replaced by  c  which is the form 

of Equation 48 (see Appendix A).  
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The EB approach provides a mechanism to combine both sources of information that minimizes 

the mean square error (Bayes risk) between the estimated condition and the true condition (i.e., it 

gives the optimal method of combining both sources of information). 

When the measurement error variance is assumed practically zero, the EB estimate of the 

condition is equal to the measured CCI and therefore the error is equal to 1. FIGURE 31 

illustrates this case. As the estimate of the measurement error variance gets closer to the true 

measurement error variance, the mean square error of estimating the pavement condition using 

the EB method decreases. The best estimate is obtained when the measurement error variance is 

correctly estimated, in which case the mean square error of estimating the pavement condition is 

0.75 (i.e. improvement of 25%). As the estimate of the measurement error variance starts to 

increase past the true measurement error variance, the error of the EB estimate starts to increase. 

The right side of FIGURE 31 represents the case where all the variance in the observed CCI 

measurement is wrongly assumed to be due to error in the measurements. In this case, the EB 

estimate coincides with the model estimate and the error increases to 2.60. FIGURE 31 also 

shows that the mean square error of 0.75 obtained with the correctly estimated measurement 

error variance coincides with the theoretical mean square error (based on Equation 40). The 

results presented in FIGURE 31 are based on leave-one-out cross-validation and incorporate an 

estimate of the pavement deterioration over a 1-year period obtained using the model. If the 

pavement deterioration is not taken into account, then the mean square error using the 

measurement is equal to 1.177. 

Estimating the pavement condition from the model results in a significant error, that is 2.2 

(2.6/1.177) times larger than the error of the measurement. However, the model is needed to 

account for the deterioration and obtain the EB estimate, which results in a 25% improvement in 
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the estimate of the current pavement condition and a 36% improvement (0.36 = 1-0.75/1.177) in 

the estimate of the next year’s pavement condition. 

In FIGURE 32, the EB estimate combines the measured CCI with the model-predicted CCI to 

obtain a better estimate of the “true” CCI. The plots of the EB CCI and the model CCI are shifted 

for better visualization. 

 

FIGURE 31: Error in estimating the Pavement Condition with the EB Method as a 

Function of Estimated Error Variance. 
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FIGURE 32  Comparison of measured CCI, model predicted CCI, and EB estimate of CCI.  

4.5. Model Validation and Calibration 

4.5.1. Dependence of Error in DI Measurement on Pavement Condition 

Based on the difference sequence method, it was found that the Poisson distribution assumption 

underestimated the error variance of the observed data. A correction factor, α, was used to adjust 

for the discrepancy, as shown in Equation 49. However, since for the Poisson distribution the 

variance is equal to the mean, it was checked that the measurement error was related to the 

average of the observation, as shown in Equation 50. Finally, the total variance of the data was 

related to the variance of the pavement sections’ performance and the error variance, as shown in 

Equation 51. 2

mod  is the total variance which should be equal to the variance of the observed 

data. 

22

PoissonError            (49) 

ipriori 
2

Error          (50) 

222

mod Errors            (51) 
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4.5.2.  Validating the Empirical Bayes Approach 

The most accurate test to validate a modeling procedure would be to know the actual true 

quantity to be estimated (here the pavement deterioration represented by either the DI or the 

CCI) and verify that the chosen modeling procedure gives a better estimate of the true quantity 

compared to no modeling (i.e. just using the observations). Of course, for real data, the true value 

is never known and this approach cannot be followed. In some cases, however, alternative 

approaches that will tell whether the modeling approach improved the estimate can be used. 

When pavement condition data for two consecutive years exist, at each year the measurement 

consists of the true condition, C, plus a random error. The difference between two consecutive 

measurements can be decomposed into the difference between error terms and the difference 

between the true conditions (i.e. deterioration), as shown in Equation 52. The mean square of the 

differences can be calculated as shown in Equation 53. The quantities  

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  are (almost identical) unbiased estimates of the error variance, 2

Error . Equation 53 

quantifies the error made if the measurement iDI  is used to predict 1iDI . However, Equation 53 

can be used to estimate whether a new estimate, est

iDI , of iC  is better than iDI . Clearly, the 

smaller i  of the estimate is, the closer est

iDI  is to iC , and the smaller the quantity 2

iD  is. 

Therefore, a est

iDI that is better than iDI  reduces the quantity calculated using Equation 53. 

Equation 52 can also be used to evaluate the adequacy of a deterioration model, as detailed in 

Appendix B. This shows that Equation 53 (or modifications of it as presented in Appendix B) 

can be used to validate the modeling procedure without knowing the true (ground truth) 

pavement condition.  
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The final verification consists of checking whether Equation 51 is approximately satisfied. 2

s  

was calculated as 190 while 2

Error  was calculated as 22 for a total 2

mod of 212. The total 

variance of the data was estimated as 273, showing that the model variance underestimates the 

data variance by 61 (273-212). While the estimate of the data’s error variance was obtained for 
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the positive error, since only positive errors were considered as the result of possibly missing 

recorded treatments, the total (both negative and positive) variance of the data includes 

observations with possibly missing recorded treatment. Therefore, the variance of the all the 

error (positive and negative) was evaluated as 72 and added to 2

s , to give a total variance for 

the model 2

mod  262 which is reasonably close to the total variance of 273 of the data. This shows 

that the modeling approach is consistent as the resulting model practically accounts for all the 

variance observed in the data. 

4.6.Comparison of the Models 

To have a statistical comparison between the different modeling approaches, the R-squared 

values of the final regression models are computed and listed in TABLE 8. Negative binomial 

regression does not have a natural equivalent to the R-squared measure found in ordinary least 

squares (OLS) regression; however, there exist many attempts to create one. Here, the R-squared 

value for Negative Binomial is calculated manually. Equation 33 was set with the determined 

coefficients of β0=1.3672, β1=0.0830, and β2=0.8350. Computation of the residual sum of 

squares of this model and total variance of the final data set allowed the calculation of R-

squared. The resulting coefficient of determination was found to be 0.312, as stated in TABLE 8. 

The Root Mean Squared Error of this form of the Negative Binomial model is 13.75.  

TABLE 8  R-squared values of final EB and Regression models 

Model Adjusted R2 values 

Negative Binomial Model 0.312 

Exponential Growth Model 0.305 

Adjusted Stantec Model 0.295 

 

FIGURE 34 shows the different deterioration curves with different MSI values over time. As 

indicated previously, Negative Binomial and Exponential Growth models are somewhat capable 

of considering the influential factors in pavement deterioration rate other than MSI by displaying 

a decreasing curve for the deterioration of sections with a theoretical infinite MSI, while the 

Adjusted Stantec Models fails to do so.  
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The implementation of Empirical Bayesian approach was proven to improve the overall accuracy 

of the model, with the optimum improvement in accuracy being 25%. Due to the computational 

practice, having a negative binomial or ‘Poisson-Gamma’ prior distribution was needed to apply 

the Empirical Bayesian. FIGURE 33 illustrates how the empirical Bayesian method estimate 

varies from the model prediction in example sections. It simply shifts the prediction towards the 

observations. Application of the EB method to Exponential Growth model requires complex 

computations that are not cost or time effective, especially in this case, where the statistical 

indicators favor the Negative binomial model as well. Therefore, the optimum accurate and 

feasible method to be used in modeling the pavement deterioration versus MSI for VDOT 

interstate network becomes the implementation of Empirical Bayesian method to the Negative 

Binomial model.  

 

(a) MSI=1.58     
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 (b) MSI=0.86 

FIGURE 33 Example comparisons of EB estimates versus observed data and negative 

binomial model in two different sections (a) MSI=1.58 (b) MSI=0.86 

 

FIGURE 34: Pavement Deterioration for Different MSI Values with Different Models 

starting from Year 1. 

4.7. Discussion 

The statistics and plots show that employing the Empirical Bayesian method improves the 

performance of the overall model. It is noted that the Empirical Bayesian approach pulls the 
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individual sections’ deterioration curves towards the overall network average, resulting in a 

reduced variance. Consequently, this approach improves the model’s accuracy to predict the 

pavement deterioration of the entire network, making the Empirical Bayesian method a useful 

tool for network-level predictions, and supporting network-level decision-making. On the other 

hand, by reducing the variance of the data, the EB method shifts away the input data for each 

section’s future performance prediction from being section-specific to converge to the general 

network trend. Due to this EB approach characteristic, it does not help to improve the specific 

predictions for each section’s future performance. Hence, the use of the Empirical Bayesian 

approach to predict how a specific section will deteriorate, and then to make section- or project-

specific decisions accordingly, becomes questionable. 

  



64 

CHAPTER 5. FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 

The literature agrees that accurate performance prediction is important in pavement management 

systems. In accordance, many approaches and emerging techniques have been used to model the 

pavement condition. Even though VDOT’s current pavement management system operates 

satisfactorily to meet the demand, the addition of any improvement is valuable. The deterioration 

models used by VDOT were developed based on windshield pavement condition data and do not 

account for the structural capacity. This study investigated the applicable modeling approaches 

in order to incorporate the pavement structural capacity into the deterioration rate, then 

determined the suitability of such approaches, and exhibited the improvements that can be 

achieved. 

5.1. Findings  

 Deterioration models are crucial in pavement management since accurate performance 

prediction enables agencies to optimize their budget with better planning and scheduling.  

Many factors exist that contribute to pavement deterioration, such as traffic loading, 

environmental factors, material properties, and construction work quality. Structural 

condition of pavement is an important parameter that affects the deterioration rate, and 

accordingly, the maintenance and rehabilitation activities required to keep it at a 

serviceable level. The impact of structural condition on network-level decision-making 

should be taken into account for better planning and budget allocation. 

 Many deterioration models have been developed, yet there is still need for improving 

accuracy and practicality. The number of deterioration models that include the structural 

condition is somewhat limited. On the other hand, several modeling techniques have 

recently been in use to improve the accuracy and facilitate the computation, such as 

Empirical Bayesian, Artificial Neural Networks, Fuzzy Logic systems and genetic 

algorithms. Additionally, various modeling approaches and developed equations have 

shown potential to be applicable in pavement deterioration modeling. 

 Data filtering can be used to improve predictive capability. The data was censored 

because of maintenance and rehabilitation activities applied to poorly performing 

pavements before the end of the pavements’ expected service, producing unrealistically 

good performances for the pavement sections that are older than 10 years. The analysis 
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showed that data from the first 10 years give the most adequate representation of 

pavement behavior. Filtering out all the measurements that were performed on sections 

older than 10 years resulted in the exclusion of 24% of the data points. With this filtered 

data, inclusion of MSI into prediction of CCI, even in a simple regression model, 

delivered better goodness-of-fit statistics. In part of the analysis, further filtering was also 

applied by removing the pavement sections that recorded more than a 10-point increase 

in two consecutive CCI measurements. 

 Implementation of many different approaches and functions, which were developed to 

model deterioration and growth in various fields of science, showed in this study that 

they are (to some extent) capable of explaining the pavement deterioration characteristics. 

A modification of VDOT’s currently used model, prepared by Stantec, has delivered a 

good fit with improved statistical indices and satisfied boundary conditions, in addition to 

its adaptability. 

 In accordance with the objective of a more accurate model, Empirical Bayesian approach 

was applied to the modeling. Due to the over-dispersion observed in the data, Negative 

Binomial regression (a form of a Generalized Linear Model) was found to be a good 

representation of pavement deterioration. This allows for a better understanding and 

modeling approach to pavement condition, where variability in pavement condition can 

be decomposed into variability due to different performance of different pavement 

sections and variability due to error in measuring the pavement condition. 

 Using the models with a theoretical infinite MSI still yielded to a significant deterioration 

over the years for most of the models, since MSI is not the only factor that affects the 

pavement deterioration. The pavement deterioration with a theoretical infinite MSI 

showed that the model realistically accounts for other factors, though roughly, since only 

two parameters exist. 

 Negative Binomial, Adjusted Stantec, Exponential Growth and Sigmoidal models were 

found to have the highest R-squared values with slight differences. Negative binomial 

model performs more realistically when the impact of other factors affecting the 

pavement deterioration is considered. This was reflected by the significant deterioration 

of pavement sections with a theoretical infinite MSI value.   
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 The Empirical Bayesian updated model clearly exposes the improvement by shifting the 

model predictions closer to the observed data. The Negative Binomial model provides a 

more computable prior distribution that facilitates the application of Empirical Bayesian 

method. In case of optimal improvement done by EB, the accuracy of the future 

predictions increases by 25%. 

5.2. Conclusions  

The pavement structural condition is a significant parameter that affects the pavement condition; 

using the AIC criterion, the model that incorporates the pavement structural parameter as an 

explanatory variable of the pavement condition was more than 10
21

 times more likely to be close 

to the “true model”, compared to the model that does not incorporate the pavement structural 

condition. 

The optimal estimate of the pavement condition is one that combines the observed condition with 

the model predicted condition. The estimate is obtained by an EB approach, which combines the 

model estimate with the observed condition through a weighted average. The weight is 

determined by the relative variability of the error in the measurement of the pavement condition 

and the variability of the performance of different pavement conditions. The model on its own 

gives an inaccurate estimate of the pavement condition with a mean square error that is about 

2.22 times the mean square error of the observations. However, combining the observations with 

the model resulted in an estimated mean square error that is about 0.75 times the mean square 

error of the observations. The estimate of the improvement is based on cross validation where 

observations were held out and used to estimate the mean square error prediction. 

5.3. Recommendations for Implementation 

VDOT should continue performing network-level pavement structural evaluation. The pavement 

structural condition summarized in terms of the MSI was found to affect the rate of pavement 

deterioration. To include the structural condition into deterioration modeling permanently, MSI 

should be computed and added to the pavement management system database after structural 

evaluations. Employing emerging technologies that allow faster and easier structural evaluations 



67 

on a wide network, such as TSD, may be taken into consideration in order to improve data 

collection practices. 

VDOT’s Maintenance Division should implement the Empirical Bayes method to determine the 

pavement condition of Interstate roads. The approach to estimate the pavement deterioration 

proposed in this research can be readily implemented into the VDOT PMS and results in an 

estimated 25% improvement (mean square error) in the predicted pavement condition. In this 

study, the EB method was implemented for Interstate roads. 

5.4. Recommendations for Future Research 

The developed model should be reevaluated as more data becomes available in the PMS. The 

data used in this study spanned from 2007 to 2012. For some of the pavement sections, the 

accuracy of the reported age is questionable. Hopefully, as more data are collected, the history of 

the different pavement sections will be more accurate, warranting model reevaluation.  

The varying section lengths prevent application of some different approaches, or bring extra 

difficulties in calculations and analysis. Computing both the structural index and the conditional 

index over equally long sections will be helpful in further studies. 

The implementation of the EB method was shown to improve the overall accuracy of the model; 

however, the assumptions lying behind the method and its impact on section-specific 

applications should be further evaluated, and adjustments should be developed in order to adapt 

the model for section-specific predictions. 

VDOT’s Maintenance Division should develop a similar approach for the pavement condition of 

primary and secondary roads. The implementation for secondary roads that are only evaluated at 

5-year cycles is especially needed. The EB method combined with the modeled deterioration 

should provide for a better prediction of the conditions of secondary roads during years when the 

conditions are not collected. 
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APPENDIX A: Calculating Posterior Mean of Empirical Bayesian Update with Corrected 

Overdispersion Parameters 

 

The probability density functions of the Negative Binomial Distribution, the Poisson 

distribution, and the Gamma distribution are given in Equation A.1, Equation A.2 and Equation 

A.3, respectively. An alternative parametrization of the Gamma distribution is given in Equation 

A.4. The definition of the Negative Binomial distribution in terms of the Poisson and Gamma 

distributions is given in Equation A.5. 
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The Gamma distribution is the conjugate prior of the Poisson distribution, therefore the 

posterior distribution is also a Gamma distributions with parameters depending on the prior 

distribution and the observation DI as shown in Equation A.6. 
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A point estimate of the pavement deterioration is the posterior mean which is a weighted 

average of the prior mean and the observation as shown in Equation A.7 or Equation A.8. 
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If we label the factor that multiplies 
prior  in Equation A.8 by w, then we have 
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Equation A.8 can be written as show in Equation A.9 which has the same form as the linear EB 

estimate shown in Equation 43. Therefore, if the variance of the error in the DI is larger than the 

variance predicted from the Poisson model by a factor, α, then we can calculate the posterior 

mean as shown in Equation A.10. It can be easily shown that this is equivalent to using Equation 

41 with  replaced with a corrected overdispersion parameters, c as shown in Equation A.12. 
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APPENDIX B: Estimating the Error in Predicting the Future Condition through the Model 

and the Observations 

Equation 51 can be rewritten as shown in Equation B.1, where    
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of pavement deterioration, where iorPr  is the condition given by the Negative Binomial 

regression model. Note that in general,  
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 does not have to be a good estimate of 

 ii CC 1  for individual observations. This is because some pavement sections will be in a 

condition that is better than what is predicted by the model while other pavement sections will be 

in a condition that is worse than what is predicted by the model. However, the model represent 

the average condition of all pavement sections and therefore 
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measurement error can be estimated as shown in Equation B.2. Equation B.1 can then be used to 

independently check that 2ˆ
Error  is consistent with 2

mod  and 2

s . 

   
















1

1

2

1

2
1

1

2

1

1
ˆ2

1

1 n

i

iiError

n

i

i CC
n

D
n

       (B.1) 

    













 










1

1

2

PrPr

1

1

22

11

1

1

1

2

1
ˆ

n

i

iorior

n

i

iError iin
D

n
      (B.2) 

 

Recall in Equation 51 that iii DIDID  1  is a measure of the error made if iDI  (the 

measurement obtained in year i) is used to estimate 1iDI  (the measurement the following next 

year). Suppose instead of , iDI , we use an estimate est

iDI  of iC  in the hope that this estimate will 
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give a better prediction for 1iDI . Clearly the best estimate that will minimize  
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i CDI   because in this case, 02 i . This shows that the best possible improvement on the 

estimate (i.e. in the case we can somehow exactly estimate the pavement condition at a particular 

year), then the prediction error can be reduced by a maximum amount that is equal to 2ˆ
Error . 

This scenario is detailed in Equation B.3 with est

iDI  set to the empirical Bayes estimate, EB

iDI . 

Note that the factor  21 ii CC 
 is not affected by est

iDI  as est

iDI  is only attempting to improve 

the estimate of iC  without any consideration to the deterioration. We can therefore try and 

estimate the deterioration  ii CC 1  by, for example,  ii  1 , to obtain a better prediction of 

the future condition. Again the best possible scenario in the case is obtained when  ii CC 1  

can be exactly estimated. This scenario is detailed in Equation B.4. A natural way to proceed is 

to combine both approaches to potentially obtain still a better estimate of the future condition. 

This combined scenario is detailed in Equation B.5. Finally, we can directly estimate the future 

condition using model predicted condition as shown in Equation B.6. 

       

























1

1

2

1

2
1

1

2

1

22
1

1

2

1

1
ˆ

1

1
ˆ

1

1 n

i

iiError

n

i

ii

EB

iError

n

i

EB

i CC
n

CC
n

D
n

  (B.3) 

       2
1

1

2

11

2
1

1

2det ˆ2
1

1
ˆ2

1

1
Error

n

i

iiiiError

n

i

i CC
n

D
n

 
















   (B.4) 

         2
1

1

2

11

22
1

1

2
ˆ

1

1
ˆ

1

1
Error

n

i

iiii

est

iError

n

i

combined

i CC
n

D
n

 
















  (B.5) 

    2

1

2

11

1

2mod ˆ
11

Error

n

i

ii

n

i

i DI
n

D
n

  






      (B.6) 

Equation B.1 gives the error of predicting the future (next year’s) observation using the 

current observation while Equation B.6 gives the error of predicting future (next year’s) 

observations using the model. Equations B.3 to B.5 combine the model and observations. In 

Equation B.3 the model and observations are combined using the EB approach which does not 

take into account pavement deterioration. Equation B.4 uses the available (this year’s) 

observation adjusted by an estimate of the deterioration obtained from the model to predict future 

(next year’s) observation. Equation B.5 combines the approaches used in Equation B.3 and 

Equation B.4. To compare the different methods, Equation B.4 was used as the reference while 
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2ˆ
Error  is the lowest achievable value of the mean square difference between the estimate and 

observation and is attained when the estimate is equal to the true pavement condition. 

 


