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It has recently been suggested that the driven lattice gas should be described by an alternate field theory in
the limit of infinite drive. We review the original and the alternate field theory, invoking several well-
documented key features of the microscopics. Since the alternate field theory fails to reproduce these charac-
teristics, we argue that it cannot serve as a viable description of the driven lattice gas. Recent results, for the
critical exponents associated with this theory, are reanalyzed and shown to be incorrect.

PACS numbes): 64.60.Ak, 64.60.Ht, 82.20.Mj

The critical behavior of the driven lattice géBLG) [1]  features of this system, most simulations have been per-
has been the subject of some debate, ever since the firfstrmed atE=50, in units of the Ising coupling constant.
Monte Carlo simulation$2] and field theoretic predictions ~ The driven lattice gas and many of its variants have at-
[3,4] were found to give differing values for the order pa- tracted considerable attention since they evolve into simple
rameter exponeng. This discrepancy has led to develop- nonequilibrium steady states displaying a wealth of counter-

ments in different directions: some researchigs] have intuitive characteristick11]. Two of its most remarkable fea-

modified the simulation data analysis, invoking anisotropictures are(i) the discontinuity singularity of the structure fac-

N i . tor S(k) [1,12], which is intimately connected to an ¢
finite size scalind7], while otherg8,9] have suggested that deca§/ ()in d dimensions of the );Wo-point correlations

the original field theory might be deficient in the limit of 113 14 and(ii) the emergence of nontrivial three-point cor-
infinite drive, proposing8,9] and analyzing10] an alternate  relations[15] in the disordered phase, corresponding to the
coarse-grained theory instead. In this Brief Report we reviewiolation of the Ising symmetry b (which drives particles
both the original3,4] and the alternatg8—10] field theory, and holes in opposite directionsSuch dramatically “non-
in light of Monte Carlo simulation data. We first document Ising” characteristics are easily observed in Monte Carlo
that the alternate theory it a coarse-grained description of simulations, at intermediate and large driving fields. They
the driven lattice gas, since it fails to exhibit several well-are also confirmed in a high-temperature series expansion,
established properties of the microscopic model. In a seconderived directly from the microscopic dynamick3,16].
step, we reanalyze the proposed theory, assuming that it These observations from Monte Carlo simulations play a
might describe some other, yet to be determined, microscogsrucial role in identifying the correct field theory. A basic
ics. We show that the renormalization group analysis of Reftenet in the study of critical phenomena is that a microscopic
[10] is seriously flawed, resulting in incorrect exponents andModel and its coarse-grained field theory should possess the
a proliferation of uncontrolled infrared singularities. same symmetries, if they are to belong into the same univer-
We begin with a brief summary of the background. Mi- sality class. 'Fo.r the driven lattice gas, the_ data on the struc-
croscopically, the DLG is a simple ferromagnetic Ising lat-turé factor indicate that the theory is highly anisotropic.
tice gas, half-filled and coupled to a heat bath at temperatur'glqreover' the deta|le(_j behawor_ O.f the discontinuity singu-
T, in which particles jump to empty nearest-neighbor site%amy’ upon ap_proa_chmg the origin in wave vector space
. . . ; . “from different directions, informs us precisely how the famil-
subject to the usual Ising energetics and a uniform dnvmqar Ornstein-Zernike form is modified. Generically, we find
force E acting along a particular lattice direction. Thus, the[ll] that ' '
effect of E is identical to adding a locally linear potential.

Clearly, E=0 corresponds to the equilibrium Ising model. lim S(k, ,k;=0)

On the other hand, eve=o can be realized if Metropolis _ k=0 -1 &
rates are used: Simply accept/forbid all forward/backwards ~ lim S(k 1 =0k)

jumps. Since large values Bfaccentuate the nonequilibrium k|—0
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above criticality, andR— upon approachind. The sub-  due to the vanishing of, at positiver, naturally leads to
scripts distinguish the parallel| and transversel() sub-  anisotropic scaling of wave vectorigi~ kf’A in the critical
spaces, with respect to the drive direction. Just as signifiregion, with a nontrivial anisotropy exponeft Three im-
cantly, the nonvanishing three-point functions demonstrat@ortant consequences are that, first, the upper critical dimen-
that the usual “up-down” symmetry of the Ising model is sion d, is shifted to 5, and second, the theory predits
broken. =1+(5—-d)/3 andB=1/2 exactly i.e., to all orders in per-
These key features of the microscopics must be reflecte@irbation theory. The values obtained by simulations differ,
in any viable continuum theory for the driven lattice gas. Wedepending on the method used to analyze the data. If a care-
first consider the original field theofys,4]. It is based on a ful anisotropic finite size analysig] is used, based on sys-
Langevin equation, in continuous space and time, which detem sizes consistent with the field-theoretic scaling, i.e.,
scribes the stochastic evolution of the local particle density_H/LfAzconsty the field-theoretic exponents result in good

p(x,t). In terms of¢=2p—1, the equation reads data collapse for a number of different observalle$].
However, data for isotropic systemis;/L, =const, appear
dp=N\{ (1, —V2)V2 p+ 7 V2p+ EV 2+ gvz &3 to indicate an order parameter exponent around (23
t i 1V [ I TR . .
Since most of the data were taken at very large fields, some
V¢ @) authorg 8,9] have suggested that the origin of the discrepan-

cies does not reside in the data analysis. Instead, they argue
The Langevin noise term reflects the fast degrees of freedor}at the standard field theory does not capture Ehe
limit correctly and propose an alternate theory. It is based on
(&(x,1))y=0, the Langevin equation:

(VEDT! LX) = =20, Vi V) dx=x) a=M (7, -T2 4= VIV gt 5 V2 47| Ve

X 8(t—t"). (4)

We emphasize thati) all coefficients are strictly positive \vith minor renamings of paramete7], this is Eq.(1) of
exceptpossibly 7, and/or 7 which control criticality (see  Ref. [10]. The vanishing ofr, marks the critical point. The
below) and (i) they are independent from one anotliee., pgise satisfie§Eq. (2) of Ref. [10]],
not related by symmetjy The parameten sets the time
scale. (&(x,t))=0,

This theory contains two closely linked key ingredients:

First, there is a driving terrr€V||¢2, where £ denotes the , 1,
coarse-grained drivea naive continuum limit givesg (VEX, DV EX 1)) = —27\( Vi+ §V|)
«tanh@/T)). This term is required to break the Ising up-
down (¢— — @) symmetry. Second, the theory is highly an- X o(x—=x")o(t—t").
isotropic, with two different diffusion coefficients and 7, . o o
In particular, it predicts an equal-time structure factor, Two key terms appearing in the original field theory are ab-
sent in this one, namely, the driving terVqubz, and a diffu-
n, k2 +nyk? sion termr; V¢ for the parallel direction.
S(k)= 3 Since the driving term is absent, the alternate field theory

2 2 4
7KL+ ki +O(KY) obeys the Ising up-downg(— — ¢) symmetry. Thus, three-

point functions are identicallgeroin this theory, for allT
=T.. This prediction is in serious disagreement with exist-
ing Monte Carlo data. While one may argue that a field
theory need not reproduce all of the microscopic detail of the
underlying lattice model, one should be very cautious before
eendowing it with a higher symmetry: This is only justified if

high-symmetry fixed point exists and can be shown, via an
explicit renormalization group calculation, to be stable
against perturbations by symmetry-breaking operators. Nei-
her is the case here.

The absence of the parallel diffusion term also has serious
consequences. Equatiof) generates a steady-state structure
factor:

in the disordered phase. THiggenerates a discontinuity sin-
gularity R=(n, 7))/(nj7,). To ensure that the observed be-
havior is faithfully reproduced, we demamd 7,>nj7, in
the disordered phase. Moreover, criticalityustbe marked
by 7, =0 at positiver if the divergence ofSis to be cap-
tured correctly. To summarize, the two key features of th
original Langevin equation are unambiguously supported b
the Monte Carlo data for the microscopic model.

We comment briefly on the issue of finite versus infinite
fields. In all Monte Carlo simulations, the current is observed
to saturate ag& increases. This saturation is reflected &y
«tanh@T)—1 in the original field theory. Therefore, this
theory holds equally well for any nonzero value of the mi-
croscopic drive. Furthermore, simulations using Metropolis
rates withE=50, 100, and= have been performed. The S(
results argstatistically indistinguishable. Such sensible be-
havior is entirely consistent with this theory.

The discrepancies arise when critical exponents are meavhich ought to be a good approximation at high tempera-
sured, specifically the order parameter exporgrand com-  tures. Yet, fork;# 0 it predicts a divergence along the whole
pared to field theoretic predictions. The original field theory,k, =0 line, at anyT>T.. This stands in glaring contrast to

KZ + 3 kf

=——~ 1 5
K2 (k?+ 7)) ©
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the Monte Carlo results for the disordered phase, wiadire Here, the factors 1/2 ane- 3/2 arise from combinatorics
measured structure factors are found to be finite everywhenhile the integrald; andl, are easily computed in dimen-
in k space. sional regularization, resulting in

Since Eq.(4) fails to reproduce the most basic properties
of the microscopic model, we conclude that it is not a viable
field theory for the driven lattice gas. It may, however, de- |1=(47T)2€[1+O(€)]' |2=(47T)2E[1+O(6)]' ©)
scribe some as yet unknown microscopics. Therefore, we
now proceed to analyze the field theory, defined by @5.  \ve notice immediately that the simptepoles ofl, and |,

in its own right. _ areidentical Thus, their numerical prefactor can be absorbed
_ Following Ref.[10], we recast Eq(4) as a dynamic func-  into the definition of the coupling constant, leaving us with
tional [18]: one-loop corrections tas that are purely combinatoric in

origin. Completing the calculation at finitg , this provides
~ p ~ P 2.0 5 the key to Eq.(7). Only at two-loop order do the detailed
£[¢'¢]:f d™dt) ¢ dp+N[V{VI+ (VD))"= 7 V] forms of the free propagators come into play. Then, of
L course, exponents are also no longer determined by combi-
2 2|~ natorics alone.
VitoVi ) ¢]' ©®) In Ref.[10] the exponenv is quoted as (* €/4)/2, indi-
cating the presence of a computational error. More seriously,
however, there are deeper flaws in this theory. Recall that the
steady-state structure factor, E(p), diverges along the
wholek, =0 line, even forr, >0. As a result, the theory is
plagued by infrared singularities, which are entirely unre-
lated to criticality, and unrenormalizable divergences. We

. note, for completeness, that one can, of course, regularize
the one-loop result for the exponent(denotedr, in Ref. D J

[10]) is determined by combinatorics alone, i.e., the explicitSUCh singularities by reintroducing the diffusion tervj ¢

; . . into Eq. (4). Then, however, one should also reconsider the
expressions _for the Feynman mtegralg are not .r(.equwed. Thﬁvo fourth-order derivative terms. At two-loop order, these
is most easily seen by calculating in the critical theory, i '

o . ~ 5 will acquire different primitive divergences, so that an addi-
where 7, =0, with insertions ofA ¢V ¢. We denote one- tional coupling constang? is required, appearing in E¢4)
point irreducible vertex functions with (n) external¢($)  asp?(V?)%¢+ Vﬁqu&.

legs andm insertions byl“g:). At one-loop order, there are To summarize, we have shown that the field theory pro-
two primitively divergent vertex functions, namely}) and ~ Posed by Garrido, de los Santos, and Mzf8,9] fails to
(9. Both of these consist of a zero-loop term and a oneleproduce the key features of the driven lattice gas. Predict-
loop contribution. Each one-loop contribution consists of an9 infinite structure factors and zero three-point correlations
combinatoric factor, the appropriate powers of the couplingfor all temperatures above criticaljtyit cannot be a viable
constant and the external momentum, and a loop imegraﬁontmuum model for the latter. Accgptlng it as a representa-
The key simplification here is that the loop integrals ]Fcﬁﬁ) tion of some other, as yet undetermined, microscopic model,

andF(lg’ are identical, independent of the detailed forms of Ve carry out a standard analysis. First, we find that the one-

the free propagators. Thus, the two one-loop contributionéOOp calculation of Ref{10] is incorrect. Second, beyond

. ) o . -~ one-loop order, uncontrolled infrared singularities prolifer-
differ only by a simple factor which is purely combinatoric . . -
) - : . . ate, rendering the field theory unrenormalizable. In contrast,
in origin. As a result, one obtains to first orderdr=d;—d,

i the original field theory3,4] is consistent with the funda-
for all of these theories, : . .
mental symmetries of the driven lattice gas, for any value of
the drive. Its predictions for two- and three-point functions in
b E i+o(€2) ) the disordered phase are in good agreement with simulation
2 12 ' results. Based on the phenomenologys@) near criticality,
it plumbs the consequences of a highly anisotropic scaling

Since the authors of Ref10] have chosen to calculate at limit, kH_“kFA__’O- To test its predictions against Monte
finite 7, , let us illustrate how this result emerges in their Carlo simulations, this limit should be respected in the
case. No insertions are needed here so the upper index gfoice of system sizes, i-d—ﬁ\NLiM- If, instead, simula-
‘"™ can be dropped. Keeping track of coupling constantdions and finite—si.ze ana}ysis are pe_rfor_med with disregard for
aﬁgl signs, and taking care of tfig shift, we can write the such strong anisotropies, complications from extraneous

two bare vertex functionE; andT 15 in the form scaling varlable_$5] or |nc_on5|sten0|.e90] can be expec'ted.
In a more exotic scenario, such simulations may indicate a

new type of low-temperature phase, quite distinct from the

g ~
—A§Vf¢3 —\o

We first note that Eq6) describes a theory with a four-point
coupling ZSVi ¢° and anisotropic free propagators as given
in Ref. [10]. Therefore, the combinatorics of this theory is
identical to that of model B, which reduces #f theory in
the static limit. For such theories, it is well knoWwh9] that

_: 21,2 2 - ordinary Ising-like one.
Fu=iot KA | 1+ 591, Note added in proofin the printed version, Ref10], the
error in the combinational factor has been corrected.
I.=rgk?l1— § | ) This work is supported in part by the National Science
1=K 292 Foundation through the Division of Materials Research.
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