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It has recently been suggested that the driven lattice gas should be described by an alternate field theory in
the limit of infinite drive. We review the original and the alternate field theory, invoking several well-
documented key features of the microscopics. Since the alternate field theory fails to reproduce these charac-
teristics, we argue that it cannot serve as a viable description of the driven lattice gas. Recent results, for the
critical exponents associated with this theory, are reanalyzed and shown to be incorrect.

PACS number~s!: 64.60.Ak, 64.60.Ht, 82.20.Mj
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The critical behavior of the driven lattice gas~DLG! @1#
has been the subject of some debate, ever since the
Monte Carlo simulations@2# and field theoretic prediction
@3,4# were found to give differing values for the order p
rameter exponentb. This discrepancy has led to develo
ments in different directions: some researchers@5,6# have
modified the simulation data analysis, invoking anisotro
finite size scaling@7#, while others@8,9# have suggested tha
the original field theory might be deficient in the limit o
infinite drive, proposing@8,9# and analyzing@10# an alternate
coarse-grained theory instead. In this Brief Report we rev
both the original@3,4# and the alternate@8–10# field theory,
in light of Monte Carlo simulation data. We first docume
that the alternate theory isnot a coarse-grained description o
the driven lattice gas, since it fails to exhibit several we
established properties of the microscopic model. In a sec
step, we reanalyze the proposed theory, assuming th
might describe some other, yet to be determined, microsc
ics. We show that the renormalization group analysis of R
@10# is seriously flawed, resulting in incorrect exponents a
a proliferation of uncontrolled infrared singularities.

We begin with a brief summary of the background. M
croscopically, the DLG is a simple ferromagnetic Ising la
tice gas, half-filled and coupled to a heat bath at tempera
T, in which particles jump to empty nearest-neighbor si
subject to the usual Ising energetics and a uniform driv
force E acting along a particular lattice direction. Thus, t
effect of E is identical to adding a locally linear potentia
Clearly, E50 corresponds to the equilibrium Ising mode
On the other hand, evenE5` can be realized if Metropolis
rates are used: Simply accept/forbid all forward/backwa
jumps. Since large values ofE accentuate the nonequilibrium
PRE 611063-651X/2000/61~5!/5977~4!/$15.00
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features of this system, most simulations have been
formed atE*50, in units of the Ising coupling constant.

The driven lattice gas and many of its variants have
tracted considerable attention since they evolve into sim
nonequilibrium steady states displaying a wealth of coun
intuitive characteristics@11#. Two of its most remarkable fea
tures are~i! the discontinuity singularity of the structure fac
tor S(k) @1,12#, which is intimately connected to anr 2d

decay ~in d dimensions! of the two-point correlations
@13,14#, and~ii ! the emergence of nontrivial three-point co
relations@15# in the disordered phase, corresponding to
violation of the Ising symmetry byE ~which drives particles
and holes in opposite directions!. Such dramatically ‘‘non-
Ising’’ characteristics are easily observed in Monte Ca
simulations, at intermediate and large driving fields. Th
are also confirmed in a high-temperature series expans
derived directly from the microscopic dynamics@13,16#.

These observations from Monte Carlo simulations pla
crucial role in identifying the correct field theory. A bas
tenet in the study of critical phenomena is that a microsco
model and its coarse-grained field theory should possess
same symmetries, if they are to belong into the same uni
sality class. For the driven lattice gas, the data on the st
ture factor indicate that the theory is highly anisotrop
Moreover, the detailed behavior of the discontinuity sing
larity, upon approaching the origin in wave vector spa
from different directions, informs us precisely how the fam
iar Ornstein-Zernike form is modified. Generically, we fin
@11# that

R[

lim
uk'u→0

S~k' ,ki50!

lim
ki→0

S~k'50,ki!
.1 ~1!
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5978 PRE 61BRIEF REPORTS
above criticality, andR→` upon approachingTc . The sub-
scripts distinguish the parallel (i) and transverse (') sub-
spaces, with respect to the drive direction. Just as sig
cantly, the nonvanishing three-point functions demonstr
that the usual ‘‘up-down’’ symmetry of the Ising model
broken.

These key features of the microscopics must be refle
in any viable continuum theory for the driven lattice gas. W
first consider the original field theory@3,4#. It is based on a
Langevin equation, in continuous space and time, which
scribes the stochastic evolution of the local particle den
r(x,t). In terms off[2r21, the equation reads

] tf5lH ~t'2¹'
2 !¹'

2 f1t i¹ i
2f1E¹ if

21
g

3!
¹'

2 f3J
2¹j. ~2!

The Langevin noise term reflects the fast degrees of freed

^j~x,t!&50,

^¹j~x,t !¹8j~x8,t8!&522~n'¹'
2 1ni¹ i

2!d~x2x8!

3d~ t2t8!.

We emphasize that~i! all coefficients are strictly positive
exceptpossibly t' and/or t i which control criticality ~see
below! and ~ii ! they are independent from one another~i.e.,
not related by symmetry!. The parameterl sets the time
scale.

This theory contains two closely linked key ingredien
First, there is a driving term,E¹ if

2, whereE denotes the
coarse-grained drive~a naive continuum limit givesE
}tanh(E/T)). This term is required to break the Ising u
down (f→2f) symmetry. Second, the theory is highly a
isotropic, with two different diffusion coefficientst i andt' .
In particular, it predicts an equal-time structure factor,

S~k!5
n'k'

2 1niki
2

t'k'
2 1t iki

21O~k4!
~3!

in the disordered phase. ThisSgenerates a discontinuity sin
gularity R5(n't i)/(nit'). To ensure that the observed b
havior is faithfully reproduced, we demandn't i.nit' in
the disordered phase. Moreover, criticalitymustbe marked
by t'50 at positivet i if the divergence ofS is to be cap-
tured correctly. To summarize, the two key features of
original Langevin equation are unambiguously supported
the Monte Carlo data for the microscopic model.

We comment briefly on the issue of finite versus infin
fields. In all Monte Carlo simulations, the current is observ
to saturate asE increases. This saturation is reflected byE
}tanh(E/T)→1 in the original field theory. Therefore, thi
theory holds equally well for any nonzero value of the m
croscopic drive. Furthermore, simulations using Metropo
rates with E550, 100, and` have been performed. Th
results are~statistically! indistinguishable. Such sensible b
havior is entirely consistent with this theory.

The discrepancies arise when critical exponents are m
sured, specifically the order parameter exponentb, and com-
pared to field theoretic predictions. The original field theo
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due to the vanishing oft' at positivet i , naturally leads to
anisotropic scaling of wave vectors:ki;k'

11D in the critical
region, with a nontrivial anisotropy exponentD. Three im-
portant consequences are that, first, the upper critical dim
sion dc is shifted to 5, and second, the theory predictsD
511(52d)/3 andb51/2 exactly, i.e., to all orders in per-
turbation theory. The values obtained by simulations diff
depending on the method used to analyze the data. If a c
ful anisotropic finite size analysis@7# is used, based on sys
tem sizes consistent with the field-theoretic scaling, i
L i /L'

11D5const, the field-theoretic exponents result in go
data collapse for a number of different observables@5,6#.
However, data for isotropic systems,L i /L'5const, appear
to indicate an order parameter exponent around 0.23@2#.
Since most of the data were taken at very large fields, so
authors@8,9# have suggested that the origin of the discrep
cies does not reside in the data analysis. Instead, they a
that the standard field theory does not capture theE→`
limit correctly and propose an alternate theory. It is based
the Langevin equation:

] tf5lH ~t'2¹'
2 !¹'

2 f2¹ i
2¹'

2 f1
g

3!
¹'

2 f3J 2¹j.

~4!

With minor renamings of parameters@17#, this is Eq.~1! of
Ref. @10#. The vanishing oft' marks the critical point. The
noise satisfies@Eq. ~2! of Ref. @10##,

^j~x,t !&50,

^¹j~x,t !¹8j~x8,t8!&522lS ¹'
2 1

1

2
¹ i

2D
3d~x2x8!d~ t2t8!.

Two key terms appearing in the original field theory are a
sent in this one, namely, the driving term¹ if

2, and a diffu-
sion termt i¹ i

2f for the parallel direction.
Since the driving term is absent, the alternate field the

obeys the Ising up-down (f→2f) symmetry. Thus, three
point functions are identicallyzero in this theory, for allT
>Tc . This prediction is in serious disagreement with exi
ing Monte Carlo data. While one may argue that a fie
theory need not reproduce all of the microscopic detail of
underlying lattice model, one should be very cautious bef
endowing it with a higher symmetry: This is only justified
a high-symmetry fixed point exists and can be shown, via
explicit renormalization group calculation, to be stab
against perturbations by symmetry-breaking operators. N
ther is the case here.

The absence of the parallel diffusion term also has seri
consequences. Equation~4! generates a steady-state structu
factor:

S~k!5
k'

2 1 1
2 ki

2

k'
2 ~k21t'!

, ~5!

which ought to be a good approximation at high tempe
tures. Yet, forkiÞ0 it predicts a divergence along the who
k'50 line, at anyT.Tc . This stands in glaring contrast t
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the Monte Carlo results for the disordered phase, whereall
measured structure factors are found to be finite everywh
in k space.

Since Eq.~4! fails to reproduce the most basic properti
of the microscopic model, we conclude that it is not a via
field theory for the driven lattice gas. It may, however, d
scribe some as yet unknown microscopics. Therefore,
now proceed to analyze the field theory, defined by Eq.~4!,
in its own right.

Following Ref.@10#, we recast Eq.~4! as a dynamic func-
tional @18#:

L@f̃,f#5E ddx dtH f̃F] tf1l@¹ i
2¹'

2 1~¹'
2 !22t'¹'

2 #f

2l
g

3!
¹'

2 f3G2lf̃S ¹'
2 1

1

2
¹ i

2D f̃J . ~6!

We first note that Eq.~6! describes a theory with a four-poin
coupling f̃¹'

2 f3 and anisotropic free propagators as giv
in Ref. @10#. Therefore, the combinatorics of this theory
identical to that of model B, which reduces tof4 theory in
the static limit. For such theories, it is well known@19# that
the one-loop result for the exponentn ~denotedn' in Ref.
@10#! is determined by combinatorics alone, i.e., the expl
expressions for the Feynman integrals are not required.
is most easily seen by calculating in the critical theo
where t'50, with insertions oflf̃¹'

2 f. We denote one-

point irreducible vertex functions withñ ~n! externalf̃(f)
legs andm insertions byG ñn

(m) . At one-loop order, there ar
two primitively divergent vertex functions, namelyG11

(1) and
G13

(0) . Both of these consist of a zero-loop term and a o
loop contribution. Each one-loop contribution consists o
combinatoric factor, the appropriate powers of the coupl
constant and the external momentum, and a loop integ
The key simplification here is that the loop integrals forG11

(1)

and G13
(0) are identical, independent of the detailed forms

the free propagators. Thus, the two one-loop contributi
differ only by a simple factor which is purely combinator
in origin. As a result, one obtains to first order ine[dc2d,
for all of these theories,

n5
1

2
1

e

12
1O~e2!. ~7!

Since the authors of Ref.@10# have chosen to calculate a
finite t' , let us illustrate how this result emerges in the
case. No insertions are needed here so the upper inde
G ñn

(m) can be dropped. Keeping track of coupling consta
and signs, and taking care of theTc shift, we can write the
two bare vertex functionsG11 andG13 in the form

G115 iv1lk'
2 k21lk'

2 t'F11
1

2
gI1G ,

G135lgk'
2 F12

3

2
gI2G . ~8!
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Here, the factors 1/2 and23/2 arise from combinatorics
while the integralsI 1 and I 2 are easily computed in dimen
sional regularization, resulting in

I 15
3

~4p!2e
@11O~e!#, I 25

3

~4p!2e
@11O~e!#. ~9!

We notice immediately that the simplee poles ofI 1 and I 2
areidentical. Thus, their numerical prefactor can be absorb
into the definition of the coupling constant, leaving us w
one-loop corrections ton that are purely combinatoric in
origin. Completing the calculation at finitet' , this provides
the key to Eq.~7!. Only at two-loop order do the detaile
forms of the free propagators come into play. Then,
course, exponents are also no longer determined by com
natorics alone.

In Ref. @10# the exponentn is quoted as (11e/4)/2, indi-
cating the presence of a computational error. More seriou
however, there are deeper flaws in this theory. Recall that
steady-state structure factor, Eq.~5!, diverges along the
whole k'50 line, even fort'.0. As a result, the theory is
plagued by infrared singularities, which are entirely un
lated to criticality, and unrenormalizable divergences. W
note, for completeness, that one can, of course, regula
such singularities by reintroducing the diffusion termt i¹ i

2f
into Eq. ~4!. Then, however, one should also reconsider
two fourth-order derivative terms. At two-loop order, the
will acquire different primitive divergences, so that an ad
tional coupling constantr2 is required, appearing in Eq.~4!
asr2(¹'

2 )2f1¹ i
2¹'

2 f.
To summarize, we have shown that the field theory p

posed by Garrido, de los Santos, and Mun˜oz @8,9# fails to
reproduce the key features of the driven lattice gas. Pred
ing infinite structure factors and zero three-point correlatio
~for all temperatures above criticality!, it cannot be a viable
continuum model for the latter. Accepting it as a represen
tion of some other, as yet undetermined, microscopic mo
we carry out a standard analysis. First, we find that the o
loop calculation of Ref.@10# is incorrect. Second, beyon
one-loop order, uncontrolled infrared singularities prolife
ate, rendering the field theory unrenormalizable. In contr
the original field theory@3,4# is consistent with the funda
mental symmetries of the driven lattice gas, for any value
the drive. Its predictions for two- and three-point functions
the disordered phase are in good agreement with simula
results. Based on the phenomenology ofS(k) near criticality,
it plumbs the consequences of a highly anisotropic sca
limit, ki;k'

11D→0. To test its predictions against Mont
Carlo simulations, this limit should be respected in t
choice of system sizes, i.e.,L i;L'

11D . If, instead, simula-
tions and finite-size analysis are performed with disregard
such strong anisotropies, complications from extrane
scaling variables@5# or inconsistencies@20# can be expected
In a more exotic scenario, such simulations may indicat
new type of low-temperature phase, quite distinct from
ordinary Ising-like one.

Note added in proof. In the printed version, Ref.@10#, the
error in the combinational factor has been corrected.

This work is supported in part by the National Scien
Foundation through the Division of Materials Research.
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