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CHAPTER I 

INTRODUCTION 

It is well known that ariy bandlimited continuous time 

signsls f (t) can be represented by a discrete time sequence 

{ f (kT)}. In order to obtain th.e sequence { f (kT)J the signal 

f(t) is 'sampled' at regular displacements (T) in time. 

That is; each number in the sequence {f(kT)} represents a 

sampled data of f (t) at the observation time kT (where 

k=0,1,2, ..... ). This process is known as the uniform 

sampling of the signal f(t) because each sample is taken 

at a uniform rate and is governed.by the Uniform Sampling 

Theorem, which states that: 

A bandlimited signal f (t) with highest spectral 
component fM is uniquely determined by the 
periodical samples taken every T seconds, and, 
.the signal f (t) can be reconstructed from these 
samples with no distortion providing that the 
sampling interval T is such that, T < l/2fM. 

However, in many applications a non-uniform sampling 

scheme is used to generate the data sequence. In this case, 

the sampling time 'T' is not a constant. One example is 

the Moving Target Indicator in radar signal processing, 

which employs the simple stagger sampling scheme in order 

to minimize the 'blind "'elocity' effect(l). The advantage 

of using a non-uniform sampling scheme over the uniform 

sampling scheme is that we have ari. extra degree of freedom 

1 
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CHAPTER II 

THE TRANSFER FUNCTION FOR PROCESSING 

NON-UNIFORMLY SAMPLED DATA 

2.1 The General Transfer Function 

For a linear t:Lme varying digital operator with 

infinite impulse respons.e {hk(tn.}l, as shown .in Figure 1, 

the relationship between the nori-unifonnly sampled input 

{x(t.·n·)} and output {y (t ) } signals at a given observation , n . 

time t, is given by the conyolution sum; 
' \ 

00 

(2 .1) 

where: 

{ t } repres. erits the time ·instants at which the contin--n 

uous time signal is, sampled, 

his the impulse response coefficient of.the linear 

operator. 

If the digital operator in equation (2.1) is assumed to 

he time. invariant and ca,usal (i.e. , hk·· ( t ) = 0, for .k · < 0, .. n 

then the input and output relationship can be modified as: 

.(t ) ··-y. n 
00' 

I .h···kx(t .. ·· > · 
k=O k .. .n-k 

(2.2} 

In orderto. obtain thesinusoidal·response character-

istics of this operator, the input signal x(t) is replaced 

4 
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x(t) . {x(t )} ____ / n {y(t ) l . n 

t n 

k = - oo,·.· .. ,O,.' .. ,oo 

Figure 1: A Digital Lin~ar Operator 
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by a standard complex exp.onential input signal: 

x(t) = Aej(wt+s) (2. 3) 

where, A, wand a.are constants representing the amplitude, 

radian frequency and phase angle of the signal respectively. 

With this input signal, the response of the linear operator 

at the observation time tn 

y(t ) = n 

By a simple algebraic manipulation, this expression can be 

modified to give the standard transfer funct:i.on relation-

ship, i.e., 

oo -jw(t -t ) j(wtn+s) 
= { l hk e n n - k } Ae 

k=O 
. (2. 4) 

Hence, the transfer function can be identified as: 

oo · -jw(t -t . ) l b e n n-k 
k=O k 

(2.5) 

Note that·in the uniform sampling case, where t =nT n 
(n=0,1,2, ... ), this expression reduces to: 

H(w) I h e-jwkT 
k=O k 

(2.6) 
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which is the standard transfer function formula for a 

uniform samt>ling system. Also notice that the transfer 

function. for the non-uniform sampling scheme (2. 5) is 

dependent on the radian frequency of the signal and on the 

observation time tn. The dependence on frequency, w, 

enables the implementation of the various attenuation 

functions of a digital filter; such as, low pass, high 

pass and band pass filters. The second dependence, on time 

tn, however, gives an extra degree of freedom in the design 

of the digital filter; and, it is this characteristic that 

enables the application of non-uniform sampling scheme to 

digital filter synthesis. Moreover, the variation of the 

transfer function as a function of observation time will 

depend on the particular non.;..uniform sampling scheme used. 

2.2 Transfer.Function for Simple Stagger Sampling Scheme 

In this analysis, the simple stagger sampling scheme 

is used, whose·· sampling time instants are defined as: 
! . 

I' 
t kT for k=even 

t =~ (2. 7) 
l kT + c for k=odd 

where, T is the "nominal" sampling time, and, E is the 

offset parameter, such that lei < T. 

To facilitate the analysis of the transfer function 

(2.5) for the simple stagger sampling scheme, the behavior 
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of tn-tn~k for different combinations of even and odd n,k's 

are determined ( 1 • 2) and is surrnnarized in Table 1. 

With the information from Table 1,. the transfer func"" · 

tion for the simple stagger sampling, equation. (2. 5), can 

be rewritten and decomposed into the sunnnation.of the . 

. partial sums over the odd. and even indices. Hence, the 

filter transfer function (2. 5} becomes: 

. -jw(t -t · ) 
H. ( ) \' h-e. ·. n n. -. k t w = l -1<. 

n kt:Ae · . · 

-jw(t -t 
+ r hk e . n n-k) 

kt:A . 
0 

where Ae and 1\ 0 represent the even and odd set of non'"" 

negative integers respectively. 

(2. 8) 

Applying the results of Table 1 into equation (2.8), 

the expression cah be written as:, 

or 

where 

and 

I 
kt:A · .. e 

h. -jwkT 
ke 

(2;9) 

(2.10) 



n 

even 

even 

odd 

odd 

9 

TABLE 1 

Values oft -t k(l)_ n n-

k 

even 

odd 

even 

even 

t -t n-k n 

kT 

kT-e: 

kT 

kT+e: 
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hke-jwkT (2. llb). 

From the results of expresf:lions (2.9) and (2.10) it was 

found(l) that the t:ransfer function is also a function of 

the offset parameter E: ' and is independent. of the obser,-

vat ion time t . n· Hence, the transfer function for the 

simple stagger sampling scheme can be written as: 

(2.12) 

It has also been proven{2) that "the transfer function 

Rn (e:, w) as given by equation (2 .12) is a periodic function 

of w if and only if the parameters e: is equal to qT /P, 

where P and q are both integers with q less thari P. More~· 

over, the fundamental period is given by 21TP/T where T is 

the nominal sampling time. This periodicity characteriza-

tion holds for both n odd and n even';. (This is Theorem 1 

as stated.in ( 2)). Recall that the period of the transfer 

function in the case of uniform sampling is 21T/T, this 

implies that the period of the transfer function in the non-

uniform sampling case is "extended", for P > 1. This fact 

can b.e best illustrated by examining the frequency responses 

of a. high pass filter based on uniform and the simple 

stagger sampling schemes. 

Figure 2 shows the frequency response of an ideal 

digital high pass filter based on uniform sampling. In 
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0 w 

Figure 2: Ideal High Pass Filt~r (uniform samplin~) 

112.(w). 

--'---···-----

-w<- 0 

Fiqure 3: Ideal High Pass Filter: (non-uniform sampling) 
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Figure 3, the·frequency response of the same ideal digital 

filter .based on simple stagger sampling is shown. It can 

be seen that the fundamental frequency of the filter has 
' ' 

been "extended" to 2rrP/T in the non-uniform sampling 

case. The fact that the fundamental period is extended 
' ' ' 

is very important in the design of digital filters. 

It can be seen that because of the periodical notches 

in d,igital filters, unnecessary'loss 0£ information (in the 

case of high pass filter) and aliasing (in the· case of low 

pass. filter) results. For example, if .uniform sampling is 

used iri a high pass filter desigri, then information between 

the frequencies 2Tr/T - we and 2lr/T +,we as well as their 

harmonics are rejected. However, if the non""'.uniform.samp""'. 

ling technique is used, one can shift the notches. to higher 

frequency ranges, so as not to affect the low frequency 

components of the signal, by selecting a proper value for 

P. This technique has been employed by radar engineers to 
.· ' .. ' ' ' ' (1 2) 

implement the Moving Target Indicator Processor ' . 



CHAPTER III 

THE ERROR CRITERION FUNCTION 

3.1 Development of the Minimum Error Criterion 

In order to .determine how good the weighting sequence 

{hk} can be selected so as to best approximate a desired 

transfer function behavior, some kind of criterion has to 

be established. We shall now consider the. analysis for a 

general non-uniform sampling scheme, and then apply the 

results to the simple stagger sampling scheme. In this 

analysis, the criterion chosen for evaluating the goodness 

of approximation is the integral squared error (mean squared 

error) criterion, which is given by the following 

expression: 

f (h) = f ... ·.. . 2 
W(w) IHd(w) - Hn(w) I dw (3. 1) 

fl 

where, Hd(w) is the frequency response of the desired 

filter, H .(w) is the frequency response of the' synthesized n . 

filter, fl is the set of w values over which the comparison 

between Hd(w) and Hn{w) is to be made, and W(w) is a real· 

non-negative weighting function. Note that expression (3.1) 

can also be written as: 

f(h) = r W(w){Hd(w) - Hn(w}}{Hd(w) ~ Hn (w)J7c-dw 
St 

13 
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I I -.1!1 

14 

= J 
2· 'k 

W(w) {I Hd(w) I - Hd (w). Rn (w) . .., 
Q 

;~ 2 · ... · 
Rn (w) Hd (w} + !Hn(w)I }dw (3. 2b) 

I 

where ( ) "i( . 
denotes the·complex conjugate of the 

/ 
/ argument. 

Recall that for the .mOst general case of non_.uniforrn 

sampling, we .have: 

oo . -jw(t -t · ) 
( ) \' n n-k H w ... = · L h e 

n . k=O k 
(2 .5) 

.If this expression is substituted into equation (3.2) then 

we get: 

f(h) 

(3. 3) 

In general, {hk} is a complex valued sequence having 

coefficie.nts hk ·= ak + jsk for all k.(ak and Bk are t:he· 

and iifiaginary parts of hk respectively.) In order to 
. . . 

mirti1Ilize the squared errbr criterion,. a necessary condition 

is that the partial derivatives of f(h) with respect to 

the ak' s and sk' s are all zero. That is: 



as: 

= af~h) = 0 
. a k 
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for k=Q, 1, 2 .. ~ (3.4) 

Using equation (J.J) we can evaluate ~xpression (J.4) 

= f W(w) 
... jw (. t . '- t .. ·k· ) .J... n n-. " { .,-e .· · Hd(w) 

· .· .J •. w .... < t .. · -t • .. k) . n · n-Hd(w)e · .·· . 
n 

00 I jw(t• -t .·) 
.-j w ( t -t ) I h')~ e ·. n n-m 

·+.· · n · n.-k m=O· m e .. . . 

00 .... jw (t -t .k) jw(t -t ) + l h e . n n"'.'" e n n-m }dw 
k'70 k 

(3~5}. 

If we equate equation {J.5} to zero, then we.can rewrite 

this expression as: 

f . .· .. oo ·~ Jw ( t -t ) 
· W(w} (. I.· h.~ ·.e ·. · n !l-ID 

m · m=O n 

-j~(t -t .. • ) n n,-k e .. 

oo · ... jw(t .. t k) Jw(t ~t . ) 
+ •.I h. e n n- . e n n -m ) dw 

k='=O;l<: . 

· ( ) (. " ( .) · .·. n n- ( ) n n- ) J ·· .J... · .. -jw(t-t. k).. jw(t -t k) 
= · W w · Hd w e .· · ·· + Hd w e dw 

(3.6) 

Similarly, the second condition in equation (3.4) af(h) = O 
ask 

. can also be expressed as: 
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I oo ·. -·~ jw(t -t . ) .. ...;jw(t -t .. k.) . . W(w) ( l. h"e . n .·. n-m e . n. n-
m=O m 

. 00 · . -Jw (t -t .. ·. · ) '- jw (t - t .. ·· ) _ I ~e .. n n-k e n n-m )dw 
k=O ·. · . ·• ·. . 

. ( 3 . .7) 

By performing addition and subtraction on equations 

(3.6) and (3.7), one. gets:. 

I 1( . . . -j w (tn~tn-m) 
= W(w) Hd(w)e . · ·.··· ·. dw 

n 
and 

I.·.· .·. ·. 00. ·. -j w ( t - t . k). j w (t. - t .. ·. . ... ) W(w) l ~e .. n n- e . . n n-m dw 
~o . . . n . 

I . jw(tn~tn-m) 
= W( w) Hd(w) e dw 

n 

SinceW(w) is chosen to be real, it is seen that the 

above two expressions are complex conjugates of each other. 

As a result, the condition for a minimum approximation 

error requires that: 
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J·. . . . 00·· ....• · -jw(t. -t .... ·· · .. k·) jw(tn· -tn-m) · · W (w) l ~ e · n n- e . · · dw 
k=O · Q ·. 

·J Jw(t -t ... ) · = ··. W(w) Hd(w} e · n n-m dw (J .8) 
·Q 

If we interchange the order. of integration and summation 

·we get: · 

f.· . . . Jw(tn-tn..;m) 
W( w) l-Id(w)e · · · . dw 

Q 

Now, let' s define: 

and 

c = mk 
I . jw(t .. · -t ) 
W(w) e. . . n-k n"'."m dw 

Q 

f ···. · · .. ·. ·· .. · . j ()J(tn -tn-k) .· . 
bk - W(w)Hd(w}e ·· · .. · dw 

Q . 

then equation (3. 9) be.comes: 

00 

b m m, k=O, 1, 2 , , .. 

(3. 9) 

< 3. lo) 

(3.11) 

(J.12) 

Note that equation ( 3. J2) invcH ves an . infinite sum 

for implementing the causal infinite impulse response (IIR) 

filter. In practice, only a finite impulse response (F'IR) 

filter is implemented. Hence, for.a causal 'FIR :filter 

equation (3 .12) has to be modified as: 



(3; 13) 

. Expressed in vector form, this expression becomes: 

Gh=h ( 3 .14) 

. . ' . ' 

where N is the. order of the causal FIR filter, C is the NxN 

matrix with cmk as elements, h is the Nxl vector formed by 
. . . 

the weighting coefficient sequence {hk}; ··and b is the Nxl 

vector with bk as elements~. 

The problem, of selecting the optimal weighting 

coefficient vector of the transfer function h is now reduced 

to solving the system of N simult:aneoµs linear. equations 

(3.14) for h. That is we have: 

.where h 0 is the optimal set of hk's for a minimum value of 

error, and c-l is the inverse of the matrix C. 

. . 

3.2 Simple Stagger Samplin&.Application 

we· shall now restrict our· interest to simplg ·stagger 

sampling. If we explicitly include the functional depend.:. 

ency of the stagger .sampling scheme parameter, a.s identified 

. by the symbol £, into tJ'le process of minimizing the 

approximation error, then the error criterion function, f(h) 

becomes: 



f (E 1 h) 

and C = C(E) 

b = b(E) 

also 

19 

(3.15) 

A general algorithm for finding the optimal value of 

the stagger parameter E is now developed: 

Algorithm: 

FINDING THE OPTIMAL VALUE OF THE STAGGER PARAMETER E. 

1. An arbitrary value of E (between ±T) is selected, 

then, 

2. based on this value of ·E; the matrix C and the 

vector b, equations (3.10) and (3.11), are 

evalued. 

3. Equation (3.15) is now solved for the optimal set 

of. coefficients {hk}. 

4. ·with this set of coefficients, the value of c is 

varied in order to find an improvement (i.e., 

reducing the error criterion function). This new 

value of E is obtained by perturbing the old 

value of E in the direction of the negative 

gradient, 

i.e. , 

where oc is the step size. 

.(3.16) 
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5. ·'After this new value is determined, the whole 

procedure is repeat~d until a minimum value of 

f (h{E) , E) is folllld. The minimum value of f(h ( E), E) 

is detected when no improvement in the error 

Criterion iS achieved by Varying h( E) and E. 

3.3 Properties of C(E) an<l.b(E) 

In this section we shall study the properties of the 

matrix C(E) and vector b.(E). For illust:.rative purpose the 

aforementioned scheme is applied in synthesizing a high pass 

filter which has the ideal desi!ed frequency response as 

shown in. Figure 4. 

In most radar applications, the stop band of the filter . . . . . . ' . 

(w < we) is very small compared to the pass band (about 1% 

of the frequen,cy spectrum out to 21TP/T). Since ... the stop 

band is a very important feature of the high pass filter.and 

in this case, it. constitutes only a small. fraction. of the 

entire spectrum(Z), a special weighting function W(w)·has 

to be used in order to emphasize this desired stop band 

characteristic. The weightirtg function used will have to 

weigh very heavy errors.in' the region of the stop band and 

the transition to the pass band. The weighting function 

that is used in this analysis is shown in Figure 5 .. 

If we choose {n:. w .:i wh} as the s.et of frequencies for 
' ' 

comparison, where we < w1 < wh, then the elements cmk and bk 
' ' 

can be evaluated. Inserting the above information into .. · .. · 
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Plt 
T 

Figure 4: Ideal desired frequency response bf HPF 

W<w> 

i 

-w4i 0 

Figure 5: The weighting functton 

w 
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equation. (3. 10) and (3 .11) one gets: 

= 

= 

w 
h 

.f J"w(t -t ) n-k n-m . cmk = . e . . . dw + 
-wh 

wh 

. Jdw + 
-wh 

. (t . -t . ) J · n-k. n-m · 

-w h 

2 
t. t · {sin[wh.(tn"'-k-tn· -m)] n-k n-m · · ·· · 

+ :>. sin[. w.l· (t . k. -t )] J . n- n-m 

Solving equation (3.11) gives,. 

jw(t k-t m) n- n-e .· dw 

m=k 

m=k 

(3.17) 



b ··= m 

= 

w c I J'w(t -t ··.) n ·n-m e . 

e 
j w (t -t . m) n n-

j w (t -t .· ) .· · n n-m 
+•· .. _e~---..---

J(tn -tn-m}. · 

w -w c ·c 

I dw + A J dw + 
. -wh -w' I 

2 
t .-t n ·n...,m 

23 

A 

wh 

dw + e n n-.m dw I. jw(t .-t . ) 

wl 

Jdw 
WC 

+we 

j w(t -t ) n n-m e .. 
j (t .;,t ) n n-m 

wh 

+ I dw 

WC 

mfO 

m=O 

· + sin[ .. w.h(t ...,t .. )] - .sin[w (t .-t )]}· m:fO . . n · n-m . · c n n-m 

m=O (3.18) 
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If we choose N to be the orde.r of the FIR filter and 

tN to be the observation time, th.en the expressions 

t. k--t . and t -t .·in equations (3.17) and (3.18) n- n-m n n-m 
becomes tN....,k-tN-m and tN-tN-m respectively. With reference 

to Table 1 with N odd, the different values of the expres-

sions are summarized in Table 2. 

Substituting the results from Table 2 into equation 

(3.17) yields: 

c = mk 

2sin[wh((m-k)T + E)] + 2A.sin[w1 ((m-k)T+ E)] 

(m-k)T + c 

· 2sin [wh ((m-k)T 

(m-k}T + c 

m=odd 
k=even 

m=even 
k=odd 

2sin [ wh (m-k)T] + 2 A.sin [w1 (m-k)T] 

(m-k)T + c 

m,k = even 

m = k 

(3.19} 

Similarly, equation (3.18) becomes, 

m=odd 
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ASin(wcmT) + 

· m=even 

m=O 

(3.20) 

A close obs~rvation of equation (3.19) shows that 

there are some special relationships between the elements 

of the matrix C(E). This can be demonstrated by the 

following e:xamples: 

Let m=l, k=2, then by Table 2 and equation (3. 19) , 

this gives, 

_ 2sin [ (-T + e:) wh] + 2Asin[ (-:T + E) w1J 
(-T + e:) 

= 2sin [-(T - e:)wh] + 2Asin {-(T - e:)w1J 
- (T - e:) 

. I . 

If we now, . let m=2, k=l then, 

= 2sin{ (T - e:)wh] + 2Asinf (T - e:)w1] 

(T - e:) 

Since sin(x) = -sin(-x), . therefore, c 12 = c21. Similarly, 

cmk can be shown to equal ckm for all m and k; This implies 

that matrix C has identical terms on bot.h sides of the 
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diagonal. Moreover, the diagonal elements are given by 

2 ( ;>..w1 + w. ) for m=k, equation (3. 19) , is constant. for all m 
h . 

and k. i. e,. .• the diagonal elements are the same and are 

corn>tant. Hence, the matrix G(E) can be said to. be con-

jugate symmetric:, and n therefore Hermitian (Le. , 
t . . 

G ( E}=C ( E)) , .this also results in a similar characteriza-

tion of Ct (E): (C-l(E)) t =Ct (E));. ( ( ) t. denotes the 

complex conjugate transpose of the argument). This 

symmetry property of C(s) will be used when we examine the 

properties of the error criterion function. 

3.4 . Properties of the Error Criterion Function 

Since the error function provides a measure of goodness 

of the digital filter synthesized, a study of its properties 

is very beneficial in terms of minimizing the approxima-

tion error. By expanding equation (3.1) one obtains: 

f(h) = Jw(w)(Hd(w) 
r2 

~ Jw(w)Hd(w)Hd(w) dw 
CT 

Jw(w)Hn(w)H~(w)dw 
r2 

+ J 
r2 

+ f 
n 

-,'( 
H (w)) dw n 

' . ,,, ' 

W(w)Hd(w)Hn (w) dw 

. . •k 
W(w)Hn(w)Hn(w)dw 
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TABLE 2. 

m,k t -t N-k N-m tN-tN-m 

m=odd, k=even (m-k)T + E: mT + E: 

m-even, k=odd (m-k)T - E: mT 

m=odd, k=odd (m-k)T mT + E: 

m=even, k=even (m-k)T mT 

·-------·----·-·-----·-··------.. ---·--··---~~w•·~-·-~---••'"~-··~---·~---------------·--



28 

. . . 

= f w(w) I Hd (w)··l 2dw J W(w)Hd{w)H: (w) dw -
n .. . n . 

f W(w)Hn (w)H~(w) dw + J W(w) I Hn (w.) I 2dw 
n 

(3. 21) 

Substituting equation .(2. 5) into the above expression, the 

error fun~tion. can be written as: 

J . 2 · N-1 * f. . j w ( t -t . ) 
f(h) = W(w)IHd(w)I dw - I hm W(w)Hd(w)e . n n-mdw 

n . m 0 D . . ·. 

N-1 f * . -jw(tn-tn-k) . - l h . W ( w) Rd ( w) e . · .· · dw_ . 
k=O .k n. . 

N-1 N-1 * I jw(t -t ) ·. . · n-k n-m + l ·~ l h ·· W ( w) e .· ·. ·. dw 
k=O m=O m . 

If we define: 

a= Jw(w)IHd(w)l 2d~ 
n 

n . . . 
(3.22) 

(3.23) 

and substitute the bk' s and cmk' s. as defined in equations 

(3.10) .and (3.11) into equation (3 . .22), then this expression 

· can be simplified to: 

f .(h) 
N".'"1 * = a - . I h. b. 
k=O C".k k 

(3. 24) 
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Expressed in vector form this becomes:.· 

f(h) = a - htb ·.~· bth ··+ htCh (3.25) 

and the Nxl vector h will hereby refered to as the filter 

coefficient vector. 

·.Note that the last term in equation (3. 24) 
N'-I N-1 •·~ ( I I .· hkCmkhm) is. always positive, because it represents 
k=O m=O · · .·· · . · · 

the squared magnitude term, Jw(w)1Hn(w}l 2dw in equation 
a . . 

(3.21). Tt then follows.that the product htchis positive. 

Since C is a. NxN Hermitian symmetric matrix (section TII. 2) , 

therefore, it is evident that c is a positive definite 

matrix in order that the above statement be true. 

As was done in the previous section,· we shall now 

introduce the explicit dependepce of thef)tagger sampling 

parameter t: into the error criterion function, that is, 

f(t:,h} = a - .htb(t:) - bt(E)h + htC{i:-:)h (3.26) 

The task now is to select the value of t:. and h which will 

minimize the criterion f ( t: ,h). Recall that the optimal 

transfer coefficient vector h is: 

0 . -1 .· h = h(~) · = C (i:-:)b{c) (J.15) 

then it is clear that for a particular value of c: 

f(c,h(E)) < f(t:,h) ( 3 .27) 
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The justifi.cation,for expt"e.ssiori (3.27) follows from.· 
. ._· . . . . . 

the fact that C(E) is a positive definite N:xN. matrix; 

hence; Rank· {G(e)J is :e~pial to N and thus 'the inverse of 
. . •' 

Cfe:) exists .. If the inverse of G(e) exists,. then the. solu.:.. 

ti on of h (£) , equation {3; 15) , is unique . ··• Theref~re, there · · 

is.only one minimutil yalue of.f(t,h) for a'particular value 

of.·e .• 

J:lepce, for. the optimal filter coefficient, .. vector h(E). 

. . 

Il1ii1}l(e, li) = f{e ,h (E}) .. 2- f ( e, h) (3.28) .. · .. 

·In order tQ study.the effectsof'7a:ryi~gthe·para­
meters e and hon the errQ:t'. criterion function f (t ,h) ~ .one 

has. to examine the derivatives: of the function with r:~spect 
.. : . : . " . 

·to· ·the variables e artd h's. t~, previous s~ctions ;: it.···was ···.' 

shown .that for··a given '7alue of e, the g.radient of. the. 

functional with respect to h will yield an optimal· s9luti,on 
. ,:·· . 

for .. h as: 

(3.15) 

Now, if we take the derivative of.the funct;ional· 

equation: (3. 26), with respect .to £, we can go un'der .two 
' . . . . 

possible condi~ions .. , First, ~e can take the derivative 

of equ~tion (3. 26) .with' respect to t while holding; h>cori-

stant,. and •. thet1:. evaluate the .derivative with ~he opti~~d·.·· 
:_. . ··:· .. ·· .·._ ..... 

set o,f h coeffi.9ierits, f.e., at h =h(e). Or we can.·· ·. ' . . , .. 

,·_ ;. .. : . ~- . . . . ::.: ·.: ... : : ... 

.·., ·· .. - ~ . . .. . 



31 

take the derivative. with respect to E for the error crite- ·. 

rion function with the optimal set of h coefficients as a 

variable of the function: (i.e., f(E,h) = f(E,h(E))). 

For the first procedure we get: 

~f(E,h) = ~E [a - bt(E) h - htb(E) + htC(E) h] 

t db ( E) h ht db ( E) + ht dC ( E) h 
dE ~ dE dE 

(3.29) 

d · I db t < E) [ - 1 · J [ -1 · . J t .. - f( E ) h) - - dE C . ( E) b ( E) . - C ( E) b ( E) 
dE h=h(E) 

Since C( E) is symmetric (as shown in section IL 2) so 

will C(E), thus the expression cart be modified and become~: 

~ f(s,h) I = -bt(E)c'"'"l<d db(E) 
E h=h(E) dE 

dht (E) 1 d C- (E)b(E) + 

( 3. 30) 

Note that: 

. •.. -1 . . 
I = C(E)C (E) 
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where I is the identity matrix.· If we take the derivative 

with respect to s on both sides of this. identity, we get: · 

which can be written as: 

(3.31) 

Substituting this into equation (3.30) yields: 

b t(s)C-l(s)d~~s) • 

.,.1 
= - bt(s)[C-l(s)d~~s) ·+dC(fo(s) b(E)] 
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d ·. t• . 
= - de [b (E)h(E)J (3.32) 

For a minimum value of f(E,h) one would anticipate that 
d . . . 
dEf(E,h) I =.O, and then solve for the value of E which 

·· ···· ·. .· h=h(E) 
will satisfy this . condition. 

For the second procedure we shall take the derivative . · 
. . ·. .·.. . .· 

of the. error criterion fu.n.'ction with respect. to .E, which 

has h(E) as its arguinerit, that is: 

With h(E) ~· c"" 1 (E) b(~), this. can be written as: · 

. ·. . .·· . d '. ··.· .-1 ···.· + ... · 
f(E,h(E)) :.= dE {a ,;. [c (E)b(e)J b(E) .·. 

+ ·• [G,_J;(E ) b ( E ) ] t C ( E} [ C :- ~ (E) ~ ( E )J } 

. . .· .t .. -1 .. 
;,. b (E).C (e:} b(E) 
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. -1 -1 . + b ( £) C ( E: ) C( E:) C ( £) b ( E:) } 

= ~E: {a - b t ( E:) c-1 (E:} b ( E:) 

d [.ht ( t) G- l (E:) . b (£)] dE: 

-· - ~ [bt(E:} h(E:)] 

(3.33) 

(3. 34) 

Surprisingly, this is the sarne·result as obtained in the 

first procedure, equation (3.32). However, a second thought 

would tell us that they have to be equal, beca:use they 

represent the same point on the error criterion function 

for the same value of E:, i.e., 

f < t • h) I - f < c. h < d ) 
h=h(c) 

and hence they should have the same slope with respect tb . 

E:. Therefore, we can conclude that: 

~ f(c,h) I . = ~ f(E:,h(d) = - ~E:[bt(dh<dJ 
E: h=h(E:) ·E: .. 

(3.35) 

. Furthermore, we shall refer. the total derivative of the 

error function with respect to E: as f E: ( E: ,h( £)) arid thup: 

f ( E: • h ( E:) ) = - ··-t- J. b t ( E:) h ( E:) J E: UE: 

dbt(t) h(E:) - bt(E:)d~~E:) 
dE: (3. 36) 
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Recall that: G( e:)h(e:) · - b (£) hert~e, ·if ·we ta~e the 

derivative with respect. to. t on both' sid~s .· 6f this 

identity, we get: 
. .1. , .. •'• .. 

.. d~~e:) = C-l(~·)···[dbfe:) ... ·_ dG{e:)·.h·(;).J. 
c. de: . ·. ·. dE c. 

(3.37) 
·-.:' 

Substituting this into equation· (3. 34), yield!=?·: 

f (e:,h(e:)) 
£ 

dbf(e:) . t. 1 . . 
de: h(e:) - b :(e:) c- (e:) ·. 

· ·rc;lb( ~) de< e:) . h<·.e:.·· )·J· . de: - de: 

This will be the relationship U$ed to generat~ the.· 
. . 

derivative of the .. e·rror criterion ftinction with respect . 

to e: in the simulations ... 

Before leaving this section we shall recall that the 

error criterion 'function is a function of the two variables .· 
. . ·,. 

£.(the simple stagger sampling parameter) arid h (the 
·. ,. . .. . . . .· .. . 

transfer function coefficient _vector) . . Also, it was 

· found that the hk' s of h, would also be a fU!lcti:on o.f e: 

·· if h is chosen to be bp~imal. Hence, .in order ·to achieve 
. . 

the best approximat_ion to a desired filter, one has to 

select the value of e: that would minimize. the e'rror 

••. ,· ! .. ' 
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criterion function. The·technique used to determine this 

optimal value of E is as outlined in the Algorithm in 

section III.2. This algorithm will form the sole basis 

of the numerical examples presented in the next section. 



CHAPTER IV 

NUMERICAL EXAMPLES AND DISCUSSIONS 

In order to demonst.rate the concepts and observa-

tions developed in the previous sections, we shall consider 

the design of a high pass filte.r. . This filter will have a 

functional relationship between the input and output 

signals as given by equation (2,.1), i.e.,: 

N-1 
y(t ) = I hkx(tn-k) .(2 .1) 

n k=O 

where y(tn) is the output of the linear filter at time tn; 

x(tn) is the input at time tn; and hk are the transfer 

function coefficients. 

The design objective, now; is to select the value of 

the stagger sampling parameter E: of the simple stagger 

sampling and the filter transfer function coefficient vector 

h, so that the minimum error criterion described in section 

III can: be satisfied. The desired frequency response of 

the digital high pass filter will be as shown in.Figure 4. 

The· interval set for comparison is: Q = { w: I w I <P1f /T}. 

In a practical situation, this kind of filter ~~ 'the 

clutter' rejection filter' -- will have a very small notch, 

i.e., the relative width of the stop band; given by: 

2wc/ (21fP/T) = wcT/PTr is small. In order to ensure the 

presence of the notch at low frequency in the implemented 

37 
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filter'.- one would .choose. a weighting, function. which weighs 
.. : ·~ ,. 

heavily around the regions of tra,nsition between the stop 
... ,".'.. 

band and the pass· band as .well as the st:op. ban.d itself. 
' ' ' 

A typical weighting function of this type is shown in 

Figure 5 ,. i.e., 

. in which A. >>. 1· and w ' > we.· • 1 ·. 

otherwise 

The value· of· A.has t6 be 

(4.1) 

large in order to:give a good match.to the stop band at 

·low frequencies in the frequency response of the ideal high 

pass fiiter. Note that a small value.of A. will give a 

pc;>0r match and hence will not give a desired stop band at 

filter; which. is to be avoided. 

In order to contrast the two• different s~~p'ling 

schemes: unifor#J, ·.and simple stagger, the following set 

of parameters i~ used in synthesizing a· high pass ·filter . 

. '(Table 3). Where all. w Is are, in radian.s ;· with ;£ defined 
.;: .. '. 

as e: = qT/P, a value of .q = 0 would result in a filter 

implemented by \J.niform sampl;i11g '. and· for· q f .O the sampling . 

scheme is the sii;nple stagger sampling~ 

We shall now proceed by following .t.he steps as out_; 

lined in the Algorithm of Chapter ~II. The bk' s and . · 

c~k's (equations (3.17)·and (3.l8), respect;:iv~ly} are no.'w· 
..... , 

:. . . 
. , ... ···<~ 
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TABLE 3 ·, :- .. 

Paramete.rs for a digital hi~h pass filter 
-·----·· -··----. 

A. = 106 n = 3'. 9 

wl = 3w .· . c p ·= 10 

wh = P1r/T T = 0.001 sec 

WC = 1r / lOT q = 0 1 
. ' 

£ ·.qT/P .. · 

, .. ·. 

I ~ ' 
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. . . 

evaluated. Then solving the system of N equations in N 

unknowns (equation (3.11}), the optimal values of the filter 
• ' ' •' ' .. ' ' • • ' • • ~' < - ' • - - • 

. . 
transfer function coefficients for a given. c: are obtained. 

Hence, the frequency response can be obtained·. by evalua-

ting the Fourier Transform relat:ionship: 

H(c:) = 
N-1 -jw(t -t ) L h e N N-k 
k=O k 

(2.5) 

Figure 6 shows the frequency response obtained with. 

N = 3, 9 and c: = 0 (i.e., uniform sampling). Note that 

when N is increased a better roll off for the transition· 

bands can be achieved which is connnon as in all (analog 

or digital) filter synth~sis. I.f we now set c: = 0. lT 

(simple stagger sampling, T is the uniform sampling period) 

then the frequency response in Figure 7 shows that the 

periodic notches are. removed, althoq.gh some 'troughs' 

·are still observable in the pass band spectrum. Again, 

with a high order N, the frequency response of the filter 

is comparatively flatter, i.e. , the troughs are reduced aild 

hence we have a better approximation to the desired 

response. From this example one can see that the selection 

of the parameters N and c: will have definite influences on 

the coefficients hk and hence on th~ frequency response · 

and error criterion function of the filter. Later on, 

we shalL study the influence of another important parameiter 
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Figure 6: . Frequency reponses of a digital filter (uniform 
sampling). 
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Frequency response of a digital filter. (non-
uniform' sampliq~) 
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. . . 

;\, the constant in the weighting function, on the frequency 

response and approximation error of the .filter. 

In order to determine· the optimal value of e: which will 

minimize the error criterion function, one now, has to 

perform step 4 of the Algorithm in Chapter III. That is, 

to find the direction of negative gradient of the error 

criterion function and perturb the value of e: accordingly. 

However, in the process of simulation it was suspected 

that the minimum value of f ( e: , h ( e:)) did not charige 

drastically as the value of e: was varied between +T. This 

behavior is observed .from a plot of f(e:,h) for several 

different va·lues of h. With the parameters as given in 

Table 4, f(e:,h) is plotted and is shown in Figure 8. 

It can be seen :frorn Figure 8 that the minimum values 

of f(e:,h) for all different values o.f h have more or less 

the same va~ues (Le., the difference between these minimum 

values is not large, .and that these minimum values occur 

at the selected values Pf (c: = ±0.7T, ±0.ST, ±0.lT, O)~ 
. . 

This confirms equation (3.28), which says: 

If ·we recall equation . (3.33) we see that: 
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TABLE 4 

Parameters for the graph of f ( E, h) vs E .• 

A. = 106 N = 9 

wl = 3 WC p = 10 

wh = P7r/T T = 1 sec 

WC = 37f/10T q = ±7' ±5' ±1, 0 

E = ±0. 7T, ±0. ST, ±0. lT, 0 
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·. . 

Since a is independent of £ , and hence, in order that 

f(£,h(€)) to have approximately the sam~ minimum value for 

different £ 's, i.. e; , for minimum f ( £ ,h( £)) tends to be 

constant·over the range of E.interested,· the product 

.. bt (£)h(£) will hav~ to be approximately constant. To 

· verify this fact, ·a ser:i..es of. tables wfth different para~ · 

meters is generated and is presented in Table 5 (a-e); .·.These.· 

table~ show the values of the productbt(E:)h(d, t:he value 

of f(£;h(£)) and of f(£,h(£))with h{£) =· h(b), correspond-

ing to a set of values of r ... · 0, fO.lT, +O;ST, +0.7T. 

It can be seen· that; although the p·roduct of bt (£)h(£) 
' . 

'tends' to have very little variation, the valµe of 
. . . 

£ ( £, h(e:)) does not p.ece~sarily hav~ the same small order 

of variation. In fact, the variation.in the value of 
.. 't .·· ... 

f(£,h(e:)) is larger than in .the product of h (£)h(£). This 

is. due to the fact that: f(s 1h(£)) has a smaller order than 

the product of b+(£)h(i=;). H~~ce, a small change in 
. . . 

b t (e:)1:~(£) may reflect in a large change in £(£ ,h(£)) .· 

Based on these: results,· we ·can now hypothesis .the 

following.conjecture: 
·. . . 

CONJECTURE i 
For a particµiar .Jilter.trans£er function 

coefficient vector,. h, ~obtained optimally for ·a . 
given value of e, the :Blot of f(£,h(e)) appears to 
have a·minimum ate:=£. It was then hypothesized. 
that the condition . · · 

~or all £ in the range -,.T<i<T. 

: . . ' . . 

.·· ... '•. 

. ... ·' .... :. : .. 

. ; . :.·· ... ·· :, ·. 
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TABLE 5 

values off (E,h(f)) for diff~rent E's 

(a..) 
~ * * * * * * * * * * * * * * * * *· * * * * * * * * .. f( * * * * * * * * * * * * * * * * * * * * * * *"' *. * * * * * * 

WC = o.bc(j.ScU u 0 Wl = u.lt>850u 01 WH = v.t.171240 02 
Ur.ti.Hi.I'< = ~ LAMOA -· U;,lOLJ 0 tl 
p = U.151) 02 T ;: U • 1 OU I) l 

. . 

Ir * * * * * * * * * * * * * * * * * * * * f( *· * 11 * * * * 11 * * * * 11 * * * * * * * * * * * *· * * .. * * * * * * * * * * 
b(l:.)*H(I:.) f ( t:, rl ( l:.) ) F (.I:. , H l 0 ) ) . 

lr****************************************111111******"'********* 

-o. n o.2c::>obP 08 0 • 2'Jbbt:IU 0., (J .10 2 4 t.Hl 09· 

-o. '.:> r o .. ~24':lt.W 08 0.2b7~dU 07 ll.5401,)lD Ut:I 

·O.lT u.c:c:ce.so () tl 0.2909'1LJ 0., 0.491'.:>tlU 07 

o.or u. 22 l b'.:>I) 08 0.29b7~U Ul 0.2967~U 07 
0. l T 0.221090 0 tl O • .S024c!U O'I 0.5UB9llU 07 

o.~r u.c1t:1t:111u Ot> 0 • .52442U 0 l O.b44.!i1U 08 

0. 7 T 0.217 lbu 08 0 •. U';)7 clU () 1 O.lll26'1U () 9 

( b) 
***********************************11*****11\'**********~******* 
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However, as an. example shown in Figure 9 for a small value 

of A. (i.e., 103), it illustrates that this condition is not 

true in general. The reason that Figure· 8 indicated this 

condition is thought to be caused by the large value of A. 

(i.e. , 106) used in the. design. 

Nevertheless, if we can very crudely regard these 

variations in the functional f(E,h(E)) with respect to 

different E to be insignificant, then, we will be able to 

manipulate the value of E in order to redistribute the 

error over the entire spectrum. That is, because only a 

small improvement in the error criterion function is 

obtained by varying the parameter E, one can., instead of 

aiming to minimize the error criterion function, select the 

Value of·E that Wi,11 produce a frequency response that is 

best for the processing of a particular input signal 

spectrum. 

To verify this, the filter with parameters as shown in 

Table 4 is synthesized. The value of q, again, has been 

varied for the different values in the set {q: ±7, 2, ±1}. 

The frequency response of the synthesized filters corres-

pondi!lg to each different value of E is presented in 

Figure lO(a:-e}. Notice that the locations and the depths 

of the troughs are not the same in each case. This means, 

although we cannot totally eliminate the troughs, we can 

manipulate the value of the parameter E, such that, an 
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Figure 10: Freqt,1ency Response of digital fil t.er with . 
different values of E:. 
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input spectrum can be processed with minimum distortion. 

This is seen in the following example. 

In processing radar signals, some particular frequency 

components may be insignificant in the frequency spectrum 

concerned, (i.e., assume that signals may occur only at 

certain frequencies), Hence, one may tend to orient the 

troughs' of the implemented filter response to those 

frequencies. Thus, the signal can be process¢d without 

much loss of information due to the presence of the 

troughs. 

However, it: can be seen that there is no systematic' 

approach to select the parameter t.'. One has to study all 

the response spectruril. of the filter corresponding to all 

possib:Le values of t. before the best value can be selected. 

Nevertheless, if we proceed with the algorithm pre-

sente<t in Chapt,er III; we can always fit1d an optimal value 

·oft. which minimizes.the error criterion ftmction:. 

The filte:rpresented in Figure 7b is now being solved 

for the optimal value' of t., and was found to be t. 0 =-0.38T. 

With this optimal value of t. the frequency response of the 

filter i.s generated and is shown in Figure 11. · If we compare 

Figure 6b (uniform sampling), Figure 7b (non-uniform stagger 

sampling with arbitrary t.) and Figure 11 (non'-uniform 

stagger sampling with optimal t.} we can see that th.e 

periodic notches present in the frequency response based on 
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uniform sampling is reduced in the non-uniform sampling 

cases.· It can. also be observed that in the non-uniform 

sampling case using the optimal value of e (Figure 11) 

the locations of troughs that are originally present in the 

res'ponse With an arbitrary value Of E is redistributed over 

the entire spectrum~ That is, with the optimal valu~ of e, 
c . 

the frequency response of the filter will have a b¢tter 

approximat:Lon to the' desired r·espons'e than the one using an· · 

arbitrary value Of E 1 as expected. 

Note ·that, in Figure 11 the synunetry about the 

frequency P'Jf /T is lost. Since e 0 is equal to -0. 38T ih 

this case, which means the relationship e = qT/P gives 

q/P = - 10. 38 or q = -38, P = 100. However, we have 

originally used P = 10 (Table 3); therefore, this means that 

we have a further increase ·in the period. That is, with 

e = -0.38T the filter will have a frequency response that 

has a period of 1001f /T rather than 10'1f /T as we have expected, 

and,· that is the reason for lack of synunetry in the re.spouse 

shown .in Figure 11 over the frequency range presented. 

It was mentioned, that the constant A. in the weighting 

function W(w), equation (4 .1); has to be large in order to 

insure the notch in the stop band. This fact is illustra-

ted by Figure 12 and 13. In Figure 12 we have us.ed a .value . 

of A. equal to 103 and in Figure 13 a value of 106 . It can 

be obs.erved from Figure 12 that the response has a very 

small attenuation (- 7 db) at low frequencies; tli.at is, 
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CHAPTER V 

SUMMARY AND CONCLUSION·. 

The loss of information and aliasing problems due to· 

the periodicity of a digital filter based ori uniform 

sampling scheme is found to pe very undesirable ·iri some 

applications in signal processing. In order to ov~rcome 

this effect, one would tend to consider the digital filter 

based on a non"""uniform sampling scheme~ 'because the 

frequen.cy response of the digital filter in this case will 

have an extend~dperiod. This effect is important in that 

we can desig~ a filter with the proper extended period, 

so that the loss of information and aliasing problem can 

be minimized. 

It was shown that, with the simple stagger sampling, 

an optimal value of the stagger parameter can ah-Jays be 

found which minimizes an error criterion. That is, the 

optimal value of the error criterion function f(£~h) is 

given by: 

mi1b f (£,h) = f(£ ,h(£)) 

where h is the transfer function coeffi.cients vector. 

However, it was found that the optimal value of the 

~rror criterion function f(£,h(£)) does not have a large 

variation by varying the parameter £. for I£ I .::_T. This effect 
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allows an extra degree of freedom in the filter design. 

Because by selecting a proper value of .i:: one can have a 

filter )'.'espouse that would best.process a particular signal; 

however, th:is value of i:: may not be the.optimal Value that 
. . . 

would minimize the error criterion function. 

A conjecture was Pllt forth that the coU:dition 

f{€,h(€))2_f(i::,h(~)) is true; that is, the minimuin of 

f(i::,h(t)) occurs at i::. However, this condition was shown 

to be false when the value of A, the constant in the 

weighting function,. was chosen to be small. · 

Only the simple stagger sampling scheme has been 
( 

·studied in· this analysis . . The properties and character-'-

is tics of this particular sampling scheme may not be 

corrnnon to other types of non-unifoTIT1 sampling schemes. 

However, .the advantages of using a non-uniform sampling 

scheme in synthesizing a digital filter are inevitable. 

Since this analysis does not give an exhaustive study on 

all possiblenon-uniform sampling schemes, further investi--

gation should he carried out to examine the properties, 

characteristics and influences on the frequency response 

of a synthesized digital filter. 
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QF ·NON-U1'1IFORMSAMPLING TECHNIQ1JES 

FILTER SYNTHESIS 

by 

Joseph SiumingTsui 

(ABSTRACT) 

. ' 

Ani!l\Testigation of the non-uniform sampling technique 

as applied to digital filter designs cwill'hemade. The 

objective of the design is to reduce the interference 

problems as one would· encounter. in using uniform sampling 

technique in the synthesis. An artalysis of the error 

function which measures the goodness in approximating a 

desired frequency response will also be undertaken. An 

algorithm which determines the optimal parameters.for a 

high pass filter will he developed and used to synthesize 

the particular high pass filter. The results of this 

design, the frequency response and its approximation error 

will be studied and evaluated. 
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