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(ABSTRACT) 

Strategies for topology optimization of trusses and plane stress domains for minimum 

weight subject to stress and displacement constraints by Simultaneous Analysis and De- 

sign (SAND) are considered. The ground structure approach is used. For the truss 

topology optimization, a penalty function formulation of SAND is compared with an 

augmented Lagrangian formulation. The efficiency of SAND in handling combinations 

of general constraints for truss topology optimization is tested. A strategy for obtain- 

ing an optimal topology by minimizing the compliance of the truss is compared with a 

direct weight minimization solution to satisfy stress and displacement constraints. It is 

shown that for some problems, starting from the ground structure and using SAND is 

better than starting from a minimum compliance topology design and optimizing only the 

cross sections for minimum weight under stress and displacement constraints. One case 

where the SAND approach could not predict a singular topology obtained by compliance 

minimization is discussed in detail. A member elimination strategy to save CPU time is 

developed . 

For the plane stress topology optimization problem, the ground structure is obtained 

by using 3 noded constant stress triangular elements. A chess board pattern is observed 

in the optimal topologies which may be attributed to the triangular elements. Some 

suggestions for future research are made.
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1. INTRODUCTION 

1.1 Structural Optimization - Classifications 

Structural optimization is the science of designing structures to meet certain require- 

ments or objectives while satisfying certain limitations or constraints that are imposed. 

With the advent of digital computers and the finite element method, research interest 

in structural optimization received a boost. The efforts focused mainly in developing 

numerical methods appropriate for use on the computers. Structural optimization can be 

classified broadly under three categories 

1. Sizing optimization, 

2. Shape optimization, and 

3. Topology optimization. 

Sizing optimization involves optimizing structural sizes (e.g., areas of cross sections 

of truss members, thicknesses of plates, etc.,) without changing the spatial lay-out of the 

structure and hence the finite element mesh. Variables such as the areas and thicknesses 

are called sizing design variables. Since the finite element mesh is fixed, sizing opti- 

mization is simple to implement. However, by keeping the geometry fixed only limited 

benefits can be reaped in the design. Allowing the geometry of the design domain to 

change during the course of optimization is called Shape optimization. Inherently, this 

is more difficult than sizing optimization. If the structure is modeled using finite ele- 

ments, geometry changes require that the finite element mesh be regenerated repeatedly. 

Variables that describe the structural shape (shape variables) are also used as design vari- 

ables in addition to the structural sizes. The sensitivity of the objective function and the 
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constraints to the shape variables is expensive to compute. Despite the computational ex- 

pense, the benefits of changing the geometry are quite significant. Reference [1] reviews 

some of the research on shape optimization. 

When optimization of structures involves decisions on connectivity of a domain 

(number of holes) or on if and how individual members are connected with one another, 

we enter the 3rd classification of structural optimization, namely Topology optimiza- 

tion. Seeking member connectivity in addition to structural sizes makes the topology 

optimization problem difficult and challenging. However it provides additional gains in 

efficiency. This is illustrated by an example in Ref. [21]. The familiar 10 bar truss was 

optimized for minimum weight subjected to stress and a single displacement constraints. 

The optimization for sizing produced a design heavier than the one produced by topology 

optimization as shown in figure 1.2. It is clear that topology optimization removed the 

redundant members and reduced the weight. 

1.2 Historical Background on Structural Topology Optimization 

The first work done on designing an optimal topology for any structure was by 

Michell [2], early in this century. In this classical work Michell laid out theorems for 

designing optimal truss lay-outs for single loading conditions subject to stress constraints. 

These optimal trusses were statically determinate, consisting of a large number of mem- 

bers and sometimes even unstable. Hence, the Michell trusses were often impractical. 

However, in addition to pioneering research on topology optimization, Michell provided 

sufficient conditions for optimality of structural layouts that have been also used in recent 

years (e.g., see Lev [13]). 

Research on topology optimization stalled for more than half a century after that, 

mainly because the mathematical theory behind the Michell trusses is very complex and 

also because of the fact that these trusses were impractical. 
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In the sixties Michell structures were re investigated by Hemp [3], Prager and Shield 

[4] for the design of minimum weight structures. Rozvany and Adidam [5], Rozvany 

[6],and Rozvany and Prager [9] used Michell’s theory for the design of grillages and 

continued this work through the seventies. The reader is referred to the books by Roz- 

vany [7], [8] for a detailed description of the foundations of the analytical optimal layout 

theory for trusses, beams, grillages and plates. The theory due to Prager expressed the 

problem in terms of generalized stresses (local stress, shear force, bending moment, etc.) 

and generalized strains (local strains, shearing strains, bending strains etc.). A cost func- 

tion was then constructed by taking into account the structural weight, fabrication and 

handling costs, etc., A set of optimality criteria were developed for the minimality of 

this cost function satisfying the static and kinematic requirements. The optimal structural 

topologies developed were like Michell structures. They were characterized by a large 

number of elements, and were statically determinate. For more practical structures, topol- 

ogy optimization has always been based on some approximations. These approximation 

include but are not limited to : 

a) approximate analysis models (plastic analysis, rigid), 

b) considering only a few simple constraints, 

c) simple objective functions (e.g., weight, compliance), 

d) simple structural systems (trusses), 

e) a limited number of loading cases. 

Most of the research in topology optimization has been concentrated on the design 

of trusses, and for good reason. Trusses are simple yet nontrivial structures that can 

be analyzed and optimized easily. For a given set of nodal points there can be several 

ways of connecting them by truss members a natural problem for topology optimization. 

Starting from Michell [2], several researchers have proposed various solutions (exact as 
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well as approximate) for truss topology optimization which are classified in the review 

paper by Kirsch [12]. 

In recent years a lot of effort has been put into designing light weight structures. This 

has spurred a renewed interest in topology optimization. After Michell, the first serious 

work on topology design was by Dorn, Gomory and Greenberg [14]. They introduced the 

concept of ground structure for automatic topology design of truss structures. Topology 

optimization by definition involves removal or retention of elements. This means that the 

optimization problem should have some way to keep track of the presence or absence of 

a particular member. Integer variables which function like switches can be used to keep 

track of the presence or absence [14]. However since efficient methods were not available 

to tackle the mixing on integer variables with other continuous variables like the member 

sizes, this was not a practical approach. The ground structure approach of [14] offered 

a solution to this problem. It defines an admissible set of nodal points in the structural 

domain where each of these nodes is connected with every other node by uniform truss 

members creating a highly connected structure that can be used as the initial design for 

topology optimization (see figure 1.4). The optimal truss topology will be obtained as a 

subset of this ground structure. The ground structure approach transforms the topology 

optimization problem into a large sizing optimization problem where integer variables 

are not needed and most of the cross sectional areas reduce to zero. 

The objective of the study of [14], was to design a minimum weight truss subject to 

stress constraints. Member forces were considered as design variables which rendered the 

problem linear in the design variables. By using the linear programming (LP) method, 

Dorn, et al., obtained optimum topologies for a single loading case. If a design variable 

(member force) was non-basic, the corresponding member area was set to zero and was 

removed from the structure. Other cross sectional areas were obtained by dividing the 
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absolute values of the member forces by the allowable stresses. These steps rendered the 

optimal design statically determinate and fully stressed. 

Dobbs and Felton [15], extended the work of Dorn et al., to design statically 

indeterminate trusses subject to multiple loading cases. By considering the member cross 

sectional areas as design variables, they ended up with a linear objective function and 

nonlinear constraints. By using nonlinear programming (NLP) and heuristics they solved 

the problem. Members whose cross sectional areas were approaching zero were identified 

and removed but no proof that these members will not come back later was given. 

Sheu and Schmit [16], used a branch and bound technique for the topology opti- 

mization of trusses. An LP problem was initially solved to get a lower bound on the 

minimum form a set of candidate topologies and then the most promising configura- 

tions from these are refined using NLP. This scheme is general since both stress and 

displacement constraints can be considered and multiple loading cases were considered 

too. However they found that in problems where the displacement constraints dominated, 

more than 50% of all the candidate topologies needed to be refined by using NLP. This 

proved computationally expensive. Hence, to make the cost non prohibitive, the initial 

set of candidate topologies had to have limited number of configurations only. 

Majid and Elliot [17], used a “steepest descent alternate mode algorithm” to opti- 

mize ground structures subject to stress, displacement and buckling constraints for mul- 

tiple loading cases. Initially the ground structure is analyzed. Then a series of influence 

coefficients is created by applying unit loads at the end of each member in the ground 

structure. Using these coefficients and some theorems on structural variation, the struc- 

ture can be reanalyzed efficiently. The theorems and coefficients are used to eliminate 

members that are not needed and to detect any possible instability that may arise by 

removing a member. This method is however limited by the size of the problem. This 
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method was later extended by Majid and Saka [18], to topology optimization of rigidly 

jointed frames. 

Saka [19] considered in his work joint displacements as design variables in addition 

to member cross sectional areas and joint coordinates thus doing away with the structural 

analysis. The sensitivities were obtained by simple algebraic expressions. This concept is 

a simultaneous analysis and design approach that has also been used in this dissertation. 

Saka, by linearizing the problem and using the simplex method in a sequential manner 

was able to find optimal topologies for various truss configurations for multiple loading 

cases. To reduce the computational cost, he used for a ground structure certain practical 

configurations selected from experience and previous knowledge of the problem instead 

of the one described in [14]. 

When truss topologies are designed for a single loading case with the allowable 

stresses in tension and compression at the same level, the optimum topology is statically 

determinate. This was proved by Sved [10] and Barta [11]. This means that the plastic 

design optimum is also the elastic design optimum. 

Karsch [20], used plastic design to simplify the problem of truss topology optimiza- 

tion for a single loading case. In plastic design of trusses one does not need to satisfy 

elastic compatibility equations and the problem turns out to be linear in the cross sec- 

tional areas. Linear programming (LP) algorithms which are readily available can be 

used. This approach considers as design variables the cross sectional areas of the truss 

members and the member forces, the weight of the truss as the objective function and 

stress constraints and upper and lower bounds on the areas as simple side constraints. 

The objective function and constraints are linear in the design variables. 

The solution to this simple LP problem is not usually the true optimum for multiple 

loading cases and problems with displacement constraints. Modifications are required as 

a second stage to take care of the elastic compatibility by solving the actual nonlinear 
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problem by NLP methods. However this LP solution represents a lower bound on the 

optimum. Despite its approximate nature, this approach has the advantage that the use of 

LP process being very simple, large structures (for single loading case) can be optimized 

easily. 

The optimum truss topology retains only a fraction of the members from the ground 

structure. The cross sectional areas of the other members are reduced to zero by the 

optimization algorithm. This vanishing of members may cause the stiffness matrix of 

the structure to become singular. It cannot be inverted or factored and the optimization 

problem becomes non differentiable. 

In the plastic design for truss topology, since the compatibility conditions are ne- 

glected, the structure stiffness matrix is not needed and so the singularities do not pose 

a problem. This is another big advantage of using the LP based approach of Kirsch. 

Ringertz [21], used a similar strategy of neglecting the compatibility and solved a LP 

problem to obtain a topology, then improved the cross-sections by solving the complete 

non-linear problem. He also used the LP solution as a starting point [22], for a branch 

and bound algorithm to get optimal truss topologies for multiple loading cases. 

Fully stressed design procedures have been tried for topology optimization of trusses 

by Barnes, Topping and Wakefield [23], [24]. Starting with a ground structure and by 

using a stress ratio method they resized the truss members after each elastic analysis. 

With this technique they were able to drive most of the member cross sectional areas to 

zero. For a single loading case and with the allowable stresses in tension and compression _ 

on the members at the same level, they were able to derive statically determinate layouts 

that compared well with the layouts obtained by using LP based techniques. For multiple 

loading cases or for different stress allowables the resulting structures were statically 

indeterminate. The comparison with LP based techniques was not good. In this method 
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there is no objective function being considered for the derivation of the optimality criteria 

and the trusses are optimized for member stresses. 

The above mentioned stress ratio method is an example of a method that uses 

Optimality criteria for the design of structures. Optimality criteria are conditions that are 

satisfied by the optimal design. The stress ratio method is an example of a method based 

on an intuitive optimality criterion. The criterion is the requirement of a fully stressed 

design. 

When structures are optimized for minimum weight subject to a single loading 

case and if the allowable stresses in tension and compression are at the same level, 

the optimum design will have minimized compliance also [30]. The compliance of 

a structure is the work done by the applied loads on the displacements so that small 

compliance means large stiffness. Minimizing the compliance of a structure for a given 

weight or equivalently minimizing the weight for a given compliance is computationally 

very cheap for two reasons. First, the calculation of derivatives of the compliance does 

not require the solution of the equilibrium equations. Secondly, optimization for a single 

constraint can be performed very efficiently by optimality criteria methods. For these 

reasons minimum compliance optimization has been quite popular. For example, Ben- 

Tal and Bendsge [29] used this approach to design topologies for trusses subject to a 

weight budget. They based their approach on the work done by Taylor and Rossow 

[30] for the topology design of trusses by an optimality criteria based method. Taylor 

and Rossow also used an algorithm to identify active bars in the truss. Bendsge and 

Ben-Tal used a displacement based formulation and the algorithm to identify active bars. 

The topology Optimization problem is to find a set of active bars that minimize the 

mean compliance of the truss. The problem is converted into an equivalent problem 

using an optimality criterion based formulation. A steepest descent method is used for 

the minimization. The equivalent problem does not require the global stiffness matrix 
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and so its singularities do not affect the optimization. The compliance minimization 

method does not consider any individual stress and displacement constraints. For general 

problems with both displacement and stress constraints, topologies are first obtained for 

minimum compliance without consideration of the stress constraints and then the cross 

sectional areas are resized for handling the constraints. This two stage strategy does not 

always produce the optimal design as will be seen from the examples in chapter 3 of this 

dissertation. 

Rozvany and Zhou [26], have developed continuum-based optimality criteria meth- 

ods (COC) for designing topologies and generalized shape optimization [27]. By applying 

the Euler-Lagrange equations in infinite dimensional design spaces (continua) and by us- 

ing techniques of calculus of variations, control-theory and energy theorems they derived 

optimality criteria for shape optimization problems [28] . The optimality criteria were 

differential equations in the generalized stress resultants (e.g. bending moments). The 

design variables were the member sizes and the generalized forces. The methods are 

computationally efficient and are capable of predicting topologies that agree well with 

analytical solutions [26]. While large structures can be optimized efficiently without 

much computational cost, the COC methods suffered from a drawback that the for each 

type of structure and for different design conditions, the optimality criteria had to be 

analytically derived by a lengthy process. For discrete structures a discretized version 

of the COC method (DCOC) was used. The derivation of the optimality criteria was 

simpler in this case. The DCOC algorithm is capable of handling large size problems 

with stress and displacement constraints. The singularity problem of the stiffness matrix 

was overcome in this method by using extremely small minimum gage (107! inches) 

on the sizing variables. 

Another class of methods for topology optimization has been becoming very popular 

in recent years for the optimization of 2-D and 3-D structures. This is based on the 
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Homogenization method. Starting from a 2-D continuum as the ground structure and by 

altering the material distribution at the micro structural level (e.g., see Bendsge [31] shape 

design and topology design problems have been solved for two and three dimensional 

structures. The shape and topology optimization problem were nested into one and were 

solved as a material distribution problem. The initial design domain was a 2-D or 3-D 

continuum that was completely filled with a homogeneous isotropic material. It was then 

discretized using some special finite elements that are partially filled and partially void. 

The design variables for optimization were the dimensions of the void and its orientation 

in space. The objective function was the mean compliance of the total structure. The 

optimization problem was to get the best topology that minimized the mean compliance 

subject to a constraint on the percentage of material volume that can fill the domain. 

By altering the size and orientation of the voids internal boundaries (new holes) can 

be created in the isotropic continuum. The optimization problem can be viewed as the 

determination of the distribution in space of an anisotropic material that can carry the 

given loads and meet other requirements. The homogenization idea is to create and fill 

the design domain with this porous anisotropic material by periodically distributing an 

infinite number of infinitesimally small voids. 

The advantages of this method are : 

1. The main advantage of this method with compared to traditional shape optimization 

is that the shape and topology (e.g., number of holes) need not be known a priori. 

Using mathematical programming methods for shape optimization, it is not possible 

to predict voids. That means that the method will not introduce holes in the domain. 

The homogenization method is capable of doing this. 

2. The optimization process can start with any arbitrary 2-D or 3-D domain. For shape 

Optimization problems the FE mesh need not be updated. 
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The output from the homogenization method is the design domain consisting of 

elements with variable densities. Elements with small densities are interpreted as voids 

and elements with high densities as solid structure. The final designs that are output by 

this approach are only a non smooth estimate of the final shape of the structure. This 

method hence can be the first stage or the preprocessor of a 2-stage approach. The second 

Stage will be a traditional shape optimization method where the information from the first 

stage is used to refine the shape. 

Bendsge and Kikuchi [32], developed a strategy using the homogenization method, 

where truss like topologies are obtained starting from a plate like domain by requiring 

the percentage of material volume to be low. They used this approach for the design of 

fillets. 

Suzuki and Kikuchi [33] modified this approach to consider multiple loading cases. 

Later they extended the work for three dimensional shells and applied the method for 

designing automobile bodies [34]. 

Diaz and Bendsge [35] have used the homogenization approach to design truss 

topologies for multiple loading cases by using a composite objective function which is 

the weighted sum of individual load cases. Several other research works on using the 

homogenization method for topology optimization are reported in the literature (see for 

example [36]— [41]). 

This dissertation introduces an approach similar to that taken by Saka [19] for topol- 

ogy design. It is called the Simultaneous Analysis and Design approach. The approach 

eliminates the need for repeated analysis by considering the equilibrium equations of 

structural analysis as equality constraints and the displacements as design variables in 

addition to the sizing design variables. Saka linearized the optimization problem and 

solved it using LP techniques. The SAND approach here uses nonlinear programming 

solution methods. 
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The SAND method presented in this dissertation is also a natural way to avoid the 

singularity problem due to vanishing members. The method does not require the assembly 

or factoring of the global stiffness matrix. Hence the singularities are not a problem. 

The other advantage of the SAND approach is that unlike the compliance minimization 

method, SAND is a general method capable of handling multiple constraints. So, general 

problems with stress and displacement constraints can be solved in a single stage. 

1.3 Historical background on simultaneous analysis and design 

Structural optimization problems were originally solved based on the calculus of 

variations. A problem would be solved by first obtaining the Euler-Lagrange optimality 

differential equations and then analytically solving them simultaneously with the differ- 

ential equations of the analysis. This method is still employed for optimizing individual 

structural elements [43]. With the advent of high speed electronic computers and the finite 

element method (FEM) for structural analysis, a transformation took place in structural 

optimization. Numerical methods of optimization were being developed for structural 

design using computers, and an approach called here the “Nested Approach” became the 

standard for optimization. The nested approach is represented in Fig 1.1. An optimization 

iteration begins by computing the structural responses for a given design variable set. 

The gradients of these responses with respect to the design variables are then calculated 

and are used to direct the optimization process and update the variables. This means 

that structural equations are solved repeatedly once for each optimization iteration. This 

nested approach is based on the use of efficient elimination methods like the Gaussian 

elimination method for solving the structural equations. Since techniques for optimization 

were not competitive with these elimination techniques, the nested approach that keeps 

the analysis and optimization at separate levels was very popular. 
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When iterative methods are used for analysis there is a way of integrating analy- 

sis and design. This was originally investigated by Rizk [44] for aerodynamic design 

problems. The two levels of analysis and optimization are still kept separate. The flow 

chart for this approach is shown in figure 1.3. The method takes advantage of the it- 

erative analysis scheme. The analysis iterations, instead of running to full convergence 

are stopped after a small number of iterations, with the number carefully chosen so that 

meaningful information about the sensitivities can be obtained. This approach was ap- 

plied by Barthelemy et al., [45] for hole shape optimization in a thick plate subjected 

to in-plane loads modeled by three dimensional finite elements. An element-by-element 

preconditioned conjugate gradient (EBE-PCG) method was used for the analysis. It was 

shown that this method was substantially cheaper computationally when a large number 

of elements through the thickness was used. 

When the two levels are completely merged into one so that we solve one big 

optimization problem and perform no analysis, we call it the Simultaneous Analysis and 

Design (SAND) approach. This approach was initiated by Fox and Schmit [46],[47] in 

the mid sixties. They converted the optimization problem into an unconstrained problem 

by using a penalty function approach and then employed the conjugate gradient (CG) 

method for minimization. However, The discretized equilibrium equations are inherently 

ill-conditioned and the CG technique performed poorly because of this. Interest in SAND 

waned for a while. 

Recently, preconditioning techniques have been developed and the resulting precon- 

ditioned conjugate gradient (PCG) methods are highly competitive with methods like 

Gaussian elimination [48] for poorly banded problems like the ones that arise in the 

discretization of three dimensional structures. Hence, interest in integrating analysis and 

design has been rekindled. 
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Haftka [49] revisited SAND with a penalty function formulation using an Element 

by element preconditioned conjugate gradient (EBE-PCG) algorithm due to Hughes et al. 

[50]. He used it to solve linear elastic truss and non-linear panel collapse problems. He 

showed that the SAND approach with EBE-PCG is more efficient computationally than 

the standard nested approach employing Gaussian elimination. Although the inherent 

ill-conditioning associated with the equilibrium equations that slowed down the regular 

CG method was alleviated using the EBE-PCG scheme, the SAND method was found to 

be very sensitive to certain parameters used to tune the algorithm. 

Haftka and Kamat [51], used SAND to design structures where the equations of 

equilibrium were nonlinear. For the design of a 72 bar truss and an antenna truss they 

showed that the SAND approach using a penalty function solution or a projected La- 

grangian solution was computationally superior to a nested approach using a projected 

Lagrangian solution or a generalized reduced gradient method. 

Shin, Haftka and Plaut, [52] showed that it was feasible to use this approach for 

eigenvalue maximization problems. They designed optimum columns for a given foun- 

dation and optimum foundations for a given column. 

The computational cost associated with SAND varies with the number of design 

variables in a nonlinear fashion like other mathematical programming methods. The 

addition of displacement design variables increases the dimensionality of the problem 

and hence the computation time. For designs under multiple loading cases SAND may 

not be the best method since the number of displacement design variables will very high. 

Chibani [53], tried to alleviate this problem by using a two-level SAND approach and 

geometric programming for the design of space trusses for multiple loading cases. 

Ringertz [54] used the SAND approach for the design of space trusses with geo- 

metric nonlinearities. In one approach all the equilibrium equations were considered as 

equality constraints for the optimization. In a variation of this approach, only some of the 
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equilibrium equations were considered for the optimization. Buckling constraints were 

also considered. 

Smaoui and Schmit [55] used the SAND approach for the design of three dimensional 

trusses with geometric nonlinearities and geometric imperfections. Constraints on static 

displacements, stresses and local buckling were considered. The SAND problem was 

solved using a reduced gradient method. 

Orozco and Ghattas [56] showed that when the projected Lagrangian algorithm is 

used and if the sparsity of the matrices in the problem (at least the sparsity of the Jacobian) 

is exploited, the SAND approach can be computationally superior to a nested approach 

that uses a SQP algorithm for the solution. 

1.4 Present Work-objectives 

This dissertation primarily focuses on using SAND for obtaining optimal topologies. 

The objectives of this dissertation are: 

1. To obtain topologies by weight minimization subject to stress and displacement 

constraints starting from a ground structure and to compare these topologies with 

those obtained by the two stage process of optimizing topology by compliance 

minimization followed by sizing optimization of the minimum compliance topology. 

2. To reduce the computational time associated with the SAND approach by using an 

augmented Lagrangian approach and developing a member elimination strategy to 

identify and eliminate periodically unwanted members from the ground structure. 

The organization of the dissertation is as below: 

Solution strategies for SAND are reviewed in Chapter 2. The relative advantages 

and disadvantages of each strategy is discussed. 

In Chapter 3 the SAND approach for obtaining optimal truss topologies using the 

ground structure approach will be explained. The solutions are compared in terms of the 
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geometry and layout to those in Ref. [29] to validate the method. The solution strategies 

are compared in terms of computational expense. A member elimination strategy to help 

reduce the computer time is developed and tested. The two stage approach of compliance 

minimization followed by sizing optimization is compared to a direct sizing optimization 

of the ground structure. 

Chapter 4 applies the SAND approach for deriving optimal topologies for plane 

stress problems. 

Chapter 5 offers concluding remarks and some suggestions for future research. 
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2. SOLUTION STRATEGIES FOR SIMULTANEOUS ANALYSIS AND DESIGN 

2.1 The Simultaneous Analysis and Design Problem 

A structural optimization problem can be mathematically represented as 

Find x to 

minimize V(x) 

subject to g;(x,u) > 0 j = 1,...,7; and (2.1) 

| hy(xXu) = 0 k = 1,...,Neg 

where g; are some stress, displacement, buckling or frequency constraints, V(x) is the 

objective function to be optimized (minimum weight, minimum compliance), u is the 

displacement vector and x is the vector of design variables. The vector u is normally 

found as a solution to a set of algebraic equations (equations of equilibrium) or as a 

solution to a minimization (of the total potential energy) problem. The equations of 

equilibrium can be represented by 

R (x, u, P) = 0. (2.2) 

The system of equations represented by R can be in general linear or nonlinear 

equations. P is the applied load vector. The problem is usually solved in a nested 

approach shown in Fig. 1.1. That is, the problem is solved by repeatedly calculating u 

using the above equation (2.2) and its derivatives with respect to the components of x, z; 

by either differentiating (2.2) or by finite differences. Based on the information about u — 

and its derivatives some optimization procedure can be employed to improve the design 

x. This approach involves solving (2.2) at least once every optimization iteration. 
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The Simultaneous analysis and design (SAND) formulation considered in the present 

work eliminates the need for repeatedly solving (2.2) by considering both x and u as 

design variables and treating the equilibrium equations of equation (2.2) as equality 

constraints for the optimization problem. This can be mathematically represented as 

Find x and u to 

minimize V(x) 

subject to g;(x,u) > 0 j = 1,...,n; ; (2.3) 

hy(xu) = 0 k = 1,...,neq and 

R(x,u,P) = 0 

The addition of the displacements as design variables increases the dimensionality of the 

problem. For the problems considered in this dissertation, there are no equality constraints 

hx, other than the equilibrium constraints. Hence in the following discussion we omit 

them. 

2.2 Solution strategies 

The constrained problem expressed in (2.3) is can be solved directly by methods for 

constrained minimization or by using methods for unconstrained minimization by first 

converting (2.3) into an equivalent unconstrained problem. Saka [19], solved the truss 

topology optimization problem by linearizing it and using sequential linear programming 

(SLP) approach. Haftka and Kamat [51], used the projected Lagrangian method (sequen- 

tial quadratic programming, SQP) and a penalty function formulation. This method uses 

a quadratic approximation of the Lagrangian function and uses a quadratic programming 

(QP) algorithm to find the minimum. Orozco and Ghattas [56], used a commercially 

available software (MINOS) to solve the problem by exploiting the sparsity of the matri- 

ces present in the problem. Haftka [49], converted equation (2.3) by using the penalty 
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function approach and solved it using an element-by-element preconditioned conjugate 

gradient method. In this dissertation, we follow initially the same approach as [49]. By 

the standard application of the penalty function technique ([57], pp. 190-195) the SAND 

formulation can be transformed into, 

minimize @ = V(x) + ry pl|g;(x,u)] + —ER’R, (2.4) 
Jr 

j=l 

for r = 71,T2,..., where r; — 0 and R is a vector of residuals when the equilibrium 

equations .are not satisfied exactly. The coefficient r is the penalty parameter. The 

penalty function approach forms a composite objective function ¢ by combining the 

original objective function and penalties associated with the violation of constraints. The 

penalty associated with the inequality constraints is r)°"", plg;(Xx,u)] and the penalty 

associated with the vector of equilibrium constraints is <_RER. 

The different types of penalty function are: 

1. Exterior penalty function 

2. Interior penalty function 

3. Extended interior penalty function 

The exterior penalty function assigns a penalty to a constraint only when it is violated 

(i.e. exterior to the feasible domain). The interior penalty function assigns penalties in 

the interior of the feasible domain. It keeps the design in the feasible region. The 

disadvantage of this method is that it always requires a feasible starting design. Often, 

it may not be possible to find one or during the course of the optimization we may 

encounter an infeasible design. It then becomes difficult to get back into the feasible 

domain. So, a combination of the two called the extended interior penalty function can 

be used to advantage. An example is the penalty function described in Eqn (2.4) due to 

Haftka and Starnes [58]. It is defined as 
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a] = 1/gol(9i/90)° — 3(9;/90.) +3] 95 < go (2.5) 
1/9; 95 290 

where go is a transition parameter that defines the boundary between the interior (feasible) 

and exterior (infeasible) parts of the penalty function. As the value of r is decreased, the 

minimum of ¢ approaches the minimum of the original constrained optimization problem. 

However, for small values of r, (near the minimum) the curvature of the penalty function 

@ also increases due to the <_R'R term. This leads to numerical difficulties in solving © 

equation (2.4). By using a sequence of values of r that progressively decreases i.e., 

for r = r1,T2,..., where r; — 0, we can repeatedly solve equation (2.4) by using the 

minimum obtained for bigger values of r as the starting point for smaller values of r. 

The ill-conditioning associated with decreasing values of r is counterbalanced by the 

availability of a good starting point. For the minimization of ¢ any method suitable for 

unconstrained minimization can be used. The performance of the algorithm to minimize 

@ depends a great deal on the choice of the constants r; and c which are chosen initially. 

For smooth minimization it is important that the contributions of the objective function 

and the penalties due to the equality and inequality constraints are well balanced. To 

make the choice independent of the initial design choice, the coefficients are computed by 

effecting the balance in the final value of the penalty function. From earlier experiences 

in solving similar problems we can get an estimate of the final value of the objective 

function and then compute r; and c to balance it. To compute the penalties associated 

with the inequality constraints we use a rule of thumb that for a problem with n design 

variables at least n/4 of the constraints will be critical (g; = 0) at the optimum. Balancing 

the penalty due to these constraints with the original objective function, we get 

V(x) = 11 (=) (=) 26) 
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Or 

ry = V(x) (=) (2). (2.7) 

Thus we can get an initial estimate of the penalty parameter r;. Equating the RR 

term with the objective function and knowing the value of r;, we can compute the initial 

value of c. 

The algorithm used to minimize @ is the conjugate gradient (CG) method [60] 

developed originally by Hestenes and Stiefel, as a method for solving systems of linear 

equations. This was the method Fox [46] and his co-researchers used in their attempt to 

integrate analysis and design. In using the CG method, the problem arises from the last 

term. For linear elasticity problems, the equilibrium equations are of the form, 

R = Ku—-f=0. (2.8) 

Expanding the last term in @ we get, 

R7R = (Ku — f)’ (Ku — f). (2.9) 

The second derivative matrix of R?R with respect to u is K7K. The condition number 

of a matrix is the ratio of its largest eigenvalue to its smallest. If the condition number of 

a matrix is high, it is an ill-conditioned matrix. The conjugate gradient method converges 

slowly for ill-conditioned matrices. The stiffness matrix K that appears in equation (2.9) 

is ill-conditioned. The condition number of the matrix K7K is the square of the condition 

number of K which makes it extremely ill-conditioned. Hence, the minimization of ¢ 

will proceed very slowly. 

In recent years, methods for alleviating this ill-conditioning and its effect on iterative 

processes have been developed. The process is called preconditioning. To lessen the ill- 

conditioning in ¢ due to the last term, the term R7R can be replaced by a term R7B—R, 
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where the matrix B is called the preconditioner. The penalty function ¢ now take the 

form 

minimize @ = V(x) + ry) plgj;(xsu)] + SRTBOR (2.10) 

The preconditioner B should have certain properties to be able to lessen the effect 

j=l 

of ill-conditioning. It should be an easily invertible or factorizable matrix and it should 

be also possible to calculate B'R inexpensively. Otherwise we don’t gain from the 

transformation. The ideal choice for B is therefore a cheap-to-invert approximation to 

K. We will discuss various choices for the preconditioner in the next section. Another 

way to overcome the ill-conditioning is to use methods other than the penalty function 

formulation. An alternative [51] is to use a projected Lagrangian method. 

In the penalty function we have defined by equation (2.10) there is another type of 

ill-conditioning. As we decrease the penalty parameter r in successive cycles, the +, 

keeps increasing. Theoretically, the minimum of ¢ is reached at r = 0 when Fi = 00. 

For small values of r, as we saw earlier, the curvature of the penalty function is high 

which makes the problem ill-conditioned and the optimization process slows down. 

This type of ill-conditioning can be remedied by using an algorithm called the 

augmented Lagrangian (AL) algorithm ([60], [57] pp. 198-201) , [61] , [62] . The 

algorithm adds to equation (2.10) a term A7 R, where J is a vector of Lagrange multipliers 

for the equilibrium constraints. The composite objective function now becomes 

¢ = V(x) + Spl plg;(xu)] + —-R™BOR — TR. (2.11) 
j=1 vr 

Initially, the minimization is started with A = 0 and the multiplier vector is updated after 

each cycle (every time r is reduced) based on the first order necessary condition for the 

stationarity of ¢. Differentiating equation (2.11) with respect to the design variable z; 

we get, 

O¢ — a dplg;]_, 2c OR7,_, 7 OR 
on On “ee an, + 2G, B R-X on (2.12) 
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The Lagrange multipliers at the optimum satisfy the exact condition [60] 

OV 2c OR? , 7 OR 
_ —_— ~ —_}\* — = . 2.1 

Ox; + Jr Oz; BuR-4 Oz; 0 (2.13) 
  

Comparing Eq. (2.12) and Eq. (2.13), we expect that 

Cc 1 « 
A~ 2(72)B R — X*. (2.14) 

as we approach the minimum. Based on this relation, Hestenes [60] suggested that Eq. 

(2.14) be used as a recurrence relation to update the Lagrange multipliers as 

\CR+1) — y 4) _ 9 SE yp-ip | 2.15 (Fe) | (2.15) 

Once the Lagrange multipliers converge close to their optimal value, they are capable 

of reducing R without further reductions of the penalty parameter r. Hence a will not 

grow and the associated ill-conditioning will not increase. Reference [62] cites various 

numerical experiments where the AL algorithm has fared very well compared to the 

penalty function approach. In the next chapter we will show substantial savings in CPU 

time by using the AL algorithm compared to the penalty function approach. Reference 

[62] also discusses the convergence rate of the AL algorithm. It has been shown that 

the rate at which the design variables converge is at best the rate at which the Lagrange 

multipliers in A converge to their actual value. Since we use a first order necessary 

condition to update A we can at most expect a linear rate of convergence. To help A 

converge faster, second order conditions have been suggested [63] for updating. 

2.3 Types of preconditioners 

When the PF or AL formulation is used for the SAND approach, preconditioning 

becomes important in order to alleviate the effects of ill-conditioning. There are several 

choices for the preconditioner B. They are described below: 
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2.3.1 Diagonal preconditioner 

This simple preconditioner is also known as Jacobi acceleration. This preconditioner 

is defined by 

B = diag(K), (2.16) 

where K is the global stiffness matrix of the structure. This preconditioner basically 

multiplies the vector R by the inverse of the diagonal of K. 

2.3.2 Symmetric Gauss-Seidel preconditioner 

The global stiffness matrix is decomposed as 

K=L+W+L?, (2.17) 

where L is a lower triangular matrix with zero diagonal entries and W is the diagonal of 

K. The preconditioner is obtained as 

B= ; (2W +L)D-! (2W +L?) (2.18) 

The above two preconditioners are obtained by simple methods. However, the 

Gauss-Siedel precondiotioner requires the global stiffness matrix to be assembled. In 

methods like topology optimization where structural elements vanish during the course of 

the optimization, the global stiffness matrix may become singular along the way. Hence, 

these preconditioners have to be computed based on the initial design. Also structures 

with many elements storing the global stiffness matrix itself may pose a problem. 
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2.3.3 Element-By-Element (EBE) preconditioners. 

About 10 years ago Hughes and his co-researchers [50] developed a new class of 

preconditioners that do not require the assembly or factorization of the global K. These 

are called Element by Element (EBE) preconditioners. The preconditioners are generated 

based on the approximate factorization of element matrices. 

The global stiffness matrix K is the summation of all the element stiffness matrices 

nele 

K= S° K*. 
e=1 

We now represent K as, 

K = wow}? 

where W is a diagonal matrix formed out of the diagonal elements of K 

nele 

w= DD, 

where D* are the diagonals of the element stiffness matrices and so 

C=W)?Kw-l/?, 

From equation (2.19), 
nele 

C= wey Ke w-1/2. 

e=1 

Adding and subtracting the unit matrix I we get 

nele 

C= woes K° Ww}? _T4 I. 
e=1 

By the definition of W and D* we have, 

nele nele 

C= wes,” Ké w-}/2 _ woes, Dé w-}/2 +I, 

e=1 e=1 
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or 
nele 

C=W-l?S (Ke — Dowel? + 1. (2.26) 
e=1 

Defining 

K* = W-'/? (K* -D°) Ww”, (2.27) 

we get 
nele 

C=(I1+ )0(K*°)=1+K. (2.28) 
e=1 

Now we approximate K as a product of the element matrices using the following ap- 

proximation which is valid for a series of numbers h;, where h; << 1 

[] a thi) = (1+ ha) t ha). (1 hy) 21 Th (2.29) 
t=] 

e=1 
This first order approximation is used to express the sum I+ 5>"°°(K°) as a product 

and so 

nele nele 

C=1+ 5 (K*)= [[(+K’). (2.30) 
e=1 i=1 

The sum I+ K° for each element is factorized as 

1+ K° =L°D‘*(L)*", (2.31) 

and since L*and D*are close to the unit matrix we can also change the order of multi- 

plication and get 

nele nele 1 

c=C=[[L°][p° [[ «7. (2.32) 
1=1 2==1 t=nele , 

Finally we obtain B as 

BK = W?!cwl/? (2.33) 
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and B is indeed cheap to invert because it is a product of diagonal matrices and small 

element matrices. 

In this work the equilibrium term of the composite objective function ¢ has been 

preconditioned with this EBE preconditioner given by equation (2.33). 

2.3.4 Cholesky Element-By-Element (EBE) preconditioner. 

We define as before 

K° = W")?( Ke -D°) Wh? (2.34) 

and factor K° +I. Let L, be its lower triangular factor. We then obtain B as 

nele 

B=W'? |[L, Tl (L), 7 W/?. (2.35) 
1=1 i=nele 

2.3.4 Crout Element-By-Element (EBE) preconditioner. 

If the matrix K is not symmetric, then we use this preconditioner. We generate K° 

matrix as before and factor it. Let L,, D, and U, be the lower, diagonal and upper 

factors of K° . We then get B as 

nele nele 

B= wi Tt ITP» TI (U),W??”. (2.36) 
i=nele 

The Crout EBE preconditioner gives a better approximation of K than the Cholesky 

preconditioner, and has been shown to improve convergence of the algorithm. Hence, 

we in this work use a modified version of Crout EBE preconditioner even though the 

stiffness matrix K is symmetric. 

nele nele 

B= wi It ITP» I (L), Wi”, (2.37) 
t=nele 

This is the same preconditioner as expressed by equation (2.33). 
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2.4 Beale’s restarted CG algorithm 

The augmented Lagrangian function ¢ which has been preconditioned by the Crout’s 

EBE preconditioner, is minimized by the Beale’s restarted CG algorithm [64] . The steps 

of the algorithm to minimize a function f(xg) are as follows: | 

1. Given the initial design variable vector Xo, define the initial direction So as the steepest 

descent direction given by, 

So = —Vf(Xo) = &o- 

Let k be the iteration index and ¢ be the restart index. Initially, set k = 0 and ¢ = 0 and 

begin iterations by incrementing k. 

2. For k > 1 the direction vector s;, is given by the Beale’s formula [64] 

S, = —£, + BuSe—1 + YKSt, (2.38) 

where 

g, = —Vf (Xe), (2.39) 

and 
a 

2.° (2. — Sea] 
pe = > (2.40 

Si.118% — 2x1] ) 

T 
Lk [Pisa — g,| ope — Sk (Sti Stl ifk>t+1 2.41 

est [Bia — Bal (2-41) 

and +, = 0, ifk=t+1 . (2.42) 

The CG algorithm requires that the vectors g, and g,_, be orthogonal. Due to numer- 

ical rounding off, the vectors lose orthogonality after certain number of iterations. The 

algorithm is then restarted from the previous best solution. It is done by testing, 
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3. For k > 1 the inequality 

Ig” ,—18xl 2 9-2|lexl|’- (2.43) 

If this inequality holds then enough orthogonality has been lost between g,_, and g, 

and a restart is needed. This is achieved by setting t = & — 1 and proceeding. 

4. For k > t+ 1 the direction s; is checked to guarantee a sufficiently large derivative 

by testing the inequalities 

—1.2||g, II’ <s7e8,| > —0-8ilg,ll’- (2.44) 

If these inequalities do not hold then the algorithm is restarted by setting t = k—1. The 

CG algorithm in exact precision finds the minimum for a function of n variables in n or 

less iterations. However, using a digital computer with finite precision, this may not be 

possible. So, 

5. if k —t >n, then the algorithm is restarted by setting t = k — 1. 

6. The algorithm is successfully terminated when ||g,_,|| is sufficiently small. 
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3. TRUSS TOPOLOGY OPTIMIZATION WITH SIMULTANEOUS ANALYSIS AND DESIGN 

In this chapter the simultaneous analysis and design approach is applied to the 

topology design of trusses. We use the ground structure approach of Ref. [14]. The 

SAND approach is applied to truss topology design 

1.) for minimum compliance and 

2.) for minimum weight subject to constraints on the member stresses and nodal dis- 

placements. 

For the compliance minimization problem the SAND approach is formulated using 

a penalty function approach and the weight minimization problem by using both penalty 

function and augmented Lagrangian formulations. 

3.1 Ground structure approach 

In the ground structure approach the design domain is divided into a finite number 

admissible nodal points. Each of these points represents a possible joint for truss mem- 

bers. For a given layout of grid points the ground structure is formed by connecting 

each node to every other node by truss members. The ground structure will be used as 

the initial design and the final optimum topology is obtained as a subset of this ground 

Structure. In this dissertation a variation of the ground structure is used. The ground 

structure as proposed by reference [[14]] can have members overlapping. By avoiding 

the duplication while connecting the nodes, a ground structure with less members can be 

formed. For example, for the 5 X 5 rectangular grid, the ground structure of [[14]] will 

have 25(24) /2 = 300 members, whereas without overlapping members it has only 196 

members. The ground structure for the case where the rectangular design domain has 

been divided into 25 grid points is shown in Figure 3.1. 
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3.2 SAND approach for compliance minimization 

The minimization problem [42] involves the minimization of compliance f Ty 

(maximization of stiffness) for a given volume V of the truss, where, f and u are the 

force and displacement vectors, respectively. Denoting the elemental volumes as z;, the 

problem is formulated as 

minimize 
f Tu 

X,U 

subject to g;(x) =2;/to >0, j = 1,...,m, 

gm+i(X) =l]- So e,/V > 0, and (3.1) 

j=l 
m 

Y > xiKiu —f =0 9 

7=1 

where zo is a reference element volume and K; is the stiffness matrix per unit volume 

of the 2 th truss element. 

The above constrained minimization problem is then converted into an unconstrained 

minimization problem by using a penalty function technique. 

The advantages of the compliance minimization formulation are : 

e The calculation of derivatives of the compliance does not require the solution of the 

equilibrium equations. Hence it is easily computed. 

e Secondly, optimization for a single constraint (volume constraint here) can be per- 

formed very efficiently. 

The main disadvantage of the compliance minimization formulation is that it does 

not address the general problem with stress and displacement constraints. When designs 

under stress and displacement constraints are required, a two stage approach is used. The 

topology is obtained first by compliance minimization and then the truss members are 

resized for the actual objective function and constraints. 
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The simultaneous analysis and design (SAND) approach on the other hand, is a more 

general method that can solve actual problems with stress and displacement constraints. 

This method is discussed in the next sections. 

3.3 The SAND approach with weight minimization 

The truss topology optimization problem by weight minimization is to minimize the 

volume (hence the weight) of the truss subject to stress and displacement constraints. For 

a single loading case with the allowable stress levels in tension and compression being 

at the same level, this is equivalent to the compliance minimization problem subject to a 

weight (volume) budget. 

The weight minimization problem is formulated as 

minimize W(x) 

XU 

subject to gj(xu) >0, 7 = 1,...,m, and (3.2) 

R=Ku-f=0, 

where W is the weight, g; are stress or displacement constraints and R is the residual 

vector when the equilibrium equations are not satisfied. 

Due to the addition of the displacements as design variables, The SAND method 

generally increases the number of design variables substantially. However for truss topol- 

ogy problems this is less of a problem since the ground structure approach leads to a 

very large number of cross sectional area design variables and comparatively fewer dis- 

placement design variables. For example, for the ground structure shown in figure 3.1, 

the 196 cross sectional areas are augmented by only 40 displacement variables. 

The weight minimization problem is then converted into an unconstrained opti- 

mization problem by using the penalty function (PF) formulation and the augmented 

Lagrangian (AL) ( see Chapter 2) formulation. 
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3.4 Example problems 

The truss topology optimization problem is to find the optimal truss to transmit an 

applied load to the supports, as a subset of the initial ground structure. In this work the 

problem of finding the optimal truss to transmit a vertical load, applied at the lower right 

hand corner, to the simply supported nodes on the left was used to demonstrate the use 

of SAND. 

As a first example a ground structure similar to the one shown in figure 3.1 with a 

horizontal length of 720 inches and a height of 360 inches (aspect ratio of 2:1) was used. 

All the truss elements had an elastic modulus of 10* ksi and a density of 0.1 1b/in?. The 

truss was loaded with a vertical point load of 100 kips. The objective function was the 

weight of the truss and only stress constraints were considered with allowable stresses 

of 25 ksi in tension and compression. The member cross sectional areas in the ground 

structure were uniform and chosen to satisfy the stress constraints. 

Three approaches based on the SAND approach were used to find the optimal topol- 

ogy : 

a) Compliance minimization for a given weight using a PF solution scheme 

b) Weight minimization subject to stress constraints using PF solution 

c) Weight minimization subject to stress constraints using AL solution 

It was mentioned in chapter 2 that weight minimization subject to uniform stress 

allowables in tension and compression produces a design with maximized stiffness or 

minimized compliance. Hence the approach (a) is equivalent to both (b) and (c). 

The optimal truss designs obtained in each of these cases were compared with those 

in Ref. [29] in terms of geometry, layout, and the nondimensional compliance 7 defined 

as 

n = (fu)VE/(\|f |/'L"), (3.3) 
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Table 3.1 Comparison of SAND based algorithms for aspect ratio 2:1 problem 

  

  

  

  

Problem Non-Dimensional IBM 3090 

Size compliance CPU time (sec) 

Compliance Weight Compliance Weight 

minimization minimization minimization minimization 

PF PF AL PF PF AL 

4X3 16.447 16.447 | 16.448 31 13 10 

5X5 14.342 14.344 14.344 621 298 116 

7X5 14.123 14,122 14.130 1196 740 561                 

where V is the volume, £ the elastic modulus and L the horizontal length of the truss. 

The non-dimensional compliances and the computation times for the 2:1 aspect ratio 

problem are shown in Table 3.1. 

Column 1 describes the problem size. In columns 2, 3 and 4, the non-dimensional 

compliances obtained with the three methods are compared. As we increase the number 

of nodes in the ground structure, the non dimensional compliance decreases but seems 

to be converging. This is reasonable since by increasing the number of grid points and 

the number of members in the ground structure we get closer to the absolute optimum. 

The agreement between weight and compliance minimization is good, confirming the 

theoretical result that weight minimization with uniform stress constraints is equivalent 

to compliance minimization. Columns 5, 6 and 7 compare the CPU time used by the 

three methods on an IBM-3090 computer. As expected, the AL approach is more efficient 

that the PF approach. The large advantage of the weight minimization formulation over 

TRUSS TOPOLOGY OPTIMIZATION WITH SIMULTANEOUS ANALYSIS AND DESIGN 38 

 



compliance minimization formulation (though they are theoretically equivalent and the 

fact that compliance minimization formulation is computationally efficient) may be due 

to programming idiosyncrasies as the results were obtained with different computer pro- 

grams. Comparison of columns 6 and 7 shows that the AL formulation is computationally 

more efficient than the PF formulation. 

The optimal trusses obtained with these three formulations by using three different 

grid sizes are shown in figures 3.2, 3.3 and 3.4 respectively. The thicknesses of the 

lines in the figures are proportional to the cross sectional areas of the corresponding 

truss members they represent. It is seen that all three methods predict the same optimal 

topology for the 4x3 and the 7x5 grid, whereas the weight minimization optimum 

topology for the 5x5 is different from the compliance minimum optimum though the 

non dimensional compliance value is the same in both cases. It is possible that for this 

case the optimum design is not unique, or that one of the results is a near optimum. 

3.5 Truss topology optimization for stress and displacement constraints. 

Since compliance minimization can be performed very efficiently by specialized 

methods [29], [42], it makes sense to try to use it also for more general problems. This 

means that we can first find an optimum topology by compliance minimization, and then 

resize members to take care of the actual objective function and constraints. The SAND 

approach, on the other hand, is applicable directly to general stress and displacement 

constraints starting from the ground structure. The two approaches are compared for the 

previous example with a displacement constraint added to the stress constraints . 

The test case constraint is a constraint on the horizontal displacement at the corner 

(See Fig.3.1) where only the vertical load is applied in addition to the stress constraints. 

The horizontal displacement at this node was constrained to be 0.002 L, which is 80% 

of the displacement at that node in the minimum compliance optimum. 
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Table 3.2. Comparison of optimal weights for x displacement at loading node < 

2 x 10-° L in (80% of optimum compliance design) 

  

Problem Size Direct Optimization of 

Ground Structure 

Sizing Optimization of 

Compliance Topology 

  

Ib Ib 

4X3 1264 1264 

5 X 5 1140 1140 

7X5 1130 1136       
  

The final designs obtained with both approaches are compared in Table 3.2. 

The first column describes the problem. The second column shows the optimal 

weight obtained by direct optimization of the ground structure. The third column gives 

the weight obtained by sizing optimization of the minimum compliance topology. For 

this displacement constraint case it is seen that sizing optimization of the minimum 

compliance optimum topology is as good as direct optimization starting from the ground 

structure. This changed when the displacement was required to be less than or equal to 

50 % of the unconstrained displacement. At first the optimal designs turned out to be 

mechanisms since the displacement constraint is trivially satisfied then. To avoid this, a 

small horizontal load of 0.1 lb was additionally introduced at the lower right hand corner 

and the trusses were reoptimized. 

Table 3.3 shows that sizing optimization of the optimum compliance topology leads 

to a heavier design than the one obtained from direct optimization of the ground structure 
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Table 3.3 Comparison of optimal weights for x displacement at loading node < 

1.25 x 107% L in (50% of optimum compliance design) 

  

  

  

Problem Size Direct Optimization of Sizing Optimization of 

Ground Structure Compliance Topology 

4X3 1433 1546 

5X5 1274 1209 

7X5 1259 1304       
for the 4x3 grid and the 7x5 grid. However, for the 5x5 grid direct optimization yielded 

a heavier design compared to sizing optimization. It was thought that this could be a 

local minimum. To see if this was indeed a local minimum a test was performed. Let 

Xcm Tepresent the cross sectional areas in the optimal compliance topology and xwa 

the cross sectional areas from the weight minimization topology. The designs on the 

line connecting xcy and xwy are given by all convex combinations of the two vectors. 

This combination is given by 

X=axcou+(1- a)xwn.- 0O<a<l (3.4) 

The resulting truss with cross sectional areas given by x was analyzed to get the 

displacements and stresses. The amounts by which these stresses violate the constraints 

are computed The percentage violations of the constraints were plotted as a function of 

a and is shown in figure. 3.5. The weight of the trusses for different values of a is also 

plotted. It can be seen that near a = 0 which is the compliance minimization topology, 

the constraint violation is very high. As we move away from this point and approach 

the weight minimization topology by increasing a, the constraint violation decreases. 
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This means that the compliance minimization topology may be a singular truss [[20]] 

in the design space. A singular truss is an optimum solution that has no stress constraint 

violation. However, if we add a very slender member to this solution the stress will 

be very high in that member and the stress constraint will be violated heavily as is the 

case for small values of a. The constraint violations can be eliminated only by large 

increases in the cross sectional areas of the truss members. This means that the singular 

topology cannot be reached by gradually reducing the areas of the additional members. 

Reference [29] arrived at this topology by using the optimality criteria method. When the 

convex combination for a = 0.6 was used as the initial design for weight minimization 

with SAND, we were able to converge to the compliance minimum singular topology 

optimum. For other values of a the optimizer could converge only to the heavier weight 

minimization topology. 

The optimum designs are shown in Fig. 3.6 for the 4x3 grid, in Fig. 3.7 for the 5x5 

and in Fig. 3.8 for the 7x5 grid. It is clear that direct optimization changed the topology 

to remove the horizontal member at the loading point since this makes the displacement 

constraint easy to satisfy. In Figure 3.8(a) we see that the optimum topology is still a 

mechanism. 

The allowable limit on the displacement was next set to be less than 25 % of the 

unconstrained displacement. The trend was similar to the previous case but the optimal 

trusses obtained by sizing optimization were much heavier than the SAND optima for the 

4x3 and 7x5 cases. The results are shown in Table 3.4 and in figures 3.9-3.11. It can 

be seen that the weight minimization of the ground structure predicts topologies that are 

in general more complicated but lighter than those predicted by the two stage approach. 

This is exemplified in figure 3.12 for the 7 x 5 grid. 

For this case of displacement constraint, it is seen that the weight minimization of 

the 4x3 ground structure using the SAND approach and considering all the constraints 
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Table 3.4 Comparison of optimal weights for x displacement at loading node < 

0.625 x 107° L in (25% of optimum compliance design) 

  

  

  

Problem Size Direct Optimization of Sizing Optimization of 

Ground Structure Compliance Topology 

4X3 1648 2316 

5X5 1448 1300 

7X5 1441 1760       

from the beginning predicted an optimal truss which was 40% lighter than the resized 

optimum from the compliance minimized topology. 

From the discussion above we infer two main points. 

(i) Using the compliance minimization approach in a two-stage process to obtain optimal 

topologies for general problems can lead to substantially inferior designs. 

(ii) Though weight minimization using the SAND approach produced lighter optimal 

trusses for the 4x3 and 7x5 ground structures, it failed to do so for the 5x5 

ground structure. SAND, being a mathematical programming method, is capable of 

predicting only local minima, and is not able to predict the singular topology for the 

5x5 grid obtained by compliance minimization. 

3.6 Member elimination strategy 

The ground structure shown in figure 3.1 has 196 truss members. The optimal truss 

that predicted of the SAND approach starting from this ground structure has 27 members. 

The cross sectional areas of most of the members present in the initial structure have been 

reduced to zero by the optimizer. A significant amount of computation time is spent by 
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the optimizer in reducing the cross sectional areas of those members that do not appear 

in the final design from their initial value to zero. In the latter part of the process the 

optimization procedure has to spend a lot of time in making very small cross sectional 

areas even smaller. 

The cost of reducing the unwanted areas to zero could be alleviated if it was possible 

to identify and eliminate those unimportant members early on in the optimization process. 

This was the motivation for developing a member elimination strategy. 

The first strategy attempted was based on the cross sectional areas of the members. 

After a predetermined number of cycles (reductions of the penalty parameter r), the cross 

sectional areas of the truss members were compared and the maximum was identified. 

All the members with areas less than 1% of this maximum were then eliminated from 

the design. The finite element mesh was then resized and the optimization process was 

resumed with this reduced structure. This strategy worked well for the 4x3 grid, but for 

the 5x5 and 7x5 truss this strategy eliminated some of the members that were required 

to be present in the final design. These members had very small cross sections but were 

fully stressed to 25 ksi. Elimination of these members produced nonoptimal topologies. 

With the realization that member cross sectional area alone cannot be used as crite- 

rion for eliminating members, a second strategy was developed and tested. After every 

five optimization cycles (i.e. after the penalty parameter r has been reduced five times) 

the element cross sections and the elemental stresses were compared and the maxima 

identified. Elements were then eliminated based on the following criterion. An element 

was removed if its cross sectional area was less than 1% of the maximum area in the 

current design, and if simultaneously the elemental stress was less than 75% of the 

maximum stress. This strategy combining cross sectional areas and the stresses identified 

and effectively weeded out most of the unimportant members. The optimization process 

was resumed after redefining the finite element model for the truss. 
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Table 3.5. Member elimination strategy for 2 : 1 geometry. (Weight minimization 

with AL). (Compare with Table 3.1 to see effect on CPU time) 

  

  

  

  

Problem Number of Members IBM 3090 CPU time 

Size In ground structure | After 5 cycles | In final design (Seconds) 

4X3 47 6 6 10 

5X5 196 27 27 86 

7X5 384 102 23 222           
The problems described in Table 3.1 were reoptimized with the member elimination 

strategy applied after every five optimization cycles. The final topologies are the same 

but there was considerable savings in CPU time as shown in Table 3.5. 

The first column of Table 3.4 describes the problem. The second column shows 

the number of elements in the ground structure. The third column shows the number of 

members left after the elimination strategy was used once after five optimization cycles. 

The fourth column shows the number of members in the final optimal design. The fifth 

column shows the CPU time used in an IBM-3090 computer. The savings in CPU time 

by employing the elimination strategy are compared with those in the last column of 

Table 3.1 and can be seen to range up to 60%. It is also seen that the savings in CPU 

time increase with problem size. 

The aspect ratio of the ground structures for all the problems considered thus far 

was 1:2. Ref. [42] describes the problem of transmitting a vertical force to a parallel 

line of supports, with a 8:5 aspect ratio grid. The same problems were solved here to 

check the effect of grid refinement on the nondimensional compliance and CPU time. 
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The problems were solved by weight minimization using the AL formulation and the 

member elimination strategy. The optimal topologies are shown in Figure 3.11. These 

are different from the 3x3 and the 5x5 topologies given in [42]. but the non dimensional 

compliances are same as those in [42]. Table 3.6 shows the values obtained. 

Table 3.6. Comparison of SAND based algorithm with member elimination strategy 

for the 8 : 5 aspect ratio grid (Weight minimization with AL) 

  

  

  

  

Problem Number of Members Nondimensional | IBM 3090 CPU time 

Size | In ground structure | After 5 cycles | In final design| Compliance (Seconds) 

2X2 5 5 2 14.631 0.24 

3X3 26 18 13 13.323 5.15 

5X5 196 30 17 11.179 61 

7X7 754 325 33 11.071 995 

9X9 2104 205 60 10.960 2942           
  

The first column of Table 3.6 describes the problem. The second column shows the 

number of members in the ground structure. Column 3 shows the number of members 

after 5 optimization cycles and column 4 shows the number of members in the final design. 

Column 5 gives the nondimensional compliances for each case. Column 6 shows the 

CPU time in seconds in the IBM 3090. It is seen from the table that as the problem size 

increases the CPU time also increases and the non dimensional compliance decreases. The 

CPU time taken by the SAND approach for weight minimization seems to be vary as the 

number of design variables to the power of 1.7. The compliance minimization approach 

of Ref. [29] is computationally superior to the SAND approach hence it can handle 
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problems with large number of design variables without the prohibitive cost experienced 

by SAND. 

3.7 Conclusions 

In this chapter a SAND formulation was applied to the problem of truss topology 

design for minimum weight subject to stress and displacement constraints. The gener- 

ality of the SAND formulation is an advantage over specialized methods available for 

compliance minimization that can be computationally less expensive than SAND. It was 

demonstrated that the topology which is optimal for compliance minimization may not 

be optimal for a combination of stress and displacement constraints. Using an optimal 

compliance topology and optimizing cross sectional areas to minimize weight was shown 

to result in a weight penalty of up to 40% for one case of displacement and stress 

constraints. 

Two strategies for alleviating the computational cost of SAND approach were im- 

plemented. They are the use of an augmented Lagrangian algorithm and progressive 

elimination of members with small cross sectional areas, Together these strategies re- 

duced computational cost by up to 60%, where larger savings were obtained for larger 

problem sizes. 
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Figure 3.1 Ground structure for the 5 X 5 grid (196 members) 
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Figure 3.2 Optimum truss topology obtained for the 4 X 3 grid by all three 
methods 
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Figure 3.3 (a) Optimum truss topology obtained for the 5 X 5 grid by 
compliance minimization 

  

  

Figure 3.3 (b) Optimum truss topology obtained for the 5 X 5 grid by 
weight minimization 
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Figure 3.4 Optimum truss topology obtained for the 7 X 5 grid by all three 
methods
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(a) 

  
(b) 

Fig 3.6. Optimal trusses obtained for the 4 X 3 grid with the 50% horizontal displacement constraint 
at the load with (a) SAND (b) Sizing optimization of optimum minimum compliance 
topology 
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(a) 

  

(b) 

Fig 3.7. Optimal trusses obtained for the 5 X 5 grid with the 50% horizontal displacement constraint 
at the load with (a) SAND (b) Sizing optimization of optimum minimum compliance 
topology 
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(a) 

  

  

  

(b) 

Fig 3.8. Optimal trusses obtained for the 7 X 5 grid with the 50% horizontal displacement constraint 
at the load with (a) SAND (b) Sizing optimization of optimum minimum compliance 
topology 
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(b) 

Fig 3.9. Optimal trusses obtained for the 4 X 3 grid with the 25 % horizontal displacement 
constraint at the load with (a) SAND (b) Sizing optimization of optimum minimum compliance 
topology 
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(a) 

  
Fig 3.10. Optimal trusses obtained for the 5 X 5 grid with the 25% horizontal displacement 
constraint at the load with (a) SAND (b) Sizing optimization of optimum minimum compliance 
topology 
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(a) 

  

(b) 

Fig 3.11. Optimal trusses obtained for the 7 X 5 grid with the 25% horizontal displacement 
constraint at the load with (a) SAND (b) Sizing optimization of optimum minimum compliance 
topology 
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(b) 

  
  

  

(c) 

Fig . 3.12 Optimal topologies obtained with all methods for (a) 2 X 2 grid 
(b) 3X 3 grid (c) 5X5 grid and (d) 9X 9 grid 

with weight minimization only 
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4. 2-D TOPOLOGY OPTIMIZATION WITH SIMULTANEOUS ANALYSIS AND DESIGN 

4.1 Application of SAND to plane stress problems 

The SAND approach was shown to be an efficient method for the topology design of 

trusses in the last chapter. In chapter 1 the homogenization method [32] was introduced 

as a method of developing structural topologies from two dimensional domains. This ap- 

proach is used for “generalized shape optimization”, which encompasses both traditional 

shape optimization and topology optimization. The homogenization approach considers 

the density of the elements as design variables and the final topology is a variable density 

design. The topology optimization problem is solved as a material distribution problem. 

Generalized shape optimization has also been accomplished by the approach of 

Rozvany and Zhou [27]. By applying the continuum based optimality criteria (COC) 

approach, shape and topology optimization has been performed starting from 2-D rect- 

angular domains to obtain topologies that are interpreted to resemble trusses. Problems 

involving large number of elements have been efficiently solved by this method. The 

method uses the elemental thicknesses as design variables. 

One of the objectives of this dissertation is to test the ability of the SAND approach 

to solve topology optimization of plane stress problems. The computational efficiency of 

the SAND algorithm to design topologies for plane stress problems is the key question 

in terms of the feasibility of using it. The CPU time using the SAND approach varies 

nonlinearly with the number of design variables. In the plane stress formulation a rea- 

sonable mesh refinement involves a large number of design variables. This is because 

of the fact that SAND uses the nodal displacements as design variables and refining the 

finite element model increases the number of displacement design variables. Hence, the 

2-D TOPOLOGY OPTIMIZATION WITH SIMULTANEOUS ANALYSIS AND DESIGN 60



issue of computational efficiency in using the SAND approach to design topologies for 

plane stress problems is very important. 

The ground structure approach is used. We start from a plane stress domain and 

use the elemental thicknesses as design variables. The topology optimization problem is 

solved as a sizing (thickness)optimization problem by using the augmented Lagrangian 

formulation. The optimizer will reduce some elemental thicknesses to zero, vary the rest 

and create a variable thickness plate as the final topology. The variable thickness plate 

that is obtained as the final design can be easily translated into a practical physically 

realizable structure. The variable density plate that comes out of the homogenization 

method requires special skills of interpretation to be interpreted as a physical structure. 

4.2 Results and discussion 

For the examples considered for plane stress topology optimization, the design do- 

main used is the same as for truss topology optimization. This means that the design 

domain consists of a rectangular plate of dimensions 720 inches by 360 inches discretized 

using constant stress 3 noded triangular elements. The material of the plate has a Pois- 

son’s ratio of 0.3 and Young’s modulus of 10* ksi and a density of 0.1 1b/in*. The 

ground structure for a 20 x 10 mesh (20 nodes along the z direction and 10 nodes along 

the y direction) is shown in figure 4.1. A vertical load of 100 kips was applied at the 

lower right hand corner (see fig 4.1) of the plate. The left edge of the plate is clamped. 

The plane stress topology optimization problem that is considered in this dissertation 

is to design a plate of minimum weight to transmit the applied load to the clamped support 

at the left subject to a constraint on the vertical displacement at the load application point. 

This displacement is constrained to be less than or equal to 6.527 x 10~* inches which 

is 50 % of the displacement at that node resulting from an analysis of the initial design 

domain with a constant thickness of 1.0 inch. This displacement constraint is equivalent 
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to a compliance constraint, since it is applied to the displacement component collinear 

with the applied vertical load. However, the SAND approach can deal with more general 

displacement constraints. 

The first case was a 3 x 3 mesh consisting of 18 elements. The plate thickness was 

chosen to be 1.0 inches in order not to violate the displacement constraint. The initial 

design which was a plate of constant thickness weighed 720 x 360 x 1 x 0.1 = 25920 

Ibs. The optimal topology for this case is shown in Fig. 4.2. It can be seen that most of 

the elements in the initial design are retained in the final topology also. The final design 

weighed about 2500 lbs. Similar to the truss topology problems, the nondimensional 

compliance 7 is defined by, 

n = (fu)VE/(( f |/PL7), (4.1) 

where V is the volume, F the elastic modulus and L the horizontal length of the plate. 

The discretization of the plate was refined further to a5 x 5,7 x 7,10 x 5, 10 x 

10, and 20 x 20 grids successively. The results are summarized in Table 4.1. 

Column 1 of table 4.1 shows the problem size. Column 2 shows the number of 

elements in the initial design. Column 3 shows the weight of the optimum topology. 

Column 4 shows the nondimensional compliance values for these meshes. The weight 

and nondimensional compliance increase with the number of elements but they seem to 

be converge. This trend is due to the fact that when a small number of elements are 

used in the finite element model, it is too stiff. That is the compliance predicted by 

the finite element model is too low. When the mesh is refined this problem is resolved 

and we converge towards the optimum compliance for the design domain considered. 

The convergence of the nondimensional compliance are to be compared to the trend 
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Table 4.1. Effect of mesh refinement on the optimal topology and CPU time 

  

  

              

Problem | Number of elements Weight of Nondimensional | CPU time * 

size | in ground structure | optimum topology (lbs)| compliance 7 | (seconds) 

3X3 18 2499 6.78 14 

5X5 32 2801 7.60 69 

7X7 72 3192 8.66 1017 

10 X 5 72 3232 8.77 560 

10 X 10 162 3675 9.97 2270 

20X10; +342 3852 10.45 8300 

* IBM 3090 

shown in table 3.1. In Table 3.1 the non dimensional compliance value decreases as 

the number of elements in the initial design increases. Comparing Table 3.1 with 4.1 it 

appears that the nondimensional compliances converge to the same value in both cases. 

Column 4 shows the CPU time in an IBM 3090 computer taken by the SAND approach 

using an augmented Lagrangian solution process. The CPU time varies approximately 

as the number of elements in the initial design to the power of 2.16. For truss topology 

optimization problems table 3.1 shows that the CPU time varies approximately as number 

of truss elements in the ground structure to the power of 1.72. 

The optimal topologies are shown in figure 4.2 for the 3 x 3 mesh, in figure 4.3 

for the 5 x 5 mesh, in figure 4.4 for the 7 x 7 mesh, in figure 4.5 for the 10 x 5 mesh, 

in figure 4.6 for the 10 x 10 mesh, and in figure 4.7 for the 20 x 10 mesh. As the 

mesh is refined the number of elements with thicknesses smaller than 10~ inches in the 

optimal topology increases. However it is seen that all the optimum topologies display 

alternating thick and thin elements (characterized by dark and light shades in the figures) 
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in a so called “chess board ” pattern. This is more evident in the cases where the domain 

discretization is not very fine. This may be attributed to the fact that the design domain 

has been discretized by using the most basic triangular elements. By using higher order 

elements this problem may be overcome. As the mesh is refined we also see that more 

elements vanish close to the support on the left. 

In chapter 1 and chapter 2 it was noted that the SAND approach was particularly 

sensitive to the tuning parameters (the coefficients multiplying the penalty terms). For 

the topology optimization of plane stress problems the experience was that the SAND 

approach was particularly sensitive to the coefficient c (see chapter 3) multiplying the 

penalty due to the equilibrium equations. If this coefficient was chosen too small then 

the equilibrium equations were violated in the earlier optimization iterations in order 

to satisfy the displacement constraint easily. In later iterations when Vi became large 

the optimizer tried to satisfy the equilibrium equations but found it hard to do. A lot 

of computer time is spent to find the best value for the displacements u to satisfy the 

equilibrium equations. To get a good estimate of the initial value for the coefficient c, 

the 3 x 3, 5 x5 and 7 x 7 problems were run by a different optimization package and 

the actual number of active constraints at the optimum were found. The coefficient c was 

computed from this estimate for these problems. From this information, the value of c 

was extrapolated for larger problems that are reported in the table 4.1. This choice of c 

prevented the violation of the equilibrium equations and helped reduce the computation 

time. 

The SAND algorithm is also sensitive to the rate of reduction of the penalty pa- 

rameter r (see chapter 3). Decreasing r very fast will result in ill-conditioning due 

to increasing Se Reducing r slowly will result in slow convergence. For the plane 

stress topology problems it was found that reducing r by a factor of 10 for successive 

optimization iterations resulted in the best convergence. 
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Reference [62] mentions that for augmented Lagrangian methods it may be necessary 

to choose the initial value of the Lagrange multipliers A, in a close neighborhood of their 

optimal value. Since the optimal values were not known, certain non zero values were 

tried as the initial values of A but in general the performance of the SAND algorithm 

worsened with these non zero values. 

From column 5 of table 4.1 we see that while both the 7 x 7 and 10 x 5 grids have 

72 elements in the initial designs, the former took almost 50 % more time to arrive at the 

same optimal compliance. This may be due to the fact that the elements in the 10 x 5 

grid have a better aspect ratio of 1 while the elements in the 7 x 7 mesh have an aspect 

ratio of $ which is poor. Hence for finer discretizations it may be better to use elements 

with aspect ratio of 1. 

The performance of the SAND algorithm to predict optimal topologies for plane 

stress problems is not very satisfactory at present. Certain modifications may improve 

the performance. They include: 

a. Methods that utilize the sparsity of the matrices involved [56] can be used instead 

of the augmented Lagrangian formulation to reduce the CPU time. 

b. Higher order elements can be used instead of the 3 noded triangular elements which 

may eliminate the “chess board” pattern seen in the optimal topologies here. 

c. Instead of using a completely displacement based formulation like here, a mixed 

formulation (in terms of forces and stresses) may also help reduce the computational 

difficulties since we will not be using the stiffness matrix and the ill conditioning 

associated with it will no longer pose a problem. 
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Figure 4.1 The ground structure for the 20 X 10 grid (342 elements) 
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Figure 4.2 Thickness distribution in the 3 X 3 optimum topology 
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Figure 4.3 Thickness distribution in the 5 X 5 optimal topology 
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Figure 4.5 Thickness distribution in the 10 X 5 optimum topology 
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5. CONCLUSIONS 

In this dissertation a mathematical programming approach called the simultaneous 

analysis and design was presented as a general method for topology optimization. The 

generality of this method was contrasted with the efficiency of the compliance mini- 

mization method. The compliance minimization method is computationally efficient in 

handling stress and displacement constraints in a two stage approach of obtaining an 

optimal compliance topology and then optimizing the cross sectional areas to minimize 

weight. However, It was shown to result in a weight penalty of up to 40% for one case 

of displacement and stress constraints. 

The computational cost varies almost quadratically with the number of members 

in the ground structure for truss topology optimization problems. Two strategies for 

alleviating the computational cost of SAND approach were implemented. They are the 

use of an augmented Lagrangian algorithm and progressive elimination of members with 

small cross sectional areas. Together these strategies reduced computational cost by up 

to 60%, where bigger savings were obtained for larger problem sizes. 

The SAND approach was also implemented for the topology optimization of plane 

stress problems. Since only low order elements were used in the finite element model, the 

optimal results displayed a so called chess board pattern. By using higher order elements 

this problem may be eliminated. The CPU time varied more than quadratically with the 

number of elements in the finite element model. 

The SAND approach is a viable approach for topology optimization. Its gener- 

ality and the capability to handle stress and displacement constraints is an advantage 

over methods like compliance minimization method and homogenization methods that 

are currently employed for topology optimization. Future research can concentrate on 

different formulations and different finite elements for the plane stress problem to make 

the method more efficient. 
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