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Physics 

(ABSTRACT) 

Various methods and approximation schemes are used to study many-electron 

interacting systems. Two important many-particle models, the Anderson model and the 

Hubbard model, and their electromagnetic properties have been investigated in many 

parameter regimes, and applied to physical systems. 

An Anderson single-impurity model Hamiltonian based calculation of the magnetic 

susceptibility is performed for YbN in the presence of crystal fields using an alteration of 

the Non-Crossing Approximation proposed by Zwicknagl et.al., incorporating parameters 

obtained from ab initio band structure calculations. It yields good agreement with 

experimental data. For the Anderson lattice model, a variational scheme which uses 

specific many-electron wavefunctions as basis is applied to both one- and two-dimensional 

systems represented by symmetric Anderson lattice Hamiltonians. Without much 

computational effort, the ground state energy is well approximated, especially in strong- 

coupling limit. Some electronic properties are examined using the variational ground state 

wavefunction. 

The one-dimensional Hubbard model has been solved exactly for small-size clusters 

by diagonalizing the Hamiltonian in the basis of many-electron Bloch states. The results



for the energy spectrum and eigenfunctions of the ground state and low-lying excited states 

are presented. Also, mean field calculations of the two-dimensional single-band Hubbard 

model and Cu-O lattice model (three-band Hubbard model) are carried out for various 

physical quantities including the energy, occupation probability, staggered magnetization, 

momentum distribution Fermi surface and density of states, by using a projection operator 

formalism. 

To develop a systematic approach to solving many-electron problems, the many- 

particle partition function for the free electron gas system is explored using a cumulant 

expansion scheme. Starting from the ground state, the partition function can be 

approximated to any order in terms of excitation energy. Its application to interacting 

systems such as the Anderson model and the Hubbard model is briefly discussed.
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Chapter 1 

Introduction 

Various theories have been developed to study the electronic structures in condensed 

matter physics. Band structure calculations yield very accurate results for non-localized 

and weakly interacting electrons in solids. They are widely used to explain the 

electromagnetic properties of many materials. However, because those calculations are 

based on single-particle motions, there is great difficulty dealing with systems within which 

the electrons are strongly correlated or strongly localized. For instance, in the band 

structure calculations for transition metal oxide materials, the Fermi level coincides with the 

flat energy band of the localized f-electron states, indicating that these materials are 

conductors, which is qualitatively wrong. Also, some experimentally observed effects 

such as the Kondo resonance and the phase transition in surface magnetizations are due to 

the strong many-body interaction between valence electrons and conduction electrons, or 

between the localized electrons themselves, and these effects can not be easily derived from 

theories and calculations based on solving single-particle equations of motion. 

An alternative to describing systems with single-particle wavefunctions is to solve the 

many-body Hamiltonian directly. Apparently this is a very complex and difficult task, but



the effects of correlations between particles can be revealed relatively easily comparing with 

single-particle based calculations. The starting point of many-body calculations is to 

describe the interacting systems by a many-particle model Hamiltonian, such as the 

Heisenburg model, the Anderson impurity model and the Hubbard model Hamiltonians. 

Various theories and approximations schemes have been developed for solving these 

Hamiltonians, including variational approximations, large degeneracy expansion schemes, 

numerical solutions such as exact diagonalizations of small clusters and quantum Monte 

Carlo calculations, and many mean-field theories. 

In this thesis, a few methods mentioned above have been applied to the Anderson 

single impurity model, Anderson lattice model, single-band Hubbard model and three-band 

Hubbard (the CuO? lattice) model in order to study various ground state and 

thermodynamic properties for different many-body interacting systems. The dissertation is 

organized as follows: Chapter 2 describes the calculations of low temperature magnetic 

susceptibility of YbN using an approximation to the 1/N¢ (N¢ being f-orbital degeneracy) 

expansion solution to the Anderson impurity Hamiltonian. A variational solution to the 

one- and two-dimensional Anderson lattice model using many-particle Bloch states as basis 

is presented in Chapter 3. In Chapter 4, the effort to find exact solutions for small clusters 

of the one-dimensional Hubbard model is made for various sizes and symmetries. In 

relation to the studies of high temperature superconductivity, a Mori-projection-operator 

based mean-field calculation is carried out in Chapter 5 for the two-dimensional single-band 

Hubbard model and CuO? lattice model; the results for many thermodynamic properties and 

the quasi-particle density of states are presented. The last research project is an attempt to 

find the many-body partition function using a cumulant expansion scheme, which is 

described in detail in Chapter 6. Chapter 7 includes final conclusions and comments.



Chapter 2 

Magnetic Susceptibility of YbN 

Much effort has been expended on understanding the properties of hybridizing rare 

earth systems such as the ytterbium monopnictides. These materials have some interesting 

low temperature features such as a broad bump observed in specifit heat measurements and 

a near-constant magnetic susceptibility indicating a non-magnetic Fermi liquid state 

[Stutius, 1969; Ott, 1982]. These properties are believed to be interacting many-electron 

effects which cannot be explained from one-particle band structure calculations because of 

the highly localized f-orbital in ytterbium. In this chapter, the low temperature magnetic 

susceptibility of YbN is calculated by applying the Zwicknagl, Zevin and Fulde (ZZF) 

approximation [Zwicknagl, 1990] for the spectral densities of the occupied and empty f- 

states, derived from a degenerate Anderson impurity model which incorporates crystal 

fields. The model, in which each crystal field level couples to the band states with its own 

hybridization function, has been successfully applied using the non-crossing approximation 

(NCA) to explain the specific heat structure at low temperatures [Monnier, 1990]. The 

ZZ¥F approximation removes the spurious zero-temperature behavior of the parent Non- 

Crossing Approximation for the susceptibility by representing the low-energy empty-f 

density spectrum by a delta-function. Surprisingly, even at low crystal field degeneracy



(N=2) of YDN the Shiba relation (a Fermi-liquid relation for the magnetic susceptibility at 

zero temperature) is very nearly satisfied, in spite of the fact that ZZF approximation is 

based on the 1/N expansion. The appropriate experimental impurity susceptibility for 

comparison is extracted from the measurement by removing an empirical exchange 

interaction. The resultant Kondo temperature (To = 8.49K) is consistent with previous 

specific heat estimates (10-11K), and the agreement with experiment is good. 

2.1 Ytterbium monopnictides and the Anderson model 

Experimentally, the magnetic susceptibility of Yb monopnictide materials changes 

from a Curie-like behavior (1/T) at high temperature to a constant value, indicative of a 

non-magnetic Fermi liquid state, below a characteristic (Kondo) temperature [Oyamada, 

1988; Degiorgi, 1990]. The compact size of the Yb f-orbitals severely limits the range of 

their interactions and they are frequently approximated as an assembly of uncoupled 

impurities. Such rare earth impurities in metals are commonly described by the infinite-U 

degenerate Anderson Model [Anderson, 1961] which was explained in detail in [Monnier, 

1986] and [Monnier, 1990]: 

U=e0 U=e0 U=0 

H = band + He + A nix (2.1a) 

where the conduction band energy 

Hband = > Ex Nk 
k (2.1b)



the f-electron energy 

Hp” = ¥ €j Nj 

i (2.1¢c) 

with crystal field level index i, and 

HY" = ¥ Vk) (cl f+ fle) 
k,i (2.1d) 

is the hybridization between localized f-electrons fj and conduction electrons cy, with 

hybridization integral V(k). In the infinite U limit, no double occupancy is allowed in f- 

States. 

For the severely restricted case that the f-orbital coupling to the band states is constant 

in energy and independent of orbital, the Bethe Ansatz formalism yields the exact ground 

state and thermodynamic properties [Tsvelick, 1982; Tsvelick, 1983; Andrei, 1983; 

Hewson, 1985; Rasul, 1989] of the model. A numerical approach not suffering from 

these restrictions is the so-called non-crossing approximation (NCA) [Bickers, 1985; 

Bickers, 1987; Zhang, 1984; Coleman, 1984; Monnier, 1990], in which the magnetic 

degeneracy N is used as a self-consistent expansion parameter. A diagrammatic 1/N 

expansion is used to solve two coupled integral equations for the self-energy of empty and 

occupied f-states, from which the spectral densities of these two f-states can be derived. 

Using this technique it is observed that the empty-f spectral density pp) has a very sharp 

peak at an energy slightly below the f-orbital energy [Bickers, 1987] and a broad feature 

around the Fermi energy. The low energy peak corresponds to the ground state of the 

interacting many particle system, and therefore plays an important role in the low 

temperature properties of the system. The broad features near the Fermi energy represent



long-lived excited states of the system and should be less important at low temperatures. 

The specific heat of Ytterbium-pnictides in the presence of crystal fields (CF) with a 

doublet ground state has been calculated using NCA with reasonable success [Monnier, 

1990]. 

Attempts to reproduce the magnetic susceptibility behavior using the NCA for YbN, 

YbP and YbAs [Monnier, 1990] have failed because the NCA does not satisfy certain 

Fermi-liquid relations (e.g., the Shiba relation) in the zero-temperature limit [Bickers, 

1987]. This non-Fermi-liquid behavior causes a singularity in the localized f-moment 

spectral density at zero-temperature, which leads to a divergent magnetic susceptibility at 

low temperatures. 

Recently, Zwicknagl, Zevin and Fulde [Zwicknagl, 1990] (ZZF) have proposed a 

scheme in which the low-energy peak in the empty-f spectral function Pg is approximated 

as a 6-function and other high energy features of po are ignored. This approximation 

beneficially does not exhibit the low-temperature spurious features of the NCA. 

Additionally, the magnitude of the numerical calculation for practical physical properties is 

significantly reduced. ZZF applied this scheme to a CF split model in which the coupling 

between band states and impurity states was constant in energy. For this system with an f- 

ground state degeneracy of 6, their magnetic susceptibility at low temperature compared 

well to those obtained from the NCA. In this chapter, we assess the ZZF approximation 

scheme for the susceptibility of YbN by calculating the low-temperature magnetic 

susceptibility in the presence of CF splittings where the lowest f-level degeneracy is only 2, 

and compare the results with recent experimental data [Zhou, 199 1a].



2.2 The ZZF formalism for YbN 

In the presence of CF, the 4f!3 F,, multiplet of Yb is split into three levels 

[Monnier, 1990]: I's (ground state with energy €¢, degeneracy Ng = 2), I's (Ng = 4) and 

I; (N7 =2). In the ZZF approximation, the spectral function po(@) of the empty 4f state 

is: 

Po(@) = (1-np) 8(@-Wp) (2.2) 

where 

Wy = &5- To (2.3) 

nris the f-valence at zero-temperature and Ty the Kondo temperature. With Eq.(2.2), the 

spectral function p;(@) of the occupied 4f state can be obtained from an integral equation of 

the NCA [Zwicknagl, 1990; Zevin, 1988]: 

  

  

1 (1-n¢) y,(@- Wg) f(@o- @) 
p.@) = = 5 * 5 

(w-e;)° + jd -N¢) ¥,(@- Wp) fl@o- o)| (2.4) 

where f(@) is the Fermi function: 

f() = —4 
eo +1 (2.5) 

and y;(@) = 1Vj2(@) is the coupling width between band states and each CF level T; as a 

function of energy determined using a tight binding fit to an ab initio band structure
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Energy dependent coupling functions for YbN. y;(€) are plotted for 

the lowest two crystal field levels Ig and Tg of a 4f hole on the ytterbium ion, 

determined from a tight binding fit to an ab initio band structure calculation 

(Monnier, 1990). The zero of energy is at the Fermi level.



calculation [Monnier, 1990]. For YbN, Y¢6(@) and Yg(@) as functions of frequency are 

shown in Fig.2.1. 

The relation between To and the f-valence ng can be obtained for zero temperature 

using: 

+00 

ne = zn ¥ | dw e bo Ni(@) 

See - (2.6) 

where Z, is the partition function of the 4f electron: 

Zp = (1-np) eb + ¥ sf dae P® P;(@) 

nan (2.7) 

in which Eq.(2.2) has been used. With a spectral function given by Eq.(2.4), and setting 

the energy zero at the Fermi energy, the relation between nr and Tp follows the simple 

  

expression: 

ne = C 
ff 1T4+C (2.8) 

where 

0 

Y, () ce tyn,{| 2 —w 
' (@ + Wo- €; ) 

“ee (2.9)
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This same result can be derived from a variational approach [Gunnarsson, 1983; Langreth, 

1966]. Taking the hybridization width y, as a constant in energy, Eq.(2.8) can be further 

simplified: 

ny = (1-np) yy N; ——i— 
i ' R(T 9+ €- E¢) (2.10) 

which is exactly the same as eq.(11a) in [Zwicknagl, 1990]. However, with the energy- 

dependent y,(@) shown in Fig. (2.1), Eq.(2.8) is used throughout our calculations and 

discussions. 

With CF levels Ig and Ig, the imaginary part of the dynamic susceptibility is 

[Bickers, 1987; Zwicknagl, 1990] 

o(o,7T) = # eS Ni Ws fe de e ®* pe) py(e+o) 
i 

-e- Bo = + aoe Nes bes | de |p g(e) pale+m) + pale) pole+a)| 
—oo 

(2.11) 

where iL; is the effective high temperature moment for the level [;. The appropriate 

theoretical magnetic moments for YbN are [Monnier, 1990]



11 

- ,/16 — ,/1040 - ,/432 
UWe= V3 Hee Pe Vq47 Hae Hy = Vag He (2.12a) 

where [Up is the Bohr magneton. The van Vleck contribution is included in the second term 

of the summation in eq. (11), in which 

Neg = ~N6Ng = V8 

(2.12b) 

2 70 3 2 
U = 8772 9 —_ Hp 

°" ” Nes 

and g7,) is the Lande factor (8/7). 

The temperature dependence of the static susceptibility is given by the principle value 

of an integral: 

~ (2.13) 

2.3 The magnetic susceptibility of YbN 

In the calculation, the integrals in Eq. (2.11) were performed numerically using an 

FFT convolution algorithm. Consistent with the specific heat calculation of [Monnier, 

1990], the difference between the Fermi energy €, and the lowest CF level energy €¢ is 

taken as (€- €p) =-0.5eV. The value of the CF splitting (€, - €,), taken from a very recent



12 

inelastic neutron scattering study [Donni], is 33meV. The I, level is considered 

sufficiently high that it is omitted from the calculation. While investigating the validity of 

the ZZF approximation for various f-orbital degeneracies, n, is fixed at 0.94, and the 

Kondo temperature scale Ty is determined from Eq.(2.8). When comparing with 

experiment, To is treated as a free parameter to get the best fit between the theory and 

experiment, and n, is appropriately determined from Eq.(2.8). 

2.3.1 The validity of the ZZF approximation for low-degeneracy systems 

To examine the validity of the ZZF approximation for the low-degeneracy (N¢ = 2) 

YbN system, the behavior of the dynamic susceptibility 6,@) for various lowest f-level 

degeneracy (N¢ = 2,3,4,5 and 6) is investigated (while the effects of any excited f-state are 

ignored). The result shows that the spectral function of the lowest f-levels p¢(@) has a well 

defined single peak at energy €, as expected. Fig. 2.2 is a plot of 0,(@)/w at T<<Tpo for Ng 

= 3, 4,5 and 6. The case Ng, = 2, corresponding to YbN, is shown in Fig. 2.4. Despite 

the very different behavior for different Ng, it is seen that for no degeneracy does the 

dynamic susceptibility 6,(w)/m diverge at @ = 0 in the low temperature limit. This is a 

distinct advantage over the NCA in which 6,()/o diverges as_lal-2/N+1), The Fermi- 

liquid relation (Shiba relation) [Shiba, 1975]: 

o(0) 3 x (T=0) 
To leg = 

” Ne HL, (2.14) 

is satisfied within two percent for all values of Ng.
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Fig. 2.2 Low temperature (T=1.5K) behavior of the imaginary part of the 

dynamical susceptibility divided by frequency. of¢(@)/@ for f- 

degeneracies N¢ = 3,4,5 and 6 are shown. The zero temperature f-occupancy nf 

is set to 0.94 for all cases, and the corresponding Kondo temperature scales are 

To = 40.8K, 55.1K, 69.5K and 84.1K as determined from Eq.(2.8) in the text. 

The Shiba relation is satisfied within a few percent for all four cases.
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Fig. 2.3. The static susceptibility ~¥(T) versus temperature T for Nr = 6. All 

parameters are the same as in Fig.2.2. Note that y(T) becomes a constant at 

low temperatures, and that a bump appears similar to the NCA results.
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Fig. 2.3 shows X(T) as a function of temperature for Ng = 6. For all values of Ng 

being studied, the ZZF approximation gives a constant static susceptibility (Pauli law) at 

temperatures lower than To, indicating a non-magnetic Fermi-liquid state. Further, it 

displays a finite limit as the temperature approaches zero. 

2.3.2 Application of the ZZF approximation to YbN 

To compare this contribution to the susceptibility with experimental data [Degiorgi, 

1990], we subtracted the molecular field contribution from the experimental result using 

[Degiorgi, 1990; Popielewicz, 1976; Wojciechowski, 1988]: 

1 
Len Xe (2.15) 

where ¥,, is the measured susceptibility, x, is the experimentally derived contribution from 

the strongly interacting electrons in f-orbitals, and A is a molecular field constant in the 

exchange field Hp = AM. A is derived by extrapolating the high temperature 1/y,, to T=0. 

From the experimental data of [Degiorgi, 1990], we obtain A = -10.9 mole/cm3, with 

effective moment [orp = 4.85 Ly and Curie temperature Tc = -96.7K. 

6,(@)/@ vs. w for T<<Tp and ¥(T) vs. T are shown for YbN in Fig.2.4 and Fig.2.5. 

Due to the presence of CF splittings, it is seen in Fig.2.4 that in addition to the low 

frequency feature of o,(@)/o, there are two peaks near +(€;- €), arising from the van Vleck 

contributions to the susceptibility. Tp = 8.49K is chosen to obtain the optimal fit with the 

X_ extracted from the experimental data using Eq.(2.15). This value of Tp is smaller than 

the value (10-11K) obtained from the specific heat calculation with NCA. For comparison
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and n,- = 0.980 determined from Eq.(2.8).
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range where the experiment was performed. However, theory does not 

reproduce the low temperature bump appearing in the experimental result.
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Xr is also shown in Fig.2.5. It is seen that reasonably good agreement is obtained in the 

temperature range where experiment was performed. The bump observed at low 

temperature can not be reproduced in the calculation. If an alternative CF splitting (€, - &,) 

= 55meV is used as in [Monnier, 1990], the van Vieck contribution to the susceptibility 

evaluated with Eq.(2.13) and the second term in Eq.(2.11) is much smaller, and the 

derived experimental impurity susceptibility is too large for the theory. 

The agreement of theory with experiment at low temperature shows that the ZZF 

approach has removed most of the difficulties encountered in the NCA calculation 

[Monnier, 1990]. It is a little surprising that the Shiba relation is satisfied for this system 

with degeneracy as low as 2 since the approximation was derived from the NCA, which is 

only valid for large degeneracies. Even though the zero-temperature analytic solutions of 

the NCA offer some insights of why the Fermi-liquid relations are violated [Muller- 

Hartmann, 1984; Kuramoto, 1985], it is still not clear why the Shiba relation is satisfied 

within the ZZF approximation regardless of f-degeneracy [Kuramoto, 1985]. 

2.4 Summary 

We have presented a calculation for the magnetic susceptibility of YbN in the 

presence of crystal fields. Using the ZZF approximation for the spectral function of the 

empty-f state, the NCA low-temperature divergence of 0,(@)/@ at @ = 0 is removed and the 

calculational effort greatly reduced. It is found that within this approximation the Fermi 

liquid relation for the dynamic susceptibility (Shiba relation) is satisfied within a few 

percent even for a system with f-degeneracy as low as 2, and a constant magnetic
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susceptibility at temperatures below Kondo temperature is obtained. The ZZF 

approximation sidesteps the deficiencies of the NCA and seems to yield good agreement 

with experiment even for small degeneracies. Using coupling functions V(@) determined 

from a tight binding fit to a band structure calculation, the theoretical magnetic susceptibility 

of YbN clearly exhibits a non-magnetic Fermi-liquid state in good agreement with 

experiment. The full explanation of its success has not yet been found.



Chapter 3 

Variational Calculations of the Anderson 

Lattice 

It has been a success to study the electromagnetic properties of some materials with 

highly localized orbitals such as YDN by solving the Anderson model, as described in the 

last chapter. However, the Anderson model Hamiltonian (eq.(2.1)) does not include the 

intersite interactions between the localized electrons, thus it is not able to describe the low 

temperature magnetic ordering observed in certain transition metal compounds. For 

example, Malik et.al. (1991) saw evidence that CePdSb orders ferromagnetically and 

GdPdSb orders antiferromagnetically around 15-17K. This is 4 consequence of the 

interaction between the localized 4f electrons and the itinerant conduction electrons. Also, 

it was found [Kuramoto, 1989] that the momentum dependence in the magnetic response of 

certain heavy fermion systems is mainly due to the Ruderman-Kittel-Kasuya- Yosida 

(RKKY) interaction, a type of interaction between two localized electrons through the 

conduction band. Therefore, it is necessary to investigate a magnetic moment lattice model 

which is based on the Anderson single impurity Hamiltonian described by Eq.(2.1), that 

leads to the Anderson lattice model. In this chapter, the Anderson lattice Hamiltonion is 

discussed, and variational calculations of its ground state energies and wavefunctions for 

20
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both one- and two-dimensional systems are presented. 

3.1 The Anderson lattice Hamiltonian 

There has been much interest in the ground state properties of a lattice of localized 

moments as a description of mixed-valence systems [Stewart, 1984; Varma, 1985a; Varma, 

1985b]. The interesting physics of such systems arises from the interaction of the localized 

f-orbitals (with energy close to the Fermi energy) with the conduction d-bands and by the f- 

orbital intrasite Coulomb energy. At high temperature they tend to have isolated moments. 

A model appropriate to describe such systems is the Periodic Anderson Model (PAM). The 

Hamiltonian for the non-degenerate one dimensional periodic Anderson model has the form 

= 2euchcr + Defi, + Ud fi, fin fy fy 
1lsj 

Y_ ¥ (ek*R ff gy, + hic.) 

kIs, (3.1) 

where ct (c) and ff (f) are the creation (annihilation) operators for the conduction d-orbital 

and localized f-orbital electrons, respectively. Here U is the on-site Coulomb energy of the 

localized f-electrons. V represents the hybridization of the two bands, taken to be k 

independent, and 

& 5 = -2tcos(k) (3.2) 

where t is the intersite hopping energy and -~7 <k <1. 

Theoretical work on this model has included perturbation expansions in the Coulomb
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energy U [Yamada, 1983], various Green’s function approaches [Czyzcholl, 1982; 

Czyzcholl, 1985; Kurata, 1980; Brandow, 1979], functional integration methods [Read, 

1984a; Read, 1984b; Coleman, 1985], real-space renormalization [Julian, 1977a; Julian, 

1977b; Julian, 1982a; Julian, 1982b] and direct diagonalization of finite clusters [Julian, 

1982c; Misra, 1987; Chen, 1988]. An extended non-crossing approximation approach 

(XNCA), based on the NCA for the Anderson single impurity model which is directly 

related to last chapter’s content, has been pursued by Kuramoto (1989) and Kim et.al. 

(1991). 

A wide variety of variational schemes have also been applied to this model [Brandow, 

1986]. These include a number of Gutzwiller-type approaches [Fazekas, 1987; Rice, 

1987; Oguchi, 1987] whereby an initial trial function is chosen to project out the two- 

particle states on the localized f-orbitals. Such an approach represents a mean-field theory 

and thus no information regarding spin correlations of neighboring localized orbitals may 

be extracted. Another important work, relevant to the present study, is that of 

Blankenbecler et.al. [Blankenbecler, 1987] who utilized a stochastic Monte Carlo technique 

to study the ground state properties of the one dimensional PAM. Comparisons with this 

work, taken to represent the true ground state, shall be made throughout this chapter. 

3.2. Variational formalism 

This work, based on the Lanczos variational scheme [Mancini, 1985, 1984, 1983, 

1990] is a continuation of an earlier preliminary study [Bowen, 1988] on the Anderson 

model in which the localized f-orbitals were found to be anti-ferromagnetically correlated in
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the ground state via an RKKY-type of interaction. Here a variational ground state energy 

as well as magnetic correlation functions and hybridization matrix elements are evaluated 

[Zhou, 1991e]. The method utilizes a finite matrix truncations scherne whereby a limited 

subspace of the full Hamiltonian is generated [Mancini, 1990]. The power of the method 

lies in the fact that for modest computation times one may study very large systems with 

extensions to higher dimensions being straightforward. A drawback of the technique is 

that excitations near the Fermi energy are approximated as average band energies, thus 

obscuring any information on low lying energies leading to the Fermi liquid behavior of 

intermediate valence systems. In section 3.3 the ground state properties of the one 

dimensional PAM for an 8-site, 16-site, 32-site and 64-site lattice are studied. 

Comparisons are made with a stochastic Monte Carlo calculation performed on a 16-site 

chain. The variational results are in excellent agreement with those of the Monte Carlo 

calculations in the Kondo lattice regime (Coulomb energy U large). However, in the mixed 

valence parameter range our results are rather disappointing. This we argue is a 

consequence of choosing a finite basis whereby important vectors containing the 

hybridization matrix elements as well as those which represent excitations close to the 

Fermi energy have been left out. We shall reserve further discussion on this matter until a 

later section. 

3.2.1 The variational basis vectors 

Now we introduce a diagrammatic representation of these vectors which facilitates the 

choosing of a linearly independent set of vectors as well as rendering the orthogonalization 

(via a Gram-Schmidt orthogonalization process) of this set more manageable. We denote 

the filled Fermi sea of conduction electrons with the symbol (C7 and the set of singly
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occupied localized orbitals by a horizontal line ——_ ~——. Here ! denotes a particular site. 

The initial trial wave function is represented by 

la> = ]Q> = |T—) (3.3) 

with the normalization |o,|? = 1. 

A truncated basis consisting of various particle-hole excitations may be constructed 

by repeated operations of Eq.(1) on [Q>. The set of states generated may be represented 

diagrammatically, with rules for their construction not given here. Repeated operations of 

the Hamiltonian [Duncan, 1985] yields a set of nineteen vectors. After checking for linear 

independence and performing a Gram-Schmidt orthogonalization, the basis was reduced to 

a set of thirteen independent vectors. Each of these vectors represent a different physical 

excitation of the ground state. We shall be interested in obtaining the lowest eigenvalue of 

the 13x13 Hamiltonian matrix within this basis. This matrix is both small and sparse, 

allowing the calculations to be performed on a desk-top computer using standard matrix 

routines. It is hoped that such a small amount of computational effort will yield 

qualitatively useful information on the ground state. 

To illustrate the method, we note that explicit operation of the Hamiltonian on the 

initial vector |@,> yields the following two new vectors. Each vector represents linear 

combinations of all distinct single particle-hole excitations, 

I> = Fe Defic, | 
k<kp 1 

(3.4) 
¥ Dect fi, {Qo> 
k>kp 1 

2 ud 
Vv

 il al
-
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The vector lp,> represents the physical event whereby a conduction electron with 

momentum k<kp and spin S,; = - S, hybridizes to a localized f-orbital labeled by 1 with 

an already existing spin S,. Vector \p3> represents the hopping of a localized electron from 

site 1 with spin S, to the conduction band with momentum k>kp. We note that, just as in 

Oguchi’s work [Oguchi, 1987], while the number of f-electrons is not fixed, total electron 

number is conserved. He uses this condition to determine his variational parameters. The 

remaining vectors are given below. 

We have: 

1,> _ WN y eikR, ( Exs, - E,,) Ch, fis, \Q> 

k>kp 1 

lo> = - eiK(Rr-RDS fh Cy Ch, fis, [Q> 
k>kp 1¥]' 

o> = i Y DeiK WR flop, cf, fis, I> 
k>kp 1 
k<kp 

i(K Ry - t |o,> _ x » » eitk R, kR;) f15,.Cy;, cf s,{is, [Q> 

k>kp 1¥]' 
k<kp 

1o,> _ y y y eR RG Ch, fis.Cye fis, \Q> 

k>kp 1#1' 

1,> = a y YS, eR Re + eRD Cha fis Ck fis, |Q> 
k>kp 1¥1' 
K’>kp



26 

1 + 
Idio> = aN > ek (By - Eus, ) figCis, [Q> 

k<kp 1 

1 i(k Ry +kR,) ¢t t lou> = dy 2 CNY fia ces, fa,CK3, [O> 
k< ¥)' rd 1#] 

1 ik(Ry t t 1915> = W > > eik(R, ROG fha,Cua, f15,Cug, \QQ> 

k<kp 1#1' 

i(k -k)R, ¢t t > > ei( ) 1 fi5,Cy sk s, fis, \Q> 

k>kp 1 

k’<kp 

Z)
- 

19,3> = 

in which kis the momentum at the Fermi surface, and 6 the Kronecker-delta. The 

collection of the diagrammatic representations of these 13 many-electron state basis vectors 

is shown in Fig.3.1. 

3.2.2. The Hamiltonian matrix elements 

The ground state energy for the truncated basis of thirteen vectors is obtained by 

finding the lowest eigenvalue of the Hamiltonian matrix Hj; = <ojIH!oj>. With 

unnormalized basis vectors |,> through |o,3> defined in section II, the non-zero elements 

of the upper-half of the Hamiltonian matrix are: 

Hy, = Eo



27 

  
(5) (6) 

  

(7) 

Fig. 3.la Diagrammatic representation of the first seven of thirteen basis 

states.



Fig. 3.1b 
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Diagrammatic representation of the last six of thirteen basis 

states. Up to second order in particle-hole excitations with spin flips have 

been included. The bubbles appearing in (4) and (10) constitute corrections in 

self-energies. Diagrams (6) and (13) are vectors which include explicitly the 

RKKY-type interaction.
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2 
Hgg = (Ep+2A)A | 

Ho9 (Eo+ 20) e2 ; 

(Eg+U-A) a2 F110, 10 

Hau = (Ep+ 2U - 2A ) e2 , 

- 2 
Hy. (Eg+2U-22) A 
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2 2 
lo) = oa = 

The variables used above are defined as: 

A = <3 D (2ey, - Eu) 
N? isk 1 

A = 3 D285, - E,;) 
N’ keke l 

a2 = WDD (em, - 2) 
N oe 

a= HDD (ep, -€0) 
N eke I 

fe = +> 2 Ek, 
N? k>kp 1 

ec = GLa 
N2 k<kp 1 

2 = (N-1)(2-1)-4 ¥ ZF clk WRB G, 
N? k>kp 1#1' " 

K'>kp , #y 

e2 = (N-1) (H-1) - 2, SY eile K IRR) GS 
> he 1#]' ms 

Kckpp #y



32 

2 , y = +. y Y @ i(k -k)(R, - Ry) S.5, 

N“ k>kp 11’ 
k<kp 

B. _ y, Y ei -WR-R) § 

N? Sip te 
k>kp 

wo= 2 > ees > Ex 
k>kp k<kp 

where N is the number of sites, and Ep the ground state energy of the half-filled conduction 

band. 

3.3. Ground state of the one-dimensional Anderson lattice 

In this section we wish to compare our results [Zhou, 1991e] for the one dimensional 

PAM with those of the quantum Monte Carlo calculation of Blankenbecler et.al. 

[Blankenbeckler, 1987], and also with the strong coupling (SC) limit. The values of 

parameters used are the same as those in [Blankenbeckler, 1987]: t = 0.5, and V = 0.375. 

In the strong coupling regime, U >> 5, where the band gap 

8 = Va+4v?)-1 (3.5) 

and the ground state energy is given by
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1 2 2v7y 1 - fey) E(U) = -,U + NDeafley) - a 0 

k &to (3.6) 

  

with f(€,) the zero temperature Fermi function. 

Fig. 3.2 is a plot of the variational ground state energy Eo(U) for the sixteen site 

lattice. For the large U limit the variational ground state energy converges quite nicely to 

the Monte Carlo results of [Blankenbeckler, 1987] and for U = 1.8 are as good or better 

than the strong coupling theory. 

The success of this basis in the large U limit for this symmetric Anderson model is 

due to the fact that particle hole excitations with a filled f-orbital and ‘average’ conduction 

band hole dominate the variational subspace. The energies of these states have the form (- 

0.5U+ <e>) where <e> is an average of hole energies over the band. The Coulomb 

interactions between f-orbitals are also treated exactly in this basis. 

It should be noted that the variational basis chosen here does not do well for small U 

where the actual band structure would begin to dominate. This sequence of vectors 

represents the band energies by certain averages over the whole band. This characterizes 

the bands by a sequence of averages closely related to the cumulant expansion well known 

from statistics. To recover the detailed band structure itself would require large numbers of 

these vectors. To illustrate this it is useful to examine the simplest complementary 

variational basis set: one which treats the hybridized bands exactly and treats the f-f 

Coulomb interaction in mean field only. For this sequence of many-particle states we 

define hybridized single particle operators ¥,,1 (+) which diagonalize the U=0 Hamiltonian.



34 

  

En
er
gy
 

  

  Variational 
2.0}, ----- Monte Carlo | 

— - — Strong Coupling 

— - - -—Hybridization Band Limit 

2.5 1 1 | __|__4_|___1-_|__ 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

U 

    
  

Fig. 3.2. Ground state energy per site of the 16-site lattice. Comparing with 

the Monte Carlo calculation and strong coupling approximation results. The 

dot-dashed line represents the small U approximation result (Eq.3.10). 

Parameters used are t = 0.5 and V = 0.375.
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The one electron operators are defined as 

Vel, + (Acs(t) - exe) fl, 
  

  

; 
Yis(+) = 

VV? + (Axs(t) - &cs)? (3.7) 

where 

Mat) = 5 (Est Es) + 5 V(eis- Ei? + 4V2 
(3.8) 

are the exact energies of the hybridized bands for U=0. The initial variational ground state 

for this sequence of states is a filled Fermi sea of ¥,,/ (-): 

IG> = [[wxolo> 
ks (3.9) 

The dot-dashed line in Fig.3.2 that agrees with the Monte Carlo results at U=0 represents 

the expectation value of <GIHIG>: 

  y V2 + (Aeg-) - &k)? | U EoU) = Ya) += 
a “2 (e+) ~ Me)? (3.10) 

In Fig.3.3 we plot the ground state energy for 8, 32, 64 site lattices. In the large U 

limit where diagonal terms of the Hamiltonian matrix elements dominate and thus where 

our truncation does well, the energy per site decreases slightly as the size of the lattice 

increases. As the lattice size is allowed to increase, the number of states present in the true 

ground state also increases. Thus it is seen that in the mixed-valence regime (small U), for 

larger and larger lattices our finite basis becomes a poorer approximation.
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Further investigation of Fig.3.3 shows that there is another effect to be considered. 

As U becomes very large the doubly occupied sites which appear in the true ground state 

will have a vanishingly small amplitude. If one were to ignore such states then the effective 

number of states in the true ground state would be diminished, tending to improve any 

finite basis truncation scheme. Thus one needs to investigate the full range of parameter 

space for a given Hamiltonian before drawing conclusions on size effects and also on the 

limitations involved in finite-basis methods. 

The square of the f-orbital single-site magnetization <mf,(1)2> = 1 -2<nf;nfy> is 

shown in Fig.3.4 for a 16-site lattice. Use of the Feynman-Hellman relation enables one to 

write this function in terms of a derivative of the ground state energy 

dE fq\2, — 

<m0'> = 23g (3.11) 

We see that once again our results compare favorably in the large U limit with the Monte 

Carlo results of [Blankenbeckler, 1987], but fail completely in mixed-valence regime 

because of the poor approximation to the ground state wavefunction. 

It is interesting to investigate the interplay between the Coulomb energy U and the 

effective hybridization V. As pointed out by Blankenbecler et.al. [Blankenbeckler, 1987], 

a useful measure of this is given by the ratio of (ft,,c,,+ct,f,, ) in the interacting ground state 

to that in the U=0 ground state. Previous results [Blankenbeckler, 1987] demonstrate that 

the effect of U is to decrease the hybridization. Our calculation of this quantity using the 

13x13 basis yields very poor results as expected. We would expect better agreement if 

more states which couple to the Coulomb energy were added to the basis.
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Fig. 3.3. Ground state energy per site of 8, 32 and 64-site lattices. The parameters are 

the same as those used in Fig.3.2. Note in the mixed-valence regime (small UV), 

the energy of smaller cluster is lower than that of the larger ones in the present 

approximation.
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one-dimensional 16-site lattice. Parameters are the same as those used in 

Fig.3.2.
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3.4 Ground state of the two-dimensional Anderson lattice 

With the good agreement between the variational ground state energy and the Monte 

Carlo result for the one-dimensional periodic Anderson lattice model, one expects this 

variational scheme to give good estimates for the two dimensional Anderson lattice, a 

model used extensively for systems with valence electron states [Parks, 1977; Falicov, 

1981]. The 2D Hamiltonian has the same form as in one dimension: 

H = D each, cs + » Eff fis, + U Dif fir ft fis 
ks 1s) 1 

+ 7 > (elk fl, Cis, + hic.) 
N xis (3.12) 

with the modification that all summations are now two dimensional. The conduction band 

energy in 2D is 

&. = ~2t (cos(k,) + cos(k,)) . (3.13) 

The variatonal basis chosen is a 13 dimensional subspace, and is identical to the basis 

used for studying the one dimensional model as listed in Fig.3.1. The 13-state basis 

includes single particle-hole excitations, two particle-hole excitations, and RKKY-type 

interactions. 

Since a fixed 13x13 many-particle basis is kept regardless of the size of a lattice, the 

calculations can be carried out for moderately large lattice sizes with relatively small amount 

of computing time. The results for the ground state energies per site as functions of U for
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4x4, 8x8 and 16x16 lattices are shown in Fig.3.5, in which we have chosen t=0.5 and 

V=0.375, consistent with the calculations for one-dimension [Zhou, 1991e; Blankenbecler, 

1987]. It is seen that in the vanishing U limit, the larger the lattice size becomes, the higher 

the variational ground state energy is. We attribute this to the fact that at small U, the true 

ground state is spanned in a much larger space of states than the subspace of the 13-state- 

basis used here. And the larger the lattice, the more the basis states there are that overlap 

the ground state wavefunction. For small U the actual band structure near the Fermi energy 

should dominate in the system, while the vectors which appear in our calculation represent 

the band energies by averages over the whole band. For large U (symmetric Anderson 

model) the ground state will be dominated by singly occupied f states as are the 13x13 

basis in this calculation. For this reason we expect that the variational calculation should 

work well in the large U limit as in the one-dimension case. Similar to the one-dimensional 

Anderson calculation [Chen, 1988], our ground state energy results here show little size 

effect in the relevant large U parameter range [Zhou, 1991d]. 

While we do not expect our results to be valid in the mixed-valence regime (small U), 

it is useful to apply the simple approximation in this vanishing U limit described by 

Eq.(3.7)-(3.10) which gives exact ground state energy for U=0, so that an upper bound is 

given for the ground state energy by combining the results of these two calculations. The 

results of this simple estimate are shown along with our variational calculations for 4x4, 

8x8 and 16x16 lattices in Fig.3.6, Fig.3.7 and Fig.3.8 respectively. 

Since results show the similarities between one-dimensional and two-dimensional 

systems, it should be interesting to compare the ground state energy per site of a two- 

dimensional lattice with that of a one-dimensional ring with the same number of sites. In
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Fig. 3.5 Ground state energy as a function of U for different two- 

dimensional lattice sizes. Retults shown are 4x4 (solid line), 8x8 (dash 

line) and 16x16 (dot dash line) lattices for t= 0.5 and V == 0.375.
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Fig. 3.6 Ground state energy as a function of U for 4x4 lattice. The solid 

line is the result of our variational calculations based on 13x13 matrices. The 

dashed line is the plot of Eq.(3.10) which approximates the small U ground 

State. These two lines give an upper bound of the true ground state energy. 

The variational results for one dimensional 16-site lattice is also plotted (dot- 

dashed line) for comparison. Parameters are the same as in Fig.3.5.
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Fig. 3.7. Ground state energy as a function of U for 8x8 lattice. The solid 

line is the result of our variational calculations based on 13x13 matrices. The 

dashed line is the plot of Eq.(3.10) which approximates the small U ground 

State. These two lines give an upper bound of the true ground state energy. 

The variational results for one dimensional 64-site lattice is also plotted (dot- 

dashed line) for comparison. Parameters are the same as in Fig.3.5.
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Fig. 3.8 Ground state energy as a function of U for 16x16 lattice. The solid 

line is the result of our variational calculations based on 13x13 matrices. The 

dashed line is the plot of Eq.(3.10) which approximates the small U ground 

State. These two lines give an upper bound of the true ground state energy. 

Parameters are the same as in Fig.3.5.
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Fig.3.6 and Fig.3.7, we also compare a 4x4 square lattice ground state energy with that of 

a 16-site ring, and an 8x8 square with a 64-site ring respectively for our variational 

calculation in 13 basis states. All of the parameters are the same as those used in Fig.3.5. 

Despite the similar shapes of the plots, a two-dimensional lattice always has a lower ground 

state energy than a one-dimensional lattice with the same number of sites. Qualitatively, 

this is because each atom in a square lattice has 4 nearest-neighbor sites while it has only 2 

nearest-neighbors in a ring. Therefore, for a square lattice, each basis state couples with 

more other states, generating more non-zero off-diagonal elements in the Hamiltonian 

matrix, which accounts for a lower ground state energy. 

As illustrated in the study of one dimensional model, we do not expect to get a good 

approximation of any ground state property which has a strong dependence on the 

wavefunction because a small truncated basis has been used, as well as the fact that those 

vectors representing excitations close to the Fermi energy have been left out. Some of 

these properties have been studied with exact diagonalization and the Monte Carlo method 

by Callaway et.al. [Misra, 1987; Zhang, 1988]. However, using a Lanczos variational 

scheme within a finite basis, we have obtained reasonable results for the ground state 

energy of square lattices up to 16x16 with a relatively small amount of effort. The 

approximation can be further improved by choosing a larger basis of states. 

3.5 Summary 

By using a Lanczos-type of variational method, we have studied the ground state 

properties of the one and two dimensional periodic Anderson model. With a fairly small



amount of computing time, we achieved excellent agreement with the Monte Carlo result on 

the ground state energy of a 16-site one dimensional lattice in the large U limit. With a 

fixed number of basis states, this method allows us to carry out the calculation for much 

larger lattice sizes easily . But for this same reason (limited number of basis states), our 

results for properties strongly depending on the wavefunction of the ground state are poor. 

Also, we included particular linear combinations of many-electron states representing a 

particular phasing (constant phase) of particle-hole excitations both close to the Fermi 

energy and far away from it in energy. The importance of the other linear combinations of 

excited states in the variational ground state, particularly for small hybridization, is 

emphasized by the poor showing of these "fixed phase" excited states that are mixed into 

the system. We expect improvement by increasing the size of truncated matrix, thus taking 

into account more basis states.



Chapter 4 

One Dimensional Hubbard Model: 
Exact Diagonalization 

The Hubbard model was introduced many years ago [Hubbard,1963], and has been 

applied to various systems to study their electrical and magnetic properties. Recently it has 

attracted more attention as a model for high temperature superconductors. The two 

dimensional (2D) CuQ) structure in these materials is believed to be the determining factor 

in making these materials superconducting. The 2D Hubbard model is a candidate for 

studying the hole movement and the magnetic ordering within the CuQ? plane. In any 

case, the Hubbard model is generally regarded as a powerful model for studying strongly 

correlated and localized electron systems. Within different parameter regions, many other 

useful models can be derived from the Hubbard Hamiltonion. These include the 

Heisenburg model, which has been widely used to study surface magnetization, and the t-J 

model which includes both hole (or electron) movement and the background magnetic 

ordering in the presence of large Coulomb repulsion energy. Therefore, it is of great 

importance to understand the properties of the Hubbard model. 

In this chapter, a method of exact diagonalization of the Hubbard model Hamiltonian 
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on many-electron Bloch state basis is presented, along with results for small Hubbard rings 

(one-dimensional Hubbard chains with periodic boundary condition). In contrast to the 

commonly used single-electron or quasi-particle based approximations, the focal point of 

our study is the exact many-particle wavefunction. Therefore, unlike other exact 

diagonalization calculations, the purpose of this study is not to find solutions for relatively 

large size systems, even though the computer program which has been developed for the 

task is capable of doing so with sufficient amount of computing time. Instead our attention 

is focused on the understanding of the properties of many-electron states and what the low- 

lying eigenstates of the systems consist of, which are essential for other studies of the 

Hubbard model such as those presented in the following two chapters. 

4.1 The Hubbard model 

The Hubbard Hamiltonian has the general form: 

+ 

j,0 0 (4.1) 

where j is the lattice site index, o = + represents spin up (+) and down(-), c is the electron 

annihilation operator, and njg = Cia! Cio is the number operator. The energy parameters are 

the orbital energy €, the hopping energy between site j and j' tj, and the Coulomb 

repulsion U between two electrons at the same site with opposite spins. Normally, € is set 

to zero, and tjj' = t 5<jj'> in the nearest neighbor approximation with sites j and j’ being 

nearest neighbors. This approximation is used to simplify the analysis, even though 

others, such as the next-nearest-neighbor model which also takes into account hoppings
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between second nearest neighbor sites, have been studied to investigate the effect of not-so- 

localized electron motions. Here only the nearest neighbor model is considered, which is 

sufficient for most of the interesting problems. 

Despite the simple form of the Hubbard Hamiltonian, only the ground state of the 

one-dimensional case has been exactly solved [Lieb, 1968], and using Bethe Ansatz [Lee, 

1988] it was found to be an insulating state for the half-filled band (<n>= 1). A variety of 

approximation techniques have been used to study the Hubbard model, among others a 

variational approach [Coppersmith, 1989], a self-consistant moment expansion method 

[Nolting, 1989], a functional integral formulations [Cyrot, 1972], and mean-field theories 

which will be discussed in detail in Chapter 5. 

An important approach to the problem is the study of finite Hubbard model systems, 

where Quantum Monte Carlo (QMC) simulation is a powerful numerical method for this 

study. Hirsch et.al [Hirsch, 1982; 1983; 1984a; 1984b] have carried out the QMC 

simulations for one dimensional chains of up to 40 sites. These results are commonly 

regarded as "exact" results because of their accuracy, even though they suffer difficulties in 

approaching zero temperature and extrapolating to infinite lattice size (thermodynamic 

limit). 

Another method widely used to solve the finite cluster problem is the diagonalization 

of the Hamiltonian on the basis of all existing states in the model system. Here the model 

is solved exactly using a specific basis. Since the computing time increases exponentially 

with the size of the system, the exact diagonalization method is limited to small clusters, 

and becomes of limited use in more than one dimension. However, the ground state and
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excited state wavefunctions which arise can be written explicitly, allowing one to gain more 

physical insight into the behavior of the system. Other studies can benefit from the exact 

solution of these small clusters. For example, one can use the ground state wavefunction 

of a finite system as a guide for choosing the initial state in a variational calculation. Also, 

the exact diagonalization method is valid for all temperatures, therefore it serves as a 

compensation and convergence benchmark for QMC simulations. For these reasons, it is 

not surprising that the small one-dimensional Hubbard chains have been studied 

intensively, and the exact diagonalization of chains up to 12 sites have been performed 

[Shiba, 1972; Soos, 1984] with reports of studies of larger sizes underway. 

In order to have a better understanding of the properties of low-lying eigenstates, we 

have diagonalized the Hubbard Hamiltonian in a many-electron Bloch state basis, and have 

investigated the exact wavefunctions for systems with various numbers of electrons and 

sites. The details of these calculations and results are presented in the following two 

sections. 

4.2 The many-electron Bloch states of Hubbard rings 

The one-electron Bloch state operator is the Fourier transform of the real-space 

electron operator cjg! into momentum space: 

+ _ 1 ikl .t 
Yo = YN » € “I 

1 (4.2) 

where | and © are site and spin indices respectively, N the total number of sites. In the 

basis of Ccygt, the system is described by the band structure solution of the Slater
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determinant: 

f 

det (<Ol oH, 10>-al) = 0 (4.3) 

in which H is the Hamiltonian, I is the unit matrix, and |O> is the vacuum state. 

A failure of the one-electron band structure is that it does not reflect the complex 

properties of strongly interacting many-particle systems such as the Hubbard model. Thus 

it is necessary to introduce the relevant many-electron Bloch states: 

M> = Lode] ch, .)10> 
Noy (4.4) 

I'’,> is an eigenstate of the translation operator T, which translates the lattice by one unit 

cell and commutes with the Hamiltonian of any system with periodic boundary condition 

with eigenvalue eka (where a is the lattice constant). 

To have a better understanding of Eq.(4.4), let us illustrate an example of a many- 

electron Bloch state of a half-filled four-site Hubbard ring [Callaway, 1987a; Mazumdar]: 

(@OTLy = F1(@OTL) - ek*(L BOT) 

+ eke ( TL@O) + ka(OTL®@)] (4.5) 

in which notations ®, O, T and J. represent doubly-occupied site, empty site, and singly- 

occupied sites with electron spin 6 = + and - respectively. The sign in front of the 

Wannier state ( 4 ® OT ) comes from the fact that it takes three interchanges of electron- 

pairs to achieve (1 ® OT ) from state (®@ OT J ), and each interchange would contribute 

a "—" sign because electrons are fermions. To demonstrate that the the many-electron
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Bloch state is indeed an eigenstate of the translation operator T, let us examine the case in 

Eq. (4.5): 

T(@OTL), sIT(@OTL) - e#T(L@0T) 

+ ckaT(TL@O) + Pk T(OTL®)] 

= sI(OTL®) + ek (@OTL) 

- eikac L @OT) + edke(TL@O)] 

= eka(@OTly, (4.6) 

Also, Eq.(4.6) shows that 

T(@OTLy, = (OTLO, (4.7) 

which is exactly the definition of T. Combining Eqs. (4.6) and (4.7), it is easily seen that 

T(@OTL) = ctika(@OTLy = (@OTILY (4.8) 

k = 2nn/Na, n=0, 1, 2,..., N-1 (4.9) 

where N = 4 in the case of Eq.(4.8). This implies that wavefunctions with only a finite 

number of k-points can be obtained from the small-cluster calculations. In the 

thermodynamic limit ( N — ©°), a continuous spectrum of states emerges. 

One advantage of using the periodic boundary condition, and thus translational
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symmetry, is that the number of basis states is greatly reduced. In Eq.(4.5), one many- 

electron Bloch state includes N = 4 Wannier states. In the case of the half-filled four-site 

ring with S, = 0, the total number of many-electron Bloch states is 10, comparing with 36 

Wannier states. Therefore the Hamiltonian matrix to be calculated is reduced from 36x36 

to 10x10. The reduction factor is not exactly 4 because there are states like (TL Tl) 

which includes only two Wannier states since its translational period is 2a instead of Na. 

The collection of all 10 basis vectors used in diagonalizing H is listed below: 

(TTLI» (TLTL», (olte, (oTley, (TOLLE, 

(TLO®, (LTO@, (LOT®y, (0088), (0908, 

4.3_ The exact solutions of small Hubbard rings 

Other than the translational symmetry, there are other symmetries in the periodic 

Hubbard model which may be exploited to reduce the size of the H matrix and to gain more 

insight about the system. Two symmetries that have been implemented in our calculation 

are conservation of total spin squared S? and the magnetization S,: 

[S,,H] = 0, [S*,H] = 0 (4.10) 

where 

St? = PSS; = Visi +2> sisi + Y (si 8;+8;s7) 
i j i i<j i<j (4.11a) 

and



S.= DSi, Ss; = S tis} 
(4.11b) 

in which subindices i and j are site indices. The effect of S;* (Si_ ) is to flip electron spin at 

site i up (down). The commutation relations of Eq.(4.10) allow one to find the 

eigenvectors of S2 as linear combinations of the many-electron Bloch states with fixed Sz, 

and then construct the Hamiltonian matrix on the basis of these S2 eigenvectors. Also, 

because S2 and S, commute, only states in the subspace of Sz = min(Sz) (i.e., Sz = 0 for 

system with even number of electrons, Sz = 1/2 for system with odd number of electrons) 

need to be involved in the calculation since two states with the same value total spin S but 

different S, are degenerate. This feature greatly reduces the computational effort. All 

energy spectrum graphs shown in this chapter are results for Sz = min(Sz). A complete set 

of programs has been developed to perform this task, and the results for various lattice 

sizes and band-fillings are presented below. In all of our calculations, the energy scale is 

set by defining orbital energy € = 0 and hopping energy t = 1. By using the electron-hole 

symmetry, the energy of the system with a negative t can be derived from [Callaway, 

1987a]: 

Ey (-t) = En(t) + (N-n) U (4.12a) 

where 

n' = 2N-n (4.12b) 

in which N is the number of sites and n (n') is the number of electrons. In the graphs 

shown below, the unit of k-vector is 10/a. 

4.3.1 Four sites with three electrons 

Due to its relatively small number of Bloch states, this system can be solved with little
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computational effort (Callaway, 1987a], thus it is used as a test of our program. Also by 

comparing the results with those of the half-filled four site lattice, one can learn about the 

effect of hole doping in the Hubbard model. Fig.4.1 shows the energies (per site) of all 

eigenstates of the system at possible k-point within the Brillouin zone (-1 < k $ 1). 

Because of the symmetry around k = 0, the negative k states are omitted in the figure. It is 

seen that for U = 4t (Fig.4.1a), the ground state hy,> is a S = 1/2 state with momentum k = 

n/2a, while the first excited state hy,> is located at k = n/a within the Brilloin zone with S = 

3/2. The corresponding wavefunctions are: 

wy> = a(OLTT) + a(OTLT) + a(TLOT 

+a4(OOT®) + as(OTO®) + a (TOO®Yy, (4.13) 

lyo> = bICOLTT), + (OTIT) + (TLOT®] (4.13b) 

where 

aj = -0.1013 + 0.47071; a2 = -0.3802-0.4707i; a3 = -0.4815; 

ag = 0.0413 +0.1919i; a5 = -0.1919-0.2375i; a6 = 0.1963, 

and 
1 b= — 
3 

As U gets larger and larger, the energy of the low-lying eigenstate at k = n/2a becomes 

higher and higher, surpasses the energy of S = 3/2 state at k = n/a for U > 18.6t. This 

same critical value of U was found by Callaway et.al [1987a]. The energy spectrum for U 

= 24t is plotted in Fig.4.1b. By examining the wavefunctions of the two low-lying states, 

it is found that hy»> in Eq.(4.13b) remains the same, while the weights for Bloch states 

with double occupancy in hy,> reduce dramatically. The new coefficients of hy,> in
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Eq.(4.13a) are: 

ay = —0.2419 + 0.50731; a2 = —0.3201—0.50731; a3 = —0.5620; 

ag = —0.0181 + 0.03791; as = —0.0379-—0.0601i1; ag = 0.0420. 

The transition of the ground state from S = 1/2 to S = 3/2 is interesting for the reason that 

the system is generated by doping a hole into a half-filled lattice. However, for such a 

small system, one should be cautious trying to draw any conclusions about the transition 

between magnetic ordered states. 

4.3.2 Half-filled four-site system 

The system of a four-site ring with four electrons is a typical half-filled Hubbard 

model with even (number of sites) symmetry. It has been proved by Lieb and Wu [1968] 

that the ground state of such a system is an antiferromagnetic (AF) state. The many- 

electron energy spectrum of this half-filled four-site ring is shown in Fig. 4.2 for U = 4t 

(FIg.4.2a) and U = 10t (Fig.4.2b). In both cases, in contrast to the system with one hole, 

the ground state is a S = 0 state at k = n/a, which remains the lowest state with increasing 

Coulomb energy U. It is interesting to note that the Neel state (T J T 1 )y is only part of 

the S = 0 and k = n/a eigenstate, but not part of the S = 0 and k = 0 eigenstate. By 

examining the wavefunction it is seen that the ground state is dominated by two Bloch 

states without double occupancy: (TL TL), and( TTL )y. As U gets larger and 

larger, the energies of the eigenstates dominated by configurations with doubly occupied 

sites (thus with a diagonal energy U) get higher and higher, creating an energy gap in the 

eigenstate spectrum, as shown in Fig.4.2b.
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Fig. 4.1 Eigenstate energy spectrum of the four-site, three-electron 

Hubbard ring. Symbols 'o' and 'x' represent S = 1/2 and 3/2 

correspondingly. Horizontal axis is k in unit of 1/a, and vertical axis is energy 

per site in unit of t. 

(a) U=4t. The ground state is a S = 1/2 state at k = n/2a. 

(b) U = 24t. The ground state is a S = 3/2 state at k = n/a (for U > 18.6t). 

Notice the gap induced by the large U.
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Fig. 4.2 Eigenstate energy spectrum of the four-site, four-electron 

Hubbard ring. Symbols ‘o’, 'x' and ‘A' represent S = 0, 1 and 2 

correspondingly. Horizontal axis is k in unit of 1/a, and vertical axis is energy 

per site in unit of t. 

(a) U =4t. The ground state is a S = 0 state at k = n/a. 

(b) U=10t. The ground state remains at k = n/a with increasing U.
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4.3.3 Four electrons in six- and eight-site rings 

With increasing number of sites, fixing the number of electrons is equivalent to 

introduce more holes in the system. The effect of doping on the low-lying many-electron 

states can be observed in Fig.4.3, in which the energy spectra for four electrons in six-site 

(Fig.4.3a) and eight-site (Fig.4.3b) rings are shown with parameter U = 4t. As the lattice 

size gets larger and larger, there are more and more allowed center of mass momentum k 

points, but the four low-lying states in the half-filled system (Fig.4.2) can be easily 

identified here. The ground state is now taken over by the S = 1 state with momentum k = 

0. That the energy of the ground state gets lower with increasing lattice size can be easily 

understood because the many-elelctron basis becomes larger along with the lattice size, 

electrons are motive, therefore there are more couplings between many-particle states. 

4.3.4 Four electrons in five- and seven-site rings 

In contrast to cases of four electrons in an even-number-site lattice, the odd-number- 

site system does not have a many-particle eigenstate at k = n/a, therefore the energy 

spectrum looks very different. Fig.4.4 shows the low-lying states of the five-site 

(Fig4.4a) and seven-site (Fig4.4b) lattices with four electrons for U = 4t. In both cases the 

ground state is a S = 0 state with momentum k = 0, and the gap between the ground state 

and excited states is apparent, even though those low-lying excited states are not dominated 

by double-occupancy. These features are related to different symmetries in the momentum 

space due to the odd number of k-points, thus any conclusion about effects of hole doping 

derived from such calculations would not have much physical meaning without the support 

of calculations for even-number-site lattices. For this reason, it is not surprising to see
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completely different energy spectra for four- and five-site systems with one hole each 

(Fig.4.1a and Fig.4.4a). 

4.3.5  Half-filled six-site system 

The last case shown is the energy spectrum of a half-filled six-site ring for U = 10 

(Fig.4.5). There is an obvious Hubbard gap due to the relatively large U. Even though the 

system has an even number of lattice sites, it is found the ground state has momentum k = 

0 rather than k = n/a as seen in a four-site and eight-site ring (results not shown here). 

This illustrates again the importance (thus the limitations) of symmetry in small cluster 

calculations. More dicussion on this is presented in the next section. 

4.4 Summary 

The exact solutions of small one-dimensional Hubbard rings have been found by 

diagonalizing the Hamiltonian matrices in the basis of many-particle Bloch states. The 

energy spectra for various lattice sizes and band-fillings are presented, and the effect of 

hole doping is discussed. It is found that the energy spectrum relies heavily on the 

symmetry of the lattice. Even though some physical quantities such as the energy and 

local-magnetization may be extrapolated to the thermodynamic limit without being affected 

by different symmetries, other important properties including the center of mass momentum 

and magnetic ordering can be extrapolated only within a particular symmetry. This proves 

to be rather difficult, especially for higher dimensional systems, since the lattice size and 

the number of basis states increase rapidly for a given symmetry. However, these



limitations do not diminish the roles of exact calculations of small clusters as a guide for 

variational calculations and as benchmarks of Monte Carlo simulations.



Chapter 5 

Two Dimensional Hubbard Model: 
Projection Operator Mean-Field Calculation 

The two dimensional Hubbard model provides one of the simplest models for the 

electronic structure in high T, superconductors when one assumes the relevant motion is 

confined to the Cu-O planes. Since the model was introduced in the early sixties 

(Hubbard, 1963], many analytical and numerical methods have been used to solve for its 

dynamics. Exact numerical solutions have been found for small clusters by diagonalizing 

the Hamiltonian in the basis of many-particle states [Dagotto, 1989; Lin, 1988; Callaway, 

1987b]. However, since the size of these matrices increases rapidly with cluster size, it is 

difficult to examine long range correlations in this way. Monte Carlo simulations [Moreo, 

1990; White, 1989; Hirsch, 1985] allow one to obtain reasonably accurate results for 

somewhat larger cluster sizes, but still the problems of size effects and how to address long 

range correlations remain. Despite these difficulties and the problem with low 

temperatures, Monte Carlo results are roughly "exact" in the appropriate parameter range 

and can serve as a benchmark to test various analytical approximations. 

There exist several mean field (MF) theories predicting the nature of the 
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quasiparticle bands in Hubbard-like models, the earliest using the so called Hubbard-I 

approximation which was introduced along with the model itself [Hubbard, 1963]. Others 

include a moment expansion technique [Geipel, 1988], the method of irreducible Green's 

functions [Goryachev, 1982; Yushankhai, 1991], the four-boson theory of Kotliar and 

Ruckenstein [Kotliar, 1986] and more recently the slave-boson (SB) and slave fermion 

(SF) theories [Ruckenstein, 1987; Kotliar, 1988; Jayaprakash, 1989; Yoshioka, 1989]. 

While most of these theories more or less agree on gross average properties such as the 

energy and double occupancy, many disagree on other more subtle properties such as the 

momentum distribution, effective mass and the shape and volume of the Fermi surface. 

Also certain MF theories (e.g. Hubbard-I) have difficulty finding stable antiferromagnetic 

(AF) solutions in the relevant parameter range. Since MF theories by their very nature 

involve uncontrolled approximations, it is not easy to compare different MF theories 

directly or to estimate their validity. 

In this chapter the results of a MF calculation on the single-band and three-band two 

dimensional Hubbard models based on a projection operator scheme [Fedro, 1982; Fedro, 

1987; Ruckenstein, 1988] is presented. In this approach, the two usual Hubbard 

projection operators are defined (involving creation/destruction of a fermion at site j with 

spin 6 either in the presence or absence of the fermion at the same site j with spin -o), and 

the model is solved with an equation of motion method for these operators using a well- 

defined truncation procedure which treats the complicated statistics of these operators 

properly. In this way we generate an exact Dyson-like equation for the Green's functions 

where the self-energy is found to contain both static and dynamic contributions. The 

effects due to the dynamic terms (in this context termed memory functions) will be ignored 

within this approach. Thus a MF set of equations for the needed Green's functions are
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defined. These equations are then solved self-consistently for all band fillings and for 

possible AF order. It is important to point out that this formulation deals with the physical 

fermion directly. There is no need to separate the spin and charge degrees of freedom as is 

done in slave theories. Aliso it has been shown by Ruckenstein and Schmitt-Rink 

[Ruckenstein, 1988] that, in the large spin degeneracy (large N) limit, the present approach 

and the slave boson theory are identical. This theory, however, does not satisfy 

Luttinger's theorem for finite degeneracy although the deviation is shown not to be 

significant away from half-filling. It should also be pointed out that this method is 

essentially equivalent to the method of irreducible Green's functions [Goryachev, 1982; 

Yushankhai, 1991] which has been used recently in studies of the single-band Hubbard 

and t-J models. 

Recent work by Lilly et.al. [Lilly, 1990] compared the four-boson theory (SBMF) 

[Kotliar, 1986] to the Monte Carlo (MC) results [Moreo, 1990] on the single band 

Hubbard model and found excellent agreement for various static and dynamic quantities in 

both the weak and strong coupling limits. In this chapter a systematic comparison between 

Hubbard I, SBMF and the projection operator MF approach to the MC results for the single 

band Hubbard model is made. Properties such as the energy, probability of double 

occupancy, effective hopping matrix element, momentum distribution function and the 

Fermi surface are compared with MC results which we will regard as "exact". It is found 

that the projection operator approach also agrees remarkably well with MC in both limits 

and provides a good zero order description from which fluctuations can be included. 

A distinct advantage of this projection operator-based scheme is that it is easily 

extended to multi-band Hubbard models used in the theories of high T, superconductivity



with a minimal number of mean field equations compared to slave theories, where 

additional constraints for the composite "slave particle" must be introduced, making the 

number of coupled constraint equations unwieldy, especially when describing the 

superconducting state. Various properties of a CuO? lattice model based on the three- 

orbital two dimensional Hubbard model have been calculated using the projection operator 

MEF scheme [Fedro, 1991], and the results compare well with MC sirnulations. The study 

of the density of states of this CuO? lattice model shows some interesting results, which is 

described at the end of the chapter. 

5.1 The projection operator based mean field formalism 

5.1.1 The multi-band Hubbard Hamiltonian and the projection operator 

In general, the multi-band two dimensional Hubbard Hamiltonian has the form 

H = > Ey Nive + > Uw Niv,+ Njv,- + > tiev;jv' Chie Civ'o 
j.V,0 jv j.J'5V,V',6 

(5.1) 

where j denotes the unit cell position, o = + represents spin up (+) and spin down (-), and 

v is the index of the atoms in the unit cell. In this framework one can also incorporate 

possible AF order . The hopping matrix elements are real and satisfy tjy;jv' = tjv'jv with 

tyv;jv = 0. The site number operators are defined by njyo = Clive Cjvo. €y are the single 

electron energies and Uy the on-site Coulomb repulsions. We now separate the pure fermi 

€XCitation Operators Cjyg into two operators f°jyg (as done in the original work of Hubbard) 

with a = + as follows:
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a a a 
fic = 1, 5 Sivo 5 Civo = y fio 

a 

where we define 

a Njv-o a=+ 

Nig = 

1 - Nivc QaQ=- 

Then the needed retarded Green's functions Cr vtelt are formed as follows: V: 
%, 

aor’ _ os a a’ t : 
Givi) = -1< [Fo fig l+ > ’ t2 0 

where the f(t) are the ordinary Heisenberg operators 

a 

VO 

t” — giHt ¢* .-iHt . a _ 
oD = OM fg Oye O) = FF 

(5.2a) 

(5.2b) 

(5.3) 

(5.4a) 

(5.4b) 

where T is the temperature and kg is Boltzmann's constant. To solve for these Green's 

functions we introduce the projection operator P? = P as follows: 

a” a” a" PX = fed the ges Xh>/ <thiye go? j".v",a",0" 

(5.5a)
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which has the property that, for all j,v,a,0, 

af a + at _ Pig = fg > (1-P)fys = O| 
(5.5b) 

Since the projections defined in Eqns. (7) involve the averages, <n®"jnyng>, it is 

convenient to write the equations of motion for the rescaled Green's functions defined as: 

~ao' _ a a.’ 1/2 Qae’ 
G. . jo (t)= (< Ny go? <Biy 6? ) Gi. iy o ft) (5.6a) 

where, by construction, 

. ~ao' 

IGivvolt=0) = bi bwo0r (5.6b) 

5.1.2 The equations of motion for the Green's functions 

In this section the equations of motion for the Green's functions defined in Eq.(5.6) 

are derived. In terms of the Liouville operator LX = [H,X]-. , the Heisenberg time 

dependence of an arbitrary operator A can be written as: 

A(t) = et AciHt = eit a AQ) =A . (5.7) 

Then the retarded Green's functions Crt! in Eq.(5.3) becomes: 
oJ 9 

aa _ . a a’ Tt 
Gy .jvio(t) = l1< [tivo ’ five (-t)]+ > (5.8)
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where the identity 

<[A, L"B],> = <[(-L)"A, B],> n = 0,1,2,... (5.9) 

has been used. 

From Eqs. (5.7) and (5.8), the equation of motion is 

ac. ; 2Sivive® _ < [fg L frye CDI+> 
Ot 

_ 
at = j < [fig L{P + (1 -P)) fing (-t)]4 > (5.10) 

for any operator P. In this case P is the projection operator defined in Eqn. (5.5). Now 

the basic idea of the projection scheme is to write the term P (F% y's) T(-t) in terms of the 

original Green's function at the same time t, resulting in static (mean field) contributions. 

The remaining term, {(1 - P)}(f°jv'e)'(-t), which is orthogonal to this static term (since P2 

= P), is then written in terms of an integral of the original Green's function over all earlier 

times T such that t < t, yielding the dynamic (self-energy) terms called memory functions. 

From Eqs.(5.8) and (5.5) it is easily seen that 

a’ ft _ os: a"o' 

P fig CO ~ id [ fing [<n 67! Ginn vio) 
j".v",a." (5.11) 

Now, for any Heisenberg operator, A(-t), there is the operator identity
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t 

(1-P)A(-t) = eH#0-PIL (1 -p) AQ) - i | dt eit-O1-P)L (1 - PYLPA(-1) 

0 (5.12) 

Obviously this expression is correct at t= 0. To verify that it is valid for all times t, simply 

differentiate both sides of this expression with respect to time and show that they are equal. 

Use of Eqns. (5.8), (5.5) and (5.12) yields 

t (1-P) fig CD 

t 

= dt {e -i(t-t)(1- PIL (4 - PL f”, Ten 
j'v"o j'v",-o >} Gee j'v";jv'o 

j".v",a” 

0 (5.13) 

Now use of Eqs. (5.11) and (5.13) in (5.10) gives the exact equations of motion for the 

Green's functions, which can be written as follows: 

9 Gi o ne wiivott _ a"o 

j..v".a" 

a a" a"a' 

* . ac { Myvi vig E> T) / <Birv",-0 >| Giryrivo 
j'.v",a" 

(5.14) 

where the static (mean field) terms are defined by 

" 

aa _ a" fT 

Qiyinvrs = < [fig »L fi. vig I+ > (5.15) 

and the memory functions are
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a" —  ete® 1 eit PL (7 - art a i <[fiygs Lem (1 - PY L fing > (5.16) 

The functions defined in Eqs. (5.15) and (5.16) for the various a,a" combinations 

can be further simplified. From Egns. (5.1) and (5.2) one gets 

at at 
Lfivg = ey fv 

+ DY tysv (my 6 Sve + Bas - Sal hy g Civ. “Chg SV-0] Sig } 
jv’ 

(5.17a) 

where the energy 

Qa 

ef = & + Uw da,,4 (5.17b) 

From Eqs. (5.5) and (5.17) one finds the following identities: 

af _ + _ DU-PLf, = (1-PLo, = 0 
a (5.18a) 

and 

<[-L Co, (1 - P) Z]J4> =0 (5.18b) 

for any operator Z. Use of Eqns (5.18) in (5.16) gives immediately 

a" a" Mave = 0, UV Ma we = 0 
a a" (5.19) 

Therefore, 

One (t) = OO" Mysjvro (t) iv; j'v"s = jv; J'v"o (5.20a)
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where 

My; volt) = My, jyrg © (5.20b) 

A similar analysis can be done for the "mean field" terms 0. defined in Eq. oztty pte 
9, 

(5.15). From Eggs. (5.9) and (5.17), 

a 

vo” 
Lf. j ‘vV"o L> = <[-Lfr ,t%.' > jvo 3 j'v"o <If, 

a a a a” ao" 
= dij" Syy" baa" &, <A, 6 > + tiv; jv" Divo > Ding" > + Aw; j'v"o 

(5.21a) 

where A” __ is defined as: 
jv;j"v"o 

Avr vo = <Lfivg Ly frnyrg le> ~ iv, jv" <ti o> <tr ig? 

= <LLt fv: fey he> - tiv, jv" <Ny g? <i g> (5.21b) 

in which L; is defined as the commutator with respect to that part of H defined in Eq.(S.1) 

proportional to the tjy;jv"s. Use of Eqs. (5.17) in (5.21b) gives, by construction, 

aa" ao" 

2 Av; jvs = 0, > Ay; j'v'o = 9 

" o (5.22) 

Just as in Eq.(5.20), 

aa" " Ay; jis = &0" Aj jrv's (5.23a)
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where 

Avivo =  Ajv; jv" (5.23b) 

Using the results of Eqs.(5.20) and (5.23) in (5.14), 

_o a ac’ a a"a’ (GS = YG rive® = QL ta < By, 6? Giyngyg(t 
j".v",a" 

" a” a"a' 

+ » aa [ Aw;j"v"o / < Ding > ] Ginymiyigt) 

j".v",0." 

t 

n a" a"a' 

+ dt {a a Miv;j"v"s (t - T) / < Dinye >| Ginn ryighD 

j".v",a” 

0 

(5.24) 

. ; ; ; Oo’ ; 
This can be rewritten in terms of the rescaled Green's function G. ,.,_{t) defined in 

jv;j'v'o », 

Eq.(5.6): 

O a ~aa' 
a a" | ~a"a' 

i— - = saps silat 1/2 (is &)Gvivo® = DY tvs (<> <g>? Ginymivig) 
j'.v",a" 

+ DY aa" Avie (<n pent, ay Gn V3 'v oO jv,-6 j'"v".-6 j'v";j'v'o 

j'".v",.a" 

t 

" . sot, HF a. a" “> -1/2 ~~ 0"0," 
+ » a a | dt My; Vv oO (t - t) ( < nic > < Ding “ ) Gory ityighD 

j".v",a" 0 

(5.25)
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For arbitrary function A, its Laplace and spatial transforms are defined by: 

Ay,jv (®) = | dt ei Ayjv() ® = w+ i0t 

0 (5.26a) 

and 
1 y wes 

k (5.26b) 

where N is the number of unit cells. The desired exact equations of motion for the 

momentum and frequency dependent Green's functions are obtained by using Eq.(5.26) in 

Eq.(5.25): 

> { © Syy"Sa0" - Ee gD) } Co ig(B) = Ovw'Sac' 

a”"v" (5.27a) 

where 

Ee ne (®) = bw" daa" Ey + thy" (< Ms >< Mg >i 

tt " " ° 0" “V2 
+ Oa [ Aw o + Miw o (®) ] ( < Ny 6? < Dy 6? ) (5.27b) 

in which 

a 
e = &y + Uw a4 

>.28) 

and it has been assumed that the "n" averages are independent of the unit cell. The static 

mean field corrections Axyy"g in Eq.(5.27b) are the spatial transforms of 

ee Leet ee 
Ay; j'v'o = <[fiv, > Li fing ]4> ~ tiv; jv" <Ny 67 <Dyn 5? (5.29)
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and the dynamic memory functions Myyy"o(®) are the Laplace and spatial transforms of 

Myjvo) =  -i<[fi,,LetlPL (1-P)L fig h> (5.30) 

In the energy matrix of Eq.(5.27b), if the Ayyy"9's and Mxyy"g(@)'s are set to zero, 

one gets the Hubbard I solution. Notice that the Hubbard I solution misses these static and 

dynamic terms due to the naive truncation in the original Hubbard paper which essentially 

treats the "f" operators as if they were pure fermions. The complicated statistics of the 

f;,,5'S are automatically handled correctly when one truncates the equations of motion by 

using the the projection operator given in Eq. (5.5), leading to the solutions given in Eq. 

(5.27). Finally, the projection operator mean field solution is that generated by setting all 

the memory functions Myyy"g(®) to zero in Eq. (5.27), so that the resulting energies in Eq. 

(5.27b) are independent of @: 

aa” aa" 

E ®)=E 5.31 
kw" kvv"o ( 

5.2 Calculations of the 2D single-band Hubbard model 

For the single band Hubbard model, there is only one atom per unit cell, thus the 

atom index v in Eq.(5.1) is supressed. Its Hamiltonian has the simple form: 

H = ea >, Njo + U > nny. + y tir Ch Cfo 

io j j,i',0 (5.32) 

and in the nearest hopping case, tjj' = -t for nearest neighbor (j,j'), zero otherwise. In all
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calculations the unit of energy is defined by setting t= 1. The value of inverse temperature 

B is chosen according to the available MC results [Moreo, 1990] which we will compare to 

the three mentioned MF calculations. In all of the figures, we use the notations MC, 

SBMF, HI and POMF to represent the Monte Carlo results, the four-boson theory of 

Kotliar and Ruckenstein, the Hubbard I approximation and our current projection-operator- 

based MF theory respectively. 

Fig.5.1 shows the energy versus band-filling <n> for U = 4 and B = 6. We see at best 

minor differences among the various MF results to the MC simulation, thus the energy 

does not provide a good criterion for choosing one MF calculation over another. In 

Fig.5.2 we plot the on-site squared local moment <m,*> = <(nq - ny)*> versus <n> for the 

same set of parameters as in Fig.5.1. It is seen that the present calculation yields results in 

reasonably good agreements with those of MC and SBMF except around half-filling, <n> 

= 1, (the reason will be discussed later in this section), while the Hubbard I approximation 

is failing badly as <n> approaches 1. 

An important quantity, which estimates the effect of U on the bandwidth, is teg¢/t, 

defined as the ratio of hopping probability in the presence of U to that in the absence of U, 

  

i.€., 

ect cn tctic 

t K< C15 Cio + Ch Cig >U =0 (5.33) 

for (i,j) near neighbors. The results for te¢g/t as a function of U for <n> =1 and B = 10 are 

shown in Fig.5.3, in which the Hubbard I curve is obtained from the paramagnetic case, 

since no AF solution is found in this range of U. Going beyond Hubbard I, by including
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Fig. 5.1 Energy per site versus band filling <n> for U = 4 and Bf = 6. The 

results shown include those of Monte Carlo (MC) simulations [Moreo, 1990], 

the slave-boson MF (SBMF) theory [Lilly, 1990], the Hubbard I approximation 

(HD and our projection-operator-based calculation (POMF). Little difference is 

seen among these approaches.
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Fig. 5.2 Local magnetic moment <m,?>_ vs. band filling <n> for U = 4 

and B = 6. The projection operator result agrees well with Monte Carlo 

simulation and four-boson MF theory except around half-filling (<n> = 1). 

Hubbard I fails badly as <n> approaches 1.
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the static energy shifts A resulting in the projection operator MF formalism (POMF), AF 

solutions are obtained for U's as small as 5. Results for teg¢/t as a function of <n> for U = 

4 and B = 10 are plotted in Fig.5.4, where both the Hubbard I and POMF curves shown 

are for the paramagnetic case. The fact that no AF solution is found for U < 5 also 

explains the poor fit of POMF to the MC curve around <n> = 1 in Figure 5.2. In both 

Fig.5.3 and Fig.5.4 our results agree reasonably well with that of SBMF, but the Hubbard 

I result overemphasizes the suppression of the hopping at all U and all fillings. We also 

point out here that the suppression in Fig.5.3 at large U is occurring for different reasons in 

the SBMF and POMF formalisms. In the SBMF theory, the bands are becoming severely 

narrowed since they are proportional to 5 = 1 - <n> for large U, but, in the POMF scheme, 

the effective hopping is going to zero because the lower Hubbard sub-band is being filled 

while retaining a finite bandwidth. 

A more severe criterion for the applicability of MF is shown in Fig.5.5, where the 

momentum distribution function <nxg> versus k along the (1,1) direction (kx = ky) is 

plotted for the quarter filled band case <n> = 0.5, with U = 4 and B = 6. It is apparent that 

the Hubbard I curve lies well below the MC curve for states below the chemical potential. 

Since this feature holds true in other directions as well, ones finds that, in order to 

accommodate a fixed number of electrons, the Fermi volume in Hubbard I must be 

significantly larger than the MC volume which is approximately equal to the Luttinger 

volume. This is a manifestation of the breakdown of Luttinger's theorem. However, 

within the POMF scheme, where the effect of the static energy A term defined in Eq.(5.29) 

is included, the calculation tends to recover the Luttinger volume since the resulting <n,> 

curve is almost identical to the MC result and slightly higher than the SBMF result. The 

expansion of the Fermi surface volume is again illustrated in Fig.5.6 for <n> = 0.87. It is
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Fig. 5.3 Effective hopping energy vs. U for half-filled case. tefg/t is defined 

in Eq.(5.33). <n>= 1 and B = 10. The Hubbard I (HI) curve is obtained from 

the paramagnetic solution.
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Fig. 5.4 Effective hopping energy ters/t vs. <n> for U=4 and B = 10. Both 

projection operator MF and Hubbard I curves shown are derived from 

paramagnetic solutions because of the small U.
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Fig. 5.5 Momentum distribution function <n,> vs. k along (1,1) direction 

(kx = ky). The parameters used here are: <n> = 0.5 (quarter-filling), U=4 

and B = 6. The POMF result agrees very well with that of MC while Hubbard I 

and SBMF under estimate the density inside Fermi surface.
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Fig. 5.6 Fermi surface for <n> = 0.87, U = 4 and B = 6. Both POMEF and 

Hubbard I calculations over estimate the volume inside Fermi surface, even 

though POMF does not violate the Luttinger theorem as severely as Hubbard I.



seen that present result POMF overestimates the Fermi volume compared to MC and SBMF 

while the Hubbard I volume severely overestimates this volume at this filling. In fact, as 

<n> goes to 1, the deviation from the Luttinger Fermi volume for both Hubbard I and 

POMEF is becoming more significant. 

5.3 Calculations of the CuQ?2 lattice model 

The two dimensional multi-band Hubbard models have been used intensively for 

studying the high T, superconductors. Recent Monte Carlo (MC) studies [Scalettar; Dopf, 

1990], using the three-band Hubbard model to describe this motion, have been done in a 

wide parameter range for various values of doping 5 away from half-filling (6 = 0 is 

defined as one hole per Cu site). Their results show that if one defines the on-site O energy 

as Ep and the Cu on-site energy as €q, then there are two basic regimes depending on 

whether the on-site energy difference & between the O and Cu sites (€ = Ep - €q) is greater or 

less than the on-site Cu Coulomb repulsion Ugg. If Ugg >> € the behavior of the system is 

controlled by e€ (charge transfer limit). In this case, at half-filling, they found strong 

antiferrromagnetic correlations and evidence of a charge transfer gap (~ €). The 

antiferromagnetic correlations decrease rapidly as one dopes away from half-filling as it 

should. In the other case € >> Ugg the behavior is controlled by Ugg. Here the O 

occupation is always small and it is essentially an effective single band model with a Mott- 

Hubbard gap which depends on Ugg. 

In this section the calculation for the multi-band Hubbard model of the CuO? lattice 

based on the projection operator scheme [Fedro, 1982; Fedro, 1987; Ruckenstein, 1988] as
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described in detail in section 5.1 is presented. A detailed comparison of our MF results to 

the above-mentioned MC simulations which are regarded as "exact" is made. The density 

of states results are presented in the end, along with the comparison with the Hubbard I 

approximation and the four-boson mean field theory results. 

§.3.1 The 3-orbital Hubbard model of the CuQ 2 lattice 

In general, the Hamiltonian for the 2D CuQy lattice can be written in hole notation as 

follows [Varma, 1987; Emery, 1987]: 

H = €4)) nig + Usd, mir. + €p > nj+./2,0 + Upp, nj+a2,+ Nj+n2,- 
jo j j.A,6 jr 

+ Udp > Nj,o Nj+ad/2,0' - lap > [di ( Pj+ax/2,6 - Pjray/2,o) + H.c.] 
j.0,A,0,0" j,a,0 

+ top (Phase - Pjain.e) ( Pityo - Pyne) + Hc.) 

_ (5.34) 

where A = x,y and @ =+. Here the Cu d-hole operator for site j and spin o is given by djg 

with the corresponding number operator njg = d*+jg djg. The oxygen p-hole operators 

surrounding the j-th Cu site are defined by pj+o2/2,0 with the corresponding number 

operators given by nj+aA/2,0 = P*j+0A/2,0 Pj+ad/2,0- Ep and €g are the on-site O and Cu 

energies respectively, Upp and Uag the corresponding on-site Coulomb repulsions, and 

Udp the near neighbor Cu-O repulsion. tgp is the near neighbor Cu-O hopping matrix 

element and tpp the O-O near neighbor hopping matrix element. The orbital sign 

convention is such that the LDA values for both tgp and tpp > 0. We define the space lattice 

to be that of the Cu's, i.e., a 2D square lattice of spacing a. The four surrounding oxygens
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are then at a distance a/2 from the central Cu atom. The LDA numbers for the parameters 

are given by [Hybertsen, 1989; McMahan, 1988] 

Ugg = 10.5 eV ; Upp=4.0eV_ ; Uap = 1.2eV 

(5.35) 

tdp = 1.3 eV ; top = 0.65eV_ ; Ep- €a= 3.6eV 

It is generally believed that the effect of Udp is solely to shift the entire energy 

spectrum without significantly disturbing the relevant physical properties. Therefore, in 

most calculations it is set to zero to simplify the analysis. We also set Udp = 0 throughout 

our calculations so that the multi-band Hamiltonian in Eq.(5.34) can be written in the form: 

_ t 
H = > Ey Njvo + > Uw Niyv,+ Nyv,- + » Uv,jv' Civg Cj'v's 

jv, jv jj'V,V'0 (5.36) 

which is exactly the Hamiltonian discussed in Eq.(5.1). Thus the entire projection operator 

mean-field formalism can be applied to this CuO? lattice model without any alteration. 

Various physical properties have been calculated by using this mean-field formalism, 

and comparison is made between its results and those of quantum Monte Carlo simulations 

and other MF theories. In all figures shown in this section, notations MC, POMF and 

SBMF are used to represent the data points of the Monte Carlo simulation, the projection 

operator mean field calculations and the four-boson mean field theory, just as in Figs.5.1- 

5.6. Temperature T is defined through B = 1/T.
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5.3.2 Static properties and comparison with MC results 

Since the parameters used in the aviailable MC results are not the LDA parameters, 

also Upp, Upa as well as tpp are set to zero. The comparison between the results of POMF 

and that of the MC [Scalettar; Dopf, 1990] is made by keeping the parameters in the MC 

simulations. In all results shown in this section, the unit of energy is defined by tgp = 1 

and we set Upp = Udp = 0. 

In Fig.5.7 the Cu and O site occupation numbers versus band filling <n> = <ncy> + 

2<no> are shown for B = 8. In the hole picture, <n> = 1 is the half-filled case. The result 

is obtained for charge transfer regime: Ugg = 6 and € = Ep - &€g = 2 where the insulating state 

is characterized by a charge transfer gap, and there is an excellent agreement between the 

POMEF and MC results. At half-filling, the hole occupation on the Cu site is much larger 

than that on the O site because of the low lying singly-occupied Cu d state. When the hole 

doping 5 = <n> -1 gets larger, it is seen that <nc,> has little increase, most of the doped 

holes go to the O site. The opposite happens when there is electron doping (5<0). 

The Cu and O hole occupation versus band filling <n> is shown for another 

parameter regime, the Mott-Hubbard limit, in Fig.5.8 with Ugq= 6 and € = 8. Here it is 

seen that there is little change in the hole occupation on the O sites with doping since the O 

p-states have higher energy than the doubly-occupied Cu d-states, so that added holes tend 

to fill the Cu sites. Notice again that the MC and POMF data points are essentially 

indistinguishable. 

To examine the effect of tpp, we repeat the calculation of Fig.5.7 for tpp = 0.5, and



the comparison between the two cases is shown in Fig.5.9. Due to the hopping of p- 

electrons, thus to the broadening of the O p-band, there is a greater portion of p-states 

mixed into the low-lying Cu d-states, resulting in a larger <ng> and smaller <ncy> 

comparing with tpp = 0 in the half-filled case. With hole doping, the increase in <no> is 

not as rapid as when tpp = 0, nonetheless most of the doped holes still go to the O site. 

Fig.5.10 is the plot of the Cu hole-occupation number <ng> as a function of the 

charge transfer energy e€ for the half-filled case with Ugg = 6 and B = 10, the transition from 

the charge transfer limit (€ = 0) to the Mott-Hubbard limit (€ large) is continuously shown. 

As € becomes larger and larger, the O p-states are higher and higher in energy, therefore Cu 

sites tend to be occupied. For tpp = 0, where MC results are available, our MF calculation 

again yields good agreement. When tpp is finite, the hole occupation on the Cu sites is 

suppressed dramatically in the charge-transfer limit as observed in Fig.5.9, while this 

suppression is much smaller in the Mott-Hubbard limit because the p-state energy is much 

higher than the Cu d-state, thus the broadening of p-band does not affect the whole system 

significantly. 

In Fig.5.11, the squared local moment <m,2> = <(nz - ny)2> on the Cu site vs. Ugg 

(Fig.5.11a) and vs. € (Fig.5.11b) at half filling with B = 10 is shown. Parameters used are 

€ = 2Uqq¢/3 in (a) and Ugg = 6 in (b). Similarly to the single band Hubbard model case, 

there is no antiferromagnetic (AF) solution for a certain parameter range within POMF. 

For parameters where the AF ground state can be found, POMF results for the Cu squared 

local moment agree very well with those of MC simulations. It is seen that both Uag and tdp 

tend to localize the spin on the Cu site. With a non-zero tpp, the hole occupation on the Cu 

site becomes smaller, and the Cu <m,2> is suppressed. This is readily shown in the
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Charge transfer regime: the hole occupation numbers on the Cu 
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figure. This suppression of <m ,2> is more severe in the charge transfer limit, similar to 

what has been observed in Fig.5.10. 

The result of the staggered magnetization <m,> = |<nz - ny>I on the Cu sites versus 

band-filling <n> is shown in Fig.5.12 with Ugg = 6, € = 2 and B = 8. The system has its 

maximum magnetization at half-filling. As the system gets away from half-filling by either 

hole doping or electron doping, <mz> decreases and vanishes eventually. It is also seen 

that turning on tpp not only suppresses the value of <mz> but makes it vanish much more 

rapidly with doping. 

5.3.3. Density of states of the CuQ 2 lattice model 

To gain a better understanding of the physical properties presented above, it is useful 

to study the density of states (DOS) of the three-band CuO? lattice model with proper LDA 

parameters [Zhou, 1991c]. Unless specified otherwise, the LDA parameters listed in 

Eq.(5.35) are used with Udp = 0. 

Fig.5.13 shows the Cu, O and total density of states for the paramagnetic (PM) state 

and Fig.5.14 for the AF state in the half-filled case with B = 10. In the PM state, the 

calculation clearly shows the three-band structure, with a mostly O p-state band in between 

the two bands dominated by singly occupied and doubly occupied Cu d-states. For <n> = 

1, the Fermi energy (set to zero in the figures, also indicated by the vertical line) lies in the 

middle of the d-band. In the AF state, this low lying band splits, leaving the Fermi level in 

the gap. Since the AF state has a lower energy, therefore the undoped system is an 

insulator.
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As discussed in section 5.1, the difference between Hubbard I and POMF is a static 

energy shift A. For the single band Hubbard model, the POMF result [Zhou, 1991b] 

shows a systematic improvement over that of Hubbard I. In Fig.5.15 we make a 

comparison between the results for the total DOS for the AF ground state of the undoped 

system (<n> = 1) from POMF, Hubbard I and the four-boson theory (SBMF) [Zhang, 

1990]. The parameters used here are the same as those used by Zhang et.al., which are 

Uag = GeV, € = 1.5eV, tdp = 1.085eV, top = 0.2 eV, and Upp = Q. All Fermi levels (vertical 

line) are set to zero in the figure. It is seen that the DOS from POMF and SBMF are similar 

(Fig.5.15a), except that in SBMF there is no high energy Hubbard-like band for the doubly 

occupied Cu d-states which always exists in the POMEF and the Hubbard I approximation 

(not shown in the figure). Both the POMF and SBMF results indicate an insulating 

System, with the Fermi energy inside the AF band gap. But the DOS results obtained from 

the Hubbard I calculation show a rather different structure around the Fermi energy 

(Fig.5.15b), yielding an unphysical conducting ground state at half filling. Thus, as in the 

single band Hubbard model case, the static energy shift A used in POMF is important for 

getting the correct physical properties. 

In order to examine the effect of doping on the density of states, the staggered 

magnetization <mz> on the Cu site versus <n> with LDA parameters and B = 10 is 

calculated, and the result is shown in Fig.5.16. Starting from <n> = 1, <mz> becomes 

smaller with the increase of hole doping, and the ground state of the system changes from 

an AF state to a PM state around 30% doping within this calculation. This effect of doping 

induced transition from the AF ground state at 6 = 0 to a PM ground state can be better 

understood by examining the density of states of the system. The total DOS for 6 = 0, 0.2 

and 0.4 is plotted in Fig.5.17 with the same parameters as those used in Fig.5.16. As
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discussed earlier, the system is an insulator with its Fermi level in the AF band gap when 8 

= Q. With 20% hole doping, the ground state is still an AF state. Now the Fermi level 

moves into the upper singly occupied Cu AF band. Meanwhile the AF band gap is smaller 

when 6 gets larger. Eventually this gap vanishes, thus the system becomes a PM state. 

This is seen in the § = 0.4 case. 

In Fig.5.15, the distinct difference between the total DOS obtained from the POMF 

and the Hubbard I scheme has been shown for an AF ground state. For a PM ground 

State, their difference can be seen in Fig.5.18, where <n> = 1.5 and temperature T = 

100K. The Fermi level is inside the low-lying d-band for POMF (Fig.5.15a), but for 

Hubbard | it lies inside the p-band (Fig.5.15b). Also comparing with the DOS of POMF, 

the Hubbard I calculation yields a separate p-state dominated band around 5eV. It is 

interesting to see that even though the Coulomb repulsion Ugp between electrons on Cu and 

O sites is not incorporated in this current calculation, the resulting total DOS in Fig.5.18b is 

similar to those in Fig.4b and Fig.8b of Entel et.al. (1990) in which all parameters used are 

the same as those in Fig.5.18 except Udp = 1.2eV. This implies that even with certain 

restrictions (as those used by Entel et.al.), the Hubbard I approximation may yield a 

qualitatively different position of Fermi level in the DOS result from the POMF and SBMF 

calculations, therefore it is necessary to be cautious when interpretating the experimental 

data using the Hubbard I result. 

5.4 Summary 

A mean-field calculation of the two dimensional Hubbard model based on a projection
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operator formalism has been presented. For the single-band case, it is found that, for 

various physical properties, its results agree very well with those of the four-boson theory 

and the quantum Monte Carlo simulations, showing a systematic improvement over the 

Hubbard I approximation. Unlike the Hubbard I approximation where no anti- 

ferromagnetic solution can be found at half-filling in the relevant parameter range, the AF 

ground state is obtained for U's as small as 5 in this current treatment. By examining the 

Fermi surface of the system, we found that Luttinger’s theorem is still violated (especially 

around half-filling) within the projection operator formalism, even though the violation is 

not as severe as in Hubbard I. 

Comparing with the four-boson theory, the number of equations to be solved in this 

projection operator-based theory is much smaller, thus the calculation can be easily 

extended into multi-band models such as the three-band CuQ? lattice model. The results of 

this MF calculation agree remarkably well with the Monte Carlo simulation results in the 

parameter range where MC results are available. In addition, we have examined the effect 

of hopping between Oxygen sites, and found that tpp suppresses the hole occupation at the 

Cu sites and the AF order when moving away from half-filling, especially in the charge 

transfer limit. The study of the density of states shows good agreement between the POMF 

and SBMF calculations, while the Hubbard I approximation yields rather different and 

unphysical results.



Chapter 6 

Many-Electron Partition Function 

From calculations presented in previous chapters, it is apparent that finding solutions 

for strongly correlated electron systems is a very difficult task. The many-body interaction 

effects may not show up in the standard independent single-particle state results. Therefore 

it is appealing to develop a systematic derivation of many-electron partition functions for 

various models so that their thermodynamic properties can be extracted directly and 

accurately [Bowen,1991]. In this chapter, the cumulant expansion calculation of the low 

temperature quantum mechanical partition functions of degenerate many-electron systems is 

presented, and its application to other interacting systems is discussed in the last section. 

The initial motivation behind this calculation was to provide a possible approximation 

for partition functions in the Canonical and Grand Canonical Ensernbles that would not 

require the usual starting assumption of independent single particle states. As a test for this 

methodology, it was first decided to calculate both partition functions for the degenerate 

free electron gas for which the grand canonical partition function is well known. There 

does not appear to be any other direct calculation of the free electron canonical partition 

function for low temperatures in the literature. This absence of canonical ensemble 

107
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calculations is quite natural, given the difficulty in counting states and the well known 

“proof” in the standard quantum statistical mechanics literature [Huang, 1963; Yamamoto, 

1956] on the equivalence of the two partition functions. However, it is found that the 

direct, approximate calculations of the canonical partition function and the grand canonical 

partition function starting from the same ground state for N electrons yield different results 

at low temperatures, where the cumulant expansion method is valid. This surprising result 

can be understood by looking into the difference between the two emsembles and the usual 

"proof" of their equivalence, which has been done in this study. 

6.1 The cumulant expansion formula 

There have been a large number of applications of the concept of the cumulant [Kubo, 

1962; Brout, 1959], most of them having been made in classical statistical mechanics 

[Yvon, 1969] and in the study of the interacting gas [Mayer, 1940], leading to expansions 

that are valid in the high temperature regime. For the application in this chapter to low 

temperatures, the cumulant expansion can be regarded as a rearrangement theorem for a 

sum which closely resembles the expansion of an exponential, except that the terms are not 

products of the argument of the exponential. Let us consider a series of the form 

— t 

n=1 ~° (6.1) 

where the terms tp are not simple powers of some variable to the n-th power. In our 

application t; is extensive (thermodynamically) and each other term t, has dominant terms 

of order N®. The re-arrangement of this series to find @, which is the variable whose
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powers give the usual series expansion for the exponential, yields the following sum: 

@ = y En 
n! 

n=1 ~~ (6.2) 

where the Ky are given by: 

K} = q 

K2 = to- a 

Ky = ty-4t3t +12HmK-30-64, 

Ks = ts-Styt - 10 tt3 +20 + 30 G- Onn +240 

Determiniation of the r-th cumulant uses all the ty up to r in the original series. A listing of 

the first few cumulants can be found in several handbooks [Abramowitz, 1970; Korn, 

1968] and a formula for the general cumulant is given by Mattis [Mattis, 1985]. If the 

series of K's are quickly converging, finite sums have the potential of providing good 

approximations for the partition functions of interacting systems. In those systems the ty 

will roughly correspond to the sum of terms with n excitations present. 

The partition function Qn for the canonical ensemble for a Hamiltonian H in contact 

with an energy reservoir with temperature B-! is defined as 

Qv = Trn(e*4) (6.4) 

where the trace is taken over states with N particles. 

The grand partition function Z is defined for a system that is in contact with a particle
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reservoir at chemical potential }1 which allows the exchange of particles and energy with the 

system. For systems described by the grand canonical ensemble the number of particles 

for the system is not definite, but may fluctuate. The average number of particles <N> in 

the system is determined by the chemical potential. The grand partition function is defined 

as 

Z= ¥ Qn e BEN 

N=1 (6.5) 

From the definition of the grand canonical partition function it is straightforward to derive 

the following useful formulas for the average energy U = <E> and the average number of 

particles <N>: 

U = p<N>- (nz, 
op (6.6a) 

olnZ ip 
B<N> = ( 

ou. (6.6b) 

  

where the subscripts indicate the variable held constant in the partial derivative. 

From the earliest literature [Fermi, 1926], the grand canonical partition function for 

the free electron gas has been calculated by using the product theorem of statistical 

mechanics, which states that the partition function representing two independent sub- 

systems is the product of the partition functions of the systems. For the grand partition 

function of an electron gas with one-electron energies of €k, we may write: 

Z= I] { 1+exp[-B (eks-p)] } 
 s 

(6.7)



111 

Applying Eq. (6.6) to this product yields the standard definition for the energy and average 

particle number: 

U = D &s f(€s) = [ eoene a 

ks (6.8a) 

<N> = x f(€rs) = | e f(e) de 
ks (6.8b) 

where f(€) is the Fermi function and g(€) is the one electron density of states for both spin 

States. 

The standard procedure [Huang, 1963] is to take these two equations and carry out an 

integration by parts, yielding an integral of g(€) against the derivative of the Fermi function. 

At low temperatures this derivative is so sharply peaked at the chemical potential 1 that the 

density of states can be expanded in a Taylor series about pp. The resulting integrals of 

powers of the energy with the sharply peaked factor leads to a (usually) asymptotic power 

series in temperature. 

Using these series and calculating the heat capacity at constant particle number and 

constant volume gives 

2 

Cx = So = w= Gewe)t 
oT '<N> (6.9) 

where kg is the Boltzmann constant. Usually this calculation is quite complicated, but 

straightforward.
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A simpler more direct calculation can be obtained by first calculating the grand 

canonical partition function directly from Eq. (6.7). The first step is to seek the logarithm 

of Z, converting the products to sums and integrals over the density of states g(€). By 

separating the integrals into two types: particle excitations (€ - 11) > 0 and hole excitations (€ 

- 1) < 0 one obtains integrals of g(€) multiplied by the logarthm of 1 plus something small. 

A useful asymptotic expansion can be obtained from these integrals by first expanding the 

logarithms in a series expansion and then also expanding the density of states in a Taylor 

series in (€ - 11) and carrying out the resulting integrals of (€ - 4) powers and exponentials. 

The resulting expression for the grand partition function is 

oo 

[2r] 

In(Z) = -B(EQ)-p<Nw>)+2 5 2 We 
r=1 

2r+ 

Bo" (6.10a) 

where glMl(1) is the n-th derivative of the density of states evaluated at the chemical 

  

potential and 1; is defined as 

- _1\l+1 

m= DSS j=1 | (6.10b) 

and 

TT 

E(u) = | € g(€) de 

€ (6.10c) 

vy 

N(w) = | g(€) de 

€o (6.10d) 

with €9 the energy at the bottom of the band.



113 

Using Eq. (6.6) it is easy to derive the following expression for the energy, 

el] uy +p gi Qyy] n, 
  U = Eq) +2 5 | 

r=1 
2r+2 

B™ (6.11a) 

and for the average number of particles 

gl 2r+1] _ grt’ Nr <N> = Niu) +2) = 
r=1 8B (6.11b) 

For use in our later discussion it is appropriate to note that the heat capacity at constant 

chemical potential can be obtained easily from Eq. (6.11a), 

- 2r+1 Cy = 2k DY [ew +p einen” 
r=1 (6. 12) 

The heat capacity at constant particle number, Eq. (6.9), and corrections may be obtained 

easily from these equations by first determining the temperature derivative of the chemical 

potential so that <N> is constant in temperature. 

It is currently standard practice to use Cen> for interpreting experiments instead of 

Cy. This practice is based on the standard argument in statistical mechanics that the 

canonical partition function is essentially the same as the grand canonical partition function 

for large systems. The results of this study contradict this argument. 

Let us now re-examine this argument. The key step in the argument is the unverified 

assumption [Huang, 1963] that the dominant term in the grand canonical partition function
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is Qn eBLN where for simplicity we write N = <N> for the average particle number. 

Because the Helmholtz free energy is extensive, this dominant term can be written in the 

form exp(Vo(B,V/N)) where 6 is intensive with respect to the volume V and/or particle 

number N. Two rather weak inequalities are applied at this point to bound Z. The first 

inequality simply states that the whole series must be larger than the single dominant term. 

The second inequality rather weakly dominates Z. It is argued that for some large number 

of particles No in the volume V the interactions raise the energy so much that Qno+r is as 

small as desired. In this case one can argue that Z must be smaller than No times the 

maximum term. It is further argued that No must be proportional to the volume, No = aV. 

These arguments can be combined to yield 

eVo < Z < aVeVo 

Taking the logarithm and dividing by V gives 

@ < In(Z/V < 9+ In(aV)/V 

As the volume becomes very large, the second term on the right side of the equality goes to 

zero and Z is approximated well by exp(Vo). The possibility that is ignored in this general 

argument is that there are systems where combinations of terms involving small 

fluctuations in particle number may combine to make a contibution to Z that dominates the 

QN contribution. 

In the case of the electron gas it is found that the collection of terms for small m 

exp(@n) = > Qnirexp[Bu(N+n] 
r= (6.13)
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gives rise to an extensive @,, which converges to a @ as m — ©, which dominates the 

Helmholtz Free energy for N particles obtained from the canonical ensemble. Later we will 

see that the cumulant formula applied to m=5 recovers the grand canonical result to within 

about 2 percent at low temperatures. 

The "standard" proof of the equivalence of the canonical and grand canonical 

ensembles only determines the sum to order In(V). However, the cumulant series used 

here involves individual terms which are valid in the thermodynamic limit and the series 

thus converges in this limit more quickly than the ty series itself. If Ty is the partial sum 

of the series of the ty, terms and if Z is the sum, then, if ITj - Z| < € for large enough N and 

if Ky is the partial sum of the cumulant series, we have that [Ky - In(Z)|<e/Z. This 

means that approximations determined by the cumulant series are much more strongly 

convergent to the partition function than the standard argument which only gives equality to 

within corrections of order 1/V. 

For the low temperatures of interest here, the temperature dependence of the first 

cumulant kK; dominates the partition function. Higher order kK, give either corrections to the 

coefficient of the temperature dependence of «; or contribute higher powers of temperature. 

When we examine the canonical ensemble below, we will explicitly evaluate only «, and 

K2. 

In order to see how the terms representing the addition of an extra electron or an extra 

hole can give rise to contributions that are larger than the first contribution to the canonical 

ensemble, one has to ask if the sum in the canonical ensemble is smaller. In the canonical 

ensemble, because of the restriction that the particle number is fixed, the lowest energy
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excitations must be pairs of particle excitations above the Fermi energy and hole 

excitations. It is not possible in the canonical ensemble to have excitations with only a 

single particle or with a single hole in the filled Fermi sea, since these would represent a 

change in the number of particles. Yet, single particle or hole excitations will always give 

low temperature contributions to the partition function that are larger than the particle hole 

pairs. In the calculations to follow this will manifest itself in a temperature dependence of 

B-! for the single particle or hole excitations and a temperature dependence of B-2 for the 

particle hole pairs [Pines, 1989]. It is the fact that the canonical ensemble only allows low 

lying excitations made up of particle-hole pairs and the grand canonical ensemble contains 

single particle or hole excitations which have come from the reservoir that makes the 

essential difference between the two ensembles. 

As will be shown in section 6.3, the contributions due to as many as 5 additional 

holes or electrons in the ground state with N particles give a sizeable fraction of the 

coefficient of n2/3 which is characteristic of the degenerate free electron gas. 

6.2 Canonical partition function 

In this section we will outline the evaluation of the canonical partition function using 

the cumulant summation formula written out above. The first step is to begin with the 

standard formula for the partition function for N free electrons with single particle energies 

€xs for momentum k and spin s: 

N 

Q = it x expI-B D, Ek; 5;] 
kw isl (6.14)
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where the prime on the sum indicates that terms where any two particles have the same 

momentum and spin are excluded from the sum. In order to simplify the writing of the 

equations, the spin variables have been left off the summation variables in Eq.(6.14), but 

they should be considered to be included in the summation implicitly. Below, the inclusion 

of the spin variables will be explicitly included, where needed. At this stage the prime on 

the summation symbol is the only manifestation of the Pauli exclusion principle beyond the 

fact that the ground state is constructed using it. 

Since we are interested in the low temperature properties of the electron gas partition 

function, we start with a ground state which is the filled Fermi sea: all states with 

momentum below the Fermi momentum Ikfl are occupied and all states with larger 

momentum are unoccupied. For later simplicity of notation we designate the set of 

occupied momenta by the set F. Also, we will use the convention that momentum variables 

representing states not in the Fermi sea will be represented by p and momentum variables 

representing States inside the Fermi sea will be represented by q. 

Let us re-arrange the terms in Eq.(6.14) so they are collected together by the number 

of particle-hole excitations out of the Fermi Sea. Each set of terms is labeled by tp/n!, 

where n is the number of particle-hole excitations. In such a re-arrangement the first term 

corresponds to no particles excited out of the Fermi Sea: 

N 

to =a, DL expl-BD eqs] 
Q1,-+sGN i=1 (6.15a) 

There are exactly N! ways the qj can be assigned the N specific values contained in F. For 

each of these N! assignments the argument of the exponential is Eo, and the value of to



118 

becomes 

to = e PE ) (6.15b) 

The single particle-hole pair excitations contribute the term t, which will have a sum 

over (N-1) q's and one p, 

N-1 

ho = sp LD! expl-BD egal expC-Beps) 
° i=l Q1>---sQN-1 »P (6. 16a) 

Each term in this series can be represented much more simply by noting that it represents a 

single hole in the Fermi Sea. For each of these the argument of the first exponential in 

Eq.(6.16a) can be written as 

N-1 

x Eqs; = Eo-€&q 

Remember that there are N! ways to distribute the N electrons in the system such that the 

same physical state is represented, therefore: 

tt = >)" BE exp(-Bep,) exp(+Pegs') 
P.S,q,5° (6.16b) 

For simplification it is useful to introduce a diagrammatic representation for the sums in 

Eq.(6.16b). We represent the momentum (and spin) sums over the initially unoccupied 

particle states by (¢) and the sum over hole momenta (and spins) by (0). Since the particle 

and hole sums are independent we will be able to write t; as 

tyePEo = (@0) = (0)(0) (6.16c) 

where we have factored out the common exponential factor between tg and ty.
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The two particle-hole contributions to the partition function can be derived in the same 

fashion as above. This begins by recognizing that each (N-2) particle Fermi Sea is best 

represented by the two holes q and q2, and that if the pair of holes (or particles) are 

interchanged, the system remains in the same state. Therefore it is necessary to devide the 

summation over all possible q, and q2 by 2! in order to avoid over counting, the same 

argument is true for summing over all possible p; and p2, so that 

t2 = i > e BA e-BA2 e~PBEo 

q1,92,P1,P2 (6. 17a) 

where Aj = (€p, - &g, ) and the prime on the sum implies the Pauli Exclusion where no two 

particles (or holes) can have the same momentum and spin. Using the diagrammatic 

notation we can write for tz the following: 

2! ty ePEo = >" eB4ie BA = (eo0eo0)' 

Q1,92,P1,P2 (6. 17b) 

Since the holes and particles do not have the same range of momenta, there is no Pauli 

exclusion principle between them, i.e., 

(@oe@c)' = (ee )'(00)' 

By similar argument it can be shown that the general term can be written as 

n!t, eBFo = y" exp(—B x A;) = (@0...e0)' 

Qi---GusP1--Pa tet (6.18) 

where the number of (¢ 0) pairs in the parentheses is n.
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Using this symbolic notation it is found that the partition function for N free electrons 

can be written as 

i ' 1 ' 
Qn eBEo = 1+ (eo) + = Ceoeey + 5 feoses y .. 

+ 1 (ooweoy + ... 
n! n! (6.19) 

where the last term has n (@ ©) pairs. This is now the series that we will attempt to sum 

using the cumulant summation formula from which we seek a formula for Qn of the form 

Qn = eFFo exp[@(T,N)] (6.20) 

Each of the terms in Eq.(6.19) has a prime indicating that the summations must be carried 

out with the Pauli exclusion in effect. The cumulants will enable systematic treatment of 

Pauli exclusion. However, it is instructive and heuristically useful to derive an 

approximation that will give the dominant low temperature approximation. This 

approximation is to consider © to be equal to the first cumulant K): 

e = ( @o ) 

Another way to think about this approximation is to neglect the primes on the diagrams and 

to factor each diagram into independent pairs of (e 0). Equivalently, keeping only the first 

cumulant ignores the Pauli exclusion principle except in so far as it was used to construct 

the Fermi sea. 

The notation (¢ ©) can be quantified by combining Eq.(6.16b) and (6.16c), 

(eo) = > exp(—Beps) >, exp(+Beqs ) 
P.s qs (6.21a)
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Assuming, for simplicity, a constant density of states 2p and a band from -D to D, then 

0 

(eo) = nape | chan | ea 

0 » (6.21b) 

So that at low temperatures, we have 

B (6.21c) 

Inserting Eq.(6.21c) into the heuristic approximation gives a heat capacity of 

C = 12kg(NpkpT) (6.22) 

where kg is the Boltzmann constant. 

These results (that the canonical partition function is not extensive, and the heat 

Capacity is not linear in T) are not due to our neglect of the Pauli exclusion principal, as will 

be demonstrated below, but reflect the very limited energy fluctuations that are allowed in 

the canonical ensemble when the particle number is fixed. It is quite surprising that 

nowhere in the literature has this property of the canonical ensemble been noted before. In 

our discussion of the grand canonical partition function below, we will see that the 

fluctuations in the particle number are critical for recovering the linear heat capacity. 

Before discussing the grand canonical ensemble, let us examine the first few 

corrections to this simple result for the canonical partition function and demonstrate the 

manner in which the Pauli exclusion principle can be included. The second order term in 

the sum t? is given by
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—_ 1 ' | ' 2 = a, Cee) (oe) (6.23a) 

In Appendix A it is shown that the Pauli exclusion principle summation restrictions in the 

sum represented by (¢ @)' can be carried out by adding in and subtracting out the excluded 

terms. Using these results from Appendix A we see that 

i 
tp = =(16x*- 8x? +x?) 
a) (6.23b) 

where x = Np/B. Combining this with t; = 4x2, we can calculate the second cumulant: 

l 2 (16,2 Ko = —=x~* (16x~* + 8x - 1) 
2 (6.24) 

Now the first few terms of the exponential argument can be written as: 

@ = 132(17- 8x- 16x?) 
4 (6.25) 

where @ is clearly not extensive. 

The higher order terms represent higher powers of the particle number N and 

temperature T. The fact that the canonical partition function is not extensive from this 

cumulant expansion calculation is rather surprising. Since © converges only for small 

values of x, our result may only reflect series expansion of an analytical function in the 

small x regime, whereas the same function should be extensive at large x (i.e., large N) 

limit. We need to determine the analytic continuation to large real x to verify that @ is 

extensive in N and agrees with the grand canonical ensemble. In any case, the ‘proof’ of 

the equivalence between the canonical and grand canonical ensembles is not as trivial as 

indicated in standard textbooks. The rest of the chapter will focus on the experimentally
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more important grand canonical ensemble. 

6.3 The grand partition function 

The formula for the grand partition function requires the sum exp{B[N'p - En'(a)]} 

for all possible numbers of particle numbers N' and all states a for each N'. When we 

want to compare with the evaluation for a system of N particles, we can rewrite the series 

by first summing all of the terms for N particles, then summing all of the states for (N+1) 

particles, (N-1) particles, (N+2) particles, etc. Symbolically, we can write the grand 

partition function as 

Z exp[-B (NU-E)] = 

+ (00)/2! + (0000)/3! +... 

+(0)+(o00@0)/2! +... 

+1+(e0)+(e0e0o)/(2!)? +... 

+(e)+(e@e@o)/2!+... 

+(@e@)/2! + (eee) /3! +... 

+... (6.26a) 

Here the terms in the partition function are written in lines by the particle number in the 

system. The first line displayed is for N-2, the next lines are for N-1, N, N+1, N+2, etc. 

For the purpose of applying the cumulant formula we need to regroup the terms by 

dominant powers of the number of particles, i.e., terms that are proportional to N, N2, etc. 

The partition function now has the expression _
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Z exp[—B (Np - Eo )] 

= 1+(©)+(0) 

+ 1 (ee) +(00)'+2(00)] 

+ gl(eeey+(oooy+3(eooy+3(ee0)] 

+ qileeeesy+(ooocy+4(e000)' +4(ee 00) +6(ee00)'] 

+ ... 

ao 

= 1+ > 3 

n=1 (6.26b) 

Note that only the 1 and the terms with equal numbers of particles and holes represent the 

contributions from the canonical ensemble. In Eq.(6.26b) there are only two terms 

explicitly shown excluding the initial 1. Most of the terms displayed in Eq.(6.26b) 

represents small fluctuations in particle number. To evaluate Z, various cumulants need to 

be calculated. Using the results from Appendix A and the definitions of ta's in Eq.(6.26b), 

we have: 

Ky = ty = (@)+(0) = 4x (6.27a) 

where x = Np/B. It should be noted that it is k; that determines the major temperature 

dependence of the partition function. In this case the contributions to K, represent 

fluctuations in the particle number by +1. The first contribution from the N-particle states 

arises not in t,, but in tz in the form of one particle-hole pair excitation (e 0). Using the 

results of Appendix A it is easy to show that tz = 16x2 - 2x. Note that to is of order N2,
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thus guarantees the second cumulant to be extensive as required: 

Ko = y-t = -2x (6.27b) 

In the same fashion, it is found that 

tz = 64x73 - 24x? + =X 

2 
| 0
0 

K3 = X 
(6.27c) 

ty = 256x4 - 192x3 + me - 6x 

Ky = -6x (6.274) 

The higher order terms begin to be significantly more complicated. We have evaluated ts 

and K5 using a computer based algebra manipulation program Mathematica [Wolfram, 

1988]. The combination of all of the cumulants evaluated including ts yields 

e = 4xa1-t44-144) 
52 22 3? «4? (6.28) 

which consists the first five terms of the series expansion of the correct result @ = 

4x(x2/12), because the grand partition function can be derived from Eq.(6.26b) as 

Z = exp[-B (Eo - Nu)] e® (6.29) 

Note that the © approximated by the first five cumulants is within 1.96 percent of the exact 

result, which shows that the cumulant expansion calculation of the partition function is an 

efficient approximation scheme.
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6.4 Summary 

This research originated in an attempt to explore methods for many body calculations 

which dealt directly with the many particle states and did not start with the independent 

single particle approximation. The fact that the Grand Canonical Partition function can be 

approximated in this way indicates that this approach may have merit for more complex 

interacting systems. Indeed, calculations using this approach have been started. 

The result that there is a difference between the canonical and grand canonical 

ensembles has been quite surprising. Since the difference seems to arise from the distinctly 

different terms that are allowed in the sums of the two ensembles, there seems no way to 

avoid the results of this study. This descrepancy raises a number of questions that merit 

further study. 

The first question arises from the surprisingly strong role that extremely small 

fluctuations in particle number play in the low termperature properties of the free electron 

gas. Our traditional understanding has assumed that experimental measurements should be 

most closely described by the canonical ensemble for a fixed number of particles. Indeed, 

all comparisons of calculated heat capacities use the formula for C<n> derived from the 

grand canonical ensemble in which the chemical potential changes with temperature to 

constrain the average number of particles be be equal to N. 

The fact that the canonical ensemble does not agree qualitatively with experiment 

suggests that heat capacity experiments should rather be compared with Cy, where 1 at T=0 

is determined by the particle number. Using Cy instead of Cys for a free electron gas
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density of states would give rise to an increase in the theoretical estimate by a factor of 1.5. 

A cursory comparison of reported experimental heat capacities [Kittel, 1970] and band 

theory calculations for simple metals [Moruzzi, 1978] shows that for Li and other few 

electron systems the ratio of experimental to theoretical Cen> is greater than 1 and close to 

1.5. For more complicated systems there is no correlation with this simple picture. Since 

no consideration has been made here of corrections due to the coulomb interaction, the lack 

of agreement is not unexpected. 

Nevertheless, the role that particle number fluctuation plays in the thermodynamics of 

the free electron gas raises the question of validity for approximation schemes where it is 

implicitly assumed that the canonical ensemble most closely represents experimental 

measurements. These questions should be studied for other systems. 

The application of these ideas to an interacting system, such as a Hubbard 

Hamiltonian, appears to be tractable, at least to the inclusion of the first few Kp. The 

procedure would select a basis set of many-particle states ly> which may be close to 

eigenvectors of the Hamiltonian. Approximations will be constructed for the resolvents of 

the Hamiltonian H with these states and terms ty will be evaluated by using contour 

integrals of the type: 

Z = | cccwce-ny hy> ebz 

By collecting terms representing the same number of excitations above an approximate 

ground state in much the same way as in Eq.(6.26b), it is possible to approximate the first 

few cumulants Kp. This study will not be discussed here.



Chapter 7 

Conclusion 

With many approximation schemes and numerical methods developed for solving 

strongly-correlated systems, the study of many-body interactions remains a very difficult 

and challenging problem, and its solution reveals amazing and important insights about 

electromagnetic properties of materials which can not be easily achieved from single- 

electron based calculations. Many physicists have made enormous efforts in order to have 

a better understanding of these many-electron interacting systems and their properties. The 

research works described in this dissertation, which are intended to make contributions to 

the effort in various ways, have been fruitful. 

We have focused our study on two important many-electron models: the Anderson 

model and the Hubbard model. Among these two model Hamiltonians, many systems can 

be well represented, and some other interesting models can be derived in various parameter 

limits. Either of the two Hamiltonians can also appear in many forms when used for 

modelling specific physical systems, including the Anderson single impurity model and 

lattice model, and the single-band (standard) and multi-band (extended) Hubbard models. 

These specific Hamiltonians have been studied using various methods and approximation 

128
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schemes with moderate success. However, there does not exist a single method which 

yields accurate solutions consistently for all model Hamiltonians. That is the reason for our 

looking into many-electron partition functions in order to find a systernatic approximation 

for any many-particle interacting system. As described in Chapter 6, this attempt produced 

rather surprising results even for a simple free-electron system. The findings from each 

and every one of these research projects are helpful, in one way or another, for our better 

understanding of properties of many-electron systems. 

The magnetic susceptibility calculation for YbN using the Anderson model 

Hamiltonian yielded very good agreement between theory and experiment, yet the reason 

for the success of the ZZF approximation is not yet clear, mainly because it is not 

understood why NCA violates the Fermi-liquid relations. If that issue can be resolved, 

there is a great potential of applying ZZF approximation to the Anderson lattice model as 

well, based on the so-called extended non-crossing approximation (XNCA) [Kim, 1991], 

where the intersite interaction is incorporated via self-consistent modification of the 

conduction electron propagator. It will supply us a way of treating systems which do not 

have strong hybridization between localized and conducting bands without great 

computational effort. 

The variational calculations of one- and two-dimensional Anderson lattice models 

generated rather accurate ground state energies, but the corresponding wavefunctions are 

not well approximated for reasons discussed in Chapter 3, where some suggestions on 

how to improve the results are also discussed. We have applied this variational scheme to 

Kondo, Anderson single-impurity and Anderson lattice models. It is easy to see that, with 

the increase of the degrees of freedom in localized states, the approximation gets worse
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because the basis used in the calculations becomes a smaller part of the space spanned by 

all possible many-particle Bloch states; also the orthogonalization of basis states gets more 

tedious. While it is possible to do some of the derivations with a computer, however, it is 

hard to justify the amount of work required for computer programming because it is 

difficult to apply the variational scheme to other model Hamiltonians unless the conducting 

states play an important role. 

Many interesting results have been derived from the projection-operator based mean- 

field (MF) calculations of the two-dimensional single-band and multi-band Hubbard 

models. The formalism has been verified by comparing with other MF theories and 

quantum Monte Carlo simulation results, and the computational effort required is much less 

than other calculations like the slave-boson MF theory. Therefore it is straightforward to 

apply this projection-operator MF formalism to get approximate results of static properties 

for systems such as high-T, superconductors. It should also be interesting to compare the 

normal state density of states with experimental results. However, as shown in Chapter 5, 

this formalism has its valid parameter range. Among others, it does not always yield an 

antiferromagnetic ground state for certain parameters while QMC does. Without the life- 

time effect, the discussion about Fermi surface is not convincing (even though systematic 

improvement over the Hubbard I approximation is seen), and dynamic properties cannot be 

calculated from this MF formalism. Nevertheless, with many energy and interaction 

parameters incorporated in the theory, it is convenient to obtain an estimate of certain 

physical quantities using this calculation. 

Despite the significance of very interesting results obtained from the study of the 

many-particle partition function of the free-electron gas system, our original intention of the
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research was to find a systematic approach to partition functions of many-body interacting 

systems. By following the cumulant expansion steps shown in Chapter 6, approximation 

of partition functions to any order can be derived in principle for any given Hamiltonian. 

Using the information from low-lying state wavefunctions extracted from the exact- 

diagonalization of the one-dimensional Hubbard model Hamiltonian presented in Chapter 

4, progress is being made in trying to construct the many-electron partition function for the 

Hubbard model in large U limit. Also, initial attempts at approximating the partition 

function of the single-impurity Anderson model shows promising results, and the first few 

terms in the cumulant expansion can be derived without much effort. 

By combining single-electron band theory and many-body theory, the electromagnetic 

properties of materials can be more thoroughly understood than by relying on band theory 

only. As incredibly complex as many-body problems seem to be, directly solving a 

Hamiltonian which describes a many-electron interacting system is, in many cases, the 

most logical and convenient approach. The solution may not be easily and accurately 

obtained, yet much progress has been made, and much more can be achieved. The 

difficulty of the study of many-electron systems makes any such achievement a great joy.
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Appendix A 

Energy Sums in Partition Functions 

In this appendix the details of the energy sums needed in the calculation of free- 

electron gas partition function in Chapter 6 is listed. 

The sum of the exponential of the excited electron states is given by 

(oe) = > expl[-B(es-1)) 
ps (A.1) 

For simplicity in this paper we will assume that the density of states per spin for the 

electrons is constant over a band width of 2D with value p. At low temperatures the sum in 

Eq.(A.1) is (¢) = 2x where 

x = Np/fpB 

and we have neglected exponentially small terms. The sum over the hole states yields the 

same result: 

(0) = Di exp B(eqs—H)] = 2x 
a5 (A.2) 
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The first example of the effect of the Pauli exclusion principle arises in the two 

particle (two hole) sums. The two particle sum (¢ ©)’ contains both momentum and spins 

sums and that restriction is that no two electrons can be in the same state (p,s), 

(ooy = DY" expl-B (eps, — 1] expl —B ( Epis. — HI 
P1.51,P 2.82 (A.3) 

If s] # $2, then the momentum sums are restricted and the evaluation reduces to 4x2. If the 

two spins are equal then the prime in the summation reminds us that the two momenta 

cannot be equal. For later use it is helpful to define the sums without the spins using 

square brackets: 

[ee]! = > expl-B(ep,—1)] expl-B(e,-1)I 
Pi,P2 

(A.4) 

The summation restriction can be eliminated by adding and subtracting out the terms with 

both momenta equal and having no restriction on the momentum sums. This is most easily 

written with a delta function. 

[eey = )> exp{-B(e,-p)] expl —B (ep, — 1 (1-8p,p,) 
P1,P2 (A.5) 

In this equation there are no restrictions on the sums and we may write this equation 

symbollically as 

[ee] = [eP-[e-e] (A.6) 

where the second term represents a single momentum sum of all terms with both momenta 

equal. It is straightforward to show that [e] = x and that 

[e-—e] = 5
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With these rules we can evaluate Eq.(A.3), taking into account the factor of two for the 

spin values. 

(eece) = 2[ece]'+2[e0e] = 2([e]? —[e-e]) + 2[e/}? 

(A.7) 

So we have that (e e)' = 4x2 - x which is the same value as for (0 0)’. 

For the evaluation of the Grand Canonical Ensemble it is necessary to evaluate more 

complicated diagrams. The first one of these is (@ @ @)', which will involve three spin 

sums and three momentum sums. If we consider the 8 different spin terms, we find that 

there are two with all spins the same and 6 with two spins the same. This means that we 

can write this three particle term in terms of the square brackets which contain only 

momentum sums, 

(eee) = 2[ece]' + 6[e][ee]' 

The momentum restrictions in the three electron brac-ket can be removed by three delta 

function factors multiplying the momentum sums, 

(1-8),p,) (1 — 8p,p, ) (1 — 8p,.p, ) 

Working out the sums and the delta functions yields, 

[eee] = [eP-— 3[e][o—e] + 2[e-e-—e] 

Combining this result with Eq.(A.7), we get 

(eee) = 8x3 — 6x2 + 4% 
3 (A.8)
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Again, (000)'=(e ee)’. 

The four particle sum can be worked out in a similar fashion. The four spin sums 

give two terms with all spins equal, 8 terms with three spins the same, and 6 terms with 2 

spins the same. This leads to the following equation: 

(eeee) = 2Zleeoee]'+ 8[e]jl[eee] + 6[ee]'[ee]' 

The Pauli exclusion summation restrictions can be lifted by including delta function factors 

and a lengthy graphical analysis leads to the following: 

[eoeee]' = [e}* — 6[e]*[e-e] + 8[e][e-—e-e | 

+ 3[e-e]? - 6[e-e-—e-—e]| 

Substitutions from the above yield 

41 
(ee0ee) = 16 x* — 24x° + x? — 6x 

(A.9) 

Higher order contributions can be worked out quite easily using something like 

Mathematica. We have worked out the fifth order diagrams relatively easily.
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