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Chapter 5

Effect of Non-Rectangular Spectra on Receiver Sensitivity

Receiver performance analysis performed thus far in this work has mainly assumed ideal

rectangular spectra for all of the filters in the fiber link.  The goal of this chapter is to discuss the

effect of non-rectangular and more practical filter shapes on the receiver sensitivity of OOK and

FSK spectrum-sliced systems.  Optical bandpass filters used in the transmitter and receiver are now

taken to have practically realizable impulse responses, and receiver sensitivity is calculated in terms

of the 3 dB bandwidths of the optical filters.

The analysis is organized as follows: In Section 5.1 we discuss various optical filters used

in contemporary fiber communication systems, and the modeling of the transfer functions of these

filters.  The mathematical formulation of the problem is discussed in Section 5.2, followed by the

analysis of the receiver sensitivity for OOK transmission, as a function of not only m = BoT , but

also N, the order of the band-pass filter.  In this chapter we will assume that these filters are based

on the Fabry-Perot interferometer, and can be modeled under certain conditions to be Butterworth

in passband.  This analysis is performed in Section 5.3 for OOK using both the Gaussian

approximation and an approximation that assumes the energy at the receiver decision circuit to be

chi-square distributed.  The case of FSK transmission and the corresponding results are obtained in

Section 5.4, followed by a comparison of OOK and FSK in Section 5.5, and a summary of the

chapter and the major results in Section 5.6.

It should be noted that only the case of an optical preamplifier receiver is treated since we

have already shown in earlier chapters that it possesses a number of advantages over PIN receivers.

More importantly, unlike the case of rectangular spectra treated earlier, the “channel”

seen by the signal and noise is now different  The signal path now contains two optical filters,
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one used to spectrum-slice at the transmitter, and the other used to reject ASE noise in the

preamplifier and also to select the appropriate WDM channel.  Since the chief source of noise is the

optical preamplifier, the noise path contains only one filter.  Also note that we assume the receiver

electrical filter to be of the integrate-and-dump type throughout our analysis.  This is a reasonable

simplifying approximation and has been used for optical preamplifier receivers by Marcuse [44,45],

and also for spectrum-sliced systems using PIN receivers by Pendock and Sampson [53].

Moreover we also neglect any mismatches in the center wavelength of the filters/demultiplexers, and

assume that both the transmitter and receiver filter have identical characteristics for a given value of

the filter order.  Also, we neglect intersymbol interference effects resulting from dispersion and/or

electrical filtering in the transmitter and receiver.

5.1  Tunable Optical Fiber Filters

Tunable filters play a crucial role in contemporary and next-generation WDM systems; such filters

provide a low-cost technique to demultiplex the wavelength-encoded channels at the receiver, and also

aid in other WDM functions.  The main categories of filters that are used in commercial and

experimental systems include fiber refractive-index grating-based filters, Fabry-Perot and multilayer

dielectric thin-film resonant cavity filters and acousto-optic filters.

a)  Refractive-index grating-based optical fiber filters

An optical fiber grating refers to a periodic refractive-index modulation in the core of the optical fiber

which effects wavelength-selective modal coupling.  In other words, an in-fiber grating

reflects/transmits a selected band of wavelengths, with the center wavelength of the transmitted/reflected

band depending on the grating parameters such as the length, periodicity and fabrication method.

Conventional in-fiber gratings, commonly referred to as fiber Bragg gratings (FBGs), were first

demonstrated by Hill et al. [61] in 1978 by prolonged exposure of a germano-silicate optical fiber core

to counter-propagating high intensity laser radiation at 488 nm.  This resulted in the formation of a

narrow-band reflection filter in the core of the optical fiber, with the reflection spectrum dependent on
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the grating periodicity.  This technique however limited grating formation to periodicities dictated by the

writing or exposure wavelength.  In 1989, Meltz et al. demonstrated the transverse holographic

approach for Bragg grating formation, by which the reflection filter passband could be designed to be

centered at any wavelength, depending upon the application [62].  Such grating operation is based upon

the coupling of forward and backward propagating guided core modes in the optical fiber, and thus

grating periodicities are limited to a few microns.  Recently, long period refractive gratings (LPG) were

proposed and demonstrated by a research group at AT&T [63].  The larger periodicity of the grating

effects coupling between the fundamental mode and the forward propagating cladding modes resulting

in a broad bandstop filter in the transmission spectrum of the fiber, as opposed to FBG which results in

a narrow bandpass filter in the reflection spectrum of the fiber.  A schematic of the grating structure and

typical filter shapes for the LPG and FBG are shown in Fig. 5.1.

The major applications of optical fiber gratings that are of interest to WDM system designers

include:

• FBG and LPG can be tailored to provide stable narrowband and broadband filters for

demultiplexing WDM channels and in other add-drop and wavelength conversion applications.

• The periodicity of the FBG can be chirped (i.e. made a function of length); a chirped grating then

reflects different wavelengths along different parts of its length.  A controlled design of the chirping

function can be used to provide dispersion compensation by forcing different wavelengths of a

dispersed pulse to travel different distances, thereby equalizing the effect of dispersion.

• LPGs were recently shown to be extremely attractive for gain-flattening of the EDFA spectrum

[11].  A gain-flattened EDFA offers a lower distortion to the densely packed WDM channels that it

simultaneously amplifies.  (Conventional EDFAs, depending on their gain profiles, provide selective

gain to some of the channels thereby distorting the power spectrum of the WDM waveform.)

• Reflection and transmission in-fiber gratings are extremely attractive for removing the unwanted

pump signals and ASE in fiber amplifiers.
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The parameter of most interest to us in the spectrum-slicing context is the passband of the fiber grating

filter.  This passband is a function of the exact profile of the refractive-index modulation impressed in

the core of the photosensitive fiber.  The various techniques used during the grating fabrication

process, such as chirping and apodizing essentially dictate the refractive index profile, and

by controlling these two techniques, fiber Bragg gratings with virtually any desired

passband can be fabricated [64].

b)  Acousto-optic tunable  filters (AOTF)

AOTFs are based on the wavelength-selective diffraction of an incident light beam on a material

with a high photoelastic constant, which is excited with an appropriate transducer to generate

acoustic waves [6].  The acoustic wave produces periodic local compressions and rarefactions

which results in the formation of a grating that can diffract an incident light beam to an angle which

depends on the angle of incidence, the light wavelength, and the acoustic wavelength.  AOTFs are an

attractive candidate for WDM applications since they permit independent wavelength switching, as

needed for reconfigurable all-optical networks [65].

c)  Waveguide Grating Routers

Although bulk-optic or all-fiber filters and devices are used in a number of WDM applications, the

trend is increasingly towards the monolithic integration of such devices and components.  A generic

device towards this end is the arrayed waveguide (AWG) multiplexer, also known as a waveguide

grating router (WGR) [28].  The device is fabricated on InP and consists of input-output arrays,

two free-space regions, and a waveguide grating array between the two free space regions.  Light

from one of the input ports expands in the free space regions and couples to the different grating

arms.  By making the grating arms of different lengths, a fixed path length difference is maintained

between them, thereby effecting a wavelength-dependent phase shift.  This linear phase progression

affects the propagation directions of the of the optical wave as it radiates into the second free space

region towards the output ports.  Waveguide grating routers have been successfully demonstrated
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for a number of WDM enabling devices such as multiplexers, channel dropping filters/equalizers,

and tunable lasers [29].  (The WGR was also discussed in Section 1.3.2 and Fig. 1.5.)

d) Fabry-Perot and thin-film resonant cavity filters

Fiber Fabry-Perot (FP) filters have been used extensively in WDM applications because of their

simple construction and ready availability.  As shown in Fig. 5.2, the basic device operation is based

on multiple reflections which take place in a dielectric sandwiched between two other dielectric

materials [6].  The three materials form a FP cavity and provide a transmission and reflection

spectrum due to constructive/destructive interference between the multiple reflections, which can be

tuned mechanically to the wavelength of interest.  Since the constructive interference phenomena is

dependent on periodic multiples of the cavity length, multiple transmission peaks (fringes) are

observed, with the wavelength difference between two consecutive fringes denoted as the free

spectral range (FSR).

The normalized transmission characteristic for a Fabry-Perot filter, also shown in Fig. 5.2,

is given by the relation [6]

T(ω ) =
1

1 + 2F /π( )2 sin2 2dπω c( )
(5.1)

where F refers to the finesse of the FP cavity and is related to the reflectivity of the materials that

form the cavity, and d is the length of the FP cavity.  An important figure of merit is the bandwidth

of the various transmission notches, which physically defines the amount of isolation that the filter

can provide for rejecting interference from adjacent unwanted channels in the WDM system.  The

bandwidth of the FP filter is given by the ratio of the FSR to the finesse of the cavity.  Recently,

low-loss, environmentally-stable (with respect to temperature and humidity), and nearly square

bandpass-profile filters were demonstrated by Scobey et al. from OCA, using a novel high vacuum

physical vapor deposition process termed MicroPlasma [66].
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5.1.1  Use of the Butterworth Filter Approximation

The parameter of most interest to us from the discussion on a fiber Fabry-Perot (FFP) filter is its

passband.  Although FFPs are simple to fabricate, their passband modeling for system simulation

purposes is often hampered by their multiple passband resonances, as described by Eq. (5.1).

However in the limit of high reflectivity, a single resonant passband of the FFP filter may

be assumed to be approximately Lorentzian in shape.  This can easily be seen from Eq. (5.1),

where in the limit of high reflectivity (sinθ ~θ ), the 3-dB passband becomes to ωo = c 2dF , which

gives

T(ω ) =
1

1 + 2ω /ωo( )2 . (5.2)

Eq. (5.2) is identical to a Lorentzian passband.  This equivalence in graphed in Fig. 5.3a for a cavity

finesse of 5, and a FWHM of 1 nm.

We make use of the same approximation  for our analysis and take a further step to

model all optical filters used in the transmission link to be of the general Butterworth

type.  This has two benefits.  First of all, the Lorentzian passband is equivalent to the

first order Butterworth filter.  Secondly and more importantly, it facilitates our analysis

when we wish to study the effect of varying the filter response (by increasing the order of

the filter) on receiver sensitivity.  Moreover, Ngo and Binh recently demonstrated the analysis

and fabrication of optical Butterworth bandpass filters, through combination of low-pass and high-

pass filters made through phase-modulation of fiber optic interferometers and ring resonators [67].

In general, the magnitude squared transfer function of a Butterworth filter may be expressed

as

Ho( f )
2

=
1

1 + f fo( )2N =
1

1 + 2 f Bo( )2N (5.3)

where:

 f = difference of frequency from the operating optical frequency (in Hz),

fo  = 3 dB baseband bandwidth of the filter (in Hz),
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Bo  = 3 dB bandpass bandwidth of the optical filter (in Hz), and

N = order of the Butterworth filter

The normalized frequency response of various order N Butterworth filters is plotted in Fig.

5.3b.  It is noted that lower order filters have slower passband to stopband roll-offs and larger tails,

as compared with higher order filters which have sharper cut-offs.  Very large orders of the filter

then approach the passband of a rectangular filter.

5.2  Mathematical Formulation

As described in Chapter 3, the signal, comprising the square-law detected and electrically (integrate-

and-dump) filtered spectrum-sliced information signal and the ASE noise from the preamplifier

may be expressed in units of power as

I =
1

2T
x2(t) + y2 (t) + ˜ x 2(t) + ˜ y 2 (t)[ ]

0

T

∫ dt (5.4)

Here x(t), y(t), ˜ x (t), and ˜ y (t) are independent, identically distributed (i.i.d) baseband Gaussian

processes with (optical) bandwidth Bo /2 , having zero-mean, and each having a variance σ 2 equal

to the optical power contributed by each of the two orthogonal polarizations.  Also T is the inverse

data rate, or the time period over which the electrical filter integrates or adds the power.  Note that

the four terms within the integral correspond to two orthogonal phases and two orthogonal

polarizations. We neglect shot noise terms since they will be negligible compared to the inherent

signal fluctuation noise, and will also be negligible compared to the ASE noise for the optical

preamplifier receiver.  Also, for the optical preamplifier receiver, in the on-state, x, y, ˜ x , and ˜ y  are

the components of the noise-like signal plus the corresponding components of the preamplifier

ASE.  In the off-state these are just the components of the preamplifier ASE noise.  We assume that

the preamplifier gain is sufficiently high that the electrical thermal noise may be neglected.
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Now the objective of the following analysis will be to fit the first two moments of I to

standard distributions (Gaussian, Chi-square) which will facilitate the calculation of the receiver

sensitivity.  Accordingly, the mean of I is given by

I =
1

2T
4σ 2T( ) = 2σ2 . (5.5)

To evaluate the variance terms, we use the analysis originally developed by Jacobs [68] with slight

modifications to account for the noise-like nature of the spectrum-sliced signal, and two

polarizations instead of the one used in that work.  The variance of I is given as

var I = I2 − I 2 . (5.6)

The first term on the rhs of Eq. (5.26) may be evaluated for a single polarization first as

I2 =
1

2T

 
  

 
  

2

dtdt ' x2(t) + y2(t) + ˜ x 2(t) + ˜ y 2 (t)  x2(t' ) + y2(t ' ) + ˜ x 2 (t') + ˜ y 2 (t' )
0

T

∫
0

T

∫
 

 
 
 

 

 
 
 (5.7)

Because of the incoherent nature of the broadband source, we can use the following properties to

evaluate the above equation:

i) x = y = 0 , (5.8)

ii) x2 (t) = y2(t) = σ N
2 , where the subscript N refers to the order of the filter,

iii) x(t)x(t' ) = y(t)y(t ' ) = R(τ ), where R(τ)  is the autocorrelation of the Gaussian

process with the normalized autocorrelation being defined as ˆ R (τ) = R(τ) R(0) , and

iv) x2 (t)y2(t ' ) = x2(t ' ) y2(t' ) = σ N
4  .

Hence using the above equations, the variance of I is

var I =
1

2T

 
  

 
  

2

dtdt' 4 x2(t)x2(t' ) +12σ N
4T2

0

T

∫
0

T

∫
 

 
 
 

 

 
 
 − 4σ N

4 (5.9)
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Note that the analysis applies to both 1 and 0 transmission and appropriate subscripts will be added

later.  To evaluate the first and second terms of Eq. (5.23), we employ the moment generating

function, as applied to a bivariate Gaussian distribution [50]

M ξ1 ,ξ2( ) = exp
1

2
σ N

2 ξ1
2 + 2 ˆ R ξ1ξ2 + ξ2

2( ) 
  

 
  (5.10)

with

x2 (t)x 2(t' ) =
∂4M

∂ξ1
2∂ξ2

2
ξ1 =ξ2 =0

(5.11)

Using Eq. (5.11) with Eqs. (5.10) and (5.8) [68)

x2 (t)x 2(t' ) = 2σ N
4 ˆ R 2 (t − t' ) + σN

4  (5.12)

which is used in Eq. (5.6) to get

var I =
2

T2 dtdt' σ N
4 ˆ R 2(t − t' )

0

T

∫
0

T

∫
 

 
 
 

 

 
 
 . (5.13)

Employing the transformation of coordinates, as shown in [68], and recognizing that σ N
2 = R(0) ,

we finally obtain

var I =
4

T2 dτ T − τ( )R2(τ )
0

T

∫
 

 
 
 

 

 
 
 . (5.14)

For spectrum-sliced systems the optical bandwidth is generally much larger than the bit rate which

leads to a wide power spectrum, and hence a narrow autocorrelation.  This allows us to

a) change the limits in Eq. (5.14) from T,0[ ] to ∞,0[ ] and b) neglect τ  in comparison to T.  Using

this approximation

var I =
2

T
dτR2(τ )

−∞

∞

∫
 

 
 
 

 

 
 
 . (5.15)

Finally use of Parseval’s theorem allows us to express Eq. (5.15) in terms of the power spectrum

of I as
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var I =
2

T
df P( f )

2

−∞

∞

∫
 

 
 
 

 

 
 
 . (5.16)

Note that in the above equation, var I is the variance accounting for both polarizations whereas,

because of the way the autocorrelation function is defined (Eq. 5.8), P( f )  is the equivalent

baseband power spectrum in a single polarization only.

In the following sub-sections we will investigate how the signal and noise paths can be

expressed in terms of the filter parameters and employ the resultant power spectrum, as described in

Eq. (5.16), to calculate the receiver sensitivity.

5.2.1  Signal Path in Terms of Filter Parameters

A schematic of the system under consideration is shown in Fig. 5.4.  As illustrated in the figure, a

broadband noise source, assumed to be white over the wavelength band of interest if spectrally-

sliced by an optical filter at the transmitter.  The primary objective of system design here is to

minimize the average number of transmitted spectrum-sliced photons per bit, i.e. the

output of the transmitter optical filter.  Defining Po  as the single-sided, single-polarization,

power spectral density of the source, scaled by the attenuation of the fiber, we can write the

following equation:

PoBo ,eqv,N = Np hνRb (5.17)

where Bo,eqv,N  represents an equivalent rectangular bandwidth of the transmitter optical filter which

allows the same amount of power to pass as the Butterworth filter.  The rhs of Eq. (5.17) is the

average single-polarization power with hν  being the photon energy and Rb  being the system bit

rate.  The equivalent bandwidth may be calculated by

Bo,eqv,N =
1

Ho(0)
2 Ho( f )

2
df

−∞

∞

∫ . (5.18)

This may be readily evaluated using the Butterworth transfer function defined in Eq. (5.3) to get
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Bo,eqv,N =
π

2Nsin π 2N( ) Bo = Ceqv,N Bo (5.19)

with Bo  being the 3 dB bandwidth of the Butterworth filter.  Hence using Eqs. (5.19) and (5.17),

the PSD of the source can be expressed as

Po =
NphνRb

Ceqv,N Bo

(5.20)

The spectrum-sliced signal now passes through an ideal (dispersionless, linear in power)

fiber link, and is then preamplified and passed through an ASE suppresser/WDM selector filter at

the receiver.  The signal channel is then given by the cascade of the two optical filters.

Assuming the filters are centered identically, the channel (transmitter and receiver optical filters)

filters the transmitter PSD, and thus the optical power spectrum (in one polarization) at the

photodetector may be expressed as

Ps( f) = PoG Ho ( f )
2

Ho( f )
2

(5.21)

since the output PSD of a random process is the product of the input PSD and the magnitude

squared of the transfer function of the channel.  Also here the G term accounts for the power gain

of the optical preamplifier.  Using the above equation, the average signal power at the photodetector,

due to the signal component alone and accounting for both of its polarizations, is given by

Ps = 2σ sN
2 = 2 Ps( f )df

−∞

∞

∫ . (5.22)

Here σ sN
2  is the signal power per polarization (during a 1 transmission) and the subscript N refers

to the signal power being a function of the order N of the filter being employed.  Solving Eq. (5.22)

using the general Butterworth transfer function given in Eq. (5.3), we get

Ps = 4PoG
1

1+ 2 f Bo( )2N[ ]20

∞

∫ df = 2PoGCsNBo (5.23)

where the factor CsN  shows the effect of the filter order on the signal power and is given by
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CsN =
2N −1( )π

4N2 sin π 2N( ) . (5.24)

Finally using the above equations

σ sN
2 = PoGCsNBo . (5.25)

5.2.2   Noise Path in Terms of Filter Parameters

As illustrated in Fig. 5.4, the ASE noise generated at the optical preamplifier persists for both the 1

and 0 bits, and its effect is mitigated with the use of the ASE suppresser/WDM selector filter.  The

single-sided, single polarization ASE noise PSD at the output of the preamplifier is expressed as

No = nsphν G − 1( ) (5.26)

where nsp  is the spontaneous emission factor and defines the noise performance of the

preamplifier.  The noise power spectrum appearing at the photodetector is then

Pn( f ) = No Ho( f )
2

(5.27)

with the total noise power including both polarizations being

Pn = 2σ nN
2 = 2 Pn( f)df

−∞

∞

∫ (5.28)

where σnN
2  is the noise power in one polarization.  Recognizing that the noise passes through

only one filter with the passband given in Eq. (5.3), the noise power may be evaluated to be

Pn = 4No
1

1+ 2 f Bo( )2N[ ]0

∞

∫ df = 2NoCnN Bo (5.29)

where the factor CnN  shows the effect of the filter order N and is given by

CnN =
π

2N sin π 2N( ) . (5.30)

Hence using the above equations

σnN
2 = NoCnNBo . (5.31)
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5.3  OOK Transmission Analysis

In this section we will focus on evaluating the effect of the channel non-ideal frequency response, as

characterized by the Butterworth transmitter and receiver optical filters, on receiver sensitivity.  This

is performed here for the case of OOK transmission.  Analysis using both the Gaussian

approximation and assuming chi-square statistics is discussed.

5.3.1  Gaussian Approximation

Use of the Gaussian approximation to calculate the error probability implies evaluating the mean

and variances of the signal and noise at the decision circuit, and fitting these moments to a Gaussian

distribution.  The mean (average) power during the 1 (spectrum-sliced signal + ASE noise) and 0

bits (ASE noise only) is

µ1 = 2 σ sN
2 +σ nN

2( ) µ0 = 2 σ nN
2( ) . (5.32)

To calculate the system Q, it is necessary to evaluate the noise variance during the 1 and 0 bits.

This is done as follows.

i)  0 bit transmission

Using Eq. (5.16) for the variance and Eq. (5.27) for the power spectrum of the noise we have

var I0 =
2

T
Pn( f )

2
df

−∞

∞

∫
 

 
 
 

 

 
 
 =

4

T
No

2 1

1 + 2 f Bo( )2N[ ]2 df
0

∞

∫
 

 

 
 
 
 

 

 

 
 
 
 
. (5.33)

This results in

var I0 =
2No

2KnN Bo

T
=

2m

T2 No
2KnN (5.34)

where m = BoT  and the factor KnN  represents the effect of the filter order N and is given by

KnN =
2N −1( )π

4N2 sin π 2N( ) . (5.35)
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ii)  1 bit transmission

Transmission of the 1 bit includes contributions from both the spectrum-sliced signal and the

preamp ASE noise.  The power spectrum now seen at the detector is hence the summation of the

signal and noise spectrum.  The variance may then be expressed as

var I1 =
2

T
Ps ( f ) + Pn( f )

2
df

−∞

∞

∫
 

 
 
 

 

 
 
 

        = 4

T
Po

2 1

1 + 2 f Bo( )2N[ ]4 df +
0

∞

∫ No
2 1

1 + 2 f Bo( )2N[ ]2 df + 2PoNo
1

1 + 2 f Bo( )2N[ ]3 df
0

∞

∫
0

∞

∫
 

 

 
 
 
 

 

 

 
 
 
 

 

(5.36)

which may be expressed in a form similar to the 0 bit variance as

var I1 =
2m

T 2 Po
2KsN + No

2KnN + 2PoNoK snN[ ] . (5.37)

The associated constants appearing in the above equation are

KsN =
6N −1( ) 4N − 1( ) 2 N −1( )π

96N 4 sin π 2N( ) (5.38)

and

KsnN =
4N −1( ) 2N − 1( )π
16N3 sin π 2N( ) . (5.39)

Now that the signal and noise mean and variance terms are known, we can evaluate the Q factor as

Q =
µ1 − µ0

var I1 + var I0

. (5.40)

Using Eq. (5.32) along with Eqs. (5.33) and (5.36), we get

Q =
2σ sN

2

2m

T 2 Po
2KsN + No

2KnN + 2PoNoK snN + No
2KnN[ ]

(5.41)

which, employing Eqs. (5.25) and (5.31), can be expressed as
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Q =
2m

bx 2 + 2cx + a + bx2
. (5.42)

Here

a = K sN CsN
2( ) b = KnN CnN

2( ) c = KsnN CsNCnN( ) , (5.43)

and for G >> 1

x =
σnN

2

σ sN
2 =

nsphν G − 1( )
N phνRbG

CnN

CsN Ceqv,N Bo[ ] =
nspm

N p

CnNCeqv,N

CsN

. (5.44)

Note again that the C and K  factors represent the contribution of the order N of the Butterworth

filter.  For high orders (N > 10), these factors approach unity, as shown in Fig. 5.5, and then the

above analysis reduces to the analysis performed earlier for the rectangular filter case.

Using the above equation and solving for the average receiver sensitivity, we get

N p =
nspm 2cQ + 8bm( )

2m

Q
− aQ

CnNCeqv,N

CsN

. (5.45)

This is plotted in Fig. 5.6 for the error probability Pe = 10−9  (Q = 6), and nsp  = 2, and at various

values of N.  The results indicate the receiver sensitivity degrades ( N p  becomes larger) as the order

of the filter is reduced.  The major reason for this result is that as the order of the filter is reduced,

the noise power starts increasing relative to the signal power.  This is because the noise passes

through only one filter whereas the signal passes through two filters.  As shown explicitly in Eq.

(5.45), N p  is proportional to the ratio CnNCeqv ,N( ) CsN .  Fig. 5.5 shows that as N reduces,

CnN  and Ceqv,N  both increase, whereas CsN  reduces.  The increase of CnN  refers to an increase in

the noise power; increase in Ceqv,N  reduces the signal PSD and hence reduces the signal power; and

a reduction in CsN  means that signal power reduces.  Hence the combined effect of this ratio, as

plotted in Fig. 5.7, is to degrade the receiver sensitivity as the order N of the filter reduces.

Also, as seen in Chapter 3, the Gaussian approximation predicts error floors for

m < aQ2 2.
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5.3.2   Chi-Square Analysis

As asserted throughout this dissertation, a more reasonable approximation of the spectrum-sliced

signal at the decision circuit is based on chi-square rather then Gaussian statistics.  The chi-square

distribution is defined by the number of degrees of freedom (m), and the variance (σ 2) of the

Gaussian process at the input to the square-law receiver.  For the case of ideal or rectangular

spectra, the m values for when a 1 and a 0 are transmitted are the same, and were represented as m

in the previous chapters.  This situation changes when the effect of practical filter shapes is being

analyzed.  In this case, the degrees of freedom are now weighted by the combined frequency

response of the filters appearing between the source of the signal/noise and the photodetector.  Note

that in this chapter we will represent the 1 and 0 bit chi-square degrees of freedom as m1 and m0 ,

and reserve the use of m  to represent BoT  with Bo  being the 3 dB (bandpass) bandwidth of the

transmitter and receiver optical filter.  The objective, again, is to evaluate the average receiver

sensitivity N p  in terms of m.

To relate the degrees of freedom to the filter parameters, we note from Eq. (3.14) of Chapter

3 that the variance of I can be written in terms of the degrees of freedom as

var I 1/0( ) =
2σ 1/0( )N

4

m 1 /0( )
. (5.46)

where the subscripts (1/0) represent the corresponding bit under consideration, and N reminds us of

the effect of the order of the filter.  Also

σ1N
4 = σ sN

2 + σnN
2( )2

σ0N
4 = σnN

2( )2
. (5.47)

which allows us to write, using Eq. (5.16) for the variance during 1 transmission:

m1 =
2 σ sN

2 +σ nN
2( )2

2m

T 2 Po
2KsN + No

2KnN + 2PoNoKsnN( )
. (5.48)

To simplify further analysis, we use the a, b, c, and x factors defined earlier in Eqs. (5.43) and

(5.44) to write the number of degrees of freedom during the 1 bit transmission as
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m1 =
m 1 + x( )2

bx 2 + 2cx + a
. (5.49)

Similarly for 0 transmission

m0 =
2 σ nN

2( )2

2m

T2 No
2KnN( )

(5.50)

which can be simplified to

m0 =
m

b
. (5.51)

As a quick check note that for large orders of the optical filter, all factors a, b, and c approach unity,

and hence m1 = m0 = m .

For OOK when a 1 is transmitted, the photocurrent consists of signal + noise, both of

which are individually chi-square distributed.  HOWEVER, their sum is not strictly chi-square.

This implies that our assumption of both 1 and 0 transmission being chi-square is merely a

simplifying approximation and a more exact result will actually require us to compute the equivalent

pdf of the convolution of two chi-square distributions.  BUT we still believe that the analysis

presented above, although not “exact” will be a better approximation than the Gaussian.  Hence

assuming that for both the 1 and 0 transmission will result in chi-square distributed processes at the

decision circuit, the associated pdf is given by

P(x) =
m σ1

2( )2m

Γ 2m( ) x2m −1 exp
−mx

σ2

 
  

 
  . (5.52)

Now for OOK, the detection process is to fix a threshold and compare the received energy with that

threshold.  The optimum threshold is where the pdf’s for the 1 and 0 transmission processes are

equal.  Making that choice gives the following transcendental equation for evaluating the pdf’s.

xth
mo

σ o
2 − m1

σ1
2

 

 
  

 

 
  + 2m1 − 2mo( ) ln xth( )

                      = 2mo ln mo σo
2( ) − 2m1 ln m1 σ1

2( ) + ln Γ 2m1( ) Γ 2mo( )( )
(5.53)
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For large values of m, the gamma function (last term in rhs of the above equation) often blows up

due to the limited capabilities of the numerical analysis software.  To minimize the effect of this

possibility, we used the following standard relationship for gamma functions [69]

Γ 2x( ) =
22x−1Γ x( )Γ x + 0.5( )

π
(5.54)

which helped us to write

ln
Γ 2m1( )
Γ 2mo( )

 

 
 
 

 

 
 
 = m1 − m0( )ln(4) + ln

Γ m1( )
Γ mo( )

 

 
 
 

 

 
 
 + ln

Γ m1 + 0.5( )
Γ mo + 0.5( )

 

 
 
 

 

 
 
 . (5.55)

The methodology for deriving an expression for the error probability for an OOK spectrum-sliced

system with an optical preamplifier was described earlier (see Section 3.5).  We modify those

results to take into account the case of non-rectangular spectra to get

Pe =
1

2
1−Φ

mo

σo
2 x th,2mo

 

 
  

 

 
  +Φ

m1

σ1
2 xth ,2m1

 

 
  

 

 
  

 

 
 
 

 

 
 
 (5.56)

where Φ (..) is the incomplete gamma function.  This is plotted in Fig. 5.8 for the error probability

Pe = 10−9  and nsp  = 2, and for N = 1, 2, 3, 4, 5, and 100 (rectangular spectra case).  The results are

similar to those obtained using the Gaussian approximation, i.e. show that receiver sensitivity

degrades when the order of the filter is reduced.  The major reason for this trend was discussed at

the end of Section 5.3.  In terms of the absolute magnitude of receiver sensitivity, the chi-square

predicts lower values of N p  than does the Gaussian, and does not display any error floors unlike

the Gaussian - both observations are consistent with the results in Chapter 3.

Another interesting observation from Fig. 5.8 is that although the N = 1 case (361 ph/b)

requires a higher value of N p  as compared with the rectangular spectra case (230 ph/b), the



__________________
Chapter 5:  Effect of Non-Rectangular Spectra on Receiver Sensitivity 131

required value of m is lower (m = 26 for N = 1 and m = 33 for N = 100) 1.  Although this result

implies that a lower order of filter will need a lower bandwidth and will result in a larger

transmission capacity for a given source bandwidth, one also has to recognize that lower order

Butterworth filters have larger tails and may introduce a larger amount of interchannel interference.

Hence a complete system analysis will have to take into account both the smaller value of optical

bandwidth, and the larger value of interchannel interference, when the N = 1 filter is considered for

implementation in a spectrum-sliced system.

5.4  FSK Transmission Analysis

In this section we discuss the receiver sensitivity of spectrum-sliced FSK systems using optical

preamplifier receivers and non-rectangular transmitter and receiver optical filters.  The methodology

used is similar to that for analyzing OOK transmission.

5.4.1  Gaussian Approximation

The Gaussian approximation involves knowledge of the mean ( µ(1/0) ) and the variance during the 1

and 0 transmission.  Following the procedure outlined in Section 2.4.3, we may write the following:

µ1 =− µ0 = 2σ sN
2 (5.57)

and

var I1 = var I0 =
2

T
Ps( f) + Pn ( f )

2
df + Pn( f )

2
df

−∞

∞

∫
−∞

∞

∫
 

 
 
 

 

 
 
 (5.58)

where the first integral represents the variance in the channel containing the signal and the

preamplifier ASE noise, whereas the second integral corresponds to the other channel which has

ASE noise only.  Using the C and K factors described in Section 5.3, we can simplify the above in

the form

                                                
1  Note that this differnce only exists when the N = 1 and the rectangular case are compared, and that higher orders of
the filter require about the same valus of m as the rectangular filter case.  The difference is still of interest because the
N =1 case corresponds to the Fabry-Perot filter which is commonly used in optical transmission systems.
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var I =
2

m
σ sN

4 K sN

Cs
2 + 2σnN

4 KnN

Cn
2 + 2σ sN

2 σnN
2 KsnN

CsCn

 

 
 
 

 

 
 
 
. (5.59)

Hence the Q factor may be written as

Q =
2m

2bx2 + 2cx + a
(5.60)

with

a = K sN CsN
2( ) b = KnN CnN

2( ) c = KsnN CsNCnN( ) , (5.61)

and

x =
σnN

2

σ sN
2 =

nsphν G − 1( )
N p 2( )hνRbG

CnN

CsN Ceqv,N Bo[ ] =
2nspm

Np

CnNCeqv,N

CsN

. (5.62)

The average sensitivity N p  is divided by a factor of two since, for FSK, the peak and average

receiver sensitivity are the same, which means that the signal power per polarization (σ sN
2 ) is half of

the peak or average power.  Thus solving for N p  gives

N p =
4nspmQ

4mb + c2 − 2ab( )Q2 − cQ

CnNCeqv,N

CsN

. (5.63)

This is plotted in Fig. 5.9 for the error probability Pe = 10−9  (Q = 6), and nsp  = 2, and at various

values of N.  Similar to OOK, the results indicate the receiver sensitivity degrades ( N p  becomes

larger) as the order of the filter is reduced.  Also error floors are predicted at m < aQ2 2 which is

exactly the same as predicted by the OOK analysis.

5.4.2   Chi-Square Analysis

For FSK, since both the 1 and 0 imply signal + noise at the receiver, the corresponding effective

degrees of freedom are the same and may be expressed as (using the nomenclature introduced in

Section 5.3)
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m1 = m0 = mF =
2σ 4

var I
=

m σ sN
2 + σnN

2( )2

aσ sN
4 + 2bσnN

4 + 2cσ sN
2 σnN

2[ ] (5.64)

which simplifies to

mF =
m 1 + x( )2

2bx2 + 2cx + a[ ] . (5.65)

Hence assuming that both the 1 and 0 transmission result in chi-square distributed samples at the

decision circuit, and using the procedure outlined in Chapter 4, the probability of error for FSK

transmission is

Pe =
mF( )4mF

Γ 2mF( )[ ]2
1

σ1N
4m F

y2mF −1 exp −mFy σ1N
2( )dy

0

x

∫
 

 
 
 

 

 
 
 

0

∞

∫ 1

σ0N
4mF

x2mF −1 exp −mF x σ0N
2( )dx (5.66)

where, for FSK, assuming that the “signal” is in channel 1

σ1N
2 = σ sN

2 + σnN
2 (5.67)

and

σ0N
2 = σ nN

2 . (5.68)

Finally, using the approximation procedure described in Appendix B, the error probability may be

written in a simplified way as (for m > 5)

Pe ≈
1

8πmF

4β2m F

1 + β( )4mF −1 (5.69)

where

β =
σ0N

2

σ1N
2 =

σ nN
2

σ sN
2 + σnN

2 =
x

1 + x
(5.70)

with x defined in Eq. (5.62).  Hence the combination of the two equations written above allow the

evaluation of the average receiver sensitivity N p , as a function of m, at various error probabilities,

and for any N.  This is plotted in Fig. 5.10 for the error probability Pe = 10−9  and nsp  = 2, and at

various values of N = 1, 2, 3, 4, 5, and 100 (corresponding to the rectangular spectra case).  The
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results show a trend similar to OOK - the receiver sensitivity degrades monotonically as the order

of the filter is reduced.

5.4  OOK vs. FSK

The analysis outlined above allows us to draw some simple comparisons between spectrum-sliced

OOK and FSK transmission, when practical filter shapes are taken into consideration.  First of all

we compare the optimum values of m for which the receiver sensitivity reaches its minimum value.

Fig. 5.11 illustrates the optimum m as a function of the filter order N.  Similar to the observations

of Section 4.4 of the previous chapter, FSK needs a smaller value of m, for each filter, than does

OOK.  However, each FSK WDM channel requires two filters, and as per the prior results, is not

as bandwidth efficient.  Also, the optimum m does not change very much with a change in the order

of the filter for FSK, but does increase with an increase in N for OOK.

Fig. 5.12 graphs the average receiver sensitivity at the optimum for FSK and OOK as a

function of the filter order.  Also shown is the peak receiver sensitivity for OOK.  As we have

pointed out previously, OOK will perform poorer on the basis of peak receiver sensitivity. Note that

both the Gaussian and the chi-square approximations predict that the order of the filter has a

stronger (degrading) effect on the receiver sensitivity of FSK (Figs. 5.9 and 5.10) as compared to

OOK (Figs. 5.6 and 5.8).  One possible reason for this might be that the degrading effect of

signal fluctuations, with their fewer number of degrees of freedom compared to the noise,

persists for both the 1 and 0 bits for FSK, but only occurs during the 1 bit for OOK.

Expressed in slightly different words, the decision statistic for FSK, formed by differencing the

outputs of the two channels, has a distribution with means (during a 1 and a 0) which are the

negatives of each other.  The corresponding variances, on the other hand, are the same.  As the order

of the filter increases, the magnitudes of the means increases (filters allow more power), and the

variance decreases (more spectrum allows more averaging of the signal/noise terms).  BUT it is the

increases in the means that dominates, and performance improves with an increase in N.  On the

other hand, for OOK, the test statistic has different means and different variances during the 1 and 0
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transmission.  Here, as the filter order increases, the mean and variances no longer change the same

way as they do in FSK, and hence the corresponding receiver sensitivity is not as poor.

Another comparison of interest is the penalty when one considers practical as opposed to

ideal, rectangular, filter shapes.  Defining this penalty to be the ratio of the corresponding receiver

sensitivities for a practical (small N) and an ideal (or very large N) case, we plot the dB penalties in

Fig. 5.13.  The important points to note here are that the shape of the filter strongly

determines the performance of the spectrum-sliced system - passage through two optical

filters reduces the degrees of freedom of the “signal” relative to the degrees of freedom of

the noise which only passes through one filter.  However, overall system penalties may be

kept to < 1 dB by employing N > 2 order Butterworth-response optical filters.  These are

the primary conclusions of this chapter.

5.5  Summary

In this chapter we analyzed the transmission performance of spectrum-sliced transmission systems

when non-ideal optical filters are employed at the transmitter and receiver.  It was shown that

receiver sensitivity is highly dependent on the 3 dB bandwidths of the filters, but that system power

penalties could be minimized by employing high orders (flatter in passband) of the optical filters.

The above analysis is, to the best of our knowledge, the first such numerical evaluation of the effect

of practical filter shapes on the transmission performance of spectrum-sliced systems employing

optical preamplifier receivers.
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Fig. 5.1: Mode coupling and typical transmission (reflection) spectra for optical fiber Bragg and

long-period grating filters.
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Fig. 5.2: Fiber Fabry-Perot filter.
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Fig. 5.3a: Approximating a passband of a fiber Fabry-Perot filter with a Lorentzian lineshape

(Finesse = 5, FWHM = 1 nm).
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Fig. 5.3b: Normalized frequency response of various order N Butterworth filters.
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Fig. 5.4: Schematic of a spectrum-sliced system to illustrate the difference between the signal and

noise paths.
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Fig. 5.5: Filter parameters as a function of the filter order N.  Both signal and noise degrees of

freedom become identical for very large orders of the filter, corresponding to the ideal

(rectangular spectra) case.



__________________
Chapter 5:  Effect of Non-Rectangular Spectra on Receiver Sensitivity 142

Fig. 5.6: Receiver sensitivity for an OOK transmission system using Butterworth filters of different

orders N.  Results are plotted using the Gaussian approximation.
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Fig. 5.7: Ratio of the noise to signal power as a function of the order of the filter.
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Fig. 5.8: Receiver sensitivity for OOK transmission at various orders N of the Butterworth filter,

using the chi-square analysis.
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Fig. 5.9: Receiver sensitivity for spectrum-sliced FSK transmission system and optical

preamplifier receiver detection, using the Gaussian approximation, and for various orders of the

optical filters in the transmission path.
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Fig. 5.10: Receiver sensitivity for FSK transmission at various orders N of the Butterworth filter,

using the chi-square analysis.
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Fig. 5.11: Optimum m as a function of various filter orders for OOK and FSK, using the chi-

square analysis.
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Fig. 5.12: Receiver sensitivity for OOK and FSK, also shown is the peak receiver sensitivity for

OOK.
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Fig. 5.13: Penalty with respect to the ideal (rectangular spectra) case; penalty reduces to less than

1 dB for N > 2.


