Chapter 5

Effect of Non-Rectangular Spectra on Receiver Sensitivity

Receiver performance analysis performed thus far in thiswork has mainly assumed idesl
rectangular spectrafor all of thefiltersin thefiber link. The goal of this chapter isto discussthe
effect of non-rectangular and more practical filter shapes on the receiver sensitivity of OOK and
FSK spectrum-diced systems. Optical bandpass filters used in the transmitter and receiver are now
taken to have practically realizable impul se responses, and receiver sengitivity is calculated in terms
of the 3 dB bandwidths of the optical filters.

The analysisis organized as follows: In Section 5.1 we discuss various optical filters used
in contemporary fiber communication systems, and the modeling of the transfer functions of these
filters. The mathematical formulation of the problemis discussed in Section 5.2, followed by the

analysis of the receiver sensitivity for OOK transmission, as afunction of not only m= B.T , but

also N, the order of the band-passfilter. In this chapter we will assume that these filters are based
on the Fabry-Perot interferometer, and can be modeled under certain conditions to be Butterworth
in passband. Thisanalysisis performed in Section 5.3 for OOK using both the Gaussian
approximation and an approximation that assumes the energy at the receiver decision circuit to be
chi-square distributed. The case of FSK transmission and the corresponding results are obtained in
Section 5.4, followed by a comparison of OOK and FSK in Section 5.5, and a summary of the
chapter and the magjor resultsin Section 5.6.

It should be noted that only the case of an optical preamplifier receiver istreated since we
have aready shown in earlier chapters that it possesses a number of advantages over PIN receivers.
Moreimportantly, unlike the case of rectangular spectratreated earlier, the “ channel”

seen by the signal and noiseis now different The signal path now contains two optical filters,
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one used to spectrum-dlice at the transmitter, and the other used to regject ASE noise in the
preamplifier and also to select the appropriate WDM channel. Since the chief source of noiseisthe
optical preamplifier, the noise path contains only one filter. Also note that we assume the receiver
electricd filter to be of the integrate-and-dump type throughout our analysis. Thisisareasonable
simplifying approximation and has been used for optical preamplifier receivers by Marcuse [44,45],
and also for spectrum-dliced systems using PIN receivers by Pendock and Sampson [53].
Moreover we a so neglect any mismatchesin the center wavelength of the filters/demultiplexers, and
assume that both the transmitter and receiver filter have identical characteristics for a given value of
the filter order. Also, we neglect intersymbol interference effects resulting from dispersion and/or

electrical filtering in the transmitter and receiver.

5.1 Tunable Optical Fiber Filters

Tunablefilters play a crucia rolein contemporary and next-generation WDM systems; such filters
provide alow-cost technique to demultiplex the wavelength-encoded channels at the receiver, and also
aid in other WDM functions. The main categories of filtersthat are used in commercial and
experimental systems include fiber refractive-index grating-based filters, Fabry-Perot and multilayer

dielectric thin-film resonant cavity filters and acousto-optic filters.

a) Refractive-index grating-based optical fiber filters

An optical fiber grating refersto a periodic refractive-index modulation in the core of the optical fiber
which effects wavel ength-selective modal coupling. In other words, an in-fiber grating
reflectg/transmits a selected band of wavelengths, with the center wavelength of the transmitted/reflected
band depending on the grating parameters such as the length, periodicity and fabrication method.
Conventiona in-fiber gratings, commonly referred to as fiber Bragg gratings (FBGs), were first
demonstrated by Hill et al.[61] in 1978 by prolonged exposure of a germano-silicate optical fiber core
to counter-propagating high intensity laser radiation at 488 nm. Thisresulted in the formation of a

narrow-band reflection filter in the core of the optical fiber, with the reflection spectrum dependent on

Chapter 5: Effect of Non-Rectangular Spectra on Receiver Sensitivity 114



the grating periodicity. Thistechnique however limited grating formation to periodicities dictated by the
writing or exposure wavelength. In 1989, Meltz et al. demonstrated the transverse holographic
approach for Bragg grating formation, by which the reflection filter passband could be designed to be
centered at any wavelength, depending upon the application [62]. Such grating operation is based upon
the coupling of forward and backward propagating guided core modes in the optical fiber, and thus
grating periodicities are limited to afew microns. Recently, long period refractive gratings (L PG) were
proposed and demonstrated by aresearch group at AT&T [63]. Thelarger periodicity of the grating
effects coupling between the fundamental mode and the forward propagating cladding modes resulting
in abroad bandstop filter in the transmission spectrum of the fiber, as opposed to FBG which resultsin
anarrow bandpass filter in the reflection spectrum of thefiber. A schematic of the grating structure and
typical filter shapesfor the LPG and FBG are shownin Fig. 5.1.
The major applications of optical fiber gratings that are of interest to WDM system designers

include:

FBG and LPG can betailored to provide stable narrowband and broadband filters for

demultiplexing WDM channels and in other add-drop and wavelength conversion applications.

The periodicity of the FBG can be chirped (i.e. made afunction of length); a chirped grating then

reflects different wavelengths along different parts of itslength. A controlled design of the chirping

function can be used to provide dispersion compensation by forcing different wavelengths of a

dispersed pulseto travel different distances, thereby equalizing the effect of dispersion.

L PGs were recently shown to be extremely attractive for gain-flattening of the EDFA spectrum

[11]. A gain-flattened EDFA offers alower distortion to the densely packed WDM channelsthat it

simultaneoudly amplifies. (Conventiona EDFAS, depending on their gain profiles, provide selective

gain to some of the channels thereby distorting the power spectrum of the WDM waveform.)

Reflection and transmission in-fiber gratings are extremely attractive for removing the unwanted

pump signals and ASE in fiber amplifiers.
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The parameter of most interest to us in the spectrum-dlicing context is the passband of the fiber grating
filter. This passhand isafunction of the exact profile of the refractive-index modulation impressed in
the core of the photosensitive fiber. The varioustechniques used during the grating fabrication
process, such as chirping and apodizing essentially dictate the refractive index profile, and
by controlling these two techniques, fiber Bragg gratingswith virtually any desired

passband can befabricated [64].

b) Acousto-optic tunable filters (AOTF)

AQOTFs are based on the wavelength-sel ective diffraction of an incident light beam on a material
with a high photoelastic constant, which is excited with an appropriate transducer to generate
acoustic waves [6]. The acoustic wave produces periodic local compressions and rarefactions
which results in the formation of a grating that can diffract an incident light beam to an angle which
depends on the angle of incidence, the light wavelength, and the acoustic wavelength. AOTFsarean
attractive candidate for WDM applications since they permit independent wavel ength switching, as
needed for reconfigurable al-optical networks[65].

¢) Waveguide Grating Routers

Although bulk-optic or all-fiber filters and devices are used in a number of WDM applications, the
trend isincreasingly towards the monolithic integration of such devices and components. A generic
device towards this end is the arrayed waveguide (AWG) multiplexer, also known as awaveguide
grating router (WGR) [28]. The device isfabricated on InP and consists of input-output arrays,
two free-space regions, and a waveguide grating array between the two free space regions. Light
from one of the input ports expandsin the free space regions and couples to the different grating
arms. By making the grating arms of different lengths, afixed path length difference is maintained
between them, thereby effecting a wavel ength-dependent phase shift. Thislinear phase progression
affects the propagation directions of the of the optical wave asiit radiates into the second free space

region towards the output ports. Waveguide grating routers have been successfully demonstrated
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for anumber of WDM enabling devices such as multiplexers, channel dropping filters/equalizers,

and tunable lasers [29]. (The WGR was aso discussed in Section 1.3.2 and Fig. 1.5.)

d) Fabry-Perot and thin-film resonant cavity filters
Fiber Fabry-Perot (FP) filters have been used extensively in WDM applications because of their
simple construction and ready availability. Asshown in Fig. 5.2, the basic device operation is based
on multiple reflections which take place in a dielectric sandwiched between two other diglectric
materials[6]. The three materials form a FP cavity and provide a transmission and reflection
spectrum due to constructive/destructive interference between the multiple reflections, which can be
tuned mechanically to the wavelength of interest. Since the congtructive interference phenomenais
dependent on periodic multiples of the cavity length, multiple transmission peaks (fringes) are
observed, with the wavelength difference between two consecutive fringes denoted as the free
spectral range (FSR).

The normalized transmission characteristic for a Fabry-Perot filter, also shownin Fig. 5.2,
isgiven by therelation [6]

_ 1
 1+(2F/p)?sin?(2dpwyc)

Tw) (5.1)

where F refersto the finesse of the FP cavity and isrelated to the reflectivity of the materials that
form the cavity, and d is the length of the FP cavity. Animportant figure of merit is the bandwidth
of the various transmission notches, which physically defines the amount of isolation that the filter
can provide for rejecting interference from adjacent unwanted channelsin the WDM system. The
bandwidth of the FP filter is given by the ratio of the FSR to the finesse of the cavity. Recently,
low-loss, environmentally-stable (with respect to temperature and humidity), and nearly square
bandpass-profile filters were demonstrated by Scobey et al. from OCA, using anove high vacuum

physical vapor deposition process termed MicroPlasma [66].
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5.1.1 Use of the Butterworth Filter Approximation

The parameter of most interest to us from the discussion on afiber Fabry-Perot (FFP) filter isits
passband. Although FFPs are ssimpleto fabricate, their passhand modeling for system simulation
purposes is often hampered by their multiple passband resonances, as described by Eqg. (5.1).
However in thelimit of high reflectivity, a single resonant passband of the FFP filter may
be assumed to be approximately L orentzian in shape. Thiscan easly be seen from Eq. (5.1),
wherein the limit of high reflectivity (sinq ~q ), the 3-dB passband becomesto w, =c/2dF, which
gives

1

Tw) = —1+(2W /WO)Z .

(5.2)

Eq. (5.2) isidentical to aLorentzian passband. Thisequivalence in graphed in Fig. 5.3afor a cavity
finesse of 5, and a FWHM of 1 nm.

We make use of the same approximation for our analysis and take a further step to
model all optical filtersused in the transmission link to be of the general Butterworth
type. Thishastwo benefits. First of all, the Lorentzian passband is equivalent to the
first order Butterworth filter. Secondly and moreimportantly, it facilitates our analysis
when we wish to study the effect of varying thefilter response (by increasing the order of
thefilter) on receiver sensitivity. Moreover, Ngo and Binh recently demonstrated the analysis
and fabrication of optical Butterworth bandpass filters, through combination of low-pass and high-
pass filters made through phase-modulation of fiber optic interferometers and ring resonators [67].

In general, the magnitude squared transfer function of a Butterworth filter may be expressed

1 _ 1
(f/6,)" 1+ (2f/B,)™"

2 —_—
Ho(F) = (5.3)

where:
f = difference of frequency from the operating optical frequency (in Hz),
f, = 3 dB baseband bandwidth of the filter (in Hz),
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B, = 3 dB bandpass bandwidth of the optical filter (in Hz), and
N = order of the Butterworth filter

The normalized frequency response of various order N Butterworth filtersis plotted in Fig.
5.3b. It isnoted that lower order filters have dower passband to stopband roll-offs and larger tails,
as compared with higher order filters which have sharper cut-offs. Very large orders of thefilter

then approach the passband of arectangular filter.

5.2 Mathematical Formulation
Asdescribed in Chapter 3, the signa, comprising the square-law detected and electrically (integrate-
and-dump) filtered spectrum-diced information signal and the A SE noise from the preamplifier

may be expressed in units of power as
1 T
_ N ~ ~2
= Egix )+ Y (1) + )+ Ot (5.4

Here x(t), y(t), X(t), and y(t) areindependent, identically distributed (i.i.d) baseband Gaussian
processes with (optical) bandwidth B, /2 , having zero-mean, and each having avariance s 2 equal
to the optical power contributed by each of the two orthogonal polarizations. Also T istheinverse
datarate, or the time period over which the electrical filter integrates or adds the power. Note that
the four terms within the integral correspond to two orthogonal phases and two orthogonal
polarizations. We neglect shot noise terms since they will be negligible compared to the inherent
signa fluctuation noise, and will aso be negligible compared to the ASE noise for the optical
preamplifier receiver. Also, for the optica preamplifier receiver, inthe on-dtate, x,y, X, and y are
the components of the noise-like signal plus the corresponding components of the preamplifier
ASE. Inthe off-state these are just the components of the preamplifier ASE noise. We assume that

the preamplifier gainis sufficiently high that the electrical thermal noise may be neglected.
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Now the objective of the following analysis will be to fit the first two moments of | to
standard distributions (Gaussian, Chi-sguare) which will facilitate the calculation of the receiver
sengtivity. Accordingly, the mean of | isgiven by

L (ge27) 202
(1= (4s °1) = 257, (5.5)

To evaluate the variance terms, we use the analysis originally developed by Jacobs [68] with dlight
modifications to account for the noise-like nature of the spectrum-diced signal, and two

polarizations instead of the one used in that work. The variance of | isgiven as

2

var | ={1%}- {1)%. (5.6)

Thefirst term on the rhs of Eq. (5.26) may be evaluated for asingle polarization first as

Lo@TT
el 02§

0
{17} = ZTEgéodytdt'(xz(t)+y2(t)+>~<2(t)+92(t))(x2(f)+y2(t')+>~<2(t')+§/2(t'))5 (5.7)
0 u

Because of the incoherent nature of the broadband source, we can use the following properties to

eval uate the above equation:

) {x} ={y) =0, (5.8)
i) {x* (0} = {y*(t)) =s 5,  wherethe subscript N refers to the order of thefilter,

i) {x()x(t" ) ={y(t)yt")} = R(t ), where R(t) isthe autocorrelation of the Gaussian
process with the normalized autocorrelation being defined as IAR’(t )= Rt)/R(0),ad

iv) (X Oy () = (@)Y ) =s -

Hence using the above equations, the variance of | is

w1 @& u
N\ f 2 42 4
varl =g—- %Owltdt 4 ()X°(t)) +125 §T E 4s (5.9)
0
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Note that the analysis applies to both 1 and 0 transmission and appropriate subscripts will be added
later. To evaluate thefirst and second terms of Eq. (5.23), we employ the moment generating

function, as applied to a bivariate Gaussian distribution [50]

é1 ~ u
M(x, %, ) = expes zN(xl2 + 2RXX, +x22)8 (5.10)
with
4
M
X (Ox2(t ) = (5.11)
fix ﬂXz X, =X, =0

Using Eq. (5.11) with Egs. (5.10) and (5.8) [68)
[P (OX°(t ) =25 NR(t- t)+sy (5.12)
which isused in Eg. (5.6) to get
varl == gc‘ﬁjtdt s AR(t- t)“ (5.13)
€0 0
Employing the transformation of coordinates, as shown in [68], and recognizing that s v = R(O),

wefinally obtain

A& :
var | ——2201 (T-t)R(t )u (5.14)
T €o U

For spectrum-dliced systems the optical bandwidth is generally much larger than the bit rate which
leads to awide power spectrum, and hence a narrow autocorrelation. Thisalowsusto

a) change the limitsin Eq. (5.14) from [ T,0] to[¥,0] and b) neglect t in comparisonto T. Using
this approximation

e¥ u

varl == AoiitRz(t )u (5.15)

Finally use of Parseval’stheorem allows usto express Eg. (5.15) in terms of the power spectrum

of | as
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varl =

D> D> D

¥ u
OpfIP(F )|2l‘j. (5.16)
¥ U

I

(1]

Note that in the above equation, var | isthe variance accounting for both polarizations wheress,
because of the way the autocorrelation function is defined (Eg. 5.8), P(f) isthe equivalent
baseband power spectrum in asingle polarization only.

In the following sub-sections we will investigate how the signal and noise paths can be
expressed in terms of the filter parameters and employ the resultant power spectrum, as described in

Eq. (5.16), to calculate the recelver senditivity.

5.2.1 Signal Path in Terms of Filter Parameters

A schematic of the system under consideration isshownin Fig. 5.4. Asillustrated in thefigure, a
broadband noise source, assumed to be white over the wavelength band of interest if spectrally-
diced by an optical filter at the transmitter. The primary objective of system design hereisto
minimize the aver age number of transmitted spectrum-sliced photons per bit, i.e. the
output of the transmitter optical filter. Defining P, asthe single-sided, single-polarization,
power spectral density of the source, scaled by the attenuation of the fiber, we can write the

following equation:

PB v = N,hNR, (5.17)
where B, o, n represents an equivalent rectangular bandwidth of the transmitter optical filter which
allows the same amount of power to pass as the Butterworth filter. Therhsof Eq. (5.17) isthe
average single-polarization power with hn being the photon energy and R, being the system bit

rate. The equivalent bandwidth may be calculated by

¥
1 2
B, vy = ——— (WH () df . 5.18

-¥

Thismay be readily evaluated using the Butterworth transfer function defined in Eq. (5.3) to get
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By v = o 7B =Caun B (5.19)

2Nsin(p/2N
with B, being the 3 dB bandwidth of the Butterworth filter. Hence using Egs. (5.19) and (5.17),

the PSD of the source can be expressed as

N_hn
P, ==E i (5.20)
Ceqv,NBo

The spectrum-dliced signal now passes through an ideal (dispersionless, linear in power)
fiber link, and is then preamplified and passed through an ASE suppresser/WDM selector filter at
thereceiver. The signal channel isthen given by the cascade of the two optical filters.
Assuming thefilters are centered identically, the channel (transmitter and receiver optical filters)
filtersthe transmitter PSD, and thus the optical power spectrum (in one polarization) at the

photodetector may be expressed as
2 2
R(f) = RGH, (N[ Ho( 1) (5.21)
since the output PSD of arandom process is the product of the input PSD and the magnitude
sguared of the transfer function of the channel. Also here the G term accounts for the power gain

of the optical preamplifier. Using the above equation, the average signal power at the photodetector,

due to the signal component alone and accounting for both of its polarizations, is given by

¥
R=2s4 = 2CR(f)df . (5.22)
-¥

Here s §N isthe signal power per polarization (during a 1 transmission) and the subscript N refers

to the signal power being afunction of the order N of the filter being employed. Solving Eq. (5.22)

using the general Butterworth transfer function given in Eq. (5.3), we get

¥ 1
P, = 4P,Ge —
o1+ (21 8,) ]

-df = 2PGC,B, (5.23)

where the factor Cg, shows the effect of thefilter order on the signal power and is given by
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(2N- 1)p
N 4AN?sin(p/2N)’

(5.24)

Finally using the above equations
s5 = PGCyB,. (5.25)

5.2.2 Noise Path in Terms of Filter Parameters

Asillustrated in Fig. 5.4, the ASE noise generated at the optical preamplifier persists for both the 1
and 0 bits, and its effect is mitigated with the use of the ASE suppresser/WDM selector filter. The

single-sided, single polarization ASE noise PSD at the output of the preamplifier is expressed as
N, =nghn(G- 1) (5.26)
where ng, isthe spontaneous emission factor and defines the noise performance of the
preamplifier. The noise power spectrum appearing at the photodetector is then
P.(f) = Ny|H,(f) (5.27)

with the total noise power including both polarizations being
¥
P, =25 7y =2 (Ru(Haf (5.28)
-¥

where s ﬁN isthe noise power in one polarization. Recognizing that the noise passes through

only one filter with the passhand given in Eq. (5.3), the noise power may be evaluated to be

¥

1
P = 4N, & df = 2N, 5.29
OC[1+ (2f /BO)ZNI G (529

where the factor C,, shows the effect of thefilter order N and is given by

p

CnN = m . (530)

Hence using the above equations

S = NoGnBo (5.31)
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5.3 OOK Transmission Analysis

In this section we will focus on evaluating the effect of the channel non-ideal frequency response, as
characterized by the Butterworth transmitter and receiver optical filters, on receiver sendtivity. This
is performed here for the case of OOK transmission. Analysis using both the Gaussian

approximation and assuming chi-square statistics is discussed.

5.3.1 Gaussian Approximation

Use of the Gaussian approximation to cal culate the error probability implies evaluating the mean
and variances of the signal and noise at the decision circuit, and fitting these moments to a Gaussian
distribution. The mean (average) power during the 1 (spectrum-sliced signal + ASE noise) and 0
bits (ASE noise only) is

m :2(552,\, +s ﬁN) m = 2(s ﬁ,\,) (5.32)
To cdculate the system Q, it is necessary to evaluate the noise variance during the 1 and O bits.

Thisis done as follows.

i) O bit transmission

Using Eq. (5.16) for the variance and Eq. (5.27) for the power spectrum of the noise we have

e u
u 6 ¥ 1 0
var |, = (F)f df f U= éN ~ 5 df U, (5.33)
edD e R
Thisresultsin
2NZK B, _2m
lo :°T”N = NZK (5.34)

where m= BT and thefactor K, representsthe effect of thefilter order N and is given by

(2N- 1)p
4N?sin(p/2N)’

(5.35)

nN —
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ii) 1hittransmission
Transmission of the 1 bit includes contributions from both the spectrum-diced signal and the
preamp ASE noise. The power spectrum now seen at the detector is hence the summation of the

signal and noise spectrum. The variance may then be expressed as

u
var |, = ed)P(f)+ P(f) dfl‘j
e¥ u
é U
é ¥ ¥ ¥ l:l
=2 &p2a N2 L df +2PN, L dfg
TE 00[1+(2f/|30) ] G[1+(2f/|3) ] G[1+(2f/|3,) ] !
(5.36)
which may be expressed in aform similar to the O bit variance as
var I, :ZT—T[POZKsN +N2K oy + 2RNK |- (5.37)
The associated constants appearing in the above equation are
Ky = (6N -2)(4N- 1)(2N- Dp (5.39)
96N *sin(p/2N)
and
_(4N- 1)(2N- p (5.39)

SN 16N%sin(p/2N)

Now that the signal and noise mean and variance terms are known, we can evaluate the Q factor as

_ m-m
Q= Jvarly + Jvar iy’ (5:40)

Using Eq. (5.32) aong with Egs. (5.33) and (5.36), we get
2s %

Q= 2m 2 2
F \/Po KsN+ I\IoKnN-I_ZPNo snN +\/N0KnN

which, employing Egs. (5.25) and (5.31), can be expressed as

(5.41)
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J2m

= ) 5.42
Jbx2 +2cx+a ++/bx? (542)
Here
a= (KSN/CSZN) b= (KnN/CnZN) c :(Kan/CsNCnN)’ (5.43)
andforG>>1
(=S ,;ZN _ nihn (G- 1) Cn _ Ny ConCeguin | (5.4
S NoMRG Cyf[CaunB| Mo Gy

Note again that the C and K factors represent the contribution of the order N of the Butterworth
filter. For high orders (N > 10), these factors approach unity, as shown in Fig. 5.5, and then the
above analysis reduces to the analysis performed earlier for the rectangular filter case.

Using the above equation and solving for the average receiver sengitivity, we get

N b= %m(zzr(:]Q + 8bm) CnN Ceqv,N . (545)
R

Thisisplotted in Fig. 5.6 for the error probability P, = 107° (Q=6), and ng, =2, and at various

valuesof N. Theresultsindicate the receiver sensitivity degrades (N becomes larger) as the order
of thefilter isreduced. The major reason for this result is that as the order of thefilter is reduced,
the noise power startsincreasing relative to the signal power. Thisis because the noise passes

through only one filter whereas the signa passes through two filters. As shown explicitly in Eq.
(5.45), N isproportional to theratio (CnN Ceq\,,N) /CSN . Fig. 5.5 shows that as N reduces,

C., and C

eqv,n POthincrease, whereas Cy, reduces. Theincrease of C, refersto anincreasein

the noise power; increasein Cy,, \ reducesthe signal PSD and hence reduces the signal power; and

areduction in Cy, meansthat signal power reduces. Hence the combined effect of thisratio, as

plotted in Fig. 5.7, isto degrade the recelver sengitivity asthe order N of the filter reduces.

Also, as seen in Chapter 3, the Gaussian approximation predicts error floors for

m< aQ?/2.
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5.3.2 Chi-Square Analysis

As asserted throughout this dissertation, a more reasonabl e approximation of the spectrum-dliced

signal at the decision circuit is based on chi-square rather then Gaussian statistics. The chi-square

distribution is defined by the number of degrees of freedom (m), and the variance (s 2) of the
Gaussian process at the input to the square-law receiver. For the case of ideal or rectangular
spectra, the m vaues for when a1 and a0 are transmitted are the same, and were represented asm
in the previous chapters. This situation changes when the effect of practical filter shapesisbeing
analyzed. In thiscase, the degrees of freedom are now weighted by the combined frequency
response of the filters appearing between the source of the signal/noise and the photodetector. Note
that in this chapter we will represent the 1 and O bit chi-square degrees of freedom as m and m,
and reserve the use of m to represent B, T with B, being the 3 dB (bandpass) bandwidth of the
transmitter and receiver optical filter. The objective, again, isto evauate the average receiver
sensitivity Np in terms of m.

To relate the degrees of freedom to the filter parameters, we note from Eq. (3.14) of Chapter

3 that the variance of | can be written in terms of the degrees of freedom as

2841/0 N
var Iy g) = — 22 (5.46)

Mao)

where the subscripts (1/0) represent the corresponding bit under consideration, and N reminds us of

the effect of the order of thefilter. Also

2

Sl4N:(S§N+S§N) SgN:(SﬁN)Z' (5.47)

which alows usto write, using Eqg. (5.16) for the variance during 1 transmission:

m = 2(S§N +s ﬁN)z
_ZI_—T(POZKS,\, + N2Ky + 2P NoKay )

. (5.48)

0" “nN

To smplify further analysis, we usethe a, b, ¢, and x factors defined earlier in Egs. (5.43) and

(5.44) to write the number of degrees of freedom during the 1 bit transmission as
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bx”+2cx+a’
Similarly for O transmission
2
2s?
My = 2m( = ) (5.50)
?(NO I'<nN)
which can be simplified to
m, = r—l: (5.51)

Asaquick check note that for large orders of the optical filter, al factors a, b, and ¢ approach unity,
and hence m = m, =m.

For OOK when a1 istransmitted, the photocurrent consists of signal + noise, both of
which areindividually chi-square distributed. HOWEVER, their sum is not strictly chi-square.
Thisimpliesthat our assumption of both 1 and O transmission being chi-square is merely a
simplifying approximation and a more exact result will actually require us to compute the equivalent
pdf of the convolution of two chi-square distributions. BUT we till believe that the analysis
presented above, although not “exact” will be a better approximation than the Gaussian. Hence
assuming that for both the 1 and 0 transmission will result in chi-square distributed processes at the

decision circuit, the associated pdf is given by

P (07 s e 552
(X)—WX expé?a. ( )

Now for OOK, the detection processisto fix athreshold and compare the received energy with that
threshold. The optimum threshold is where the pdf’ s for the 1 and O transmission processes are

equal. Making that choice gives the following transcendental equation for evaluating the pdf’s.

m, 9
ogrs - T+ (am - 2m)inf,)

=2m, In(my/s2) - 2mIn(my/s )+ In(G(2m )/ G(2m,))

(5.53)
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For large vaues of m, the gamma function (last term in rhs of the above equation) often blows up
due to the limited capabilities of the numerical analysis software. To minimize the effect of this

possibility, we used the following standard relationship for gamma functions [69]

_ 22 1g(x)gx + 0.5
G(2x) = N3 (5.59)
which helped us to write
In aczm,)s_ &8(m, )l;+ In &q(m + 05) (5.55)

SG( )H (nl mo)ln(4)+|an( ) QG(mO+05)

The methodology for deriving an expression for the error probability for an OOK spectrum-sliced
system with an optical preamplifier was described earlier (see Section 3.5). We modify those

results to take into account the case of non-rectangular spectrato get

1% &n, 6y
P==8-F Xy, mo_+F ,2m;zu 5.56
28 gg th g_xth h H (5.56)

where F (..) isthe incomplete gamma function. Thisis plotted in Fig. 5.8 for the error probability
P.= 10"° and Ny =2,andfor N =1, 2,3, 4,5, and 100 (rectangular spectracase). Theresultsare
similar to those obtained using the Gaussian approximation, i.e. show that receiver sengitivity

degrades when the order of the filter isreduced. The major reason for this trend was discussed at

the end of Section 5.3. In terms of the absolute magnitude of receiver sengitivity, the chi-square

predicts lower values of N, than does the Gaussian, and does not display any error floors unlike
the Gaussian - both observations are consistent with the results in Chapter 3.

Another interesting observation from Fig. 5.8 is that although the N = 1 case (361 ph/b)

requires a higher value of N, as compared with the rectangular spectra case (230 ph/b), the
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required value of mislower (m =26 for N=1and m= 33 for N=100) *. Although this result
impliesthat alower order of filter will need alower bandwidth and will result in alarger
transmission capacity for a given source bandwidth, one also has to recognize that lower order
Butterworth filters have larger tails and may introduce alarger amount of interchannel interference.
Hence a complete system analysis will have to take into account both the smaller value of optical
bandwidth, and the larger value of interchannel interference, when the N = 1 filter is considered for

implementation in a spectrum-diced system.

5.4 FSK Transmission Analysis
In this section we discuss the recelver senditivity of spectrum-diced FSK systems using optical
preamplifier recelvers and non-rectangular transmitter and receiver optical filters. The methodology

used issimilar to that for analyzing OOK transmission.

5.4.1 Gaussian Approximation

The Gaussian approximation involves knowledge of the mean (m,,, ) and the variance during the 1
and O transmission. Following the procedure outlined in Section 2.4.3, we may write the following:

m=-m=2 g (5.57)

and
2&" 2 g
var |, = var |, 73@@( f) + P, (f)[ df + (‘an(f)|2dfld (5.58)
€y -¥ u

where the first integral represents the variance in the channel containing the signal and the
preamplifier ASE noise, whereas the second integral corresponds to the other channel which has
ASE noise only. Using the C and K factors described in Section 5.3, we can simplify the abovein

theform

! Note that this differnce only exists when the N = 1 and the rectangular case are compared, and that higher orders of
the filter require about the same valus of m as the rectangular filter case. The differenceis till of interest because the
N =1 case corresponds to the Fabry-Perot filter which is commonly used in optical transmission systems.
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Hence the Q factor may be written as
- yam (5.60)
J2bx2 + 2cx+ a
with
a= (KSN/CSZN) b= (KnN/CnZN) c :(Kan/CsNCnN)’ (5.61)
and
=S 2, _ hyhn(G- 1) Con _2ngm C\Con | (5.62)

“s& (Np/2)hnRG CsN/[CequNa,] N
The average sensitivity N isdivided by afactor of two since, for FSK,, the peak and average
recelver sengtivity are the same, which means that the signal power per polarization (s §N) is half of

the peak or average power. Thus solving for N gives

N. = 4n,;mQ ConCequin
P \/4mb+(c2- 2ab)Q? - cQ Cw

(5.63)

Thisisplotted in Fig. 5.9 for the error probability P, = 10° (Q =6), and Ng, =2, and at various
valuesof N. Similar to OOK, the results indicate the receiver sensitivity degrades (N, becomes

larger) asthe order of thefilter isreduced. Also error floors are predicted at m < aQ?/2 whichis

exactly the same as predicted by the OOK analysis.

5.4.2 Chi-Square Analysis
For FSK, since both the 1 and O imply signal + noise at the receiver, the corresponding effective
degrees of freedom are the same and may be expressed as (using the nomenclature introduced in

Section 5.3)
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= =M. = = 5.
M=M= e = [as;‘,\,+ 2bs 4, +ZCS§NS§NI (564
which simplifiesto

m(L + x)°

- [2bx2 + 20X +aJ '

m (5.65)

Hence assuming that both the 1 and 0 transmission result in chi-square distributed samples at the
decision circuit, and using the procedure outlined in Chapter 4, the probability of error for FSK

transmission is

P= (”‘F)ngfg}m yA"™ *exp(- m:y/siw)dyé X el mx/sf)ox (660
[qsz)] 08> IN QSoN”

where, for FSK, assuming that the “signal” isin channel 1

s2 =S tSiy (5.67)
and

SoN =S 2N (5.68)
Finally, using the approximation procedure described in Appendix B, the error probability may be
written in asimplified way as (for m > 5)

2mg
RS SN, .- M (5.69)

e \/&)_m|:(l+b)4mrl

where

2

2

_Son_  Smn _ X

b=—% == +s2 1+ (5.70)
SiIN S«ntSm X

with x defined in Eqg. (5.62). Hence the combination of the two equations written above allow the
evaluation of the average receiver sensitivity N, asafunction of m, at various error probabilities,
and for any N. Thisis plotted in Fig. 5.10 for the error probability P, = 10" and Ng, =2, and at

variousvauesof N=1, 2, 3, 4, 5, and 100 (corresponding to the rectangular spectracase). The
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results show atrend similar to OOK - the receiver sengitivity degrades monotonically as the order

of thefilter is reduced.

5.4 OOK vs. FSK

The analysis outlined above allows us to draw some simple comparisons between spectrum-dliced
OOK and FSK transmission, when practical filter shapes are taken into consideration. First of all
we compare the optimum values of m for which the receiver sengitivity reachesits minimum value.
Fig. 5.11 illustrates the optimum m as a function of the filter order N. Similar to the observations
of Section 4.4 of the previous chapter, FSK needs a smaller value of m, for each filter, than does
OOK. However, each FSK WDM channel requires two filters, and as per the prior results, is not
as bandwidth efficient. Also, the optimum m does not change very much with a change in the order
of the filter for FSK, but doesincreasewith anincreasein N for OOK.

Fig. 5.12 graphs the average receiver senditivity at the optimum for FSK and OOK asa
function of thefilter order. Also shown isthe peak receiver senstivity for OOK. Aswe have
pointed out previoudy, OOK will perform poorer on the basis of peak recelver sensitivity. Note that
both the Gaussian and the chi-square approximations predict that the order of thefilter hasa
stronger (degrading) effect on the receiver sengitivity of FSK (Figs. 5.9 and 5.10) as compared to
OOK (Figs. 5.6 and 5.8). One possiblereason for this might be that the degrading effect of
signal fluctuations, with their fewer number of degrees of freedom compar ed to the noise,
persistsfor both the 1 and 0 bitsfor FSK, but only occursduring the 1 bit for OOK.
Expressed in dightly different words, the decision statistic for FSK, formed by differencing the
outputs of the two channels, has a distribution with means (during a1 and a0) which are the
negatives of each other. The corresponding variances, on the other hand, are the same. Asthe order
of thefilter increases, the magnitudes of the means increases (filters allow more power), and the
variance decreases (more spectrum allows more averaging of the signal/noise terms). BUT itisthe
increases in the means that dominates, and performance improveswith anincreasein N. On the

other hand, for OOK, the test statistic has different means and different variances during the 1 and O

Chapter 5: Effect of Non-Rectangular Spectra on Receiver Sensitivity 134



transmission. Here, asthefilter order increases, the mean and variances no longer change the same
way asthey do in FSK, and hence the corresponding receiver sensitivity is not as poor.

Another comparison of interest is the penalty when one considers practical as opposed to
idedl, rectangular, filter shapes. Defining this penalty to be the ratio of the corresponding receiver
sengtivitiesfor apractical (small N) and an ideal (or very large N) case, we plot the dB penaltiesin
Fig. 5.13. Theimportant pointsto note here arethat the shape of thefilter strongly
deter mines the performance of the spectrum-sliced system - passage through two optical
filtersreducesthe degrees of freedom of the “signal” relative to the degr ees of freedom of
the noise which only passes through onefilter. However, overall system penalties may be
kept to < 1 dB by employing N > 2 order Butterworth-response optical filters. Theseare

the primary conclusions of this chapter.

5.5 Summary

In this chapter we analyzed the transmission performance of spectrum-dliced transmission systems
when non-ideal optical filters are employed at the transmitter and receiver. It was shown that
receiver senditivity is highly dependent on the 3 dB bandwidths of the filters, but that system power
penalties could be minimized by employing high orders (flatter in passband) of the optical filters.
The above analysisis, to the best of our knowledge, the first such numerical evaluation of the effect
of practical filter shapes on the transmission performance of spectrum-diced systems employing

optical preamplifier receivers.
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Fig. 5.1: Mode coupling and typical transmission (reflection) spectra for optical fiber Bragg and

long-period grating filters.
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