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Models for the Generation of Heterogeneous Complex Networks 

Bassant El-Sayed Youssef 

ABSTRACT 

Complex networks are composed of a large number of interacting nodes. Examples of complex 

networks include the topology of the Internet, connections between websites or web pages in the 

World Wide Web (WWW), and connections between participants in social networks. Due to 

their ubiquity, modeling complex networks is important for answering many research questions 

that cannot be answered without a mathematical model.  For example, mathematical models of 

complex networks can be used to find the most vulnerable nodes to protect during a virus attack 

in the Internet, to predict connections between websites in the WWW, or to find members of 

different communities in social networks. Researchers have analyzed complex networks and 

concluded that they are distinguished from other networks by four specific statistical properties. 

These four statistical properties are commonly known in this field as: (i) the small world effect, 

(ii) high average clustering coefficient, (iii) scale-free power law degree distribution, and 

(iv) emergence of community structure. These four statistical properties are further described 

later in this dissertation. 

Most models used to generate complex networks attempt to produce networks with these 

statistical properties. Additionally, most of these network models generate homogeneous 

complex networks where all the network nodes are considered to have the same properties. 

Homogenous complex networks neglect the heterogeneous nature of the nodes in many complex 

networks. Moreover, some models proposed for generating heterogeneous complex networks are 

not general as they make specific assumptions about the properties of the network.Including 

heterogeneity in the connection algorithm of a model would make it more suitable for generating 

the subset of complex networks that exhibit selective linking. Additionally, all models proposed, 

to date, for generating heterogeneous complex networks do not preserve all four of the statistical 

properties of complex networks stated above. Thus, formulation of a model for the generation of 

general heterogeneous complex networks with characteristics that resemble as much as possible 

the statistical properties common to the real-world networks that have received attention from 

the research community is still an open research question. 
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In this work, we propose two new types of models to generate heterogeneous complex networks. 

First, we introduce the Integrated Attribute Similarity Model (IASM). IASM uses preferential 

attachment (PA) to connect nodes based on a similarity measure for node attributes combined 

with a node’s structural popularity measure. IASM integrates the attribute similarity measure and 

a structural popularity measure in the computation of the connection function used to determine 

connections between each arriving (newly created) node and the existing (previously created or 

old) network nodes. IASM is also the first model known to assign an attribute vector having 

more than one element to each node, thus allowing different attributes per node in the generated 

complex network. Networks generated using IASM have a power law degree distribution and 

preserve the small world phenomenon. IASM models are enhanced to increase their clustering 

coefficient using a triad formation step (TFS). In a TFS, a node connects to the neighbor of the 

node to which it was previously connected through preferential attachment, thus forming a triad.  

The TFS increases the number of triads that are formed in the generated network which increases 

the network’s average clustering coefficient. 

We also introduce a second novel model, the Settling Node Adaptive Model (SNAM). SNAM 

reflects the heterogeneous nature of connection standard requirements for nodes. The connection 

standard requirements for a node refers to the values of attribute similarity and/or structural 

popularity of old node y that node new x would find acceptable in order to connect to node y. 

SNAM is novel in that such a node connection criterion is not included in any previous model 

for the generation of complex networks. SNAM is shown to be successful in preserving the 

power law degree distribution, the small world phenomenon, and the high clustering coefficient 

of complex networks. 

Next, we implement a modification to the IASM and SNAM models that results in the 

emergence of community structure. Nodes are classified into classes according to their attribute 

values. The connection algorithm is modified to include the class similarity values between 

network nodes. This community structure model preserves the PL degree distribution, small 

world property, and does not affect average clustering coefficient values expected from both 

IASM and SNAM. Additionally, the model exhibits the presence of community structure having 

most of the connections made between nodes belonging to the same class with only a small 

percent of the connections made between nodes of different classes. 
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We perform a mathematical analysis of IASM and SNAM to study the degree distribution for 

networks generated by both models. This mathematical analysis shows that networks generated 

by both models have a power law degree distribution. 

Finally, we completed a case study to illustrate the potential value of our research on the 

modeling of heterogeneous complex networks. This case study was performed on a Facebook 

dataset. The case study shows that SNAM, with some modifications to the connection algorithm, 

is capable of generating a network with almost the same characteristics as found for the original 

dataset. The case study provides insight on how the flexibility of SNAM’s connection algorithm 

can be an advantage that makes SNAM capable of generating networks with different statistical 

properties. 

Ideas for future research areas include studying the effect of using eigenvector centrality, instead 

of degree centrality, on the emergence of community structure in IASM; using the node index as 

an indication for its order of arrival to the network and distributing added connections fairly 

among network nodes along the life of the generated network; experimenting with the nature of 

attributes to generate a more comprehensive model; and using time sensitive attributes in the 

models, where the attribute can change its value with time. 
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Chapter 1.  Introduction  

1.1. Introduction  

Complex networks are ubiquitous in many areas. The Internet, the World Wide Web (WWW), 

social networks, food web (or food chain) networks, and many other networks are complex 

networks [1, 2]. Researchers have analysed these real-world complex networks, which has led to 

the discovery of their distinct statistical properties and behavioral patterns [3, 4]. The analysis of 

real-world complex networks has shown that most such networks possess four statistical 

properties. These four statistical properties are:  (i) scale-free power-law degree distribution; 

(ii) small average path length, or small world phenomenon; (iii) high average clustering 

coefficient; and (iv) emergence of community structure [5, 6]. Devising a mathematical model 

for complex networks can aid in making decisions about the management of such networks and 

help in allocating their resources. There have been many attempts to find mathematical models 

that can faithfully generate networks that mimic real-world complex networks.  Most models of 

complex networks that have been proposed do not result in all four of the common statistical 

properties of complex networks [7]. Since, nodes often have different characteristics from each 

other, they are heterogeneous. Most models for complex networks assume that nodes have the 

same characteristics, i.e. that nodes are homogeneous.  Thus, these models neglect the 

heterogeneous nature of network nodes. Including heterogeneity in a generation model would 

make it more suitable for complex networks exhibiting assortative mixing.  (Assortative mixing is 

defined in Section 3.1.).  Moreover, even the models that have been proposed for heterogeneous 

complex networks do not integrate the heterogeneity of nodes with other structural properties of 

the network in the analysis and in the algorithms for generating such networks. Also, many 

existing models are specific for the generation of certain types of complex networks and, thus, 

are not general. Therefore, finding a faithful general heterogeneous complex network model for 

networks with assortative mixing that preserves the statistical properties of real-world complex 

network is still an open research question. 

1.2.  Contributions 

In this research, we propose general mathematical models that are able to reflect the four 

statistical properties of complex networks, as described above. Moreover, our proposed models 
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consider node heterogeneity, a factor that, we claim, is unaddressed in most existing models of 

complex networks [4, 5].  

We identify two types of node heterogeneity, heterogeneity of node characteristics and 

heterogeneity of node connection standards. Heterogeneity of node characteristics reflects the 

different properties or attributes of different network nodes. Heterogeneity of node connection 

standards reflects the difference in each node’s requirements to make a connection to another 

given node. 

The research contributions of this research is summarized as follows. 

1) We account for the heterogeneity of node characteristics in a graph-theoretic model by 

incorporating node attributes as one of the elements defining a network graph. 

Accordingly, our model defines the network graph, G, as a set of three elements, 

G = {V, E, A}, where V is the set of nodes or vertices in the network, E is the set of links 

or edges, and A is the set of attribute-vectors assigned to each network node. The length 

of each vector in A is generally more than unity and not restricted to unity as in 

previously proposed heterogeneous generation models for complex networks. 

2) Based on contribution (1) above, we propose the Integrated Attribute Similarity Model 

(IASM) for generating heterogeneous complex networks. IASM is based on the 

preferential attachment connection algorithm for generation of networks as proposed by 

Barbási and Albert [3]. However, IASM incorporates the heterogeneous nature of nodes 

by integrating attribute similarity with the structural popularity measure within the 

connection function, CF, used for the preferential attachment algorithm. Attribute 

similarity is used to assess the similarity or compatibility between the attributes of both 

nodes to be connected. In contrast, structural popularity measures the popularity of the 

old node based on its current connections.  Structural popularity can be based on the 

number of the node’s first degree connections (degree centrality) or it can consider higher 

degree connections (eigenvector centrality).  Two models are proposed that use two 

different measures for node structural popularity. The first model, IASM_A, uses the 

nodes’ normalized degree, while the second model, IASM_B, uses eigenvector centrality 

as a more accurate structural popularity measure. To increase the average clustering 

coefficient for networks generated by IASM, triad formation was added to IASM. The 
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triad formation step entails making an additional second degree connection after making 

an initial connection in the network based on preferential attachment, thus forming a 

triad. Increasing the number of triads (triangles) increases the value of the average 

clustering coefficient. 

3) We introduce the idea of a heterogeneous node connection standard as a criterion for 

connecting new nodes during network growth. The connection standard of the node refers 

to its requirements when making a connection. Our proposed model, the Settling Node 

Adaptive Model (SNAM), uses a connection algorithm based on connection standards for 

nodes and does not use the preferential attachment connection algorithm. Thus, SNAM 

incorporates both a node’s properties and heterogeneous connection standards. 

4) Each of the proposed models, IASM_A, IASM_B, and SNAM, was validated via 

simulation using MATLAB [41]. The success of each proposed model to mimic real-

world complex networks is verified by examining the statistical properties of the 

generated synthetic networks, namely the average path length, clustering coefficient, and 

degree distribution.  The statistical properties of the networks generated via simulation 

are compared to values reported in the literature [2, 4, 5]. Simulation results show that 

both IASM and SNAM preserve the small world phenomenon, scale-free degree 

distribution and high average clustering coefficients of real complex networks. 

5) We modify the connection algorithm of both IASM models and the SNAM modelto 

preserve the statistical property of the emergence of community structure. The nodes are 

divided into classes using a subset of their attribute values. The connection function, CF, 

has an added class similarity term whose value depends on certain class nodes attributes. 

Both modified models show dense connections between same community members with 

fewer connections between different community members. 

6) We show through mathematical analysis that the degree distributions for both the IASM 

and SNAM models follow the power law distribution. 

7) We present a case study in which we use a Facebook network dataset to illustrate the 

potential use of our models in modeling real-world networks.  A seed network from the 

Facebook dataset, together with the whole Facebook attribute matrix, are used to grow 
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synthetic networks via a MATLAB implementation having the same final size as the 

Facebook dataset chosen for the case study. 

Future research can build on this research to, potentially, develop further contributions. For 

example, the effect of using eigenvector centrality as the structural property measure on the 

emergence of community structure can be investigated. Additionally, calculating the life of the 

generated network in terms of its node-indices, where a node index refers to its order of arrival to 

the network, Examining fairness of the distribution of the added connections among network-

nodes along the life of the generated network can be an idea for future work. While our models 

deal with abstract attributes, investigating the effect of including the nature of attributes in our 

network generation models is also an area for future look. 

1.3. Dissertation Organization  

The remainder of the dissertation is organized as follows. 

Chapter 2 presents background and related research. The chapter first defines the distinct features 

of real-world complex networks. Then, an overview of different existing models for the 

generation of homogenous complex networks is presented. The last part of Chapter 2 provides 

details of key existing models for the generation of heterogeneous complex networks.  

Chapter 3 presents our problem statement. It then discusses the theoretical foundation of our 

proposed Integrated Attribute Similarity Model (IASM), including the IASM_A and IASM_B 

variations, and the triad formation step (TFS) modification. This is followed by a discussion of 

the theoretical foundations of our Settling Node Adaptive Model (SNAM). 

Chapter 4 presents our models, flowcharts describing the algorithms, and parameters for the 

simulation of the proposed models. Simulation results for each model are reported and are 

analyzed to assess the success for the models in achieving faithful representations of real-world 

heterogeneous complex networks. 

Chapter 5 presents a mathematical analysis of both IASM and SNAM. This mathematical 

analysis is performed using mean field theory and rate equations to validate that the networks 

generated by both models have power law degree distributions. 

Chapter 6 presents further validation of the potential of using IASM and SNAM in modeling 

real-world complex networks via a case study. The case study uses a particular Facebook dataset. 
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We show that SNAM is more suitable for model this particular network than IASM.  The case 

study provides more in depth understanding of SNAM’s connection algorithm. 

Chapter 7 concludes this dissertation by summarizing our results and providing conclusions. 

Chapter 7 also outlines some possible future research areas. 
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Chapter 2. Background and Prior Research 

A complex network is defined as a set of many connected nodes that interact in different ways 

[1]. Complex networks can be seen in different domains, such as social networks, power grids, 

and food webs [2]. It has been shown that complex networks exhibit distinctive characteristics 

regardless of the context in which the network exists [2]. This chapter provides an overview of 

the common characteristics of complex networks and presents a survey of the different research 

efforts that attempt to formalize and model the distinctive characteristics and behaviors of 

complex networks.  

2.1. Introduction 

Complex networks are comprised of sets of numerous interconnected nodes that interact in 

different ways. Complex networks represent a wide range of complex systems in nature and 

society.  Complex networks are observed in numerous fields such as the Internet, World Wide 

Web (WWW), social networks, food webs, and many other domains [2, 3, 4]. Complex networks 

are large, containing from a thousand to several million or more nodes which are connected by 

edges. In addition to being large, the structure of complex networks is neither completely regular 

nor completely random. The structure of a complex network results from the fact that complex 

systems are self-organizing. As a complex system evolves, interactions, usually represented as 

edges, among its many constituent units, usually represented as nodes, result in an emergent 

structure with unforeseen properties. While complex networks do share common characteristics 

with respect to size, structure, and emergent behavior, there is no single general, precise, and 

accepted definition of network complexity [1]. Given this lack of an accepted definition, 

differentiating complex networks from other types of networks is difficult. Network nodes and 

links can represent different entities and relations depending on the analyzed network. For 

example, in social networks the users engage with each other for various purposes, including 

business, entertainment, citation, movies, transport, banking, knowledge sharing, and many other 

activities. The widespread use of complex networks in different fields has made the study of 

complex networks and their structure an important research topic.  

The study and analysis of data extracted from complex networks has revealed a number of 

distinct features and behavioral patterns that distinguish these networks. Awareness of these 
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features can lead to an improved understanding of the network’s structure and dynamics. Such 

knowledge can be utilized in different fields to answer questions such as: How can a social 

network be a mediator for disease transmission? How can the current WWW structure be used to 

predict future connections between websites? How can critical nodes or links be identified in 

power grids? How can one deduce new relationships or reveal potential vulnerabilities in a 

network? Analysis of complex networks analysis can provide insight into the ties and relations 

linking nodes and an improved understanding of a network’s dynamics. Such analysis can 

enhance decision making dealing with network management and resource allocation in different 

applications. These are only some of the motivations that make complex networks an important 

research topic. Within the field of complex network analysis, researchers focus on three main 

areas [3]:  

1. Network statistical analysis and measurement 

2. Network modeling 

3. Network behavior prediction 

We might have perfect knowledge of the parts constituting the network, but its large-scale 

structure and dynamics may not be immediately obvious [6]. However, certain statistical 

properties are common to a large number of these networks [3, 4, 5].  

Recent enhancements in computational and storage capabilities have made it feasible to pursue 

the three areas of study listed above. Researchers are now able to gather and analyze large 

databases resulting from interactions between different nodes in real-world networks.  These 

developments allow researchers to identify the properties of complex networks. Real-world 

network datasets are often proprietary and hard to obtain. Thus, researchers often study networks 

using synthetic datasets generated via mathematical models. Knowledge of the properties of 

complex networks is essential in modeling these networks.  Additionally, altering the parameters 

in a network model leads to the generation of datasets with different properties. These datasets 

can be used for thorough exploration and evaluation of network analysis algorithms [3, 4]. 

The study of complex network draws on concepts from graph theory. In graph theory, a network 

is represented as a set of vertices joined by edges. An edge implies the existence of a relation 

between the connected vertices. Networks or graphs are of different types. Graphs can be 

referred to as bipartite graphs if they contain vertices of two distinct types, with edges running 
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only between nodes of different types. Another type is referred to as hyper-graphs, representing 

networks having edges linking more than two vertices. Graphs may be static, having a constant 

network size, or dynamic, having network size that changes with time [3]. 

Networks can also be classified as heterogeneous or homogeneous. A heterogeneous network is a 

network with different types of nodes or vertices, while a homogeneous network is a network 

that has only one type of node vertex. Edges in a network or a graph can be weighted (each edge 

is assigned a different weight) or un-weighted. Furthermore, edges can be directed (where edges 

have a direction associated with them) or undirected [3]. 

Using graph theory concepts, researchers have modeled the structure of complex networks and 

investigated how different structures can affect interactions in complex networks. Empirical 

studies of the statistical properties of complex real-world networks represented as graphs have 

led to the discovery of several common properties for real-world networks.  

Section 2.2 starts by defining the common characteristics of real-world complex networks. It 

concludes by arguing for the importance of defining mathematical models for complex network 

to facilitate the understanding of the underlying factors that govern their structures and the 

current and future behavior of the network-nodes. Section 2.3 provides an overview of the 

different models proposed to generate homogenous complex-networks. It starts by detailing the 

most influential complex-networks models suggested by Erdös and Rényi (ER) [4, 5], Watts and 

Strogatz (WS) [4, 5], and Barabási and Albert (BA) [3]. These proposed models cannot 

incorporate all four of the common properties of complex networks. Section 2.4 introduces 

different additional efforts for models for the generation of homogenous complex networks. This 

section first discusses models that are based on modifying the preferential attachment algorithm 

(PA) of BA [3]. Models that experiment with algorithms for the attachment of new nodes are 

then discussed. Models that mainly focus on producing networks that preserve real-world 

network properties of high clustering coefficients and community structure are presented next. 

Section 2.5 shifts attention to heterogeneous networks. It summarizes prior research that deals 

with models for heterogeneous networks, which are networks whose nodes are assigned different 

properties.  
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2.2. Common Statistical Properties of Complex Networks 

Complex networks represented as graphs have been shown to exhibit several common statistical 

properties, including degree distribution, average path length, clustering coefficient, and 

community structure. Recently, it was determined that some real-world networks, such as social 

networks, also exhibit the emergence of community structure [5].  Of course, there may be other 

statistical properties that are important when analyzing or describing complex networks. 

Newman [3] states that these additional measures can differ according to the type of the network 

and the topic being investigated. Thus, for the purpose of our work, we focus on the three 

statistical properties listed above and the emergence of community structure. An overview of 

each of these properties is presented below. 

2.2.1. Degree Distribution 

The degree of a vertex in a network represents the number of connections that the vertex has. 

The degree of a vertex j in an undirected graph is the total number of edges connected to that 

vertex and it is expressed as kj. However, in a directed graph, edges are classified as ending at a 

vertex or as originating from a vertex. The in-degree of a vertex j is the total number of edges 

ending at vertex j, while the out-degree of a vertex j is the total number of edges originating from 

vertex j. The in-degree and out-degree of a vertex j are expressed as kj in and kj out, respectively. 

Thus, the total degree of a vertex j in a directed graph will be expressed as kj = kj in + kj out. 

P(k) represents the fraction of vertices in the network with degree k and it denotes the probability 

that if a vertex v is picked uniformly at random it will have degree k. Degree distributions in 

complex networks can follow an exponential, Poisson or power law distribution according to the 

network’s nature [3].  

2.2.2. Average Path Length 

The path length between a pair of vertices is equal to the number of links or hops that form the 

path that connects the two vertices [3]. There may be different paths connecting a pair of 

vertices. The shortest path, referred to as geodesic distance, is the connecting path that has the 

smallest number of links.  The average path length in a network is defined as the average number 

of links along the shortest paths for all possible connected pairs of vertices in the network [3]. 
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For an undirected network having n vertices, the average path length l is the mean of the 

geodesic (the shortest) distance between all vertex pairs in the network and it is defined as: 

  
 

       
         (2.1) 

where, dij is the shortest path (or geodesic distance) between any two vertices i and j [3]. 

2.2.3. Clustering Coefficient 

A node’s clustering coefficient is defined as “the average fraction of pairs of neighbors of a node 

that are also neighbors of each other” [2]. Generally, the clustering coefficient is used to assess 

transitivity of real-world networks. Transitivity means that if vertex i is connected to vertex j, 

and vertex j is connected to vertex k, then there is a high probability that vertex i will also be 

connected to vertex k. The value of the average network clustering coefficient, C, ranges between 

0 and 1, and can be defined in any of the following ways [3]: 

1)       
                                  

                                       
, (2.2) 

where a triangle contains three interconnected vertices and a connected triple is a single 

vertex with its two edges running to an unordered pair of vertices[3]. 

2)       
                                  

                                    
, (2.3) 

where triangles are as defined above and a directed path of length 2 refers to a directed 

path of length 2 starting from a specified vertex [3]. 

3) Watts and Strogatz [4, 5] calculated the network’s average clustering coefficient as the 

average of the individual clustering coefficients of network vertices Ci’s. The clustering 

coefficient for node i is given by: 

Node i clustering coefficient =     
                                       

                               
, (2.4) 

where a triangle has one of its vertices at node i, while a triple is a two-sided incomplete 

triangle with its vertex at i. 

2.2.4. Community Structure 

A community is a group of vertices having high density of edges within the group (the 

community) and a lower density of edges to vertices of other groups (other communities) [5]. 
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Some networks show the presence of communities or a “community structure.” This can be 

accurately evaluated by using community identification techniques. Community identification is 

a well-established field of research and an extensive survey is presented in [6]. Networks having 

a community structure are sometimes referred to as networks with high clustering coefficients. 

However, according to present definitions, the two properties are not considered equivalent [7].  

2.2.5. Statistical Properties of Real-World Networks 

As previously mentioned, complex networks are found in many fields. However, there are some 

real-world complex networks which are frequently cited by the research community [3, 4, 5]. 

The Internet, social networks, and the World Wide Web represent just a few of the many 

examples investigated in prior research. We review the empirical properties reported in [3, 4, 5] 

for the complex networks most frequently cited in the research community. These statistical 

results are for networks that span several disciplines. Again, the analysis of the statistical 

properties focused on three statistical properties: average path length, clustering coefficient, and 

degree distribution [3, 4, 5]. 

1) World Wide Web (WWW): The World Wide Web is one of the most studied complex 

systems. The network nodes represent the web pages which are connected by hyperlinks 

(URLs) that point from one webpage to another in the WWW. The WWW is represented 

by a directed network with two degree distributions, in-degree and out-degree, which are 

found to follow a power law distribution. The WWW displays the small-world property 

in that its average path length scales logarithmically with the evolving network size. The 

clustering coefficient has been calculated for the undirected version of the network and is 

found to be higher than that of a random network of the same size [3, 4].  

2) Internet: The Internet is an undirected network of physical connections between 

computers and routers. The structure of the network changes with computers and routers 

arriving to the network and departing from it. The Internet has higher clustering 

coefficient values than a random network of the same size. Its average path length 

preserves the small world property. The degree distribution follows a power law 

distribution [3, 4]. 

3) Movie actor collaboration network: In the network representing collaborations of movie 

actors, actors are represented as nodes and two actors are connected if they have acted in 
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a movie together. The degree distribution follows a power law distribution. Both the 

small world property and a high average clustering coefficient are found in this network 

[3, 4]. 

4) Science collaboration network: Similar to the collaboration of movie actors, in the 

science collaboration network, two scientists are connected if they have written an article 

together. Science collaboration networks have been studied for many scientific fields, 

including physics, computer science, and more. Networks for all fields studied were 

found to have small average path length and a high clustering coefficient. The degree 

distribution is found to be a power law with different exponent values for science 

collaboration networks in different fields [3, 4]. 

5) Web of human sexual contacts: This web is typically used to trace sexually transmitted 

diseases. It has been found to follow a power law degree distribution with different 

exponent values according to the constructed network [3, 4]. 

6) Cellular networks: These are directed networks of substrates, such as Adenosine 

triphosphate (ATP), Adenosine diphosphate (ADP), and water (H2O), being connected by 

the chemical reactions in which these substrates can participate. The in-degree and out-

degree distributions follow power laws with varying exponents.  The undirected version 

has a small average path length and a large clustering coefficient [4]. The network of 

protein-protein interactions has a power law degree distribution with an exponential 

cutoff [4]. 

7) Ecological networks or food webs: These are directed networks which describe different 

species connected by edges representing predator-prey relationships. Food webs have 

high clustering coefficients.  Some food webs have a power law degree distribution and 

for some the degree distributions are exponential [3, 4]. 

8) Phone call network: The nodes are phone numbers connected by edges or phone calls 

directed from the calling to the receiving subscribers. Both in-degree and out-degree are 

found to follow a power law distribution [3, 4]. 

9) Citation networks: Here, the nodes are different articles and a directed edge represents a 

citation from a more recent publication to an older related published article. While, the 



 

13 

 

in-degree distribution follows a power law, the out-degree distribution is exponential for 

some networks and a power law for others [3, 4]. 

10) Networks in linguistics: Nodes represent words that are connected when they appear next 

to or one-word apart from each other in sentences. The network has a small average path 

length, a high clustering coefficient, and a two-regime power-law degree distribution. 

Another network linking words with the same meaning (synonyms) has a small average 

path length, a rather high clustering coefficient, and the degree distribution follows a 

power law [4]. 

11) Power and neural networks: The power grid network has generators, transformers, and 

substations representing nodes which are connected via high-voltage transmission lines. 

The neural network has neurons as nodes which are linked and two neurons are 

connected by either a synapse or a gap junction. Both power networks and neural 

networks have small average path lengths and high clustering coefficients. The power 

grid has an exponential degree distribution and the degree distribution in neural networks 

peaks at an intermediate value and then follows an exponential distribution [3, 4]. 

12) Protein folding: The nodes are the different conformations occurring during folding a 

protein and two conformations are connected if it is possible to obtain them from each 

other.  The networks studied have the small-world property, high clustering coefficient 

values, and a degree distribution that is a Gaussian distribution [4]. 

13) Online social networks: In online social networks, nodes represent people who are 

connected together by the existence of a relationship between them, such as friendships, 

business relationships, etc. Social networks have a power law degree distribution with 

high clustering coefficients and small average path length values [3, 5]. 

Other examples of complex networks that are less frequently cited according to [3] include 

networks of company directors, networks of email communications, preference networks (with 

two kinds of vertices representing individuals and the objects of their preference), networks of 

airline routes, networks of roads, railways and pedestrian traffic, and the genetic regulatory 

network. 
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Observation of the above real-world networks shows the existence of several common statistical 

properties that differentiate real-world networks from other networks. These properties are: (i) 

the small world effect, (ii) high clustering coefficient, (iii) scale-free power law degree 

distributions, and (iv) emergence of community structure. The small world effect means that for 

a certain fixed value of the mean degree, the value of average path length scales logarithmically, 

or slower, with network size. The average clustering coefficients in real complex network tend to 

have high values. In addition it has been observed that real-world networks show an emergent 

community structure [4, 5]. Furthermore, graphs representing real-world networks have a scale-

free power law degree distributions, P(k) ~ k 
-γ
, where the power law exponent γ is independent 

of the size of the network and its value is in the range of 1< γ <   [1,4].  

2.2.6. The Need for Mathematical Models of Complex Networks  

There is an important need for devising a mathematical model that facilitates performing 

mathematical analysis on complex networks [2]. Such mathematical models can be used to 

observe and/or predict how the complex network behaves under different scenarios. 

Mathematical models can also be used when real datasets are impossible or expensive to gather 

to generate synthetic datasets that may be used for network analysis. A good mathematical model 

should successfully mimic the modeled network’s statistical properties. Several mathematical 

models have been proposed to mimic complex networks. The proposed models have been 

assessed to find out which of the observed real-world network characteristics are incorporated 

into each model. The validation method for any of these models is based on performing 

simulations and statistical analysis of the networks generated based on the model and/or using 

theoretical approaches, such as continuum theory, the master-equation approach or the rate 

equation approach [5]. 

The next section summarizes the three most influential models that have been presented for 

complex networks.  

2.3. Most Influential Models for Complex Networks 

Efforts to faithfully model complex networks have sprouted several models. The most influential 

models in the complex-network modeling field are: Erdös and Rényi (ER) [4, 5], Watts and 

Strogatz (WS) [4, 5] along with its modified version in the Newman and Watts model [4], and 
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Barabási and Albert (BA) [3].  This section reviews the Erdös and Rényi model, Watts and 

Strogatz model, Newman and Watts model, and Barabási and Albert model as they are the most 

widely considered models.  

2.3.1. Erd  s and R  nyi (ER) Random Graph Model 

Erdös and Rényi (ER) aimed to study the probable structure of a random graph which led them 

to introduce their random graph model [3]. They focused on determining the properties of such 

random graphs using probabilistic arguments. Their model starts with N nodes so the maximum 

number of connections that can be established is M = N(N-1)/2. Undirected edges are placed 

between any pair of vertices at random with probability p. The probability of a vertex having 

degree k in this model, is given by the Binomial distribution, approximated as a Poisson 

distribution as 

P(k) =   
 
  p 

k 
(1-p)

N-k   
     

  
,  (2.5) 

where   is the mean of the degree distribution and   =   (   ). When N tends to    z tends to 

a constant. Thus, the degree distribution of this model follows a Poisson distribution. The 

clustering coefficient of this model, C= z/N, tends to 0 as N tends to  . The average path is given 

by ℓ = log N/log z, which satisfies the small-world property. 

Researchers have used huge databases gathered from real-world complex networks to assess the 

ability of the ER model to represent complex real networks. Such empirical studies show that the 

ER model is insufficient to model all four characteristics of real-world networks [4, 5]. Unlike 

real-world networks, the ER network generated model has a Poisson degree distribution and is 

characterized by having low clustering coefficients [4, 5]. 

2.3.2. Watts and Strogatz (WS) Small World Model 

Watts and Strogatz noticed that many real-world networks are neither completely regular lattices 

nor random graphs [4, 5]. Hence, the WS model introduces the idea of rewiring regular lattices to 

achieve both the high clustering coefficient of regular lattices and to preserve the small world 

phenomenon of random graphs. The WS model is also referred to as the small-world network 

model. The model starts with nodes arranged in a regular lattice, where a node is connected to its 

k neighbors (k/2 on either side). The next step of the model is randomly rewiring each edge of the 
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lattice with probability p, excluding self-connections and duplicate edges. The value of p varies 

the model between a regular lattice (at value p = 0) and a random graph (at value p = 1). The 

average path length and the clustering coefficients of the generated network depend on the value 

of p.  Over a broad interval of p values, the model is characterized by having a short average path 

length (as small as the random graph’s path length) and a much higher clustering coefficient than 

that of a random graph. Unfortunately, it does not model or represent the scale-free property for a 

networks’ degree distribution. Also, some vertices may become disconnected from the rest of the 

network upon rewiring [4, 5]. 

Newman and Watts suggested a slight modification to Watts and Strogatz model to ensure that no 

vertices ever become disconnected from the rest of the network upon rewiring [4]. In their model 

no edges are rewired, but shortcut edges are added randomly between vertex pairs chosen 

uniformly at random. Newman and Watts allow self-connections and duplicate edges, where two 

nodes can be connected by multiple edges, which can represent the situation where different 

types of edges connect two nodes. However, the Newman and Watts model also does not 

generate a scale-free degree distribution network. 

2.3.3. Barabási and Albert (BA) Scale-Free Model 

The scale-free power-law degree distribution of real complex networks was not evident in the ER 

or the WS models, rendering both models to be inaccurate in modeling the four characteristics of 

real complex-networks. This motivated Barbási and Albert to induce the scale-free property for 

node-degree distribution in their model [3].  Analysis of large databases from real-world complex 

networks suggests that the degree distribution in these networks decays as a power law (PL). 

Barbási and Albert’s model is motivated by the desire to obtain a model of real-world networks 

that preserves the power law scale-free degree distribution. Different from the ER and WS 

models, where the probability of finding nodes with high degree decreases exponentially with 

degree k, the BA model shows a power law tail. It was shown by Barbási and Albert that to 

obtain the scale-free degree distribution, the model must possess two properties:  (i) growth and 

(ii) preferential attachment (PA).  

Growth reflects the fact that real-world networks are dynamic and nodes are continuously being 

added to them. Preferential attachment reflects the belief that nodes usually tend to connect to 

higher-degree, structurally-popular, nodes. Thus, the probability that a new node connects to 
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preexisting nodes is not uniform and depends on the degree of the preexisting network nodes. 

Barbási and Albert showed that using either the growth property or PA alone in the model will 

not generate a model with a scale-free power law degree distribution [3]. 

The BA model starts with a small number of nodes (mo), referred to as the seed network. A new 

node is added at each time step having m links to connect to m old preexisting nodes (m   mo). 

Those m nodes to be connected to the new node are preferentially chosen based on their 

normalized degree. Thus, the new node connects to an old node i having degree ki with an 

attachment probability Π(ki), where Π(ki) is expressed as 

Π(ki) =  
  

    
 (2.6) 

Networks generated using the BA model demonstrate scale-free degree distribution P(k) ~ k
-γ
, 

known as the “power law.” The average path length of the model increases approximately 

logarithmically with N, thus it exhibits the small world phenomenon. Even though, the BA model 

has the power law degree distribution, it fails to demonstrate some of the properties of real-world 

networks shown by empirical results [4, 5]. The PL degree distribution of BA has a constant 

exponent value γ = 3, which is different from some real-world networks, where γ ranges from 1 

to  . The clustering coefficient of networks developed according to the BA model is about five 

times higher than that of the random graph of the same size. However, it decreases with network 

size, unlike the small world model, where C is independent of the network size. Furthermore, the 

model does not show the high clustering observed in real-world networks [3, 4, 5]. 

The ER, WS, and BA network models [4, 5] all fail to incorporate the emergence of the 

community structure property. Thus, none of the three models were successful in representing all 

characteristics observed in real-world networks, namely, the small-world phenomenon, scale-free 

degree distribution, a high clustering coefficient, and the emergence of community structure [7]. 

Several models were introduced to remedy the shortcomings of the previous three models, as 

well as to propose new network evolution algorithms. When evaluating these proposed models, 

the main focus was whether or not they succeed in incorporating the four properties of real-world 

networks [5]. Since the BA model, using preferential attachment (PA), was the only model that 

demonstrated a power law degree distribution, most researchers have adopted the BA model as 

their starting point and tried to modify the PA scheme used in BA model.  
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2.4. Homogeneous Complex Network Models Variants 

Several variations of the models described above have been proposed in prior work.  Section 

2.4.1 briefly summarizes some modifications to the PA scheme used in the BA model, whose 

objective are to obtain a realistic model of real-world complex networks. Section 2.4.2 then 

discusses some efforts that tried to model complex networks without implementing the PA 

algorithm. Section 2.4.3 summarizes models which focus on obtaining a high clustering 

coefficient. The few efforts that have tried to produce models that preserve the community 

structure property are briefly discussed in Section 2.4.4. 

2.4.1. PA Based Models 

Although the BA model [4] was able to capture two important features of complex networks, the 

model was not a faithful representation of real-world complex networks. This motivated several 

researchers to further explore the nature of BA’s preferential attachment function and introduce 

changes to the BA model. These changes include incorporating some real-world phenomena into 

the BA model, such as copying links or adjusting accelerated growth of the PA function in the 

BA model or changing the PA function all together. The following is an overview of these 

different approaches. 

In later work, Albert and Barabási [8] were driven by the fact that the original BA model has the 

power law distribution exponent γ fixed at 3, while in real-world systems γ is between 1 and   

[3, 4]. They raised the question of the BA’s model capability to model different types of 

networks. Their proposed network evolution model includes local events, such as the addition of 

new nodes and new links or the rewiring of links. They proved that by modifying the occurrence 

frequency of these local events, their model can generate either a generalized power law or an 

exponential degree distribution. Their model depends on two probabilities, p and q. Probability p 

represents the probability by which m new links are added to random nodes using preferential 

attachment. Probability q represents the probability by which a random link from a random node 

i is rewired to a preferentially selected node. Finally, with probability (1 - p - q), a new node is 

added with m preferentially attached links. Using the continuum theory, they proved that 

networks generated according to their model have a degree distribution that changes from a 

power law to an exponential distribution depending on the value of m. Their model’s exponent γ 
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in the power law region was found to depend on p, q, and m as: γ = 
             

 
 +1. Hence, 

the model’s exponent γ ranges between 2 and  .  Their proposed model shows that local 

processes can lead to more realistic generated networks. Other statistical properties were not 

presented in [8]. 

It was shown via simulation only by Albert and Barabási [4] that networks depending on 

preferential attachment for evolution result in an exponential degree distribution. Samalam and 

Vijay [9] concentrated on proving mathematically that preferential attachment PA alone is 

insufficient to produce scale-free networks. Samalam and Vijay showed that networks with fixed 

static node size that evolve using preferential attachment show initially scale-free degree 

distribution that saturates when the network becomes fully connected. Instead of the network 

growing by adding nodes, it grows in the model proposed by Samalam and Vijay in [9] by 

adding edges between a fixed number of nodes. At each time step, both ends of a link are 

connected to two nodes according to nonlinear preferential attachment probability function P(k) 

proportional to the node degree k. P(k) is given by P(k)   (a + kw), where a is a positive 

constant, typically set to around 1 to prevent node isolation, and w is a positive constant between 

0 and 1. Their model allows self and duplicate edges and the authors claim that this does not 

affect the model’s results [9]. The scale-free degree distribution did not appear in this model. 

Instead, it was shown, using a master equation for the degree distribution evolution that, for w = 

1, the degree distribution is exponential [9]. Related to [9], is the work by Krapivsky, et al. [10] 

which shows that using a nonlinear preferential attachment function destroys the scale-free 

nature of the network. They show that evolved networks are scale-free only when the preferential 

attachment follows an asymptotically linear equation as suggested by BA [4].  It is shown in [8, 

9, 10] that this PA, together with the growth of the network size, are essential to generate a 

network that has a scale-free power law degree distribution.  

M.-Y. Wang, et al. [11] introduced the idea that connections in citation networks depend on time. 

Two nodes or papers can have approximately the same degree, but different numbers of citations 

during each time period. M.-Y. Wang, et al. [11] propose a scale-free model for such citation 

networks, introducing a short-term preferential attachment mechanism (SMPAM), where the 

preferential attachment function for the studied citation network takes only the recent one-year 

period into consideration to affect node connections. The model uses the classic BA algorithm, 
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but the preferential attachment equations consider only the degrees of the nodes in the most 

recent year. The work uses the mean field theory to calculate the in-degree distribution for the 

directed citation network. The model generates networks with scale-free in-degree distributions 

with PL exponent γ = 2. However, M.-Y. Wang, et al. [11] did not introduce a temporal scale-free 

model.  Instead, they depend on snap shots from the network evolution to prove that the power 

law degree distribution is still preserved [11]. 

J. Wang, et al. [12] provide a model driven by the desire to preserve the three striking statistical 

characteristics of real-world networks: (i) scale-free, (ii) high clustering coefficient, and (iii) 

small average path length (APL). Instead of models that calculate the preferential attachment 

function based on the network’s global information, J. Wang, et al. [12] have their PA based on 

fixed-size local network information. J. Wang, et al. [12] claim that for the model to be similar to 

real-world networks, the local world of each node should have a fixed size. They argue that 

choosing the local world randomly of a fixed size produces a clustering coefficient that 

approaches zero when the network size is large. The set of nodes with a distance to node i that is 

smaller than or equal to s is referred to as the step s local world of node i. Triad formation is used 

to preserve the high clustering coefficient of real-world networks.  The model starts with an 

initial ring-shaped seed network. A node arriving at each time step will connect preferentially to 

the highest-degree node that is part of the local world of a randomly chosen node. The new node 

then connects with a probability p to the highest-degree neighbor of the node to which it has 

previously attached.  Simulation results illustrated that the generated network characteristics 

depend on the values of parameters s and p [12]. It was shown that the local world size s affects 

the resultant degree distribution of the model. For example, s = 1.0 produces a power law degree 

distribution. As s increases, there is a deviation from power-law behavior. Only the value s = 1 

tends to increase the generated network’s clustering coefficient. The parameter p controls the 

network clustering by allowing the formation of triads. Clustering is found to increase as p 

increases. Simulation results show that the average path length is less than ln N where N is the 

network size, so the small world property is preserved [12].  

Barbási, et al. [13] studied the co-authorship network which, though not different from other 

real-world networks, has the advantage that connections have explicit time stamps. The studied 

co-authorship datasets revealed some of the co-authorship network properties as having a power 

law degree distribution with two different values for the scaling exponents. Co-authorship 
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network data also exhibits the small world phenomenon. The most important observation derived 

from the measurements done in the co-authorship network is that its average degree, unlike as 

suggested by previous models, is not constant.  Rather, it increases linearly with time. Barbási, et 

al. [13] reflect the linear increase of average degree with time in the proposed model by using the 

acceleration of growth mechanism. Accelerated growth refers to adding additional connections to 

the network besides the ones added initially by the new node. This causes the number of 

connections to increase at higher rates. The model starts off using the classic BA model, with a 

new node preferentially establishing m connections with preexisting network nodes having the 

highest degree. Next, internal links are formed among pairs of network nodes according to a 

preferential function depending on the product of the corresponding degrees of each node pair, 

the number of newly created internal links per node in unit time a, and on the current number of 

nodes in the network. Using continuum theory, it was shown that the model preserves power law 

degree distribution and exhibits two scaling regions with exponent γ = 2 for small node-degree, 

k, values and exponent γ = 3 for large value of k. Both average path length and average clustering 

coefficient could not be proven analytically and were examined by simulation [13]. Simulation 

results showed that the generated network diameter is proportional to the logarithm of the 

network size, and that the clustering coefficient increases as the value of the parameter a 

increases, achieving high clustering coefficients. 

Dorogovtsev and Mendes [14] argued that real networks have connections that disappear and 

connections that are added with time between old network nodes. This phenomenon is referred to 

as local change. Though the BA model successfully represents growing scale-free networks, it 

does not represent the decaying (links disappearing) characteristic or the continuous developing 

(links added between old nodes) nature of real-world networks. The model starts as in classic BA 

with a node added to the network each time step and connected to an old node with a probability 

proportional to the old node’s degree. The model mimics the nature of developing real networks 

by allowing c new edges to be introduced at every time step. Network growth or decay is 

indicated by the sign of c. For c > 0, edges connect pairs of nodes with a probability proportional 

to the product of the pair of nodes’ degrees. Decay of the network structure corresponds to c < 0. 

In the decaying network at every time step |c| edges are removed randomly. Only one action of 

the addition or removal of links can happen at a time. For c = 0, the model is reduced to the basic 

BA model [3]. The time of birth or arrival of each node s is used for labeling the nodes. 
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Dorogovtsev and Mendes [14] analytically and by simulation show that for developing networks, 

the degree distribution is a power law with exponent depending on the value of c. The decaying 

structure shows power law scaling only at values of c close to zero, only for slowly decaying 

networks. 

2.4.2. Variants to the PA Model 

This section introduces models that are able to generate networks having power law degree 

distributions without including a preferential attachment (PA) algorithm in the model. 

Kleinberg, et al. [15], studying a directed web graph network, argued that the measurements of 

the local structure of the web graph suggests that the in-degree and out-degree distributions of 

the web graph should follow power law distributions. Additionally, a copying mechanism where 

the new node copies its edges from a random node is essential for the web’s content-creation. 

They proposed a model for growing networks based on the addition of both nodes and edges. 

The edges are added randomly or using a copying mechanism. The copying mechanism entails 

randomly choosing a node which connects m links to neighbors of other randomly chosen nodes. 

The new node creates its m connections by randomly choosing nodes with probability β. The 

new node copies its m connections from the connection of a random node with probability (1 - 

β). Kleinberg, et al. [15] argue that the copying mechanism is present in a web graph where the 

pages covering a certain topic are usually linked by interested users and a new page about the 

same topic is usually connected to them. The model was found to preserve power law 

distributions using only heuristics. Kleinberg, et al. [15] also argued that analytical tools were 

unable to prove this conclusion because the copying mechanism generated dependencies 

between random variables. The generated network average path length and clustering 

coefficients were not assessed.  

Krapivsky, et al. [16] provide a model that reflects the thought that an author citing a paper is 

most likely going to cite one of its references as well. Krapivsky, et al. [16] proposed a model for 

re-directed growing networks. In their model, when a new node i is added to the network, its 

edge attaches to a randomly chosen node j with probability (1 - r). Then, with probability r, this 

edge from the new node i is redirected to the ancestor node o of the previous randomly chosen 

node j. Node o is the ancestor of node j if it is the destination of a directed edge from node j. The 

rate equations of the model show that it has a power law degree distribution, with the degree 
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exponent decreasing with an increase in probability r. Other statistical properties were not 

studied. 

BA preferential attachment models use global network information. Global information about the 

degrees of all nodes in the network is used to calculate all probabilities of linking to them, which 

seems unrealistic because this can consume a lot of the nodes’ resources. Therefore, it is 

advantageous to propose some network growth models based on local schemes requiring only 

local knowledge about the vertex under consideration and the nodes closest to it. A model that 

depends on random walks in establishing connections between nodes only uses such local 

information. Herrera, et al. [17] noted that a network generation model based on a random walk 

preserves the scale-free degree distribution. The probability of reaching a node i of degree ki in a 

random walk of arbitrary length l is equal to the normalized degree ki value. Herrera, et al. [17] 

proposed a network generation model that generates a scale-free network with an adjustable 

clustering coefficient. The value of the clustering coefficient can be increased by increasing the 

number of triangular connections formed during the random walk. In the random walk based 

model, each node x is assigned probability P(vx) drawn from a binomial distribution. The new 

node i randomly chooses a preexisting node j. Starting from node j, a random walk is started of 

length l that ends at node e. End node e is marked. A new random walk is started from the 

marked node e. This new random walk will be a 1-step walk with probability P(vx) or a 2-step 

walk otherwise. The destination node of the random walk is also marked. This process is 

repeated until there are m marked nodes. The new node i then connects to the m marked nodes. 

Notice that a 1-step random walk will form a triangle when both of its endpoints are connected to 

the new node. Thus controlling the number of formed triangles depends on the number of 1-step 

and the number of 

2-step random walks deployed in the model. These numbers in turn depend on each node’s 

assigned probability P(vx). Clustering control parameter cc is defined as the fraction of nodes 

having P(v) = 1,with the remaining nodes having P(v) = 0 and the value cc is used to control the 

clustering coefficient. Simulation analysis is presented to validate the model. Simulation shows 

that the model provides scale-free degree distribution.  The model also results in a high 

clustering coefficient that is proportional to the value of the clustering control parameter cc value 

and is independent of the network size [17].  
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2.4.3. Enhanced Average Clustering Coefficient Models  

Barabási and Albert gave no analytical results for the resulting average clustering coefficient, C, 

in the BA model, but it is indicated that C decays with the network size N as C ~ N
-0.75 

[17]. 

However, typical real-world networks have C independent from N and generally higher than the 

values given by the BA model [4]. Many models attempt to find network models that result in 

generating networks with high C values as in real-world networks. The following subsections 

briefly discuss such models. 

D. Wang, et al. [18] note that in real-world networks not all edges are equivalent and each has its 

weight. They argue that the weights of the links play a key role in characterizing different real-

world networks. D. Wang, et al. [18] propose a model to generate scale-free networks that 

includes the dynamics of weight evolution in its mechanism. The model starts with a fully 

connected seed network whose links are all assigned a weight of value 1 [18]. The model adds 

one new node with probability φ, whose value is defined by the model. The new node will be 

preferentially attached to m old nodes in the original network. The node’s strength is defined as 

the sum of the weights of all links attached to it. The PA probability for each old node is a 

function of its normalized strength. Also, the model continues to add one new fully connected 

community of same size m as the seed network to the old network with probability (1 - φ). Each 

added community node is attached via a randomly chosen community node to m preexisting 

nodes according to a strength driven preferential attachment function [18]. The model of a 

weighted evolving network of D. Wang, et al. [18] was analyzed using the mean field method 

and continuous time approximation. The model captures power-law distributions of edge 

strengths and weights as well as node degrees. Although D. Wang, et al. [18] state in the 

introduction of their paper that the model gives high clustering coefficients, no analysis or 

simulations are given to validate this claim. 

The model of Herrera, et al. [17], discussed in the previous section, produces scale-free networks 

whose clustering coefficient can be controlled by an l-step random walk triangle formation using 

only local information. It is found that connecting the added node to a randomly chosen node 

then performing an l-step random walk from it to connect the added node to the end node of the 

random walk generates a triangle for l = 1 and no triangles for l = 2. Simulation shows that the 

clustering coefficient linearly increases as the value of the fraction of nodes with a random walk 
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step of length l = 1 value increases. The clustering coefficient is also independent of the final 

network size, as is seen in real-world networks [5]. 

Lian-Ren, et al. [19] present the Closest Neighbor to Neighbor Strength Driven (CNNSD) model 

that focuses on representing the dynamic evolution of friendship networks in a social networking 

site. The model of Lian-Ren, et al. [19] incorporates characteristics of friendship networks in 

which two nodes are connected when they have at least one common neighbor and strength 

driven attachment exists. In strength driven attachment, new nodes prefer to link to nodes with 

higher weights and interactions. The model defines three possible states for nodes:  disconnected 

(d), potential edge (p), or an edge (e). A potential edge is an edge that exists between two 

unconnected nodes with a common neighbor. A node transits from state x to state y with 

transition rate     .  In the CNNSD model, a new node attaches to a preexisting network node i 

with a preferential attachment function based on the node i’s weights with probability (1 - u). 

Additionally, to reflect the fact that nodes with a common neighbor are most likely to link, the 

new node connects to one of the neighbors of the node i with probability u. Rate equations for 

the evolution of the number of nodes with degree k and potential degree k* show that the 

CNNSD model still preserves PL degree distribution with an exponent that depends on the 

nodes’ transition rates. Simulation results also show that the clustering coefficient of this model 

decreases with the increase of the seed network size from 500 to 1,000 which is not desirable 

[19].  

Holme and Kim [20] focus in their model on reflecting the high clustering coefficient found in 

some real-world networks such as social networks. Their model follows the classic BA model 

with a new added node connecting preferentially to m preexisting network nodes. The model 

introduces a triad formation step (TFS) together with the preferential attachment (PA) step. Triad 

formation in social networks reflects the tendency of actor x after connecting to another actor y to 

connect to the connections of actor y.  Accordingly, as the new node is added, it is preferentially 

attached to an old network node w. Then, with probability Pt, the new node connects to a 

randomly chosen neighbor of w thus forming a triad (TFS). The new node is linked preferentially 

to a non-neighbor old network node (PA step) with probability (1 - Pt).  This continues until the 

new node establishes its m connections. The model is controlled by the parameter mt = (m - 1) Pt, 

which is the average number of times that a new added vertex performs a triad formation step. 
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The clustering coefficient is increased by increasing the number of triads formed. Hence, the 

parameter mt controls the value of the evolving network clustering coefficient since it controls 

the percentage of triads formed. It is shown analytically that the generated network degree 

distribution follows a power law distribution. It is then shown via simulation that the clustering 

coefficient increases with an increase of mt and is independent of the network’s size, as in real-

world networks [4], and that the small world property is preserved. The emergence of 

community structure was not discussed by Holme and Kim [20]. 

Bhukya [21] proposes a model with the objective of including all social networks properties. 

These properties include high clustering coefficient, small average path length, power law degree 

distribution and the emergence of community structure. The model reflects when a person 

supplies someone asking for help with contacts of his or her friends or their friends if he or she 

was unable to personally provide help. The model has three processes that include a random 

attachment to an initial contact, an attachment to the neighbor of the initial contact according to 

PA function (secondary), and, finally, an attachment to the neighbor of the neighbor of the initial 

contact (tertiary). In Bhukya’s Neighbor of Neighbor of Initial Contact (NNIC) model [21], a 

node chooses, on average, mr ≥ 1 random nodes as initial contacts, ms ≥ 0 neighbors of each 

initial contact as secondary contacts, and, finally, an average mt ≥ 1 neighbors of each secondary 

contact as tertiary contacts. The new added node connects to the initial, secondary and tertiary 

contacts. This process is repeated until reaching the final required network size. Both rate 

equation analysis and simulation [21] show that the model follows a power law degree 

distribution with exponent 3+2/ms. It is shown that the clustering coefficient of node i depends 

on its degree ki as ci(k) ~ lnki/ki [21]. Bhukya [21] considers that high clustering indicates the 

presence of community and that having more than one initial contact node per new node 

represents a connection between communities. However, the model does not show the emergence 

of community structure in the sense defined previously [4, 5]. 

Fu, et al. propose a model [22] that uses the Relatively Preferential Attachment (RPA) method to 

generate networks having high clustering coefficient values similar to real networks. Fu, et al. 

[22] note that after the node has made its first connection using PA, its current network location 

should affect its future connections.  Other PA based models neglect the effect of the length of 

the path that links the old node to the new node. The RPA model gives a higher attachment 
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probability to an old node that already has one of its neighbors previously attached to the new 

node. At each time step, the new node connects to m old nodes according to the modified 

preferential attachment probability:   

          
  
    

  
  

    
 

Here,       is a parameter that indicates the preference of having larger number of node 

neighbors hi over having a high node degree  , where hi is the total number of neighbors, at the 

time of this link connection, common to both the old node i and the new node and     is the 

sum of hi of all old preexisting network nodes.  

This gives nodes in the immediate neighborhood of the new node a probability of connecting to 

it higher than other nodes [22]. It is shown using simulation [22] that the power law degree 

distribution is preserved in the RPA method with exponent greater than 2. The clustering 

coefficient is found to increase with the increase of the parameter a towards real networks 

values. 

Wang and Rong [23] present a model that is based on the tendency of small groups of individuals 

to first link together before connecting to an existing large complex network. Wang and Rong’s 

evolving small-world networks model is based on a modified BA model [23]. The model starts 

with a ring seed network having mo nodes. The basis of this model is that instead of one new 

added node, a group of m fully connected nodes is added at each time step to the network. Each 

of the m nodes in the added group then forms s links to the rest of the network nodes following 

the classic PA rules. Using simulation, Wang and Rong’s model [23] shows the scale-free 

property, high clustering coefficient and small average path length (APL), where the value of s is 

fixed at one. Scale-free PL distribution is maintained for values of m = 2 and m = 3.  But, when 

m = 4, the degree distribution shows a deviation from the scale-free PL distribution. Values of m 

> 2 result in the formation of triads. It is also shown via simulation [23] that, for m > 2, the 

clustering coefficient C is relatively stable for different network sizes, N. The average path length 

is shown to be l < ln N. Wang and Rong’s model [23] shows the existence of different clique 

sizes. However, the cliques are spread uniformly over the network and there is no densely 

connected set of nodes, i.e., there is no community structure.  
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Jian-Guo, et al. [24] modify the Holme and Kim model [20] and introduce the Multistage 

Random Growing Network (MGRN). While, the attachment to the neighbor in Holme and Kim’s 

model is random, the MGRN model makes attachment to the neighbor following a PA algorithm 

(MGRN) model that starts with a seed of three nodes. At each time step, a new node is added to 

the network. This new node connects according to PA function to a preexisting network node and 

to one of its neighbors chosen preferentially. Analysis uses mean field theory to show that the 

model’s degree distribution is a power law with an exponent γ = 3 [24]. It is shown that the 

average path length remain less than ln N, where N is the network size [24]. The analytically 

calculated clustering coefficient is equal to 0.83, while simulation results in clustering coefficient 

equal to 0.74 [24].  

Klemm and Eguiluz [25] present a model that attempts to preserve the high average clustering 

coefficient, small world property, and PL degree distribution found in real-world complex 

networks. The model divides the network nodes as “active” and “deactivated” nodes during 

network growth. Upon arrival, the new added node links to m “active” nodes in the network. 

Then the new node becomes “active.” The connections in the model are controlled by a 

connection probability µ. Each of the m links of the new node connects with probability (1 - µ) 

to an “active” node while it connects with probability µ to a random node (“active” or 

“deactivated”) selected according to a preferential function. The node with lowest degree value is 

deactivated after connecting all of the m links of the new node. The model is examined via 

simulation [25] which showed it had small average path length, high clustering coefficient, and 

scale-free degree distribution in the range of 0 < µ < 1. Klemm and Eguiluz [25] did not 

investigate the presence of community structure in their model. 

Newman, et al. [26] claim that social networks datasets have shortcomings. These shortcomings 

come from the fact that acquiring social networks datasets usually depends on questionnaires. 

This can affect the accuracy of the datasets and a tremendous amount of work is required to 

acquire a medium size dataset. They argue that affiliation network datasets can be used to solve 

the shortcomings of social networks datasets. However, in affiliation networks, actors are joined 

together by common membership to groups. Thus, affiliation networks datasets are larger and 

more accurate datasets of normal social networks.  Models of affiliation networks are usually 

represented via bipartite graphs, having two opposite (or different) types of nodes. Nodes link 

only to nodes of the opposite type in bipartite graphs. Newman, et al. [26] propose a model for 
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affiliation networks that starts with N unconnected nodes, where N represents the final network 

size. Each node i is assigned a random number ki that is drawn from the probability distribution 

pk. The probability distribution pk represents the desired final network degree distribution. Each 

node i of the N nodes is connected to ki stubs (ends of edges). Pairs of stubs from the nodes are 

then chosen and connected. In the affiliation network only nodes of opposite types are connected. 

The analytical analysis uses a generating function that encapsulates all information of desired pk. 

Analysis shows that the model of Newman, et al. [26] gives high clustering while preserving the 

scale-free degree distribution.  

Dorogovtsev, Mendes, and Samukhin [27] argue that previous PA algorithms assumed that new 

nodes have the same properties independent of the current state of the network. They incorporate 

the idea that nodes added to the network have different random properties depending on the 

network’s state. They support this by pointing out that predecessor inheritance is a feature found 

in many networks, such as citation and collaboration networks. Thus, each of the old existing 

nodes inherit some of their predecessors’ attractiveness. The predecessor of the node i is 

represented by the old node that was connected to node i upon its birth.  The proposed model has 

a new node born with a random number of links connected to it. The model has, at the same 

time, a new link added that connects two old preexisting network nodes. In the model the degree 

of the newly added node is not constant. Each new node inherits a fraction of the old node’s 

incoming edges by copying them. The value of that fraction follows some probability density 

distribution that affects the resultant degree distribution. The model captures the high clustering 

coefficient of real networks. 

2.4.4. Enhanced Community Structure Models 

Community structure is defined as entailing dense connections between members of the same 

community and less dense connections between members of different communities [5]. Few 

papers deal with models that focus on the emergence of real-world community structure. 

A software system is defined by Li, et al. in [28] as “a system composed of many interacting 

units (e.g., classes, components and subsystems) and the collaborations among them directly 

reflect the design, coding, and execution of software.” Li, et al. [28] are interested in software 

networks where the nodes denote classes and interfaces in software systems and edges represent 

dependency relationships between nodes. Li, et al. [28] find the statistical characteristics of 
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software networks to include the small world phenomenon, scale-free degree distribution and 

modularity. They measure modularity as the fraction inter-community edges minus the expected 

value of inter-community edges in a randomly connected network with the same community-

divisions [28]. In [28], modularity values approaching one indicate a strong community structure 

and its values for real-world networks range from about 0.3 to 0.7. They argue that the proposed 

models for complex networks lack modularity which has high values in the directed software 

networks. Li, et al. [28] propose a model for the evolution of software networks whose algorithm 

was inspired by comparing versions of the software Eclipse. These comparisons show that newly 

added nodes attach first to modules then attach to the network and that nodes do not attach to the 

network individually.  Thus, the modular attachment model deals with adding groups of nodes 

(modules) instead of adding individual nodes. The model starts with a seed network and then 

modules arrive to the network. The constructed module is then attached to the seed network 

following the BA algorithm. The size of the module starts by one node and keeps increasing with 

a constant growth rate as the network size increases. When the size of the module becomes more 

than the seed network size, the module decomposes into a network with a size equal to the seed 

network’s size with the remaining nodes attached to it. The decomposed network is then attached 

to the seed network following PA rules. Simulation of the algorithm [28] is preformed and 

compared to data of an actual network in Eclipse. This shows that the modular attachment model 

had a 0.07 clustering coefficient which, in the studied software network, was acceptable as its 

clustering coefficient is 0.06. The model has a small average path length. Although the degree 

distribution of the model is a power law, it is not scale free as the exponent shows dependence on 

the network size. Modularity is used to assess the division strength of a network into modules. 

The modularity values of this model are much closer to those in real networks, ranging between 

0.54 and 0.57 [28]. 

Zaidi, et al. [29] record some observations about social network structure. Social networks 

consist of many small densely connected overlapping groups. Within a group, connections are 

randomly created based on the nodes’ interests. The numbers of connections between different 

groups are much less than connections between nodes in the same group. Zaidi, et al. [29] 

propose a model that incorporates all of these observations. In an effort to generate a community 

structure, the clique model has cliques of various sizes representing these groups of the real-

world. A node can belong to more than one group. This is modeled by merging two nodes from 
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different groups, so two cliques become joined by a single node. Nodes are assigned connectivity 

attributes drawn from a power law degree distribution which determines the number of merges 

for each node. The model chooses two nodes at random and, if they still did not exceed their 

merge numbers, they are connected. Multiple overlaps can appear between cliques.  The model is 

based on a static network where the final size equals the initial number of nodes. Simulation 

showed that the model of [29] has high clustering, small average path length and scale free 

degree distribution. However, Zaidi, et al. [29] claim that there is no metric to identify the 

presence of communities in a network by analyzing the graph on the whole in a global 

perspective. They use a visual analysis technique that decomposes the topology of the network to 

show the presence of community structure in the networks generated by the proposed model 

[29]. 

2.5. Heterogeneous Complex Networks Generation Models 

Most of the proposed models considered homogenous networks, i.e. nodes composing the 

network are all considered similar. However, there were several attempts that took node 

heterogeneity into consideration. This section is dedicated to overview heterogeneous complex 

network generation models. The section discusses models which have nodes with different 

attributes, attractiveness, age, and capacity. 

2.5.1. Node Attractiveness  

Dorogovtsev, et al. [30] generalize the BA model [3] to account for the different exponent values 

observed in real networks by associating an attractiveness parameter to the network-nodes. The 

classic networks evolution model of BA adds one new node at each time step with m new links to 

be linked to old existing nodes. Old nodes are connected based on an attachment probability 

proportional to their degree. The proposed model [30] assumes that each node is born with an 

initial constant attractiveness parameter, A, to avoid the presence of isolated nodes. Dorogovtsev, 

et al. conclude that the probability that a node receives an incoming edge is proportional to the 

sum of node’s initial attractiveness and the number of its incoming edges. During network 

evolution, each of the new links is attached to an old node inside the evolving network with an 

attachment probability proportional to the number of links ending at this old node (the node’s in-

degree) plus a non-negative initial node attractiveness parameter A. This model is equivalent to 

the BA [3] model if the initial nodes’ attractiveness is A = 0. This model shows a scale-free 
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degree distribution with a modified exponent. In Dorogovtsev, et al. [30], analysis of the model 

is accomplished using master equations that are formed and solved to prove that the model has a 

power law degree distribution exponent of γ = 2 + A/m. Thus, the power law degree distribution 

exponent is dependent on nodes’ initial attractiveness, A, and the new node’s added links, m. The 

model provides values γ  3, as observed in some real networks.  

In the BA model, as network size increases, the ratio of links to nodes approaches constant m, 

which is the number of links added with each added new node. Observation of evolving Internet 

data and WWW data indicate that the ratio of the number of network links to the number of 

network nodes increases with time. Accelerated growth is used to refer to the number of added 

links increasing more rapidly than the number of added nodes. In an effort to explain this 

accelerated growth and its effect on the network’s structure, a new model is introduced by 

Dorogovtsev and Mendes [31]. A new node is attached to m pre-existing nodes via PA as in [30]. 

Additionally, time-dependent new directed links are distributed among old nodes whose number 

is time varying as cot
α
, where co and α are constants whose values control the accelerated growth 

rate. Each of these added cot
α
 links comes out from an arbitrary old node and is directed to 

another old node s chosen by an attachment probability proportional to (qs + A), where qs is the 

number of in connections to node s (in degree) and A is its initial attractiveness. This accelerated 

growth model generated a network with a power law degree distribution with an exponent 

proven analytically to be γ = 1+
 

   
, which can be different from γ = 3. 

Observations indicate that a node’s ability to attract connections does not depend only on degree 

or age. Nodes in the WWW that provide good content are likely to acquire more connections 

than others. A new “breakthrough” paper that is part of a citation network is likely to have more 

connections than an older paper. Thus, each node should be assigned an attribute that describes 

the competitive nature of the node to make connections. Bianconi and Barabási [32] introduced 

the term “node fitness.” A node i upon birth is assigned fitness factor  following some 

distribution ρ(η) that represents its ability to attain connections. The probability of a node with 

degree ki to attain connections depends on the product of its degree value and its fitness value ηi.  

Continuum theory is used to predict the proposed model’s degree distribution. Depending on the 

choice of ρ(η), the model can show a power-law degree distribution whose exponent is affected 

by the fitness distribution ρ(η). When ρ(η) follows a uniform distribution, the degree distribution 
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is a generalized power law with an inverse logarithmic correction. Numerical simulations are 

done to support the predictions of continuum theory [32]. The average clustering coefficient and 

average path length values of networks generated by this model were not calculated in [32]. 

Rui, et al. [33] introduce node attraction parameter β to reflect a node’s capability to attract 

nodes.  Parameter β is defined as the number of connections a node gets in a unit time. The 

model starts adding new nodes and each node establishes m connections. Connections are made 

according to a PA probability function dependent on the old test node’s degree and the node’s 

attraction. Thus, the probability that a new node connects to old test node i is given by: 

   
       

           
, where (α + γ) = 1.  

Mean-field theory shows that having different values of α and γ affects the resultant degree 

distribution. Numerical simulations show that the model preserved power law degree distribution 

and has small average path length. The average clustering coefficients of the generated networks 

are found to decrease with the increase of the network size unlike real-world networks [33].  

Cai, et al. [34] argue that network’s evolution can be affected by factors that delay its growth or 

damping factors. However, they found that most proposed network generation models focus on 

factors that accelerate or facilitate a network’s growth. Cai, et al. [34] focus on these damping 

factors that can delay network growth or reduce a node’s capability to attain connections. They 

propose an evolving model of online social networks called Damping Factors-based Evolving 

Model (DFEM). Damping factors are represented by R1, R2, and R3. R1 is the decline in the initial 

attractiveness associated with the node upon its arrival. As the heat of the node is defined as the 

number of connections it makes per unit time, R2 is the number of zero-heat nodes whose 

connections are below a specific value n.  R3 represents the removal of edges due to irresistible 

natural factors which Cai, et al. [34] assume to be none, so R3 = 0.  The model starts like the 

original BA model with new nodes arriving and establishing m connections within the network.  

The attraction and damping factors, together with the degree of node i, are taken into 

consideration in the PA function used for attaching to node i given by 

   
                                    

                                     

,  
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where, R1, R2, and R3 are as defined above.  Ai is the initial attraction of node i attracting the new 

node N at time step ti. Di(t) is the evolving attraction of node i attracting the new node N from ti 

to t. For the proposed online social network new (DFEM) model, analytical and simulation 

results show that the degree distribution follows a power law whose exponent depends on m and 

values of attraction and damping factors [34]. 

2.5.2. Node Age 

Amaral, et al. [35], suggested that nodes can have aging constraints that limit the addition of new 

edges to them. Constraints can be related to the node’s aging or the cost associated with making 

new links. Amaral, et al. [35] propose a network generation model to test the effect these 

constraints can have on the generated network degree distribution. The model has two types of 

nodes, active and inactive.  A node becomes inactive and new edges cannot connect to it when it 

reaches a certain age (aging) or has more than a critical number of edges (capacity constraint). In 

both cases, numerical simulations [35] indicate that while for small k the degree distribution still 

follows a power-law, for large k an exponential cutoff develops [35]. 

Dorogovtsev and Mendes [36] deal with the fact that in reference networks the probability to 

attach to old references depends on their current degree and age. Thus, they propose a model 

where connections are made depending on their age as well as on the degree of old nodes. The 

age dependence is represented in the PA connection-function as τ
-α

, where τ is the difference 

between the present time and the node’s birth time and 0    . In their model, each new node 

makes only one connection to old nodes.  They perform analytical analysis and numerical 

simulations [36]. Results of these analyses show that the model has a power law degree 

distribution only when α < 1 and the degree exponent is a function of α [36]. 

2.5.3. Node Capacity 

Zhang, et al. [37] propose a constant capacity restricted BA model (CCRBA) for complex 

networks. The model evolves from the BA model. Node capacity puts a limit on the node’s 

maximum degree. A node cannot gain connections that exceed its total capacity. The network is 

also assigned a capacity parameter. The node is allowed to make connections if and only if its 

capacity, and the whole network’s capacity are not exceeded.  Zhang, et al. [37] study the 

influence of a node’s capacity on the network’s evolution and topology since most network 
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generation models neglect the fact that node capacity can affect the network’s topology. Zhang, 

et al. [37] perform numerical simulations for the model. The model has a power-law exponent 

smaller than that of the BA model. It does not represent some of the characteristics of real-world 

networks as its clustering coefficient is lower than that of the BA model and its average path 

length is longer than that of the BA model [37].  

2.5.4. Node Attributes 

Shaohua, et al. [38] observe that nodes with common traits or interests tend to interact. They 

introduce an evolving model based on attribute similarity between the nodes to study the effect 

of similarity between nodes on network evolution. Each of the network nodes has an attribute 

set. Node attributes can be described by a true or false function as in fuzzy logic. True and false 

functions can be assigned real values in the interval [0, 1]. Shaohua, et al. [38] used fuzzy 

similarity rules to define a similarity function that can be used to assess the similarity between 

attribute sets of two nodes. A connection is established between nodes if their attributes 

similarities fall within certain values defined by Shaohua, et al. [38]. They use simulation [38] to 

compare the properties of the network generated by their model to the network generated by the 

BA model.  Despite the fact that this model satisfies the small world property, its degree 

distribution does not follow a power law [38].  

Kim, et al. [39] observe that nodes within networks have different attributes and that most 

models lack a way to represent the effect of node attributes and their interactions on the network 

structure. They propose the Multiplicative Attribute Graph (MAG) model as a class of generative 

models for networks having nodes with different attributes. The model focuses on how node 

attributes interact to give rise to the observed network structure. MAG combines categorical 

node attributes with their affinities to compute the probability of a connection. Attributes with 

positive affinity values reflect the idea that for some attributes nodes are more likely to link with 

nodes having the same value of these attributes (i.e., homophily). On the other hand, for 

attributes having negative affinities, people are more likely to link to others having a different 

value of that attribute (i.e., heterophily). For each of the directed graph nodes, L, they define 

categorical attributes. Attribute values for each node form its affinity matrix. To compute the 

probability of node i to form a link to node j, the categorical attribute values of the nodes select 

their corresponding affinity matrix entries.  The probability is then computed by multiplying the 
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selected entries of affinity matrices. Mathematical analysis is done for a simplified undirected 

network with binary node attributes. The generated network model properties depend on the 

values of six parameters: n number of nodes, L number of attributes of each node, μ probability 

that an attribute takes a value of 1, and [α β; β γ] attribute-attribute affinity matrix where α, β, 

and γ are constants specified by the model. Kim, et al. [39] show, by simulation, that the 

generalized version of the model has heavy-tailed (power-law or log-normal) degree 

distributions, small diameters, and local clustering of the edges.  This is not a growing network 

model and does not use the PA algorithm for node-attachment. Hence, this model does not 

follow the two characteristics of the BA model. Additionally, the model does not consider the 

structural properties of the nodes while making connections [39].  Kim, et al. [39] claim that the 

high average clustering coefficients property is found in their model.  However, the clustering 

coefficient values for this model are relatively small (0.1 to 0.02) compared to the clustering 

coefficient values reported by Kim, et al. [39]for real-world networks (0.9 to 0.05) when the 

node-degree varies from 10
1
 to 10

3
. 

Online social networks are characterized by power-law degree distributions, high clustering, and 

the presence of community structure. Each node or user in social networks is identified by his or 

her social identity. Li, et al. [40] incorporate social similarity in addition to the PA of the BA 

model. Social similarity is included to investigate if this will result in the emergence of 

community structure since social characteristics are essential for formation of social connections.  

Li, et al. [40] define a subgraph to be a community in a weak sense if the sum of all degrees 

within it is larger than the sum of all degrees toward the rest of the network. Every node is 

identified with a social identity represented by a vector whose elements represent a distinctive 

social feature. The social distance between two individuals is identified by a distance function 

that has a value of one if and only if both nodes have similar attribute values. The model initially 

follows the basic BA algorithm with a new node added at each time step and then it establishes m 

connections in the network. The new node connects with probability p to the group closest to its 

social identity and it connects to the other groups with probability (1 - p). Parameter p is the 

strength of linking via social similarity. The node to be attached to the new node within a group 

is chosen following the rule of preferential attachment. The new node, after making its first 

connection to a node within the group, links to one of its neighbors which is randomly chosen 

with a certain probability TFp, which is the triad formation probability. Linking to neighbors of a 
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previously attached node is repeated until the new node establishes its m links. Using mean-field 

equations for the model with each node having an attribute vector of length one, Li, et al. [40] 

show that the generated network follows power-law degree distribution. Modularity Q is used to 

measure the community structure. To calculate Q for a network divided into k communities, a 

k×k symmetric matrix e is defined. Element eij in matrix e is the fraction of all edges in the 

network that link nodes in community i to nodes in community j. The sum of the diagonal of this 

matrix is the fraction of edges in the network that connect nodes in the same community. The 

sum of row (or column) elements ai is the fraction of edges that connect to nodes in community i. 

The modularity Q is given by Q =           
     Simulation showed that Q values increased 

with p, which agrees with the idea that the community structure is stronger when the preference 

to homogeneity increases. The generated network follows a power law degree distribution [40]. 

Li, et al. [40] claim that using triad formation produces high average clustering, but they do not 

present values to validate the claim and they do not measure the average path length for the 

generated networks. Additionally, the model does not increase the length of the attribute vector to 

more than one. 

2.6. Discussion 

As discussed above, none of the models presented in Sections 2.4.1, 2.4.2, and 2.4.3 show the 

emergence of community structure in the networks generated by the model. Additionally, the 

research efforts reported in [8], [11], and [14] have studied only the presence of the PL degree 

distribution and neglected other statistical properties.  

Some models depend on including phenomena such as rewiring [8], link addition and removal 

[14], and accelerated growth [13] and the effect of adding these phenomena on some of the 

statistical properties is studied. However, the research reported in [8] and [14] focuses mainly on 

preserving the PL degree distribution. It is shown in [13] that a network with a high average 

clustering coefficient, a small world property and PL degree distribution can be generated by 

controlling the accelerated growth rate.  

Research results reported in [4], [9], and [10] all conclude that PA is essential with the growth of 

the network size to generate a network that has a scale-free power law degree-distribution. 

However, as discussed in Section 2.4.2, some other connection algorithms do not use PA and are 

still successful in generating a PL degree distribution. 
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Section 2.4.2 showed that copying mechanisms from a random node [15] or an ancestor of the 

node [16] were proposed as an alternative for the PA in making connections. The models were 

successful in generating networks with PL degree distributions, but the research efforts reported 

in [15]and [16] do not tackle the other statistical properties of the generated networks [4, 5]. 

Using local information rather than depending on knowledge of the structure of the whole 

network for making connections is studied in [12] and [17]. However, random walks are used in 

[17] rather than choosing the local world of a random node. Both models use triad formation to 

increase the resultant average clustering coefficients of their generated network. 

Triad formation is mainly the method used for enhancing clustering coefficient except for 

research reported in [25], [26], and [27].  Klemm and Eguiluz [25] use the notion of active and 

deactivated nodes. The generation model of Newman, et al. [26] is based on a static network and 

the model of Dorogovtsev, Mendes, and Samukhin [27] depends on varying the value of the 

connections of the new nodes. None of the models presented in Sections 2.4.1, 2.4.2, and 2.4.3 

show the emergence of the community structure property of real-world complex networks. 

The models proposed in both [28] and [29] are inadequate for representing the four statistical 

properties of complex networks. While, the clustering coefficient values achieved by [28] are 

acceptable for the software network that was studied by the authors of [28], it is still low 

compared to other real-world networks. Additionally, the model described in [28] fails to 

generate the scale-free property of complex networks. The model in [29] has a high clustering 

coefficient, small average path length and scale-free degree distribution properties. However, 

[29] does not define a metric for identifying the presence of communities. The model in [29] is a 

static network generation model and lacks the notion of growing networks. 

The heterogeneous complex network generation models in Sections 2.5.1, 2.5.2, and 2.5.3 are 

not general in that they apply only to networks whose nodes have attraction, age or capacity 

properties. Defining general attributes for the network nodes is preferable as it will enable us to 

generate different types of complex networks.  The models proposed in [38], [39], and [40] 

define general attributes for the network-nodes.  The model in [38] does not generate a complex 

network with a PL scale-free degree distribution. Additionally, both the models of [38] and [39] 

do not include the structural properties of the network nodes in their connection-algorithms. 

Furthermore, the model proposed in [39] is not a growing network model unlike real-world 
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complex networks where nodes are constantly added to the network. The model proposed in [40] 

is successful in preserving the power law degree distribution, but the paper does not present the 

measured average path length and clustering coefficients. The model in [40] does not generate 

complex networks whose nodes are assigned more than one attribute. 

Thus, a general heterogeneous complex network generation model is still to be found. This 

model should preserve the four statistical properties of complex-networks. Additionally, the 

model should also be capable of reflecting the fact that nodes usually are characterized by more 

than one attribute. 
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Chapter 3. IASM and SNAM: Heterogeneous Complex Networks 

Generation Models  

3.1. Introduction 

Complex networks have four characterizing features:  (i) the small world phenomenon; (ii) scale-

free degree distribution; (iii) high average clustering coefficients; and (iv) the emergence of 

community structure. As shown in Chapter 2, the most influential models for complex networks 

are the Erdös and Rényi (ER) [4, 5], Watts and Strogatz (WS) [4, 5], and Barabási and Albert 

(BA) [3] models.  The ER and WS models failed to produce a network with power law (PL) 

degree distribution. The BA model uses a preferential attachment (PA) connection algorithm 

which reflects the belief that nodes usually prefer to connect to higher-degree structurally-

popular nodes [2].  The BA model succeeded in preserving the small world phenomenon of real 

complex-networks as the WS model did. Even though BA model generates networks with a PL 

degree distribution, it generates networks with an unrealistic constant PL exponent value of γ = 3. 

Additionally, the average clustering coefficient for networks generated using BA is lower than 

that observed in real complex networks of the same size. Thus, the BA model is still inaccurate in 

representing all four properties observed in real complex-networks.  Also, as mentioned in 

Chapter2, all three models failed to generate a network having a community structure [3, 5]. 

Thus, each of these models was able to generate networks that show some, but not all, of the four 

characteristics of complex networks, thus rendering them inadequate for accurately representing 

complex real-world networks. Many researchers have tried to introduce models that can remedy 

the shortcomings of the previous three models. 

The purpose of many complex network models, especially earlier models, is to develop a 

mathematical model that preserves statistical properties of real-world networks. However, many 

more recent models focus on modeling the assembly, growth, or evolution of the network. The 

approach of modeling network evolution investigates how certain statistical properties emerge in 

real-world networks [3]. For example, the BA model investigates the mechanism responsible for 

the existence of a power law degree distribution. Many other models use another modeling 

approach which targets capturing the dynamics of an evolving network and allow observation of 

the statistical properties of these evolved networks. This modeling approach is based on the 
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principle that if the model correctly captures the dynamics that occur during the network 

evolution, then it will capture the network topology correctly as well.  

We observed the fact that nodes in complex networks differ from each other. Specifically, nodes, 

or entities, in real-world complex networks have different profiles and characteristics. We argue 

that nodes having different characteristics influence the density and the pattern of connections 

within a network. 

Thus, our proposed models use the growth mechanism and incorporate the heterogeneity of 

nodes.  This enables investigation of the effect of adding heterogeneity in our models on the 

properties of the generated network. We believe that adding heterogeneity to network generation 

models will succeed in generating networks that preserve the statistical properties common to 

real-world networks, unlike BA, ER, and WS. With our models, we try to generate networks 

with characteristics that resemble as much as possible the statistical properties common to some 

of the few real-world networks that have received attention from the research community.  

Additionally, including heterogeneity of node properties or connection standards in the 

connection algorithms of our models makes them more suitable for generating the subset of 

complex networks that exhibit selective linking.  Such networks are said to exhibit assortative 

mixing or homophily [3]. Thus, our research scope is focused on generating mathematical 

models for real-world networks that exhibit assortative mixing. 

Assortative mixing is defined as a bias in favor of connections between network nodes with 

similar characteristics [3].  In other words, nodes tend to connect with nodes that are similar to 

them in some aspects. Assortative mixing is found in online social networks, webs of human 

sexual contacts, the WWW, the movie actor collaboration network, science collaboration graphs, 

and citation networks [3]. In online social networks, users tend to connect with users who are 

similar to them in some way, for example sharing interests or located in the same geographic 

area. Age, race, cultural similarities, and location are factors in choosing partners in webs of 

human sexual contacts. Language and subject matter play significant roles in the connections 

between WWW pages. Networks of collaborations between scientists or actors are affected by 

their interests, such as their research areas and genres of movies, respectively, location, and, 

language. The same applies for citation networks where papers tend to frequently cite papers 

dealing with the same or a very similar research subject. 
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We expect that assortative mixing has a direct effect on the emergence of community structure, a 

not so frequently discussed statistical property of complex networks.  Communities or groups of 

vertices that are similar in some way tend to have dense connections among each other and less 

dense connections with nodes belonging to different communities.  

Although some heterogeneous complex network generation models were presented in prior 

work, these models rely on some assumptions about the exact nature of heterogeneity parameter. 

Examples of the heterogeneity parameters assigned for network nodes in prior work are 

attraction, age, and capacity [3, 4]. A few models [7, 8, 9] define general attributes for the 

network nodes.  However, none of these models preserved all four of the defined statistical 

properties common to most real-world complex networks. Moreover, even the models that have 

been proposed for heterogeneous complex networks do not integrate the heterogeneity of nodes 

with other structural properties of the network in the analysis and connection algorithms for 

generating such networks. Also, many existing models are specific for the generation of certain 

types of complex networks and, thus, are not general. 

Thus, a general model for generating undirected heterogeneous complex networks with 

characteristics of real-world networks showing assortative mixinghas yet to be found. Such a 

model should preserve the four statistical properties of complex networks. Additionally, the 

model should be capable of reflecting the fact that each node possesses many different 

characteristics. The different characteristics of the node should be represented as multiple 

attributes per node in the mathematical model. 

This work presents two general heterogeneous complex-networks generation models. The 

models are applicable to different complex networks such as the World Wide Web (WWW), and 

social networks. We present two concepts of node heterogeneity in these models, which are 

heterogeneity of node attributes and heterogeneity of node connection-standard. Heterogeneity of 

node connection standard is defined as the difference in each node’s requirements to make a 

connection. Differences in the properties or the attributes of network nodes reflect heterogeneous 

node characteristics. 

3.2. Heterogeneous Complex Network Generation Models 

As previously concluded, a general model for the generation of heterogeneous complex networks 

generation exhibiting selective linking is still to be devised. Thus, our goal in this research is to 
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introduce mathematical models that accurately mimic the structure, dynamics, and evolution of 

heterogeneous complex networks. The models should be able to reflect the four common 

statistical properties of complex networks. The proposed models are dynamic growing network 

models where nodes are added to the network at each time step as in the BA model. To achieve 

this goal, we turn to the fact that nodes in complex networks are different from each other. 

Specifically, nodes, or entities, in real complex-networks have different profiles and 

characteristics. We argue that nodes having different characteristics influence the density and the 

pattern of connections within a network. The notion of node-attributes is used to highlight the 

node-distinct characteristics. The attribute set of each node is extracted from the characteristics 

or profiles of that network node. In our model, attributes are assigned randomly to each node 

upon its birth in (arrival to) the network. 

Accordingly, the network graph G in our research is defined by a three-element set G = {V, E, 

A}, where V is the set of nodes in the network, E is the set of edges, and A is the set of attribute 

vectors defining the profiles/characteristics of all the network nodes.  The idea of node attributes 

has been attempted before, but the models in this work are novel in the following ways. 

1) The models present a systematic way of defining attributes by incorporating the attribute set 

in the graph definition. 

2) The proposed models are general and do not make any assumptions about the type of the 

network with assortative mixing. 

3) To the extent of our knowledge, our models are the first to integrate the attribute similarity 

measure and one of the topological popularity measures in the computation of the connection 

function, CF. CF values are used in the connection algorithms used to establish links 

between each new arriving node and the old network nodes. 

4) In contrast to other efforts that considered node attributes, each node in the proposed model 

is assigned an attribute vector having more than one element. Each element in the attribute 

vector stands for one of node’s attributes and attribute vector element values are assumed to 

be statistically independent.  
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5) Our second model, SNAM, introduces another aspect of node heterogeneity which is the 

nodes connection-standard requirement defined above. This concept of heterogeneity was not 

previously included in prior network generation models.  

6) Through the proper choice of SNAM control parameters, the required values of network 

statistical characteristics can be achieved.  

7) Modifying the function used in the connection algorithm of both models results in the 

generation of networks showing the presence of community structure.  

This chapter presents our two proposed models, IASM and SNAM, in Sections 3.2.1 and 3.2.2, 

respectively.  The theoretical idea of each model is discussed in its respective section.  

3.2.1. Integrated Attribute Similarity Models (IASM) 

Our Integrated Attribute Similarity Models, IASM_A and IASM_B, are based on the Barabasi-

Albert model [3] and preserve the two basic ideas of the BA model, network size growth and 

making connections based on preferential attachment. The BA model is chosen as the basis for 

the IASM model because the BA preferential attachment model is the only one among the three 

influential models that succeeded to generate graphs having a scale-free PL degree distribution as 

seen from Table 3.1. It also reflects network growth where nodes are constantly being added to 

the network during its evolution. 

Table 3.1. Comparison between the BA, ER, and WS Models 

 Barabási-Albert Erdös-Rényi and Watts-Strogatz 

Degree distribution  Power Law  Poisson  

Number (N) of nodes Growing  Constant  

Connection probability Preferential attachment Random and uniform 

All of our network models start with an initial seed network having mo nodes interconnected with 

a randomly chosen number of edges linking random pairs of nodes. An example of a seed 

network is shown in Figure 3.1. Starting with the seed network, at each time step a new node is 

added to the network. Each newly added node has m links that it has to make with m different 

previously existing nodes in the network, where m   mo. These m links are connected to m 
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existing nodes according to a connection algorithm proposed in the subsequent sections. This 

process of adding a new node with new edges is repeated until the network reaches its final size 

of N nodes. The connection algorithms differ in how they use the values of a predefined 

connection function (CF) to make connections. The connection function values are used to test if 

the new arriving node will connect to the tested old node. CF depends on the aspects that are 

important to the arriving node when making a connection. These aspects can be the structural 

popularity of the tested node or its attribute similarity with the arriving node. 

The arriving node can represent a new user arriving to the social network. This user starts 

making connections with different network-nodes based on his/her own preferences. The user 

can prefer making connections to structurally popular old users. The structurally popularity of 

the old users can be measured by its number of connections (degree centrality). Thus, a new user 

to the social network will be more attracted to make a connection with an old user having the 

highest degree implying highest number of neighbors (first-degree connections). Making this 

connection will give the new user the chance to reach many other old users.  

Additionally, eigenvector centrality of an old node can be also be used as a measure of its 

structural popularity. A new user may prefer making connection not only to old nodes having the 

highest number of direct neighbors but also to nodes having less number of direct neighbors that 

have many connections to their respective neighbors. Thus, eigenvector centrality considers the 

first degree connections and the second degree connections in evaluating the structural 

popularity.  

On the other hand, the user may prefer connecting with old users having attributes similar to its 

own. However, the new user at the same time is still concerned with the structural popularity of 

these users.  For example, new user x can have the same attribute similarity value with old users 

y and z. However, user x prefers will still prefer connecting to the one of them having more 

neighbors. The user can prefer connecting to structurally popular users that have the most similar 

number of attributes to it which corresponds to using a connection function depending on the 

normalized degree multiplied by the attribute similarity measure. Again, the user may prefer 

connecting to structurally popular users or the ones that have the most similar number of 

attributes to it which corresponds to a connection function depending on the normalized degree 
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added to the attribute similarity measure. Therefore, the definition of the equation CF can differ 

depending on the aspects that concerns the new user will making a connection. 

 

Figure 3.1. Seed network with mo =5. 

In the BA model, each new node is preferentially connected to m existing nodes. Each of these 

connections is based on computing the value of a connection function (CF). 

The connection function, CF, depends only on the normalized degree of the pre-existing tested 

node in the BA model. The degree of the existing tested is normalized by dividing it by the 

summation of degree-values of all nodes currently existing in the network. Thus, CF is 

represented as: 

CF = Normalized degree of an existing tested node in the growing network 

Our first model, the Integrated Attribute Similarity Model (IASM), uses concepts of growth and 

a PA connection algorithm similar to that in the Barabási-Albert (BA) model for network 

generation. Our IASM is based on modifying CF of the BA model. Instead of having CF depend 

only on the existing node’s fitness or degree alone, we propose making CF also dependent on a 

parameter showing the attribute similarity or compatibility between the newly added node and 

existing nodes in the network. Thus, for each of the required connections of the new node, IASM 

integrates the attribute-similarity measure between the new node and the existing node with the 

structural popularity measure of the existing node used to evaluate CF used in the PA connection 

algorithm. The node structural popularity is a measure of the node’s popularity based on its 

network position and connections. To the extent of our knowledge, IASM is the first network 

model to integrate an attribute-similarity measure within the connection function. IASM has two 

variations, IASM_A and IASM_B, that use two different structural popularity measures. In 

IASM_A, the normalized node degree is used as the structural popularity measure. The attribute 

similarity is calculated by finding the similarity or compatibility between the attributes of the 
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nodes to be connected. Each of the network-nodes is assigned an attribute vector. This attribute 

similarity is calculated as the normalized summation of the inner product attribute vectors of the 

new node and the existing node. Thus, the connection function value for arriving node   and pre-

existing node  is expressed as: 

        Normalized [(degree of node  )   (Attribute Similarity between nodes  ,  )] 

            + (                                  

                  Normalized (Attribute Similarity between nodes  ,  ), (3.1) 

where   +  +   = 1.0, 0 ≤   ≤1, 0 ≤ w ≤ 1, and 0   β   1. 

The coefficients  ,  , and   are weighting coefficients used to define the contribution of the 

different CF equation terms to the final value of CF to test their influence. These different terms 

in CF represent the aspects that are considered by the new arriving node when making a 

connection.  These aspects depend on the structural popularity of the tested node and/or its 

attribute similarity with the arriving node. 

Eigenvector centrality is used in IASM_B. Eigenvector centrality is considered a more accurate 

structural popularity measure as it takes into consideration both the density and quality of links 

attached to a node. Eigenvector centrality generally assigns relative scores to all nodes in the 

network based on the concept that connections to high-scoring nodes contribute more to the 

score of the node in question than equal connections to low-scoring nodes. More specifically 

here, a connection to a more interconnected node contributes to the node’s Eigenvector centrality 

to a greater extent than a relationship to a less well interconnected node. A node’s eigenvector 

centrality is calculated by finding the eigenvectors corresponding to the eigenvalues of the 

network’s adjacency matrix. Hence, for IASM_B, the connection function value for a new node i 

and an existing node j is measured as: 

                                                                                     

          +                                             Normalized (Attribute 

              Similarity between nodes    ) (3.2) 

To further enhance the clustering coefficient values in the two IASM models, the well-known 

triad formation step (TFS) has been added to their network generation algorithms. TFS reflects 
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the preference of a node to connect to its neighbor’s neighbor rather than to any other randomly 

chosen node.  

3.2.2 Settling Node Adaptive Model (SNAM) 

Our second proposed model departs from the classic PA connection algorithm presented in BA 

and proposes a new settling node adaptive model, referred to as “SNAM.”  SNAM reflects the 

idea that nodes are not only differentiated by their attributes, but also according to their 

connection-standard requirements. Connection-standard requirements for the nodes represent the 

minimum CF values that a new node finds satisfactory to connect with another old node. The 

connection-standard requirement of node x is its minimum acceptable value of CF for 

establishing a connection. This minimum acceptable value can refer to the value of the popularity 

measure of a webpage or the value of a similarity measure between a node and other social 

network nodes. 

All of the proposed IASM models assume that all the arriving nodes have the same requirements 

for the existing old nodes to which they connect. In real life this is not always true as some new 

arriving nodes can have lower connection requirements to existing nodes than others. Two 

newly-arriving nodes may have different connection standards, thus one node might accept an 

obtained CF value and make a connection to tested existing node, while the other node might 

reject the same CF value and refuse the connection to the same tested existing node. 

To reflect this behavior in our SNAM model, each new arriving node is assigned the value of its 

own intrinsic connection standard upon birth. This connection standard is used by the node only 

upon arrival to make a decision about which connection to make with randomly chosen existing 

old network node.  If the CF value is equal to or higher than the standard of that arriving node 

and the arriving node has not yet established its m connections, then the two nodes are 

connected. If the CF value is below the standard of that arriving node, no connection is made. 

Then the new node must test other old existing nodes to find the ones satisfying its standard. This 

is repeated for a finite number of tests. After this finite number of tests, the new node must lower 

its standard if it did not make its m connections. 

An extension of SNAM was needed to make networks generated using extended SNAM 

approach the characteristics of the dataset used in the case study that was part of our research. 



 

49 

 

We will see later in Chapter 6 that this extension for SNAM is introduced by adding a new model 

parameter R to control the number of reductions of the standard of the arriving node.  

Thus, an arriving node x calculates its connection function value with an existing node z (CF1). If 

CF1 is equal to or higher than the arriving node’s x connection standard, then node x makes a 

connection to node z. If another new node y calculates its connection function with the same old 

test node z (CF2) and finds CF2 lower than its connection standard.  Then, node y refuses to 

connect to the same existing node z. The CF used in our SNAM model depends on the structural 

popularity of the tested existing node and its attribute similarity with the new node as defined for 

the IASM_A model, Equation 1 above. 

To evaluate our models, we generate networks based on each model using MATLAB [41]. For 

each of the generated networks, values for the power law exponent, the average path length and 

the average clustering coefficients are computed to be assessed against values reported for a 

variety of real complex networks [3, 4]. These statistical properties are the three metrics that 

validate that the three features of real complex networks are preserved in our models. Our 

mathematical models are general and apply for any complex network. Upon establishment of the 

mathematical model, we apply it to social networks as a proof of concept. Our choice of online 

social network is mainly due to their prevalence and their currently wide application in fields 

such as marketing, information, diffusion of epidemic diseases, and recommendation and trust 

analysis. 
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Chapter 4. Simulation Results and Validation 

4.1. Introduction  

In this chapter, we present our two proposed models, Integrated Attribute Similarity Model 

(IASM) and Settling Node Adaptive Model (SNAM). Each of these models is used to generate 

simulated networks via MATLAB [41]. The statistical properties of the generated networks are 

recorded. As our goal is to devise a model that mimics the statistical properties and dynamics of 

complex networks, we calculate values for the power law exponent, the average path length, and 

the average clustering coefficients. These values are then assessed against values reported for a 

variety of real complex-networks [3, 4]. IASM is discussed in Section 4.2 along with simulation 

results and findings. The normalized node degree and eigenvector centrality are used as 

structural popularity measures in the IASM_A and IASM_B models, respectively. The SNAM 

model and its simulation results and findings are presented in Section 4.3. Normalized node 

degree is used as the structural popularity measure in the SNAM model in addition to the 

connection standard parameter capturing the heterogeneity of nodes. Section 4.4 represents 

modified versions of both IASM and SNAM that grow networks that exhibit the presence of 

community structure. Simulation results for such community structure presence is given for both 

models. 

4.2. Integrated Attribute Similarity Models (IASM) 

4.2.1. Model Assumptions 

The CF is defined as the normalized degree only in the BA model. However, attributes are 

integrated in the CF in IASM model to introduce the compatibility parameter that would replace 

the fitness parameter previously introduced in [32]. This compatibility parameter is a measure of 

the similarity between the new added node and the old node attributes.  

Thus, each new network-node upon birth possesses its own distinct attribute-set (attribute vector) 

of length L. This attribute vector represents the interests or engagements of that node in the 

network’s L interests or activities.  The CF in IASM does not depend solely on a specific 

characteristic of the old or existing node, but on the characteristics of both the new and the 

existing nodes.  Accordingly, a new node usually prefers to connect with existing nodes that are 
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the most topologically popular and that have similar interests or attributes to the new added node. 

If there are two existing nodes that possess the same attribute similarity measure value with the 

new node, then the new node will prefer connecting with the more structurally popular one.   

IASM is a growing network model. IASM starts with a seed network of size mo. Then, at each 

time step, a new node is added with m edges to be connected to it, where m   mo. Each added 

node is assigned an attribute vector having L elements. Each of these elements takes binary 

values of 1or 0 representing the presence or absence of an attribute in the attribute vector, 

respectively. Our proposed compatibility measure represents the similarity between the new 

added node and an existing test node’s attributes. This measure is equal to the normalized 

summation of the inner product attribute vectors of the new node and the existing node. This 

attribute similarity measure is integrated within the new defined CF, together with structural 

popularity. Each newly added node is preferentially connected to m old nodes based on the value 

of function CF. 

Thus, the connection function CF used for preferentially connecting a new node   with a chosen 

old node   depends on the structural popularity of node   (   ) and node attribute similarities 

(   ) for both nodes   and  . The connection function CF is expressed as: 

   = (     
      

        
 +(    

   

     
 + ( )  

   

     
 , (4.1) 

where   +   +   = 1.0, 0 ≤   ≤1, 0 ≤   ≤ 1, and 0   β   1. 

Parameters α, w, and β are weighting coefficients used to give different weights to the combined 

structural popularity and the attribute similarity in the CF terms to test their influence. 

The IASM_A model follows the assumption of the BA model where topological node popularity 

is measured by its degree centrality (normalized degree). For the IASM_B model we argue that 

the node’s topological popularity is better represented by its eigenvector centrality value. Our 

argument is strengthened by the fact that a node’s eigenvector centrality value represents not 

only the number of that node’s connections, but, also, the quality of these connections. 

Eigenvector centrality as a measure of node’s importance is dependent on a nodes own 

connections and the connections of the nodes connected to that node. A network node has a high 

eigenvector centrality value if it is connected to many nodes or to a few nodes that have many 
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connections.  Hence, eigenvector centrality seems a better measure of node popularity and is 

considered a more comprehensive version of degree centrality.  

4.2.2. Simulation Setup and Parameters 

Simulation of the IASM_A and IASM_B models starts with a seed network of size    = 5. The 

network size grows as new nodes arrive to the network, until reaching a predetermined final size 

of   nodes. In our simulation   = 1000. Each newly arriving node has to establish   links with 

the existing network nodes, where   =    = 5. Each new node in the network is randomly 

assigned an attribute vector of length   = 10, whose elements are derived from a uniform 

distribution. Simulation parameter values used are summarized in Table 4.1. 

Table 4.1. Simulation Parameter Values 

         

5 5 10 1000 

The connection function in IASM depends on the attribute similarity between newly arriving 

nodes and old or existing network nodes as well as the structural popularity of old nodes.  CF is 

used to establish node connections preferentially. We use the algorithm proposed by Newman [4] 

to implement the preferential attachment. Each node is identified by a Node-Id that represents its 

arrival order. A list of Node-Ids is created for each arriving node in which Node-Ids are repeated 

based on their corresponding CF values. Thus, a new vector is formed in which nodes having 

higher CF values are repeated more frequently. Each arriving node has to establish m 

connections with nodes randomly selected from this new vector. 

Two different structural popularity measures are used in the simulation of IASM. In IASM_A, a 

node’s structural popularity is based on the node degree.  In IASM_B, the structural popularity is 

based on the node’s eigenvector centrality. A flow chart of the algorithm used in both IASM 

models is shown in Figure 4.1. 

MATLAB simulations were performed for different combinations of    coefficients for both 

models. Each simulation experiment is repeated 10 times with different seeds for the random 

value seed generator. The simulation results shown in the tables are present for the average of 

these 10 experiments. The connection functions used can be based on normalized degree only 

(  = 1,   =   = 0), on degree with added attribute similarity (  = 0 and   = 1 - β where 0   β  
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 1), and on degree and degree multiplied by the attribute similarity (w = 0, α = 1 - ß, where 0   β 

  1).  Parameters  ,  , and   are weighting coefficients as discussed in Section 3.2.1. 

 

Figure 4.1.  IASM_A and IASM_B algorithm flow chart with modified PA 

function based on: (i) Normalized degree and attribute similarity for the IASM_A 

model and (ii) Eigenvector centrality and attribute similarity for the IASM_B 

model. 

4.2.3. IASM_A 

The following sections introduce the simulation results for the IASM_A model and an analysis of 

the results that were obtained. 

4.2.3.1. Simulation Results 

Simulation results for the average clustering coefficient (Av_CC), the average path length 

(Av_Pl), and the exponent of PL (Exp_PL) corresponding to different values of the weighting 

coefficient of CF are presented below. 
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4.2.3.2. Analysis of Simulation Results 

Model IASM_A reduces to the BA model when β=1.  The degree distribution of IASM_A was 

found to follow a power law distribution whose exponent values are in the range of  

2.06     2.49. The average path length values are less than or equal to the logarithmic value 

of N (1000).  Thus, the small world phenomenon is preserved. The average clustering coefficient 

for the BA model (β = 1) has the value of 0.032. This value increases when the CF is based on 

normalized degree with multiplicative attribute similarity. 

Table 4.2. Simulation Results for IASM_A 

Α w Β Exp_PL Av_Pl Av_CC 

0 0 1 2.49 3.03 0.032 

0.2 0 0.8 2.44 3.02 0.032 

0.5 0 0.5 2.39 3.02 0.034 

0.8 0 0.2 2.41 2.98 0.041 

1 0 0 2.33 2.96 0.044 

0 0.5 0.5 2.14 3.14 0.021 

0.5 0.5 0 2.06 3.13 0.022 

4.2.4. IASM_B 

The following sections introduce the simulation results for the IASM_B model and an analysis of 

the obtained results. 

4.2.4.1. Simulation Results 

Simulation results for the average clustering coefficient (Av_CC), the average path length 

(Av_Pl), and the exponent of PL (Exp_PL) corresponding to different values of the weighting 

coefficient of the CF are presented in Table 4.3. 

Table 4.3. Simulation Results for IASM_B 

α w β Exp_PL Av_Pl Av_CC 

0 0 1 2.48 3.04 0.032 

0.2 0 0.8 2.43 3.04 0.031 

0.5 0 0.5 2.53 3.01 0.031 

0.8 0 0.2 2.44 3.04 0.031 
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1 0 0 2.20 2.97 0.042 

0 0.5 0.5 2.02 3.14 0.019 

0.5 0.5 0 1.68 3.28 0.014 

4.2.4.2. Analysis of Results 

The degree distribution of IASM_B follows a power law distribution. The exponent values are 

slightly less than that of BA model (IASM_A when β = 1).  The average path length values are 

less than or equal to the logarithmic value of N (1000). Thus, the small world phenomenon is 

preserved. The average clustering coefficient is still as low as in BA model, but it increases when 

CF is based on eigenvector centrality and multiplicative attribute similarity. 

4.2.5. Discussion of Results  

The results show that the values recorded for network statistical parameters are similar in 

IASM_A and IASM_B, which means that the method used in measuring a node’s structural 

popularity has only a minor effect on the statistical parameters of the simulated network. 

Inducing attribute similarity into CF preserved the small world phenomenon, while slightly 

decreasing the average path length in the case of multiplicative attribute similarity based CF. 

Moreover, the power law exponent values for both IASM_A and IASM_B are within the values 

reported in [2, 4, 5] for all CF coefficient variations in both models. However, incorporating 

multiplicative attribute similarity in the CF calculation had a positive effect on the average 

clustering coefficient. Simulation results for the average clustering coefficient in IASM_A and 

IASM_B when (when α = 1, β = w = 0) show a 37 percent and 31 percent increase, respectively, 

over the BA model. The average clustering coefficient was found to increase with increasing the 

value of α when w = 0 and β = 1 - α.  

However, using additive attribute similarity resulted in a decrease in the generated network’s 

average clustering coefficient values. Thus, we argue that the multiplicative attribute similarity 

measure is a better measure for similarity than additive attribute similarity in IASM. 

4.2.6. Enhancing IASM Clustering Coefficient 

The IASM_A and IASM_B model both show low clustering coefficient values. The clustering 

coefficients can be increased by adding a triad formation step (TFS).  The triad formation step is 
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motivated by the observation that nodes usually form connections with the neighbors of their 

neighbors. 

4.2.6.1. Simulation Setup and Parameters  

To form a triad, a newly arriving node attaches to a randomly chosen second-degree neighbor 

node, and then a neighbor of this existing node is randomly chosen and is also connected to the 

newly arriving node. Simulation of the IASM_A and IASM_B models is repeated after adding a 

TFS using the same mo, m, L, and N values as shown in Table 4.1. The flow chart of the modified 

model after adding the TFS is shown in Figure 4.2. 

 

Figure 4.2.  Flow chart for modified IASM_A and IASM_B models with triad 

formation step.  CF based on:  (i) normalized degree and attribute similarity for 

the IASM_A model and (ii) eigenvector centrality and attribute similarity for the 

IASM_B model. 
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4.2.6.2. Simulation Results 

Simulation results for the average clustering coefficient (Av_CC), the average path length 

(Av_Pl), and the exponent of PL (Exp_PL) for both the IASM_A and IASM_B models after 

adding the TFS are presented for different values of the weighting coefficient of CF. 

Table 4-4. Simulation Results of IASM_A and IASM_B Models after Adding TFS 

Connection 

function (CF) 

coefficients IASM_A with TFS IASM_B with TFS 

Α w β Exp_PL Av_Pl Av_CC Exp_PL Av_Pl Av_CC 

0 0 1 1.91 3.51 0.526 1.93 3.43 0.537 

0.2 0 0.8 1.89 3.52 0.526 1.96 3.42 0.535 

0.5 0 0.5 1.89 3.52 0.525 1.96 3.4 0.539 

0.8 0 0.2 1.90 3.46 0.526 2.00 3.43 0.535 

1 0 0 1.88 3.46 0.526 1.97 3.33 0.536 

0 0.5 0.5 1.78 3.58 0.515 1.73 3.55 0.518 

0.5 0.5 0 1.76 3.58 0.515 1.58 3.68 0.520 

4.2.6.3. Analysis of Results 

Adding the triad formation step increases the average clustering coefficients values for both the 

IASM_A and IASM_B models as shown in Table 4.4. The addition of the TFS step to both 

IASM models generates networks that have power law degree distributions. The TFS causes the 

PL exponent to decrease to a value below 2unlike both IASM models. The decrease of PL 

exponent of the degree-distribution values implies an increase in the number of higher degree 

nodes and thus, the formation of hubs. The reason for the increase in the number of higher degree 

nodes can be the addition of more connections to the first-degree neighbors of the previously 

connected node. However, the PL exponent values recorded are similar to some of the real 

complex networks reported in [2, 4, 5]. In addition, the triad formation step increases average 

path length while preserving the small world phenomenon. The increase in the average path 

length could be a result of nodes making more connections with their second-degree neighbors 

rather than making preferential connections. The addition of the TFS step increases the average 

clustering coefficient for all combinations of CF in both IASM models by nearly 0.5. This 

suggests that the effect of the addition of the TFS on the average clustering coefficient is almost 

independent of CF coefficient values. 
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4.3. Settling Node Adaptive Model (SNAM) 

4.3.1. Model Assumptions 

SNAM introduces the idea of heterogeneous connection-standard requirements of nodes. As 

previously defined, the connection-standard requirements of nodes represent the different 

requirements of the nodes when establishing connections. For example, two new users in a social 

network can have different standards for making a connection. One of these users can accept 

making connections with only very popular users while the other is satisfied with making 

connections with less popular users. 

To the extent of our knowledge, all previously proposed models assumed that all new arriving 

nodes have the same connection requirements when linking to existing nodes. In reality, nodes 

may have different views of the same value of a connection-function (CF) that is calculated 

based on attribute similarity and/or structural popularity of the old node with which to connect. 

For example, a user in a social network can consider a CF value of 0.5 too low, while another 

user will consider the same value sufficient for establishing a connection with another user. 

Thus, in SNAM, each arriving node, upon birth is assigned a value representing its own 

connection standard value S derived from a uniform distribution. An arriving node will calculate 

its CF values with existing nodes. Hence, the CF values obtained will not be used to deploy the 

preferential attachment algorithm, but will be used to examine if the randomly chosen existing 

nodes will meet the arriving node’s standards. A newly arriving node calculates the CF 

corresponding to randomly chosen nodes. This characteristic parameter S, 0 < S   1, represents 

the minimum acceptable value of the CF for the new node. All old pre-existing nodes whose CF 

values for the new node are below its standard cannot attach to that new node. An arriving node 

must then test other pre-existing nodes to find the ones that satisfy its connection standard. The 

new node establishes connections with the existing nodes whose CF values are equal to or higher 

than its connection-standard value, S. Similar to the IASM_A, the CF that is used depends on the 

normalized degree values and/or attribute similarity. 

4.3.2. Simulation Setup and Parameters  

The network starts with a seed network mo. A new node arrives at each time step and each new 

node i is assigned a random connection-standard value Si, where 0 < Si   1. If, for a chosen 
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existing node j, the value of CFij exceeds or is equal to Si, then node i establishes a connection to 

j. Otherwise, i rejects the connection to j and another existing old node is tested. 

This testing of other existing nodes continues until the new node achieves its predefined m 

connections or reaches its maximum number of tests, NoT. If node i reaches its maximum 

number of tests, NoT, and it still did not make its m connections, then arriving node i reduces its 

connection standard by a certain percentage and the testing of randomly chosen existing nodes is 

resumed.  The reduced standard-connection value, Si,reduced, is determined as follows. 

Si reduced = Si× (1-€), where €      (4.2) 

In SNAM, we experiment with the maximum number of tests NoT allowed for the arriving node 

i before it has to lower its connection standard if node i has not established its m connections 

during the NoT tests. As for the previous simulation experiments, the simulation experiment 

starts with the same values of the parameters α, β and was in Table 4.1.  Also, € = 0.1.  We 

choose this value for € because higher € values would make the nodes reduce their standard very 

rapidly. This will decrease the effect of the presence of the node’s connection standard on the 

generated network. Thus, when € approaches the value of 1, the generated network approaches a 

network generated with new nodes having no connection standard and this will result in random 

connections that are not the result of SNAM model.  The SNAM model algorithm is shown in 

the flow chart in Figure 4.3. 

NoT is an integer value greater than 1, whose maximum value is the current size of the network.  

(This implies testing the CF values for all network nodes.)  Thus, the value of NoT depends on 

the current size of the network, denoted CS. The NoT is increased by one whenever CS of the 

network reaches certain predefined milestones. The value of the CS at which these milestones 

occur depends on the final size of the network, N, and the number of milestones, NM, occurring 

during network evolution. The number of milestones, NM, has two extreme values. The smallest 

number of milestones is 1which is reached when the network reaches its final size. The largest 

number of milestones occurs when we consider the arrival of each node to the network as a 

milestone. Thus, NM ranges between 1 and N. The higher the value of NM, the more rapid is the 

increase in NoT. 

Our experimentation with the NoT parameter indicated that a rapid increase of NoT with network 

growth results in the presence of irregularities in the statistical characteristics of the generated 
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network. Here, the number of milestones occurring during the arrival of every 100 nodes to the 

network is varied between 1 and 10. Thus, an NM value of 5 means that the NoT is increased by 

one 5 times during the arrival of 100 nodes to the network, (i.e., NoT increased by one each time 

20 new nodes arrive to the network).  This choice was made to avoid irregular statistical 

properties and has proven to give satisfactory results as shown in Figures 4.4, 4.5, 4.6, and 4.7.  

The same values for parameters mo, m, L, and N used for the simulation IASM_A are used for the 

simulation of SNAM.  The initial value of NoT in this simulation is 2 and 1 ≤ NM ≤ 10. The 

connection function CF depends on the existing node degree structural popularity as in IASM_A, 

Di, namely: 

CF = (α)  
     

       
  + (β)  

  

    
  + (w)  

   

     
 , (4.3) 

where α +w + β = 1.0, 0 ≤ α ≤1, 0 ≤ w ≤ 1, and 0   β   1.  

 

Figure 4.3.  Flow chart of SNAM algorithm. 

4.3.3. Simulation Results 

Results for three combinations of the coefficients α, β, and w are shown in Figures 4.4 through 

4.6. 
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a) Average Path Length 

 
b) Power Law Exponent of Degree Distribution 

 
c) Average Clustering Coefficients 

Figure 4.4.  SNAM algorithm with a normalized degree CF (β = 1). a) Average Path Length, 

b) Power Law Exponent of Degree Distribution, c) Average Clustering Coefficients 
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a) Average Path Length 

 

b) Power Law Exponent of Degree Distribution 

 

c) Average Clustering Coefficients 

Figure 4.5. SNAM algorithm with a normalized degree with added attribute 

similarity CF (w = β = 0.5). a) Average Path Length, 

b) Power Law Exponent of Degree Distribution, c) Average Clustering 

Coefficients 
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a) Average Path Length 

 
b) Power Law Exponent of Degree Distribution 

 
c) Average Clustering Coefficients 

Figure 4.6. SNAM algorithm with a normalized degree with multiplied attribute 

similarity CF (α = 1). a) Average Path Length, 

b) Power Law Exponent of Degree Distribution, c) Average Clustering 

Coefficients 
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We also examine the effect that changing the values of the CF coefficients α and β has on the 

statistical properties of the generated network.  Figure4.7 shows the effect of varying the 

coefficient of the multiplicative attribute similarity term α and that of the normalized degree β 

such that α = 1 - β and w = 0 on the resulting SNAM statistical properties. 

 
a) Average Path Length 

 

b) Power Law Exponent of Degree Distribution 

 

c) Average Clustering Coefficients 

Figure 4.7.  SNAM algorithm with varying coefficient values for the normalized 

degree with multiplied attribute similarity CF. a) Average Path Length, 

b) Power Law Exponent of Degree Distribution, c) Average Clustering 

Coefficients 
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4.3.4. Analysis of Results 

Figures 4.4 (a), 4.5 (a), and 4.6 (a) show the average path length.  The results indicate that the 

small world effect is preserved for the three combinations of α, β and w. The average path length 

decreases with increasing NM. The average path length saturates at the value of 2 when NM > 4 

for the three combinations of α, β and w.  The resultant average path length for a network of size 

N generated by SNAM is less than that for the same sized network generated by IASM. The 

lower average path length of SNAM makes the networks generated using it more reliable and 

fault tolerant.   

Figures 4.4 (b), 4.5 (b), and 4.6 (b) show that the magnitude of the PL exponents, γ, for the three 

variations remains in the range of 1.35 ≤ γ ≤ 1.75, which is consistent with values found in real-

world networks [2, 4, 5].  At NM=1, NoT’s value remains constant, the PL exponent values are 

1.68, 1.72, and 1.69 for the graphs in Figures 4.4 (b), 4.5 (b), and 4.6 (b), respectively. 

Additionally, the magnitudes of the PL exponent saturate at values close to γ   1.35 with 

increasing NM.  This leads us to believe that the variation of the CF terms here had a minor 

effect on the obtained PL exponent values. However, increasing the NM values does lead to the 

decrease of γ magnitudes. 

The average clustering coefficient values increase with increasing NM for the three variations of 

CF as shown in Figures 4.4 (c), 4.5 (c), and 4.6 (c). The average clustering coefficient reaches 

much higher values than those of the BA model or our IASMs. The clustering coefficients in 

Figure 4.4 (c), when CF depends on the test nodes’ normalized degree value, achieve higher 

values than those shown in Figures 4.5 (c) and 4.6 (c) when the CF integrates the attribute 

similarity measure with the normalized degree.  The choice of the CF coefficient values has a 

direct effect on the obtained average clustering coefficients unlike when we used TFS for 

increasing the average clustering coefficients in IASM. 

Generally, the increase of NM led to the increase of higher degree nodes (hubs) which is 

reflected by the decrease of the magnitudes of γ.  Additionally, the formation of hubs increases 

the triples in the network which can affect the obtained values of the average clustering 

coefficient. Results indicate that the number of average clustering coefficient values increases 

with the increase of NM. Also, having hubs in the network can be beneficial in decreasing the 

average path length as upon reaching a hub a network can reach many other nodes easily. 
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Figures 4.7 (a), 4.7 (b), and 4.7 (c) show the effect of varying the coefficient of the multiplicative 

attribute similarity term α and that of the normalized degree β in CF on resulting statistical 

properties of graphs generated using SNAM. When β >> α, the effect of the CF term depending 

on β dominates and vice versa. Figure 4.7(a) shows that the higher the value of α (multiplicative 

attribute similarity), the higher the value of average path length. However, the small world 

phenomenon is preserved for all α and β values. The PL exponent values remain between 

1.35 ≤ γ ≤ 1.75 for all α and β values, as shown in Figure 4.7 (b). Figure 4.7 (c) also shows that 

the average clustering coefficient increases slightly with decreasing of α. Thus, the integration of 

attribute similarity into CF in SNAM has decreased the generated network’s average clustering 

coefficient. However, this decrease is an acceptable trade off in order to include the idea that 

node attributes similarity can affect nodes’ connections. 

The SNAM generation model has preserved the PL degree distribution, has a small average path 

length, and has high clustering coefficient values. The value of parameter NM can be used to 

generate a variety of complex networks with specific values of the clustering coefficient, the 

average path length, and the PL exponent. For example even with the CF depending solely on 

the normalized degree, we can generate networks with different statistical properties. For NM = 

2, the average path length equals 2.1, the PL exponent has the magnitude of 1.56, and the 

average clustering coefficient has the value of 0.68. Increasing NM to 4 gives the values of 2, 

1.4, and 0.82 for the average path length, PL exponent, and the average clustering coefficient, 

respectively. Thus, we can tune the NM value that is used to generate a complex network with 

required specific statistical properties.  

4.4. Community Structure in IASM and SNAM 

4.4.1. Model Assumptions 

One of the characteristics of a real-world network node is its belonging to a certain class. A node 

belonging to a certain class usually prefers to connect to nodes of a similar class. This preference 

leads to the existence of communities in the network where each community contains nodes of 

the same specific class.  For example, a user’s age in a social network can affect his or her social 

circle as most of their connections are made within their age group. Another example is a user’s 

gender where females or males prefer to connect to users of the same gender. 
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We argue that including this preference in our network generation model can lead to the 

existence of community structure as found in real social networks. The community structure 

characteristic is present when actors have most of their connections with actors of their same 

class while only few connections link actors of different classes together. We deploy this in our 

model by including a parameter CSij that describes the class similarity between the added new 

node i and the old or existing test node j in the connection function, CF. This class similarity 

parameter takes the value of 1 if the arriving node and the test node belong to the same class and 

is 0otherwise. This gives nodes belonging to the same class a higher probability to get connected. 

Nodes from different classes can still be connected, but with a lower probability.  

4.4.2. Simulation Setup and Parameters  

These community structure models are modifications of the IASM and SNAM models. The 

connection function, CF, of the modified models includes the three terms for normalized node 

degree, for normalized attribute similarity, and for their normalized product in addition to an 

extra added class similarity term. One, two, or more nodes’ attributes are used to compute class 

similarity between the nodes. This means having two, four, eight, or more classes. For arriving 

node i to form a connection with node j, the connection function, CF, is computed as: 

        Normalized [(degree of node  )   (Attribute Similarity between nodes  ,  )]  

           + (                                  

           + (     ormalized (attribute Similarity between nodes  ,  )  

           + (µ )   (Class Similarity between nodes  ,  )], (4.4) 

where   +  +   + µ = 1.0, 0 ≤   ≤ 1, 0 ≤ w ≤ 1, and 0   β   1. 

4.4.3. Simulation Results 

The following simulation results use one or two class similarity attributes corresponding to two 

or four classes.  This avoids the complexity of class similarity computation. Tables 4.5 and 4.6 

show the values for the percentage of inter-class connections among network connections 

(PERCENTAGE), magnitude for power law exponent (PL EXP), average clustering coefficient 

(AvClustr), and average path length (Av.PL) values of the generated networks using either 

IASM or SNAM.  As indication of the community formation, Table 4.5 shows the percentage of 
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all inter-classes connections for networks generated for a subset of CF coefficients values  , 

   , and µ where   +   +  + µ = 1. 

4.4.4. Analysis of Results 

Increasing the weight of the class similarity coefficient µ in the CF has the following effects on 

the statistical properties of generated network. 

 Increasing µ decreases the percentage of inter-class connections (connections between 

users belonging to different classes). Thus, enforcing the connections made between 

members of the same class (community). This emphasizes the presence of community 

structure within the network. 

 The results show a small variation in the values of the magnitude of the generated PL 

exponent, but the values are still within the exponent values range reported in [2, 4, 5]. 

 Large values of class similarity coefficient µ increase the average path length to values 

slightly larger than 3.  This is still smaller than 6, so the small world property is not lost. 

This increase in average path length is due to the addition of more constraints on the 

connections made between different users. 

 An increase in the magnitude of PL exponent γ implies a decrease in number of higher 

degree nodes or hubs. This decrease in the number of hubs can cause an increase in the 

path lengths between nodes trying to reach each other since the hub could act as a relay 

for shorter connection between multiple nodes. Thus, the increase in average path length 

can be a result of the decrease in the number of hubs formed in the network. 

 Increasing µ decreases the average clustering coefficient of the generated network in 

SNAM, but increases it slightly in IASM. We can see here further proof that the 

community structure and the average clustering coefficient are two different statistical 

properties unlike what some authors assume. Here, we can see that increasing the weight 

of the class similarity coefficient in SNAM strengthens the community structure and 

decreases the average clustering coefficient of the whole generated networks. This 

decrease in average clustering coefficient can also be tied to the decrease in the number 

of network hubs. This decrease in number of hubs has an effect on the number of triplets 
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formed in the network which is reflected in the value of the resultant average clustering 

coefficient of the network. 

Table 4.5. Statistical Properties for 2-Class Networks Generated using SNAM and IASM 

CF coefficient values SNAM IASM 

α W β µ PERCENTAGE PL EXP. Av.PL AvClustr PERCENTAGE PL EXP. Av.PL AvClustr 

1.0 0 0 0 23.6625 -1.4116 1.9949 0.8533 24.7080 -1.6726 3.2568 0.0145 

.975 0 0 .025 17.2265 -1.3586 2.0516 0.6806 10.7303 1.6701 3.2746 0.0162 

.95 0 0 .05 1.850 -4.6707 2.5918 0.4014 7.7001 -1.6823 3.2932 0.0180 

.925 0 0 .075 0.3520 -3.3342 3.0090 0.2154 5.3856 -1.6737 3.3276 0.0198 

.9 0 0 .1 0.1307 -2.6254 3.2993 0.1242 4.6132 -1.6846 3.3428 0.0215 

.875 0 0 .125 0.1810 -2.2627 3.4334 0.0790 3.6829 -1.6596 3.3742 0.0214 

.85 0 0 .15 0.2313 -2.1282 3.5570 0.0559 3.2772 -1.6496 3.3949 0.0220 

.825 0 0 .175 0.1609 -2.0395 3.6554 0.0460 2.7886 -1.6464 3.4203 0.0228 

.8 0 0 .2 0.2514 -1.932 3.681 0.0404 2.5227 -1.6711 3.4338 0.0228 

0 0 1 0 24.8492 -2.0481 1.9989 0.7020 25.0686 -1.8359 3.1987 0.0170 

0 0 .99 .01 23.1496 -1.5381 2.0174 0.6335 18.4877 -1.7781 3.2236 0.0162 

0 0 .98 .02 22.7273 -1.8417 2.0411 0.6356 14.6094 -1.7496 3.2339 0.0162 

0 0 .97 .03 22.5764 -1.3814 2.0578 0.6200 12.3513 -1.7330 3.2472 0.0165 

0 0 .96 .04 19.4590 -1.4227 2.0761 0.6096 10.6119 -1.7248 3.2556 0.0170 

0 0 .95 .05 17.3572 -1.3637 2.1069 0.5576 9.3388 -1.7311 3.2652 0.0174 

0 0 .94 .06 13.3850 -3.0631 2.1505 0.5171 8.4054 -1.7099 3.2747 0.0185 

0 0 .93 .07 6.2249 -4.3644 2.3534 0.4522 7.6876 -1.6851 3.2813 0.0185 

0 0 .92 .08 3.6203 -4.5074 2.6471 0.3946 6.9538 -1.6952 3.2879 0.0191 

0 0 .91 .09 0.2615 -4.1780 2.8461 0.3364 6.3849 -1.7123 3.2970 0.0203 

0 0 .9 .1 0.3017 -3.7224 2.9467 0.2795 5.9105 -1.7014 3.3082 0.0196 

0 .5 .5 0 25.2313 -1.4768 2.0001 0.6463 22.7602 -1.7573 3.2458 0.0151 

0 .49 .49 .02 20.4143 -1.3225 2.0416 0.6563 21.3183 -1.7236 3.2499 0.0148 

0 .48 .48 .04 2.0414 -4.5022 2.4789 0.4477 20.0122 -1.7131 3.2519 0.0147 

0 .47 .47 .06 0.3017 -3.5640 2.9787 0.2405 18.6434 -1.7243 3.2496 0.0152 

0 .46 .46 .08 0.3117 -2.8104 3.1898 0.1393 17.7206 -1.7263 3.2538 0.0149 

0 .45 .45 .1 0.1911 -2.5131 3.3855 0.0878 16.5718 -1.7098 3.2547 0.0184 

0 .44 .44 .12 0.2212 -2.2862 3.4751 0.0663 15.4229 -1.6991 3.2585 0.0147 

0 .43 .43 .14 0.2212 -2.1249 3.5456 0.0499 14.6329 -1.6979 3.2604 0.0151 

0 .42 .42 .16 0.2212 -2.0136 3.6184 0.0431 13.6072 -1.7316 3.2594 0.0155 

0 .41 .41 .18 0.1911 -1.9702 3.6460 0.0380 13.1421 -1.6905 3.2637 0.0152 

0 .4 .4 .2 0.1710 -1.9045 3.6950 0.0348 12.5000 -1.6779 3.2676 0.0152 
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Table 4.6. Statistical Properties for 4-Class Networks Generated using SNAM and IASM 

CF coefficient values SNAM IASM 

Α W β µ PERCENTAGE PL EXP. Av.PL Av.Clustr PERCENTAGE PL EXP. Av.PL Av.Clustr 

1.0 0 0 0 36.2531 -1.3294 1.9936 0.7627 37.0709 -1.6691 3.2556 0.0142 

.975 0 0 .025 24.9397 -1.3453 2.0571 0.6598 22.4373 -1.6671 3.2726 0.0162 

.95 0 0 .05 2.3933 -2.9327 2.9568 0.2172 17.6844 -1.7010 3.2853 0.0189 

.925 0 0 .075 .5631 -2.3084 3.5813 0.1176 13.6476 -1.6529 3.3180 0.0233 

.9 0 0 .1 .6537 -2.0715 3.7893 0.0865 11.9294 -1.6909 3.3379 0.0251 

.875 0 0 .125 .5733 -1.9607 3.8958 0.0710 9.8489 -1.6790 3.3740 0.0288 

.85 0 0 .15 .6034 -1.9008 3.9266 0.0664 8.7999 -1.6731 3.3963 0.0300 

.825 0 0 .175 .6536 -1.8766 3.9735 0.0634 7.4743 -1.6682 3.4355 0.0328 

.8 0 0 .2 .4325 -1.8207 4.0214 0.0602 6.9119 -1.6649 3.4506 0.0334 

0 0 1 0 37.4496 -2.3210 1.9975 0.7061 37.5077 -1.8169 3.2002 0.0171 

0 0 .99 .01 35.3781 -2.7901 2.0167 0.7054 32.006 -1.8059 3.2107 0.0165 

0 0 .98 .02 33.7287 -2.1602 2.0288 0.7295 27.9235 -1.7345 3.2277 0.0161 

0 0 .97 .03 31.5664 -2.0135 2.0450 0.6182 24.8246 -1.7604 3.2316 0.0172 

0 0 .96 .04 29.8572 -2.0520 2.0707 6170 22.1974 -1.7393 3.2400 0.0176 

0 0 .95 .05 26.7700 -3.5844 2.0902 0.5454 20.2097 -1.7548 3.2499 0.0185 

0 0 .94 .06 22.9184 -4.0631 2.1784 0.4489 18.6136 -1.7328 3.2571 0.0198 

0 0 .93 .07 14.7526 -3.4720 2.3151 0.3577 17,1202 -1.7429 3.2682 0.0204 

0 0 .92 .08 7.6126 -2.7553 2.8337 0.2006 15.9947 -1.7234 3.2773 0.0211 

0 0 .91 .09 2.2124 -2.5554 3.2124 0.1408 12.3491 -1.7125 3.2856 0.0215 

0 0 .9 .1 1.0760 -2 3.4094 0.1232 14.0462 -1.7036 3.2973 0.0228 

0 .5 .5 0 37.4497 -1.6435 2.0004 0.6328 35.3259 -1.7244 3.2467 0.0144 

0 .49 .49 .02 30.6417 -1.5473 2.0342 0.6380 34.0542 -1.7492 3.2470 0.0147 

0 .48 .48 .04 5.4204 -2.9574 2.7152 0.2354 33.0114 -1.7262 3.2496 0.0148 

0 .47 .47 .06 0.4928 -2.3661 3.5973 0.1131 31.8473 -1.7276 3.2485 0.0150 

0 .46 .46 .08 0.6236 -2.1388 3.7664 0.0850 30.7919 -1.7284 3.2481 0.0149 

0 .45 .45 .1 0.6235 -2.0056 3.8470 0.0731 29.7874 -1.7092 3.2537 0.0146 

0 .44 .44 .12 0.4627 -1.9415 3.9120 0.0672 28.6919 -1.7148 3.2517 0.0148 

0 .43 .43 .14 0.5129 -1.8647 3.9488 0.0621 27.7111 -1.7110 3.2550 0.0153 

0 .42 .42 .16 0.5229 -1.8223 3.9784 0.0616 23.8104 -1.7188 3.2569 0.0150 

0 .41 .41 .18 0.6035 -1.8318 4.0196 0.0601 25.7385 -1.7266 3.2554 0.0156 

0 .4 .4 .2 0.5028 -1.7855 4.0414 0.0579 24.6436 -1.7056 3.2598 0.0161 
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 Additionally, including the attribute similarity whether multiplicative ( ) or additive (   

led to a faster decrease in the percentage of inter-class connections with increasing µ. 

This can be the result of our choice of dividing the network into different classes 

according to some (1, 2, or more) of the 10 nodes’ attributes used in the simulation. 

 It is clear from different results that to reach the same level of community structure 

formation, IASM requires higher values of class similarity coefficient than those required 

by SNAM.  

Our IASM and SNAM community structure models preserved PL degree distribution that 

characterize real-world networks. The small world property is also preserved. The models show 

community structure as most of the connections are made between nodes belonging to the same 

class with only a small percentage of the connections made between nodes of different classes. 
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Chapter 5.  Mathematical Analysis of IASM and SNAM 

5.1. Introduction 

In this chapter, we analytically study IASM and SNAM. The rate equation analysis method and 

mean field theory are used to show that our IASM and SNAM models have a node degree 

distribution that follows a power law distribution. The study presents expressions for the power 

law exponent under certain model conditions. 

5.2. IASM Analysis 

5.2.1. Introduction 

The Integrated Attribute Similarity Model, IASM_A, follows the same connection algorithm as 

the Barabási-Albert model [3]. As in the BA model, IASM models a growing network where 

connections are made using preferential attachment. Simulation results, presented in Chapter 4, 

show that IASM preserves the power law degree distribution found in real-world complex 

networks. IASM’s connection function,   , depends on both the existing nodes’ degrees and the 

attribute similarity between the newly added node and existing network nodes. To verify the 

power law dependence found through simulation and to better understand IASM, the analysis 

presented in this chapter derives an expression for the node degree distribution using the rate 

equation analysis method and mean field theory [42, 1]. We concluded from our simulation 

results that, for IASM, the multiplicative attribute similarity measure is a better measure for 

similarity than the additive attribute similarity. Therefore, the analysis here is done for IASM 

with multiplicative attribute similarity. 

Both the BA model and IASM model start network growth with a seed network with mo nodes 

connected by eo edges given that mo   2 and eo ≥ 1.  At each time step, a new node l is added to 

the network with m links, m ≤ mo, to be connected one by one preferentially to the existing 

network old nodes. The addition of new nodes continues until the final network size is reached. 

5.2.2. BA Model Degree Distribution 

We begin by repeating the derivation for the degree distribution performed by Barabási and 

Albert [3]. We then use this derivation as a guide for our mathematical analysis of IASM. The 

connection function used in the BA model, CF, which is used in the BA preferential attachment 
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(PA) connection algorithm, depends only on an existing node’s degree   . Its rate equation is 

given by: 

      

  
   

  

    
 = m

     

       
  

Since, for large values of t,       [42], 

      

  
 

 

 

     

 
 (5.1) 

Integration gives,   
     

       
 = 

 

 
  

 

  
. 

Since node i was created or born at ti,         .  Therefore, 

      = m  
 

  
 
 
  

 (5.2) 

Using P(k) = 
           

  
 [42] and Equation 5.2, Barabási and Albert prove that the node degree 

distribution follows a power law, P(k)    γ  having exponent γ= 3 [42]. 

5.2.3. IASM Model with Multiplicative Attribute Similarity Analysis 

As previously mentioned, we consider the IASM model case where CF depends on the 

normalized existing node degree multiplied by the value of the normalized attribute similarity. 

The normalized attribute similarity between existing node i and the new arriving node j,      is 

computed as:  

     
 

 
  

   
   
 
   

   

   
   
 
   

  =  
 

 
       
 
    

 

 
     
 
    

Operator (   represents the element-by-element multiplication of the attribute vector  

   
   
 
   

  of 

node i and the attribute vector  

   
   
 
   

  of node j.  Division by L normalizes    . 
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Next, we use the probability density functions                                the probability 

density functions,         and          The random variables    ’s are assumed to be independent 

for different values of l and each random variable     is binary, either 1 or 0, both with equal 

probability, as shown in Figure5.1 (a). 

 

Figure 5.1.  Probability density functions,                   . 

Then, 

P(    = 1) = 
 

 
= P(    = 0) = 

 

 
 or        = 

 

 
 (   ) + 

 

 
 (   -1), 

       = 
 

 
 (   ) + 

 

 
 (   -1) 

Thus, as shown in Figure 5.1 (b), ρ(      = ρ(      ) = 
 

 
 (    ) + 

 

 
 (    -1).  

Since     
 

 
     
 
    and all     ’s are independent for all values of l, the random variable 

    = 
 

 
                    and its pdf follow a Binomial distribution. 

Using the notation p = P(        
 

 
, then (1 - p) = P(        

 

 
, and the pdf of     is: 

P(   =
 

 
) = 

  

         
p

w 
(1 - p)

L-w
, where w is a constant and w = L, L-1,…, 3, 2, 1 ,0. 

Substituting p = 
 

 
 gives 

P(    = 
 

 
) = 

  

         
(
 

 
 w 

( 
 

 
)

L-w
 = 

  

         
(
 

 
 L 

(3)
L-w 

Hence, the probability density function, ρ(      is: 

ρ(      
  

         
 
   (

 

 
 L 

(3)
L-w 

 (   -
 

 
) (5.3) 

(a)        (b)         
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Since the IASM model, as considered here, has CF dependent on the normalized node degree of 

existing node I multiplied by the value of the normalized attribute similarity between the existing 

node i and the new arriving node j, its rate equation is given by: 

      

  
   

     
       

 

Using mean field theory [1, 42],            replaced by its mean value,          . 

Therefore, 

      

  
   

     

         
 =   

   

          

  

 
 

      

  
 = β     

  

 
 (5.4) 

Similar to the scale-free BA model, comparing Equations 5.1 and 5.4 indicates that it is assumed 

that the degree of node i at time evolution       follows a power law: 

        
 

  
 
β     

 (5.5) 

From Equation 5.4, 

β      =   
   

          
 (5.6) 

Here, m =        = degree of node i at birth 

Equation 5.5 indicates that the growth of the node degree in IASM is a multi-scaled system with 

a dynamic exponent dependent on       Notice that the dynamic exponent β       in the 

expression for ki(t), Equation 5.5, must be positive, β         so the node’s degree at different 

time steps either remains constant or increases  Also,since a node’s degree cannot grow faster 

than evolution time t, the exponent cannot exceed 1, β         Therefore, both conditions 

imply that 

            

To study this dynamic exponent,       , its denominator is manipulated as follows: 

               ρ     
      

      

                
 

    
,       
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 =       ρ     
 

      

   
 

  
 
β     

         
 

    
 

=         ρ     
 

      

   β            
 β               

 

    
 

= m t      ρ     
 

      

   β       
  
   β        

  β     
     

=       
   ρ     

  β     

 

      

         β            (5.7) 

Since                β           Therefore, the expression for          can be written 

as: 

                         (5.8) 

where,   = [1 – max (β       is positive. 

Therefore, as t  , Equations 5.7 and 5.6 give 

                , β      
   

 
 (5.9) 

Thus, the degree time evolution power law, Equation 5.5 in terms of C is: 

        
 

  
 

   

 
 (5.10) 

Constant C is the solution of C =  
   ρ     

   
   

 

 

      

    , 

where,   
   

 
                and thus w = L, L-1,…, 3, 2, 1. 

Hence,  

               (5.11) 

Using the expression for      , Equation 5.10, and the value of C from the solution of Equation 

5.11, we can derive the probability distribution function for the degree P[k]. We replace the 

random variable    by the dummy variable S for simplicity. The degree probability density 

function for a specific value of attribute similarity S is given by 
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ρs(k) =
           

  
.  

From Equation 5.10,            = P[  
 

  
 

 

 
< k]=P[ti > t 

 

   
 

 ] = 1 – P[ ti  ≤  t  
 

    
 

 ] 

Since one vertex is created at each time instant, 

           = [1-
   

 
    

  
  

    
] 

Then,            [1-  
 
   

  
   ] for large values of t and for S    

Giving, ρs(k) =  
           

  
 = 

 

 
  

 
     

 

 
   

, S    

This is for a specific value of attribute similarity S, hence, 

ρ(k) =             
 

    
  

 

 
 
 
         

 

 
              

 

    
 (5.12) 

Therefore, to find ρ(K), Equations 5.11 and 5.12 are used, rewritten as: 

C =  
 ρ   

  
 

 

 

    
   (5.11)* 

ρ(K) =  
 

 
   

 
     ρ       

 

 
      

 

    
          (5.12)* 

For IASM, ρ         in Equations 5.11 and 5.12, is shown previously in Equation 5.3 to follow 

a binomial distribution as: 

ρ                
 

 
  

             F(w) = 
  

        
(
 

 
 L 

(3)
L-w 

for which, C =  
           

 

 
   

   

  
 

 

 

    
            and      corresponds to w=1. 

Integration gives, 

C =  
 

  
    

    
 

  

 

 
   =  

 

  
    

   
 

  

 
   ,            = 1.0 (5.13) 

Equation 5.12* becomes 

ρ(K) =  
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This integration has a value only at   
 

 
  

ρ(K) =  
 
 
  
 
 
 
 

  
 
   

   
 
 

  
    

        
    

         =   
   

 
   

  

 
           

  

 
     

    (5.14) 

Thus, P(k) is the sum of PL degree distributions having exponents  

γ
 
  

  

 
     where, w = L, L-1,…, 3, 2, 1. 

Thus, γ
 
  -(1+C), -(1+C

 

   
), -(1+C

 

   
),…, -(1+LC) (5.15) 

for each value of C given by Equation 5.13. 

5.2.4. Numerically Finding Constant Values of C 

In this section, C is determined through a numerical solution of Equation5.13 and the use of the 

condition,               .  Values of C for different values of L, the number of node 

attribute values, are found using the corresponding closed form expression for the degree's 

probability distribution function, ρ[k]. 

5.2.4.1. Single Attribute Node, L = 1 

If nodes have only one attribute, L = 1: 

S = 0 or 1 and ρ(S) = 
 

 
 ( )+

 

 
 ( -1) 

Thus, F(0) = 
 

 
 and F(1) = 

 

 
 and Equation 5.13 gives 

C =  
 

 
 

 

  
 

 

 , giving C = 1.25                 

And Equation 5.14 for L = 1 implies  

ρ[k] = 
 

 
              = 

 

  
                 

Thus, the degree distribution for L = 1 follows a power law with       . 
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5.2.4.2. Double Attribute Node, L=2 

If nodes have two attributes, L=2: 

For L = 2, S = 0, 
 

  
 or 1, hence w = 0, 1, or 2 and F(0) = 

 

  
, F(1) = 

 

  
 and F(2) = 

 

  
 and 

Equation 5.3 gives:  ρ(S) = 
 

  
 ( )+ 

 

  
 ( -

 

  
) + 

 

  
 (  - 1). 

Thus, Equation 5.13 gives 

C = 

 

  
     

  
 

  

 
      

  
 

 

=

 

  
 
 

  

  
 

  

 
  

 

  

  
 

 

 

Thus, 16 = 
  

    
 

 

   
 

Giving 32 C
2 

- 56 C + 23=0, whose roots are C = 1.09                 which is accepted 

according to the condition of Equation 5.11, and C = 0.6585 <                which is not 

accepted according to the condition of Equation 5.11. 

Also, for L = 2, Equation 5.14 becomes: 

P[k] =  
  

 
  

  

 
  

   
  

 
    

       
           F(2)       ] 

         = 
 

   
 
 
 

   
 
 
   

  

 
    

      +  
 

   
   

 
 

   
 
 
   

  

 
    

     

         = 2C                  
 

  
+               

 

  
 

         = 
 

 
                  +

 

  
               

Therefore, using the accepted root C = 1.0915 >               : 

P[k] = 
      

 
                   + 

      

  
                   , 

Since for large values of k,          >>         , 

Thus, for L = 2, C = 1.0915 is the only accepted value of C and the PL exponent 

  -       overpowers the one with    3.18 and dominates the value of the summation. 
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5.2.4.3. Multiple Attribute Node 

As seen for L = 1 and L = 2, it was possible to solve Equation 5.13 analytically to find values of 

C. However, finding an analytical solution for Equation 5.13 at higher values of L is challenging. 

Therefore, Equation 5.13 is numerically solved using MATLAB for values of L greater than 2. 

Table 5.1 shows the results found by numerical solution for L = 3, L = 4 and L = 5. 

As mentioned before, there are L corresponding values of   for each of the values of C, as shown 

in Table 5.2. Thus, there are L values of   corresponding to the constant C satisfying the 

condition that C > 1. The smallest of these L values is the dominant exponent. It is clear from 

Table 5.2 that we can use IASM to generate complex networks with different power law 

exponent values. Thus, according to the desired power law exponent, we can vary the number of 

attributes assigned per node, L. 

Table 5.1. Root Values C of Equation 5.13 

L C1 C2 C3 C4 C5 

1 1.25     

2 0.6585 1.0915    

3 0.4319 0.7891 1.029   

4 0.3138 0.6092 0.8194 1.0076  

5 0.243 0.4861 0.6902 0.829 1.0018 

Table 5.2.  Power Law Exponents for Different Values of L and Corresponding Values of C 

L C                

1 1.25 2.25     

2 
0.6858 1.6585 2.317    

1.0915 2.0915 3.183    

3 

0.4319 1.4319 1.6419 2.2957   

0.7891 1.7891 2.1837 3.3673   

1.029 2.029 2.5435 4.0870   

4 

0.3138 1.3138 1.418 1.6276 2.2552  

0.6092 1.6092 1.8123 2.2184 3.4368  

0.8194 1.8194 2.0925 2.6388 4.2776  
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1.0076 2.0076 2.3435 3.0152 5.0304  

5 

0.243 1.243 1.3037 1.4050 1.6075 2.2150 

0.4861 1.4861 1.6076 1.8102 2.2152 3.4305 

0.6902 1.6902 1.8628 2.1503 2.7255 4.4510 

0.829 1.829 2.0360 2.3817 3.0725 5.1450 

1.0018 2.0018 2.2523 2.6697 3.5045 6.009 

Next, we study which of the L values of    corresponding to C > 1 is dominant and overpowers 

the summation P(k).  To decide what will happen if L has very large values, we go back to IASM 

with L = 2.  It was previously stated that P(k) for   = 2.0915 (corresponding to C > 1 value of 

C = 1.0915) seems to dominate the summation of the two power law distributions. To test this, 

P1(k) and P2(k) that correspond to each of the two values of   values (2.0915 and 3.183) as well 

as the sum of both, total P(k) were plotted. As shown in Figure 5.2, it is clear that, for high 

values of k, P1(k) corresponding to lower value of   is closer to total P(k) and is dominant for L = 

2. 

 

Figure 5.2. P1(k), P2(k), and sum of P(k) for L = 2. 
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Figure 5.3. P1(k), P2(k), P3(k), and sum of P(k) for L = 3. 

 

Figure 5.4. P1(k), P2(k), P3(k), P4(k), and sum of P(k) for L = 4. 
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Figure 5.5.  P1(k), P2(k), P3(k), P4(k), P5(k), and sum of P(k) for L = 5. 

The same procedure was repeated for L = 3, 4 and 5 as illustrated in Figures 5.3, 5.4 and 5.5. 

Pi(k) is plotted for each of the PL exponent values,     , I =1, 2, 3,.., L], corresponding to the 

value of C that solves Equation 5.13 while satisfying the condition           = 1.0. Also, the 

sum, total P(k), of each Pi(k) is plotted. Comparison indicates that for large values of k, Pi(k) for 

         is the closest to sum, P(k) and can be considered the effective exponent in the 

summation. 

Table 5.2 shows the accepted values of C satisfying the condition            = 1.0 for 

different values of L and their corresponding values of PL exponents  .  Table 5.2 shows the 

different values of   for different values of L and shows that for each value of L the node’s 

degree distribution has PL exponent ranging from             .  

Figure 5.6 is a plot of the accepted values of C, as shown in Table 5.2, and indicates that the 

value of accepted C is slowly and asymptotically approaching 1.0 as L increases, L >> 5.  
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Figure 5.6.  Accepted values of C versus L. 

The value of      corresponding to the accepted C values increases as L increases having value 

slightly larger than (L+1) as seen in Figure 5.7. The difference [            decreases as L 

increases, asymptotically approaching 0 as L becomes very large, L >> 5. Therefore,      

asymptotically approaches       as L becomes very large, L >> 5. 

 

Figure 5.7. Values of      versus L. 
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Figure 5.8. Values of              versus L. 

On the other hand, Figure 5.9 indicates that the value of      decreases as L increases and      

asymptotically approaches 2 as L becomes very large, L >> 5.  Thus, for large values of L,      

approaches L+1 and      approaches 2. Additionally, we deduce from Figures 5.2, 5.3, 5.4, and 

5.5 that      becomes the dominant exponent for large values of k.  

 

Figure 5.9. Values of      versus L. 
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5.2.5. Discussion 

The BA model produces a power law distribution given by                   Thus, the BA 

model has a constant exponent, γ = 3 which is different from what is found in real-world 

complex networks where γ ranges from 1 to   as stated in Chapter 2. For the case of IASM with 

a multiplicative attribute similarity measure, we analytically demonstrated that the IASM model 

produces networks with degree distribution given by: 

       
  

 
  

  

 
          

  

 
     

      ,     -(1+C), -(1+C
 

   
), -(1+C

 

   
),…, - (1+LC).  

Thus, for length L node attribute vectors, the degree distribution of IASM is the sum of L power 

law degree distributions having exponents     
  

 
    where, w = {L,…, 3, 2, 1} for the 

accepted value of C given as the root of Equation 5.13 and       .  Our numerical analysis of 

the distribution shows that at L = 1, the degree distribution is a PL with exponent       . As 

for the case where L = 2, it is the summation of two PL distributions.  But, at higher values of k, 

the lower exponent dominates the higher exponent. 

Hence, we conclude from this analysis that IASM is successful in preserving the power law 

degree distribution found in real-world complex networks.  Additionally, IASM, unlike the BA 

model, reflects the heterogeneity of the nodes’ attributes. Thus, IASM is capable of modeling the 

common scenario in real-world complex networks where a new node usually prefers to connect 

with existing nodes that are the most topologically popular and that have interests or attributes 

that are similar to those of the new node. 

5.3. SNAM Analysis 

5.3.1. Introduction 

Simulation results that were previously presented in Chapter 4 show that SNAM preserves the 

power law degree distribution found in real-world complex networks. Networks generated using 

the SNAM model show high values of the average clustering coefficient similar to those of real-

world networks. It was also shown that values of power law degree distribution exponent as well 

as the average clustering coefficient for networks generated using the SNAM model depend on 

many model parameters, especially NoT which represents the number of tests performed by each 

node to establish each of the m new links. This gives SNAM the capability to generate complex 



 

87 

 

networks with different statistical properties depending on the value of SNAM parameters used 

during network evolution. To verify the power law dependence found through simulation and to 

better understand SNAM, we analytically derive an expression for the nodes’ degree distribution 

using the rate equation analysis method. 

To make the analysis tractable, we need to make some modifications to SNAM as previously 

described.  For convenience, we refer to the version of SNAM implemented and described 

previously as SNAM and we refer to the modified version of SNAM used for the analysis in this 

chapter as SNAM”.   

These modifications include the following. 

1) In SNAM, the value of the number of tests, nt or NoT, changes during the evolution of the 

network such that its value is incremented when reaching some predefined milestones 

during network evolution. Whereas in SNAM”, nt has a constant value during the entire 

network evolution. This assumption is made to facilitate the mathematical analysis to be 

able to reach a closed form equation for the degree distribution of the generated network. 

Having nt incremented when reaching predefined milestones would not alter the power 

law degree distribution form of variation and its precise dependence on the value of nt 

that is used. Thus, if the degree distribution power law dependence exists in SNAM”, it 

would still exist in SNAM, but in a more complex form. In particular, the value of the 

overall power law exponent for SNAM depends on the initial value of nt and the number 

of network growth milestones. In SNAM”, the assumption that nt is constant simplifies 

the power law exponent dependence to a dependence on a constant parameter nt. 

2) In SNAM, if node l reaches its maximum number of tests, NoT, and it still has not 

established its m connections, then arriving node l reduces its connection standard by a 

certain constant parameter €. The testing of randomly chosen existing nodes is resumed 

using this new reduced connection standard for the same maximum number of tests nt. 

This sequence is repeated until the arriving node l completes its m connections.  In 

SNAM”, we assume that the arriving node never has to decrease its connection standard. 

Thus, it is assumed that the probability of the arriving node failing to make all its m 

connections during nt tests is negligible. Therefore, the present analysis assumes that the 

value of all arriving nodes connection standards are sufficiently low and that nt is 
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sufficiently large such that the assumption that the new node will establish all its m 

connections during nt tests per link is valid. 

3) The SNAM connection standard, CF, depends on the normalized degree value and/or 

nodes attribute similarity. In this analytical solution, the SNAM” connection standard, 

CF, depends only on the normalized degree, similar to the BA model, for simplification 

of the mathematical analysis.  Note that, here, we are not modifying the connection 

algorithm. Making the CF dependent on the normalized degree only simplifies the 

calculation method of the connection parameter CF, but the connection algorithm is not 

affected.  

5.3.2. SNAM”: Special Case of SNAM Considering Only Structural 

Popularity 

The model starts with a seed network with mo nodes connected by eo edges given that mo  ≥ 2 and 

eo ≥ 1.At each time step, a new node l is added to the network with m links to be connected to the 

existing network, one by one, where m ≤ m0.  The connection function used here is as in the BA 

model. The connection of a new node l to old existing node i depends on the connectivity ki of 

node i and is given by: 

   
  

    
   (5.16) 

In SNAM, each of the arriving new nodes has its connection standard Sl which describes its 

minimum requirement when making connections to existing nodes. We perform a test to see if 

the randomly chosen existing node connection function value exceeds or equals the connection 

standard of the arriving node. In the present analysis, existing nodes to be tested for connection 

with the new node are chosen randomly with replacement since analytically finding a closed 

form for the probability density function after excluding previously tested existing nodes would 

prove to be challenging or impossible. 

This test is repeated nt times for each of the new node’s m links, which is the number of 

independent tests used to find suitable old existing nodes to be connected to the new node, where 

2 ≤ nt ≤ Ne, where Ne is the number of existing nodes in the network. 

The connection to a node can take place in any of consecutive tests. 
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1. Success on the first test, so a connection is established on the first test with probability  , 

or 

2. Failure on the first test and success on the second, so a connection is established on the 

second test with probability         or 

3. Failure on the first two tests and success on the third, so a connection is established on 

the third test with probability        , and so on…… until failure on (nt-1) tests and 

success on nt, so a connection is established on test nt with probability                

Since the tests are mutually exclusive, this connection or link from new node to an existing test 

node i during nt tests is made with probability   

                           +…+               

    = nt + f (p
2
, p

3
,…) (5.17) 

Since, as in Equation 5.16,  is the normalized degree of existing nodes, p   , the higher orders 

of p terms of Equation 5.17 can be neglected w.r.t. the value of nt    Therefore,   nt . 

An alternate proof for expression of  i s: 

P[successful connection within nt tests] = 1 - P[no connection within nt tests]  

Since P[ no connection within nt tests] = P[no connection within first test] and P[no connection 

within second test] and P[no connection within third test] and P[no connection within fourth test] 

… and P[no connection on ntth test]. 

Since each (no connection) in a test is statistically independent of (no connection) in other tests. 

P[no connection within nt tests] =                              
  
    

                                                   =        
  
          =              

Therefore,    P[successful connection within nt tests] 

                      =1 -        = nt + f ( p
2
, p

3
,…) nt  (5.18) 

Equations 5.17 and 5.18 are the same. 
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Additionally, as explained above, we take small enough values of the node connection standards 

and high enough values of nt so that it can be assumed that a connection will be made during the 

nt tests. 

Since this process is repeated for each of the m links to be established per unit step, the rate 

equation representing the rate at which the node i acquires edges can be written as follows. 

      

  
 =   nt       

  

    
  

         

       
 

Therefore, for large values of t, 

      

      
  

  

 

  

 
 (5.19) 

Integrating both sides of Equation 5.19 gives 

        =      
  
  + c, where c is a constant. 

Since        = m, since ti is the time at which node i was added to the system. 

    =       
  
  + c, where c is a constant. 

Therefore,   
     

 
 =    

 

  
 
  
  

or       =    
 

  
 
  
  (5.20) 

The cdf of         the probability that a node i has a connectivity smaller than   

                           =  [     <       
 

  
 

  
 
          

 

 
 

 

   ] 

Therefore,  [     <           
 

 
 

 

   ] (5.21) 

Since the initial seed size is   and one new node is added uniformly at each time step, 

      
 

    
 

Therefore, P[     <     
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The probability density of a node having degree k, P[k] can be obtained using 

     =            /   giving 

     
           

  
 =  

 

  

   
 
   

    
   

  
 

  
   

 

Since at long times t >>>   ,         and 

     
 

  

   
 

   

 
   

  
 

  
   

    
 

  
   

 

        

Therefore,      follows a power law distribution with            
 

  
   for     . 

5.3.3. Discussion 

We note that the BA model has produced a power law distribution given by 

                   Thus, the BA model has a constant exponent, γ, of value 3 which is 

different from what is found in real-world complex networks where γ ranges from 1 to   as 

stated before in Chapter 2. SNAM (actually SNAM”) produced a network with power law 

distribution given by 

       
 

  
   

 

       , where   
 

  
    for     .  This gives SNAM an advantage over BA 

as SNAM is capable of generating complex networks with adjustable statistical properties. In 

SNAM, changing the number of tests,   , yields different types of complex networks with 

different statistical properties. 

Hence, we conclude from this analysis that SNAM is successful in preserving the power law 

degree distribution found in real-world complex networks and that the value of the power law 

exponent depends on the value of    used in network generation. SNAM introduces a new 

concept of node heterogeneity which is the heterogeneity of the nodes’ requirements to establish 

a connection. SNAM, as far as we know, is the only model for complex network generation that 

considers individual differences between nodes by assigning this heterogeneous connection 

standard parameter to the arriving nodes.  Additionally, SNAM excels in its capability of 

generating specific types of complex networks by varying the model parameters. 
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5.4. Validation 

To provide some validation of our results, we compare the results obtained from the 

mathematical analysis of our models, as discussed above, with earlier simulation results, as 

presented in Chapter 4. We generate networks using our MATLAB simulation code for the 

special cases of IASM_A and SNAM that were analyzed in our mathematical analysis. We try to 

incorporate the assumptions made during the mathematical analysis in our simulations.  

However, this can prove to be challenging or not applicable as in theoretical analysis where 

everything can be assumed ideal and usually differs from reality. 

Using IASM_A, networks with 1,000 nodes are generated via MATLAB with m = mo = 5, 

L = 10, α = 1, w = 0, and β = 0 (multiplicative degree and attribute similarity CF). The networks 

are generated for different attribute vector lengths, L. The PL exponent magnitude values of 

these simulations are plotted together with those resulting from the mathematical analysis of 

IASM_A, previously shown in Figure 5.9.  From comparison of the two PL exponent curves in 

Figure 5.10, we can see that the analytical and simulation results are similar in that the 

simulation results are very close to the analytical results and both curves have the same tendency 

of magnitude decreasing as the number of attributes, L, increases. 

Additionally, we use SNAM to generate networks with 1,000 nodes using our MATLAB 

simulation code with m = mo = 5, L = 10, α = w = 0, and β = 1 (degree only CF). The networks 

are simulated for various values of €. Figure 5.11 shows the plot for PL exponent magnitude 

values resulting from both the analytical analysis and simulation (with variable €) versus the NoT 

parameter.  The figure shows that the PL exponent magnitude values from the analytical analysis 

are close to values resulting from simulation and follow the same behavior when the NoT 

parameter is varied. 

5.5. Conclusion 

In this chapter, we have used the rate equations for models IASM and SNAM along with mean 

field theory to find expressions of the degree distribution for each model. We concluded that for 

IASM having the connection function, CF, dependent on the structural popularity multiplied by 

the attribute similarity, the degree distribution is a sum of PL degree distributions having 

exponents      
  

 
    where, w = {L,…, 3, 2, 1}. Additionally, SNAM” whose CF is 
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dependent only on structural popularity, has a power law degree distribution given by      

  
 

  
   

 

       , where   
 

  
    for     . 

 

Figure 5.10. Power law exponent magnitude versus number of attributes, L, 

derived by analytical and simulation methods for IASM_A. 

 

Figure 5.11. Power law exponent magnitude versus number of trials, NoT, 

derived by analytical and simulation methods for SNAM. 
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Chapter 6. A Case Study Using the Heterogeneous Complex 

Network Generation Models 

6.1. Introduction 

This chapter discusses evaluating our proposed models, Integrated Attribute Similarity Models 

(IASM) and Settling Node Adaptive Model (SNAM), using an online social network modeling 

case study. The reasons for choosing an online social networks (OSN) for the case study are first 

discussed. Examples of OSN applications in different fields are presented next. The 

mathematical modeling of OSNs is then discussed. Next, we introduce the benefits and 

suitability of mathematically modeling OSNs using our models. The method for evaluating 

IASM and SNAM using the case study is presented. Evaluation results are then presented. 

Finally, we discuss the conclusions of the case study. 

6.2. Using Online Social Networks for the Case Study 

Our proposed models are intended to be general and, hence, can be used to generate different 

types of complex networks used in different application domains. However, as a proof of concept 

and to provide a more in-depth study of the application of our models to one particular type of 

complex network, we conduct a case study where we apply the models developed in this research 

to online social networks. 

Sociologists have long used the term social networks (SNs) to represent interconnections, 

between different entities that are formed for reasons such as similar interests or context 

(location or job). An online social network (OSN), which is of interest here, is defined as a 

digital representation of the relations between registered entities, individuals or institutions [2]. 

Our choice of online social networks is mainly due to their widespread use in a large number of 

application areas, including marketing, information diffusion, recommendation, and trust 

analysis [43].  Online social networking websites are used to maintain, strengthen, and support 

offline social relations.  OSNs contain within them a lot of information, such as the relations 

between actors or registered entities (topological structure) and semantic information about the 

actors or their published content. The importance of OSNs has led to their being studied widely 

[44] and makes them a good candidate for a case study for this research. 
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6.2.1. Applications of Online Social Networks 

Data extracted from OSNs is used to guide decision makers to make more accurate decisions in 

applications such as healthcare, marketing, and information diffusion [43]. Additionally, OSNs 

can be used for answering numerous research questions in the application domain, such as:  

What are the different communities in the network and their members? What customer(s) would 

most likely be interested in a certain product? Who are the most influential users? What is the 

susceptibility of users to disease? 

6.2.2. Mathematical Modeling of Online Social Networks 

A good mathematical model for OSNs should mimic the structure and dynamics of the actual 

OSNs. Thus, applying our models for generating an OSN should preserve the statistical 

properties exhibited by the real OSN, calculated or determined for this OSN by other researchers. 

As stated previously, OSNs are characterized by having a power law degree distribution, high 

average clustering coefficient, small average path lengths, and the emergence of community 

structure.  Moreover, the models should be capable of accurately predicting future connections 

between network nodes or users.  

6.2.3. Using IASM and SNAM to Generate Online Social Networks 

We conjecture that IASM and SNAM will be useful in analyzing online social networks by 

generating networks that mimic the real network structure and dynamics. OSNs grow as users 

with similar interests create more connections with each other rather than with users with 

different interests. The set of node attributes is defined based on the characteristics or profiles of 

the social network users. Individual differences between users have an effect on their 

connections. Additionally, users in social networks usually make connections based on the 

structural popularity of other users. The connection standard of SNAM can be interpreted by 

individual differences between users making connections. To our knowledge, integration of 

structural popularity with multi-attribute similarity and including individual differences when 

making connections has not been represented in any other model prior to our research. 
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6.3. Dataset for the Case Study 

A real dataset representing a real OSN will be used in the case study. This dataset should provide 

empirical results gathered about the OSN being studied. We opted for using a suitable dataset 

among datasets published through previous projects. We think that creating our own dataset is 

time consuming and does not add to proving the validity of our models. Performing the case 

study requires a true understanding of the dataset that is used. Thus, the statistical properties for 

the dataset must be obtained.  

We chose one of the datasets for online social networks made available online by Stanford 

University, ego-Facebook [45]. The dataset consists of “friend lists” from Facebook and was 

collected using the Facebook application. The dataset chosen was for anonymous Facebook user 

connections.  The dataset includes node attributes (profiles) and their undirected structural 

connections. The dataset consists of 4,039 users or nodes with 88,234 edges among those nodes. 

The dataset contains 10 ego users’ networks. An ego user (node) is called the focal node and the 

nodes directly connected to it are commonly known as alters. Each of the 10 ego networks 

contains ties between its focal node and its connected alter nodes and the present ties between 

these alters. To perform statistical analysis on the network, we combined the ego networks, 

including the ego focal nodes themselves. 

6.3.1. Processing the Dataset 

We started by combining the data available from the 10 ego networks to obtain the adjacency 

matrix describing all network connections. Additionally, the node features were recorded in 

relation to the ego users so we had to extract the real node features values. After performing this 

analysis, we had a 4,039 × 4,039 square adjacency matrix of user connections with 1,283 feature 

(attribute) vector for each user. Thus, now each node has a binary vector of length 1,283 

associated with it whose elements take either the value of 1 if the node possess this attribute or 

the value 0 if the node is not interested in this attribute. 

We calculated the statistical properties for the extracted adjacency matrix. The value of the 

power law exponent for the adjacency matrix was found to be -1.1697, the average path length 

was 3.6925, and the value of the average clustering coefficient was 0.6055.  To validate our 

network growth models using real-world network information as a case study, a small subset of 

http://snap.stanford.edu/data/egonets-Facebook.html
https://www.facebook.com/apps/application.php?id=201704403232744
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the real-world network connections was used as a seed for synthetic network growth. A 

MATLAB program used the seed adjacency matrix structural information, together with 

attributes of all nodes of the real network, to grow a synthetic network with the mathematical 

model to be validated. The synthetic network has the same size as the real network size. Then, 

statistical properties of the real and synthetic networks were compared. Study of the emergence 

of the community structure property was not applicable as the dataset did not contain information 

about the network communities. 

6.4. Evaluation of IASM and SNAM Using the Facebook Dataset 

We believe that our model will be useful in the field of link prediction for social networks, which 

has many applications in fields such as marketing, terrorist network analysis, and healthcare. 

Thus, to validate and evaluate the accuracy of our model’s link prediction, we introduce the 

attribute vectors for the nodes and a subset of the adjacency matrix as model inputs. The 

objective is to use the seed network extracted from the real network dataset, together with the 

whole real network attribute data, to generate an OSN of the same size as the studied network 

dataset. Network evolution is done using our IASM or SNAM models. Additionally, we generate 

networks of the same size using the Erdös and Rényi (ER) model. Generating a network of the 

same size and number of edges with the ER model gave different statistical properties from that 

of the dataset. The network generated with the ER model has an average path length of 2.198 and 

an average clustering coefficient of 0.010819.  The statistical properties of the real network of 

the dataset will be compared to those of the networks generated using our models via simulation 

by MATLAB. Additionally, we compare the network generated using the BA model with the 

Facebook dataset network which is presented in the next section as a special case of using our 

IASM_A model having CF parameters α = 0, β = 1, and w = 0. 

6.4.1. Generating the Facebook Network via IASM_A 

Next, we generate networks of the same size as the real dataset network using IASM_A with 

different combinations of CF coefficients values. The attribute vectors of all 4,039 Facebook 

dataset nodes is an input to our IASM_A generation model. Since the order of the time arrival of 

the different nodes is unavailable, it is assumed that the node Id in the dataset’s adjacency matrix 

is its order of arrival. A subset of the Facebook dataset adjacency matrix, having 100 nodes, is 
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used as the seed network for IASM_A. Networks are generated for different CF coefficients 

values for both cases of the model with and without a triad formation step (TFS). 

6.4.1.1. Simulation Results 

IASM_A, when used to generate networks of the same size, grows networks having the 

statistical properties shown in Table 6.1. As mentioned in Section 6.4 the IASM_A model 

without TFS reduces to the BA model when α = 0, β = 1, and w = 0. 

Table 6.1.  Simulation Results for Networks Generated with IASM for Different CF Coefficients 

 Without TFS With TFS=1 

α w β Exp_PL Av_Pl Av_CC Exp_PL Av_Pl Av_CC 

0.9 0 0.1 -1.7988 2.6165 0.0172 -2.1484 2.7586 0.2214 

0 0.5 0.5 -1.6770 2.6201 0.0149 -2.294 2.7733 0.2289 

1 0 0 -1.7620 2.6183 0.0169 -2.2040 2.7527 0.2213 

0 0 1 -2.0349 2.6052 0.0174 -2.4147 2.7346 0.2040 

6.4.1.2. Analysis of Simulation Results 

Even though IASM_A did not produce the same power law exponent found in the Facebook 

dataset (-1.1697),the percentage error in obtaining the power law exponent is reduced from about 

74 percent in the case of using the BA model to about 50 percent, 43 percent, and 53 percent 

when using IASM_A with different combinations of CF coefficients values [α = 1, w = β = 0], 

[α = 0, w = β = 0.5] and [α = 0.9, β = 0.1, w = 0], respectively.  These are the parameters shown 

in Table 6.1.  However, both IASM and the original BA produce a shorter average path than that 

found in the Facebook dataset. Additionally, both do not produce the high average clustering 

coefficient found in the real Facebook dataset. Adding a TFS increased the clustering coefficient, 

but it also increased the power law exponent magnitude and slightly increased the average path 

length.   

6.4.2. Generating the Facebook Network via SNAM  

This section describes the objective of using SNAM to generate a network of size equal to that of 

the Facebook dataset. The SNAM algorithm implemented in MATLAB should use whole 

attribute vector corresponding to all 4,039 Facebook nodes as an input along with a sample 

subset of Facebook nodes which act as seed network with mo = 100 nodes for SNAM. 
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The original SNAM model presented in Chapter 3 and analyzed in Chapters 4 and 5was 

developed to be able to grow complex social networks characterized with certain ranges for the 

power law exponent, average path length, and average clustering coefficient. The dataset for the 

Facebook network that we used for the case study is a bit different since it is characterized by a 

power law exponent having magnitude much lower than the magnitudes cited in publications for 

complex social network statistical characteristics. Nevertheless, we were able to introduce some 

changes in the parameters as well as the steps governing the growth process of the synthesized 

Facebook network to produce results that approach the statistical characteristics of the real 

Facebook dataset used for the case study. 

6.4.2.1. Simulation Results with Original SNAM 

The first trials to generate the synthetic Facebook network using the original SNAM algorithm 

steps resulted in the failure of some nodes to connect to m pre-existing nodes upon birth. Thus, 

we were faced with the problem of unconnected nodes and the algorithm running indefinitely.  

As stated in previous chapters, the SNAM model is based on allowing the new added node to 

perform multiple tests with existing nodes and to make a connection to an existing node that 

meets the new node’s standard. If the new node reach its maximum number of tests, NoT, and it 

still does not make its m connections, then the new node must lower its standard. The new node 

after lowering its standard continues testing old nodes until it either makes its m connections or it 

reaches its maximum value for NoT again. The new node can continue reducing its standard 

indefinitely until it makes its m connections. This SNAM algorithm worked well assuming that 

any new node will have some similarities with old nodes as a result of using node attribute 

vectors whose binary elements uniformly distributed. Thus, no new node is expected to have null 

attribute similarity values with all old nodes.   

6.4.2.2. Enforcing Reduction Limit R 

Given the results above, we further investigated the characteristics of the Facebook dataset. We 

observed that some network nodes in this dataset possessed unique attribute values causing them 

to have low or null attribute similarity values with other network nodes. This is expected to cause 

these nodes to either have no connections or fail to complete their m connections.  The original 

SNAM algorithm will spend a lot of time when any such new node arrives as it searches for m 
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old nodes that are somewhat similar to it and continues to reduce its connection standard S 

indefinitely. 

Therefore, we introduced modifications to our original SNAM model to approach the unique 

characteristics of the particular dataset used for the case study. We noticed that a new added 

node that has a low CF value with old network nodes is equivalent to this new node having a 

high connection standard (high value of S). Thus, we introduced a new model parameter R that 

puts a limit on the number of reductions on the value of S by €.  Therefore, R puts a constraint on 

the extent of decreasing a new node connection standard until it settles for an old node whose CF 

value is less than the new node’s reduced standard. The new node with a high standard starts 

searching for nodes that meet its standard. After reaching its maximum number of tests, NoT, it 

starts reducing its S value. The original SNAM allows the value of S to be reduced indefinitely 

until a connection is made and this is repeated until it makes m connections. However, now the 

new node reduces its S value by € only R times. Therefore, such new nodes after making all R 

reduction on the new node’s value of S may have fewer than m connections or may even end up 

with no connections. A node ending this process with fewer than m connections randomly selects 

nodes to which it connects. These random connections ensure that there are no unconnected 

nodes and that each new node has a minimum of m links to existing nodes.  We denote this 

modified version of SNAM as SNAM*. 

The SNAM* connection algorithm allows both types of nodes (having zero or fewer than m 

connections after exhausting R standard reduction steps) to complete their m links either through 

the model or through random completion of connections. The set of results for this first 

modification to SNAM are shown in Figures 6.1, 6.2, and 6.3.  The three figures show average 

path length, PL exponent and average clustering coefficients for CF coefficient values of 

[α = 1, w = β = 0], [α = 0, w = β = 0.5] and [α = 0.9, β = 0.1, w = 0].  These are the sets of 

parameter values specified in Table 6.1 for Facebook growth using IASM_A. This use of such 

different CF coefficient combinations shows how the generated network statistical properties are 

affected when using CF coefficients based on using added or multiplied attribute similarity along 

with the degree centrality.  The statistical properties are plotted with x-axis NM.  NM was 

described in Chapter 4 as the number of milestones during network evolution at which the value 

of NoT is incremented by one. The average degree of the nodes in the generated network (m = 
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22) was approximated by dividing the number of the links in the original dataset by the final 

number of nodes in the network. The threshold € was given the value of 0.2 and reduction limit R 

= 24 was found by generating networks of smaller sizes and observing which R results in the 

growth of networks with high 
 

 

(a) Average Path Length 

 

(b) Power Law Exponent 
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(c) Average Clustering Coefficients 

Figure 6.1. SNAM* algorithm with a normalized degree with multiplied attribute 

similarity CF (α = 1, w = β = 0):  a) Average Path Length, b) Power Law 

Exponent, c) Average Clustering Coefficients 

 

(a) Average Path Length 

 

(b) Power Law Exponent 
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(c) Average Clustering Coefficients 

Figure 6.2.  SNAM* algorithm with CF coefficients (α = 0.9, β = 0.1, w = 0):  a) Average Path 

Length, b) Power Law Exponent, c) Average Clustering Coefficients 

 

(a) Average Path Length 

 

(b) Power Law Exponent 
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(c)Average Clustering Coefficients 

Figure 6.3.  SNAM* algorithm with a normalized degree with added attribute 

similarity CF (α = 0, w = β = 0.5):  a) Average Path Length, b) Power Law 

Exponent, c) Average Clustering Coefficients 

average clustering coefficient values and that have power law exponent magnitudes lower than 2 

as found in the original dataset. 

6.4.3. Generating the Facebook Network with Extended SNAM 

The results presented in Section 6.4.2 for SNAM* having reduction limit R were found to 

possess a statistical power law exponent and an average path length with values that differ 

significantly from those for the actual Facebook network dataset. Studying the Facebook dataset 

adjacency matrix led to the observation that the Facebook dataset has many nodes with only one 

or two connections. This is different from networks generated by our SNAM and SNAM* 

models where nodes have a minimum degree of value m which has a value greater than two here 

to generate a network with number of links near that of the original dataset.  

A node with a high connection standard is expected to have fewer connections than other 

network nodes because of its high standards.  But, in SNAM the connection standard S is 

reduced until all m connections to existing nodes are made.  And, in SNAM* with the reduction 

limit described in Section 6.4.2, a node will randomly complete its m connections to existing 

nodes if they are not completed in the normal manner. Given the observation from the real 

Facebook dataset used in the case study that there are nodes in the real network with low degree 
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centrality values (0, 1, 2, …), we further modified the connection algorithm in SNAM* so that a 

new node with fewer than m connections, including zero connection, is linked to only one 

additional random node after exhausting its R reductions.  This replaces the approach of 

continuously reducing the new node’s S value until it makes m connections or completing the m 

connections randomly.  We denote this further extended SNAM as SNAM**. 

6.4.3.1. Simulation Results after Adding One Link when the Reduction Limit R is Reached 

The following results show the statistical properties of the networks grown using SNAM**, 

forcing the nodes upon exhausting their R reductions to make only one additional connection. 

The results for the average path length, PL exponent and average clustering coefficients values in 

Figures 6.4, 6.5, and 6.6 are for the same combinations of CF coefficient values as used for 

Figures 6.1, 6.2, and 6.3.The x-axis variable NM, the number of milestones during network 

evolution, is varied from 10 to 100.  The number of connections to each new born node m, was 

increased to m = 60 to compensate for the case where some nodes make less than m connections 

as a result of their making only one additional connection after exhausting their R reductions. 

The threshold € is given the value of 0.2 as before and R = 16 was found by generating smaller 

sized networks and finding the R value corresponding to the networks with statistical properties 

closest to that of the dataset. 

6.4.3.2. Analysis of Simulation Results 

From Figures 6.4 through 6.6, we can see that the power law exponents of the generated 

networks approach the values for the Facebook dataset used in the case study. Additionally, there 

is an increase in the average path for the generated networks although it is still less than that of 

the original dataset. Thus, observing the characteristics of the dataset’s adjacency matrix and 

attribute vector and reflecting these characteristics in the modified SNAM algorithm, SNAM**, 

makes SNAM more capable of closely representing the particular Facebook dataset used in the 

case study. 

6.4.4. Effect of Reduction Limit R on Network Statistical Properties 

The appropriate R value for the Facebook dataset was found by trial and error by generating 

networks of a smaller size than the dataset and observing the effect of different R values on the 

statistical properties of the generated networks. 
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6.4.4.1. Simulation Results for the Effect of the Reduction Limit R 

The results presented in this section show the effect that different R values have on the statistical 

properties of the generated networks. Networks are generated for the same NM, m, €, and CF 

coefficient values, but different R values. This was done for the version of SNAM that completes 

its m connections after exhausting its R reductions, denoted as SNAM* and the one that makes 

only one additional connection, denoted as SNAM**.  The simulation parameters are m = 22 and 

€ = 0.2 and CF coefficients α = 0.5, w = 0.5, and β = 0. 

Tables 6.2 and 6.3 show the effect on the statistical properties of R taking different values 

ranging from 5 to 100. Values for Exp_Pl (power law exponent), Av_Pl (average path length), 

and Av_CC (average clustering coefficient) corresponding to different R values are presented in 

Table 6.2 for SNAM* and in Table 6.3 for SNAM**. 

 

(a) Average Path Length 

 

(b) Power Law Exponent 
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(c) Average Clustering Coefficients 

Figure 6.4. SNAM** algorithm with a normalized degree with added attribute 

similarity with CF coefficients α = 1, w = β = 0. a) Average Path Length, b) 

Power Law Exponent, c) Average Clustering Coefficients 

 
(a) Average Path Length 

 
(b) Power Law Exponent 
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(c) Average Clustering Coefficients 

Figure 6.5. SNAM** algorithm with a normalized degree with added attribute 

similarity with CF coefficients α = 0, w = β = 0.5. a) Average Path Length, b) 

Power Law Exponent, c) Average Clustering Coefficients 

 
(a) Average Path Length 

 
(b) Power Law Exponent 
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(c) Average Clustering Coefficients 

Figure 6.6. SNAM** algorithm with a normalized degree with added attribute 

similarity with CF coefficients α = 0.8, β = 0.2, w = 0.:a) Average Path Length, b) 

Power Law Exponent, c) Average Clustering Coefficients 

Table 6.2. Simulation Results for SNAM* for Different Values of R 

R 5 10 15 20 24 25 30 35 40 50 100 

Exp_PL -1.6648 -1.6529 -1.8628 -1.762 -1.7578 -1.7545 1.7581 1.7611 -1.7612 -1.7598 -1.7597 

Av_Pl 2.4081 2.4110 2.3761 2.0740 2.0677 2.0655 2.0757 2.0726 2.0818 2.0792 2.0745 

Av_CC 0.0275 0.0301 0.0585 0.5591 0.6663 0.6712 0.6347 0.6338 0.6328 0.6608 0.6542 

Table 6.3. Simulation Results for SNAM** for Different Values of R 

R 5 10 15 20 25 30 35 40 50 100 

Exp_PL -1.2961 -1.3248 -1.0964 -1.6005 -2.0808 -2.1363 -2.1362 -2.1381 -2.1320 -2.1396 

Av_Pl 4.6842 4.2524 3.1216 2.1242 2.0056 2.0041 2.0026 2.0016 2.0010 2.0024 

Av_CC 0.0850 0.1587 0.3610 0.6682 0.6822 0.6791 0.6792 0.6881 0.6904 0.6797 

The results in Tables 6.2 and 6.3 indicate that for reduction limit R close to or higher than 20, 

although the value of average clustering coefficient is high, the values of the average path length 

and the power law exponent are not in the ranges of those of the Facebook dataset used for the 

case study. On the other hand, values of the statistical averages for a value of R around 15 are all 

in the range of those of the Facebook dataset for this combination of the model’s parameters. 

Changing model parameter values, such as m, NM, and CF coefficients, would generate 

networks with different statistical properties values for the same R value. 
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6.4.4.2. Analysis of Simulation Results 

For SNAM*, the value of the reduction limit R affects the network growth mechanism and, thus, 

it affects values of the statistical parameters of the generated networks. Having a low value for R 

increases the number of random connections that the new nodes have to make to complete their 

m connections after exhausting the R reductions. Thus, having a small R value can hinder SNAM 

from performing its connection mechanism that depends on the new node looking for existing 

nodes that are the most similar to it and then settling for less similar existing nodes. With small R 

values, the new node settles with connections with random nodes after only a few tests which 

affects the statistical properties of the generated network. 

However, a larger value for R gives the new node a better chance of finding existing nodes that 

are more similar to the new node.  Results show that a reduction limit less than 20, given the 

values of other SNAM model parameters used in the simulation, generates a network with low 

average clustering coefficient values. Additionally, results show that for values of R above a 

certain threshold (in the present set of results the threshold value is R = 24), an increase in R has 

only minor effects on the statistical properties of the generated network. Moreover, increasing R 

results in an increase in the run time of the MATLAB program used for network generation. 

For SNAM**, results indicate that number of nodes that have to make only one additional 

random connection is large for small values of R. Thus, a large portion of nodes end up having 

low degree values. As R increases, the number of these single random connection nodes 

decreases since nodes with an excessive reduction of their standard are able to complete their 

required m connections.  

6.5. Conclusions of the Case Study 

The case study described in this chapter attempted to validate the IASM and SNAM models 

through a real-world network case study. For starting such validation one must first determine 

the potentially unique statistical properties of the original network. A small sample of the dataset 

network was taken as the seed for growing the synthetic network.  

Table 6.4 shows the values of the statistical properties power law exponent, average path of the 

original Facebook dataset and that for networks generated by IASM_A, SNAM* and SNAM** 

for CF with coefficients (α = 1, w = β = 0). The results shown for SNAM* and SNAM** are for 
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NM = 10 and R = 24 and 16. IASM was found incapable of growing networks having statistical 

parameters values in the same ranges as the real dataset as shown from the subset of results in 

Table 6.4. IASM_A with and without TFS generates networks with power law exponents of 

magnitude higher than that of the dataset. Also, IASM_A with and without TFS generates 

networks with shorter path lengths than that of the dataset. IASM_A without TFS produces 

lower average clustering coefficients than that of the dataset. The addition of TFS improved only 

the average clustering coefficient, but it was still less than that of the Facebook dataset. 

Results for SNAM were more promising. No results are shown in Table 6.4 for the original 

SNAM as the algorithm ran indefinitely because of some nodes having null or low attribute 

similarity values with almost all preexisting nodes. 

Failure of our first trials to generate the network using the original SNAM forced a deeper study 

of the attribute vectors of the nodes in the dataset. The attribute vectors had distributions 

different from the uniform distribution of the original SNAM model. Investigating the degree 

distribution of the nodes in the dataset indicated the presence of low degree nodes. Therefore, 

nodes are allowed to have fewer than m connections upon birth as part of extended modified 

SNAM model (SNAM**). SNAM** generated networks with power law exponent, average path 

lengths and average clustering coefficients values closer than that of SNAM* to that of the 

original dataset. 

Table 6.4. Statistical properties for original real dataset versus properties of 

networks generated by IASM_A, SNAM*and SNAM** for CF with coefficients 

(α = 1, w = β = 0). 

 Exp_PL Av_Pl Av_CC 

Dataset properties -1.1697 3.6925 0.6055 

IASM_A -1.7620 2.6183 0.0169 

IASM_A with TFS -2.2040 2.7527 0.2213 

SNAM* with NM = 10, R = 24 -1.69 2.09 0.46 

SNAM** with NM = 10, R = 16 -0.8 2.72 0.39 

Motivated by our present case study, it is advisable that one starts with thorough study of 

attribute vectors as well as the node degree distribution of the real network to be modeled. Then 

the average node degree can be calculated to be considered as parameter m of the IASM and 
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SNAM models. A sample of the real network having size greater than or equal to m is used as a 

seed network to start network growth. The model is used to grow a network to the same size as 

the dataset. It is advisable to compare growth and dataset network degree distributions and 

statistical averages. 

If the original SNAM does not give statistical averages as those of target network, a deeper study 

of the adjacency matrix and node attribute vectors should be undertaken to determine possible 

modifications in the algorithm. 

The case study was beneficial in validating the potential use of SNAM in modeling online social 

networks. The case study shows some guidelines that can be used for modeling other networks. 

Looking for unique values in the adjacency matrix and the attribute vector for the dataset help us 

to approach characteristics of the network to be modeled. A reduction limit R can be used in the 

connection algorithm if some nodes have unique attribute values. The degree distribution of the 

dataset should be studied to see if some nodes possess degree values less than m. The choice of R 

depends on the statistical properties desired and algorithm running time. As in the original 

SNAM, the higher the NM the higher the average clustering coefficient and the shorter the 

average path length of the generated network.  

SNAM, being a multi-variable model, gives the opportunity to generate multiple networks in a 

relatively short time and to find the one that is closest to the original dataset (or that deviates 

from the original in some desired way). The SNAM connection algorithm is flexible in that it 

allows slight variations that can reflect other characteristics that are not found in the original 

model. 
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Chapter 7. Conclusions and Future Work 

This chapter presents the conclusions from the work presented in this dissertation and suggests 

possible future work. 

7.1. Conclusions 

This research is based on the premise that mathematical models used to generate complex 

networks should replicate the statistical properties of real-world networks and should reflect the 

heterogeneous nature of nodes in real-world networks. We proposed several mathematical 

models that pave a path to finding a model that successfully reflects the statistical properties of 

real-world complex networks exhibiting assortative mixing.  

The proposed models have heterogeneous network nodes with distinct attributes assigned to 

different nodes. We modified the network graph {V, E} to be of the form {V, E, A}, where the 

additional vector A is the attribute set of each network node. To our knowledge, our work is the 

first to assign more than one attribute to each node. The models are also general in that they do 

not make any assumptions about the particular type of network modeled.  

In Chapters 3 and 4, we first introduced IASM which, to our knowledge, is the first model for the 

generation of complex networks that integrates a measure for the similarity of attributes with a 

measure for structural popularity within the connection function, CF. In the IASM_A model, 

nodes are linked preferentially based on a CF that depends on the degree of the existing node 

together with the similarity of attributes between the new node and the existing node. The 

IASM_B model replaces the measure of node’s structural popularity (node degree) used in the 

IASM_A model with another measure of a node’s structural popularity which is based on 

eigenvector centrality. Both models reflect some statistical properties of real-world complex 

networks. IASM preserves the power law degree distribution and the small world phenomenon, 

but the model does not reflect the high average clustering coefficient and the emergence of 

community structure. We enhanced the IASM model by adding a triad formation step which 

results in increasing the value of clustering coefficients. Our work on the theoretical algorithm 

for IASM and its simulation results were published in [46]. 

Additionally, in Chapters 3 and 4, we introduced another concept of node heterogeneity, which is 

the heterogeneity of the nodes’ requirements to establish a connection.  Accordingly, we 
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proposed a new model, SNAM, which, to our knowledge, is the first model where newly arriving 

nodes have different connection standard requirements. SNAM is promising as it generates a 

network that has a power law degree distribution with exponents having magnitudes similar to 

those found in real-world networks, small average path length, and high clustering coefficient 

values. SNAM is a general model and excels in its capability to generate various types of 

complex networks by varying the model parameters. Our work on the connection algorithm for 

SNAM and the effect of the varying the values of the model parameters were published in [47] 

and [48]. 

In Chapter 4, we investigated the presence of community structure in both of our models, IASM 

and SNAM. We modified the connection algorithm of IASM and SNAM to induce the 

emergence of community structure by adding a class similarity coefficient, µ, in the connection 

function, CF. The community structure was examined by finding the percentage of inter-class 

connections. Networks generated using these models show community structure as most 

connections are made between members of the same class. The proposed community structure 

models preserve the power law degree distribution and the small world property of complex 

networks. There was also a slight decrease in the average clustering coefficient.  

We next presented an analytical representation for the degree distribution for networks generated 

by IASM and SNAM in Chapter 5. We used the rate equation for the degree of the new node 

arriving to the network. Then this rate equation was processed mathematically until a 

mathematical expression for the degree distribution was found for special cases of IASM and 

SNAM.  IASM_A with CF depending on degree centrality multiplied by attribute similarity and 

SNAM with CF depending only on the degree centrality were proven analytically to generate 

networks with a power law degree distribution.  Our additional results for the SNAM community 

structure model and the mathematical analysis of SNAM are expected to appear in a book 

chapter [49]. 

Our proposed models are general and, hence, can be used to generate any type of complex 

network. As a proof of concept, we considered a case study in Chapter 6where these models are 

applied to online social networks. Our choice of online social networks is mainly due to their 

widespread use and current interest in applications in many fields such as marketing, information 

diffusion, recommendation, and trust analysis. We use a dataset based on social networks from 
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Facebook to validate the potential of our models in generating networks that mimic such a real-

world complex network. It was found that the characteristics of the network generated by IASM 

were different from that of the original dataset. The original SNAM was inadequate in modeling 

this dataset because of the existence of nodes with unique attribute values. Additionally, upon 

examining the degree distribution of the original dataset, it was found that some nodes have 

degree centrality values less than m, where m is the number of links each arriving node has to 

establish in SNAM.  Thus, two modified versions of SNAM, SNAM* and SNAM**, were 

introduced. Extended SNAM** has a reduction limit parameter, R, that limits the number of 

reductions that a new node makes to find nodes satisfying its connection standard. Additionally, 

upon reaching its reduction limit R, the new node only makes one additional connection to a 

random node rather than completing its m connections as in the case of SNAM*.  Extended 

SNAM** was successful in generating networks having statistical properties values near that 

found in the original Facebook dataset. The case study has provided us with some useful 

guidelines for adapting the proposed SNAM model to more accurately model real-world 

complex networks with different characteristics. 

In our motivating goals, we stated that our models should preserve the four statistical properties 

common to real-world complex networks. We were able to validate that the four statistical 

properties exist in the networks generated by IASM and SNAM using simulation, mathematical 

analysis, and/or a case study. The methods used to demonstrate the properties are presented in 

Table 7.1.  If the statistical property was validated for a special case of the model, an asterisk (*) 

is added beside the name of the validation method in Table 7.1.  As seen in Table 7.1, the power 

law degree distribution is validated for both models using all three methods.  The existence of 

high average clustering coefficients was validated for both SNAM and IASM with a TFS via 

simulation and the case study. Additionally, the small world phenomenon or having small 

average path lengths was validated using simulation and the case study for both IASM and 

SNAM. Finally, the emergence of the community structure was validated only via simulation.  

Additionally, the nodes presented in our models were heterogeneous. This is validated in the case 

study by the ability of IASM and SNAM of incorporating the attribute vectors of the dataset’s 

network nodes.  There were no assumptions about the nature of the nodes’ heterogeneity 

parameter as was seen also in simulations, the mathematical analysis, and the case study. Thus, 
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our models are general for any complex networks exhibiting a bias when making connections by 

the new nodes towards nodes having certain properties (assortative mixing).   

Table 7.1. Validation Methods for the Desired Statistical Properties for IASM and SNAM 

 SNAM IASM 

Power Law Degree 

Distribution 

 Simulation 

 Mathematical Analysis* 

 Case study 

 Simulation 

 Mathematical Analysis* 

 Case study 

High Average Clustering 

coefficients 

 Simulation 

 Case study* 

 Simulation (with a TFS) 

 Case study (with a TFS) 

Small Average Path Lengths 
 Simulation 

 Case study* 

 Simulation 

 Case study 

Community Structure 

Emergence 
 Simulation  Simulation 

7.2. Future Research Ideas 

Our analysis of the BA model revealed unfairness with most of the new added connections being 

made with older network nodes. This gives the older nodes, which most likely become less 

active with time, an unfair advantage for connections over newer nodes. The idea of fairly 

distributing connections among network nodes added at different times across the life of the 

generated network is of interest as old nodes usually attain most of the new connections.  Also, 

old nodes have a tendency to become less active with time. Thus, the new node gains more 

advantages by making some of its connections with very old nodes and some with more recent 

preexisting nodes. 

The attributes in our models are as seen abstract. Another potential research direction is to 

experiment with the nature of attributes. Experimenting with the nature of attributes can be 

useful in making the generated networks mimic some phenomena that are found in real-world 

complex networks.  We believe that using affinity matrices for attributes in our model will prove 

fruitful in making the model more lifelike. This reflects the idea that sometimes having opposite 

attribute-values would encourage users to establish connections. For example, in social networks, 

a user might be inclined to form connections with users of the opposite gender.  
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Moreover, the introduction of the time element into our models is also of potential value. The 

time element can be introduced by adding the time element as one of anode’s attributes. This 

addition could be useful in generating time sensitive networks. Time sensitive networks include 

networks where the arrival time of the node can affect its properties and its future connections. 

Time sensitive attributes can be used to represent nodes becoming less active with time or nodes 

changing their interests and thus their attributes. Another form of time sensitive attributes are 

networks where nodes change their attributes with time. Investigating the effect of the presence 

of time sensitive attributes on the generated network structure can be beneficial.  

Moreover, the inclusion of new structural phenomena in our models is another research 

direction. These structural phenomena reflect some behaviors that can be found in real complex 

networks. First, rewiring based on time sensitive attributes can be used to mimic the situation 

when nodes terminate connections with old, inactive nodes to form new connections. Second, the 

assumption made by most models for network generation that each node makes the same number 

of connections, m, is not always true. Each arriving node can have a different m value. This value 

can depend on the structural properties of the network upon the arrival of this node. Thus, 

varying the number of connections, m, that arriving nodes make based on network properties can 

be investigated. 
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