
D A MEMBRANE ANALOGY FOR INVESTIGATING

COMPRESSIBLE FLOW

. bv



A A 153/ L/-6 I p



p ·ö—
—

I
INTRODUCTION q

f

The analogy established between shear stress in a twist-

ed member and a slightly inflated membrane extended above the

same boundary is well known$24) Since only long and tedious

q approximate methods exist for calculating the shear stress

in non-circular members, this analogy has been quite valuable.

a Recently an analogy was established between subsonic

compressible gas flow and a soap membrane which is not

inflatedgäs) The object of this paper is to extend this

analogy and to check it experimentally.
In the derivation of the analogy, the exact equation of

· a membrane subjected to uniform tension and the basic

equation of steady, potential flow of a compressible, non-

viscous fluid are used. The der1vat1¤ns of these equations p
are given in another section of the thesis. Euler's equation,

which provides a methed for finding the equations of minimum

surfaces, will be used in the derivation of the exact

l
” w equation of an open eoap bubble existing between given

bOu¤day1€SÄ9•29) ABN membrane which is subjected to uniform
‘

tension is a minimum surface. The basic equation of steady,
_ potential flow of a eompressible, non-viscous fluid is

derived from fundamental principles and concepts of fluid
I

mechanics.(€’25)
_ In the experimental verification of the analogy, a



circular cylinder will be used. The potential functions
arourd the boundary of the cylinder will be represented by ‘

vertical heights above some datum plane. In a similar
manner, the potential functions in the free stream will be —

represented by heights above the same datum. If the
cylinder is not to influence the value of the free stream V
potential function, the distance from the cylinder to the
point where the free stream potential function is to be
calculated must be large. This distance is assumed to be

i

infinitely large. V
The problem of finding a soap solution which will form

T this large bubble is tremendous. Large bubbles formed from
these solutions last only for a short period of time.

AH accurate determination of the slopes of the membrane
‘ at the boundary is required. This may be accomplished by a

number of methods. The best method available is through the
use of a microscope—telescope arrangement, although it

requires a large amount of calculations. g
} The analogy may be applied to any steady, potentiali T flow of a compressible, inviscid fluid in the subsonic,

Velocity range. The circular cylinder problem is used only
for experimental Verification of the analogy. Aerodynamicists
are interested primarily in fluid flow about airfoils.
Airfoils which are of classical interest are the Joukowsky
series of airfoils which are transformations from circular

>
cylinders. s
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THE REVIEW 0F LITERATURE

Lee, G. H.,_Ag Introduction_tg Experimental gtress Analysis,
John Wiley & sons, Inc., 1950, pp 225—23l.
The author gives the existing membrane analogy between

shear stress in torsional members and a slightly inflated
soap bubble extended above the same boundary. He discusses a

how the boundary for the soap membrane should be formed.
Also two different soap solutions which are quite stable are

t
given. The first solution consists of 2 grams of sodium ‘
oleate per liter of water with 30 cc. of glycerin added.
The other solution is l gram of sodium oleate per 2 liters

ß
of water with 6 cc. of glycerin added for each liter of

qsolution. q
To lengthen the life of any soap membrane, the rate of

evaporation must be controlled. All known soap solutions
evaporate and cause the membrane to burst. The rate of V

evaporation is decreased by sealing the soap membrane in its

container.

E &________........_.J
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Heaslet, M. A., vcompressible Potential Flow with
Circulation About a Circular Cylinder,¤
Nationa1_Agg;gg;y Qommittee_§g; Aeronautigg,
Report 780, 1944.
There are several known methods for the approximate

solution of the basic equation of two-dimensional, ir-
rotational potential flow of a compressible fluid. The more Ä
important ones are the method of small perturbations, the
Rayleigh-Janzen method, and the hodograph method.

8

The author gives the results of the three methods; ·
although he derives only the Rayleigh-Janzen method. The M

1

Rayleigh-Janzen method is essentially a perturbation method.
The solution of the basic differential equation for two-
dimensional, compressible flow is assumed in the form of an
infinite power series in powers of the free stream Mach f

number, M. The free stream Mach number is defined as the
free stream velocity divided by the velocity of sound in
the free stream.

4 The solution is carried only to the term containing
· the fourth power of the Mach number. Graphs are given which

show the results of the three methods of solution considered.

\
V
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Liepmann, H. W., and Puckett, A. E., Introduction.;g

gerodynamics gfwa compregsible glgig, T W
John Wiley and Sons, Inc., IJ47, pp 157-188.

The authors give various approximate solutions of the

basic differential equation of steady, potential flow of a

compressible, non-viscous f1uid.’
The solution for the potential function is derived by

introducing a thickness parameter. The final solution is

in powers of this thickness parameter.
Next the solution is found by the Rayleigh-Janzen

method. The final solution in this case is in terms of
powers of the free stream Mach number.

The hodograph method is also discussed and applied to
the basic differential equation. Both the Chaplygin and

x

the Karman—Tsien methods transform the basic differential
equation to the hodcgraph plane. These two solutions are

also given by the authors.
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Dewar, J., “Soap Bubbles of Long Duration,¤ ‘

Journal_g;_ggg Franklin Institute, Vol. 188, No. 6,

1919, pp 713—749, and ”Studies on Liquid Fi1ms,¤

Journal_g§_tgg_Franklin Institute, Vol. 193, No. 2,

1922, pp 148-188.
These articles are discussicns of techniques used to

obtain soap bubbles lasting up to one year. The fact that

surroundings which are free from dust particles and other

foreign matter is of utmcst importance is emphasized by

the author.

The results of a number of experiments with various

sized bubbles are given in tabular form. One example cites

bubbles twenty cm. in diameter which lasted from 28 te 40

days.
some of the solutions which were used contained five

per cent potassium oleate, fifty per cent glycerine and

forty-five per cent water; five per cent ammonium oleate,

fifty per cent glycerine, and fcrty-five per cent water;
Q

three and one—ha1f per cent ammonium oleate, thirty—three

per cent glycerine, and sixty—three and one—half per cent

_ water; and twenty~five per cent glycerine, four per cent s

‘ . alcohol; five per cent soap, and sixty—six per cent water.
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III. _
v THHORY

A- The QifferentiaQ §guation.g£_gg Qgen,§ggp Membrane
”

Fer the analogy between shear stress in a twisted

' member and a soap bubble extended above the same boundary,
° the exact equation of the soap bubble is not used. The

equation of the soap bubble, neglecting the squares of the
82 82 4 Vs1opes(ax »5;—) , xs

· w 2 2 .20. (1)Gx 8-vT2
•In

this equation p ss the pressure to which the membrane is
subjected, T the uniform tension in the membrane and z the

infinitesimal displacement of the soap bubble after the
· slight pressure is applied. The analogous equation for

the stress function ¢ is

2 2
e

+2 =· Ö . (2)
9x By 2 ~ ‘ _

I Euler 's equation will give the equation of the

surface S, which has a minimum area for any fixed boundary.

The soap membrane represents the minimum surface between 4
the given boundary over which the membrane is stretched.

The formula for the surface area (S) is

EL: 2 £)2· 2S== 4//+/ )+ ) c/xd (5)g ’ß„9x (Sy y
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where x and y are the coordinates of a point and 2 is the I

I height of the surface above the point (x,y). A is the

projection of the surface S in the xey plane over which

the function is integrated.
”

Generally

- 25 iäs ai[-/%’F(x,_</,2, ax, ay J dx y (4.)

where F (x, y, 2,%% ,ä%») is a twice differentiable function

with respect to its variables which is a necessary require~

ment for the derivation of Euler*s equation. The dependent

variable z is a function of x and y; 2 = 2 (x,Y) • For ‘

g simplicity of manipulation, introduce the following notations

v 81.* - 8,2=-... and _- -.... • (5)jp
8x 7 8gI

I The general equation is now of the form

dx
‘

I For the derivation first select any surface Q = Q (x,y)I ’·whereO (x,y) = O on curve Bl as shown in Figure 1. Curve

Bl is the projection of the curve B in the x-y plane, where

z(x,y) passes through curve B. choose any set of surfaces

(Su) so that, for any value of u, the surfaces will pass
I

through curve B. The equation of such a set of surfaces

· (Su) is given by I

I I
I

I I
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‘
Z(x,g)=¢’(X,y)+«9(x,y)_ (G)

I'
For any ehe of thesesuxfaces,/0

I
This gives the integrrali.

/2 0Mx dy. (B) I
Diffe1·eu·tiating this under the iutegral sign gives

CQ.! .- Q.? Q? Q.? „

Taking the last two terms under the integxal sign and

integrating by parcts, p1:·od1mes

8F 8F 8 SF—-— 9 C = ·- 0 —· —- —-— C9 )

apand
i

‘ 5Q.E z Q.? .. Q. Q.? (eb)I,

ÄglaqöjdySubstitutingthese back into -5-E , gives:
5

-@'!=ß‘[¥‘?-!-°6—?-("’)6-—·ä(=‘?!°)6]4C4 /"’° 4 ·°" 4 2 I
C14 A 62 wx 57 ay Q4 5 Jféäöß"•I

V
I
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I F
I A The last two terms are zero since they are to be computed

I

on the boundary curve Bl in the x·y plane. In the x·-y
plane, Q(x,y) : O, Equation (10) now becomes:

In

Q!. Q.E...öL.·°" ...9...5" (11)
Ju 9¤< (57) 9ß(55/IG dx dy'

From equation (6), it is seen that when u = O; z = z, P = p
and Q .• q. Equation (ll) now becomes Q

JI = [[9/: 9 JF 9 9/:] (12) I
·*·· F···········—-·-··—---- 96{xd.
da ,/A 9; ·5

A
If the integral I is to be an extremal, then 51-;

K
must be equal to zero. With this condition applied,

‘ equation (12) is now equal to zero. n

Q.€...Q.Q£,Q..Q£ 94.1.-0 (15)[Ä [9; 9,«(9p) 85(aq/] x j

since G was chosen arbitrarily, the value of O is not
zero. The bracketed term in equation (13) i continuous
and must be equal to zero if equation (13) is equal to

A
zero. Therefore, the necessary condition for a minimum is

I QE Q. .95 .. Q, Q./E ..
az. 9x (9/* ) 39 0° (14)

Using the formula for computing the surface area (S):

//+(·‘?#$°)2+(¥é—‘?—)2Idxd (15)
A 9x 9y y E

with Euler•s equation (14), the exact equation of an open

t. F



soap bubble or any membrane with uniform surface tension

may be derived.
Making the following substitutions: g

__ _Q_g . __ 2
l

2
g ß ax = 7 ay · F x//+p +q (16)

in equation (15), gives -

5= /+ 2+ 2 6/xd . (17)gw P 9 1
Using the above derived Euler equation;

ax 9.7 8_y2 8); 8); dy Qxgy °

The solution of equation (18) gives the minimum

surface over any boundary. Equation (18) is the exact 1
equation of an open soap bubble since a membrane

stretched over a given boundary with uniform tension is
the minimum surface above the boundary. „

iN »
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B. Basic Differential Eguation of subsonic Compressible blow.
For an analogy to exist, the basic equation of steany,

potential flow of a compressible, non—Viscous fluic must be_

of the same form as equation (18) for an open soap bubble.

This basic equation may be neriven from fluin mechanical con-

siderations.(2>25)
Consiaer the Eurer equation for the steany,potentialflow

of a non—Viscous gas, when outsine fcrces are neglecten,
— /0 grad +graa’ p :0 (lg)

the continuity equation for steany flow
d/V Iß V) = 6 a2¤> V

ann the formula for the Velocity of souno

c = (/ZZ (si)„ dr
which may be expressed in another form

y cggrad/0 =gr~ad ,0, (:33)

In equations (19), (20) ann (22), p is pressnre,)ois

aensity and V the Velocity Vector. lt is seen from the con-

tinuity aquarien (20) that
div

V.Eeuation(22) may be expressen as

•grad p, (ga) .
From equations (2c) ans (ia), the fcllowing relation exists

° V· grdd ,0 é—·c2/0 6//v
V7,Multiplyingequation (19) by the Velocity Vector gives ?

V
V



V

Combining equations (25) and (26). produces

" d V2 2 *·
V

/0\/•yf‘d -2- :: IV V· (27)t or 2 _
.. Q g _

-V•9"“d
E- --6 dw v :0, V

(gg)

V Introduce the ¢ potential function into equation (28) by the

relationship v = grad¢ß . _

?""d ¢'[~7’““ T-f(9'”"" ¢)£]}‘ Cs "^’
9'““°(¢ 2 0 (29)

Transferring equation (29) into its scalar form, gives2¢> .2.2*2.2-C {SX) C°0•In

order to get equation (:0) into the form of equation'

(18) use’ ’ @2 @2- v2 (60
‘

where all terms are velocity squared terms.

This may be written in the form y2 2. 2.. 22 2 22 27‘_or

·2_ 2· a¢2’

222öubstitutingthe value of cz from equation (:Z) into equation V

[ (50), gives the result °

..222 [·= 2..22].. .2..22 2222-0 2,2
r 9,;·2 (93) +a_y ‘q +(8¤) 2929;; 9,; ä_g“

' ) )
( This is the basic eqaation of steady, potential flow of a

I

compressible, inviscio fluid.

—
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C. Comparison of the Differential hggations of an Open eoap I
Membrane ana cubsonic Compressible Flow. I I

”
‘If equation (18; anu (B4) are oomparea, it is seen that

they are of the same form. before an analogy ern be estab-
Ilishea,both equations must be uimensionless. To get equa-
tion (lß) into oimensionless form, intronuce

»<=)<L; y=YL;2=Z£_ wö)
where X, Y anc Z are nen-eimensiehal coergihetee ana L has

the nimension of feet. After introauctlon of these values,
4

equation (18) nes the following form: I
2 2 2 2 _ .

In oruer to get equation (ee) into its non-aimensional
form, introouce

<w>
where X ana Y are non—oimensional coorainates,V' is the non-

— oimensional potential ana C ana A are the non—eimensional

velocities. The oimensions of the other terms are: L in II feet and co in ft/sec. I
EQUEIDIOII (L4) 11'OW I’@€¤ClS $5 $5 =2 wa I
There is a perfect analogy between equations (eo) ana (aß)

·
if A2= l; or since a= Aco, if a =cO. I

By means of equation (53),the above relation gives I

I
C2: (Ls)

I

II
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4

”
which is the relation between sound Velocity and Velocity of

flow. If equation (b9) is satisfied, the above analogy is

perfect.
( (

The Velocity of sound at rest ( c==c„ ), at the refer-

ence point ( c==cO) and at any other point in the flow (c==c)

is connected with the Velocity of EHS flow at rest ( Vaio),

at the reference point ( v==vO) and at any point in the flow

( v==v) by the equations, ,
C;=C”,,2+:%‘l%2=Cg+l2jV€ (40)

Equation (89) can be trahsformed to

CÄ-6,2-lg-lv? ‘ ”
This result indicates that, since c„ and co are constahts,

(
either the flow velccity must be constant or c„„= co and

X'=-l. The first pessibility has no physical meahing since

the flow Velocity dces Vary from point to point. The second

case requires the introduction of a gas with an adiabatic

gas constant of (-l).
(

,
I The Mach number is

I;l gné
From equation (40) it follows that

2 O
·

6,,, > 6,,
therefore M <l if Z§'>—l

The analogy according to the last result is valid in the sub-

sonic range, with constant Mach number.

I
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lf the aniabatic gas constant, Ö=·l, then equation (40)

becomes·2
2 2 g 2 » VC„=C„ -·\/2 ==€—-V Mil)

by use of equation (§9) for K=—l,
“ CX :1 Ca ,

therefore in (41), VO==O, i.e. the reference point turns out

to be the point, where the flow is at rest. .

For the Hooke gas (U¥=-1) the general relation between

oensity and velocity(27) {‘ 6-1 v' M 1= — ———· ——~ 42_,~¤ fol? 2 < > 2
becomes 1

f¤ «
,: ·····......—:..—··.........7.....····*·*·*"‘*" • - (4G)/0

(/1From(41) ann the abuve relatiogzit follows üiat2 2 (
Using the aefinition of

c‘

2 _ „c 2
one obtains the ciifferential equation Ä'; 1 from

which _C2 22
_ p= K ·· ° ‘¥ • (44)/9 4 .

Figure 2 shows a p1>t of this formula ana the aaiabatic rela-
X

tion, 7g·:6§}) • lt is clear that by the K=—l assumption

the actual adiabatic curve is substituteo by its tangent.(4)

Cohsidering equations (42) ann (4L), e1iminating_cO by

cO2=·. c2—v2 and introtucing M :¥, one obtains „
1,0 ?1’~/ 2 ”2r—-1·—·- == /+ —-— ) 452 M ( )

ß1 ( \
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P ” B? (1/ >*0„(l+~r) ° p
0 ·= 2o(1+‘Y) — Yp¤0.,(1/0)

. 2 2 ·= .< - 0,, po (1/0)

Do

1 .........................„........
1

l
1 1 1 P

1>

Figure 2.. Plot of the adiabatic ges law
l

1 11
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and
Ä .. 2 EL LM ) · *22

Equation (45) is the general relation between density

and Mach number, while equation (46) connects density and

Mach number for the Hooke gas. lt is interesting te note

that the power series expansions are equivalent if ÜHG 0

fourth and higher pcwers of the Mach number are neglected.
1

Ä =
b’·/ 2 “F'?i :__ __J_ 2 _1_ +

‘ /49..;-.-22'_,...!. 2....4 *2 —

Figure 3. shows the};-99 =f[/W relation for I: 1..4 and Zf:-1.

_ If the deviation is defined by(21Pv

Avthen
€< 1.7% if M<0.5 and €<10% if M < 0.7. This indi— .

cates that for M·<0.5 the error introduced by the K=-1

assumptien is expected to be less ÜHHH ÜHG experimental ·

errers. L

II
I
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Figure 3• Plct of ·Ms~ch number ve. density ratio.
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EXPERlmEnTAL VERlFlCATlOn OF THEAnAbOGY_

A. A Proposed Experiment
In this part of the thesis, an experiment is proposed _

which maaes use of the analogy given above. A.membrane l
(automatically satisfying the requirements of a minimal sur-

face) is stretched between boundaries given by the fluid

mechanical part of the analogy. First a circular cylinder

is chosen for which theoretical as well as experimental re-

sults are available for comparison. Uniform flow is suppos-

ed at infinity, which maues the Oütbiüé bouncaries simple.

The prescribed value of the potential function on the circu-

_ lar cylinder is computed from any theoretical solution of

the basic differential equation of steaoy, potential flow!

~ . of air around the cylinder, neglecting viscosity and consid-

ering compressibility.(l2)

I The slopes of the membrane are measured by means of a
I

telescope supported by a glass plate at a constant height

above tne datum plane on which the boundaries are erected.

The telescope is fixed to the glass plate at a constant

angle of 45 degrees. The glass plate is not fixed but may

be moved to any desired position. To prevent refraction, a

hole is drilled in the glass plate where the line of sight

. of the telescope passes through the glass.

I
I I

- I
I



L · L
A long slot is also cut in the glass plate beyond the hole

through which the line of sight passes. This slot is in the

direction of the line of sight of the telescope. The slot

is necessary for the ihsertion of a depth gage.
J

The depth gage is used to measure the height of any

point for which the slope is desired. A lucite linear scale

is fitted into this slot after the depth gage is removed.

The scale is formed on the bottom surface to prevent refrac-

tion due to light passing through the scale. A light source-

is located above the scale, and the reflection of the scale

from the bubble is read by means of the telescope. The slope

of the soap membrane at any point is determined from these

measurements.

Figure 4 shows the problem set-up. The operation pro-

L cedure is as follows. First sight on any CGSiP€U point by
‘

means of the telescope and the depth gage. The depth gage

is used to locate and measure the elevation of the desired

point. Once the telescope is focused on the desired point,

the depth gage is removed, and the lucite scale is placed

in the slot. Extreme care must be tahen during this opera-

tion. lf the glass plate is moved,the point OH which the

telescope is focused will be lost. The light soarce is then

placed above the scale, and the reflection of the scale from

the soap membrane is Pöäü by means of the telescope.

L
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The slope of the membrane is then computed by the following

formula: _
gf:-2L arc [anC -ea’

Figure 4 defines the symbols used in the above formula.

The above procedure is PGQQEÜSQ for all desired points.

In this experiment the slopes of the membrane at points

around ÜHG circular CYLIHQQP are desired. These slopes give

the velocity components of the flow. The measured values of

the velocity components may be compared with both theoretical

and experimental values obtained by other methods.

_ B. Compressible Potential Function Around A Circular CXliHü€P•
The values of the potential function around the circu-

lar cylinder were calculated by an approximate method.(l2)

The method used was the Rayleigh-Janzen method.

This method like most other approximate methods con-

sists of a series expansion. The potential function is ex-

panded in terms cf even powers of the free stream hach num-

ber. The first term of the expansion (containing the zero

power of the Mach number) is the solution for the incompres-

”sible flow problem. Each succeeding term is a corrective
·

term for the effect of compressibility. Classical mathema- .

tics is USQQ to determine each required term of the expan-
d

sion. The terms are solutions of Poisson eduations with

boundary conditions for the circular cylihcer.

·e———————+————————-———————————----—————-————-—nn------§-------d
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A large amount of work is requiren ih the ceternihation

of each term, ans each succeeaing term is consicerably longer

than the prececing oie. Aftöf the algebraic expression for

_ each term is derived, the work involved in calculating the

numerical values for any given problem is tremehaous.

Table l gives the results obtained for a cylincer with

a radius of one inch, Only three terms of the expansion were

consinered. The third term affects the results very little .

since the Mach number to the fourth power is the coefficient

for this term. A free stream Mach number of three-tenths

was chosen for this ralculation. The critical Mach number

is reached on the cylinder if the free stream Mach number is

approximately forty-two hunarecths. ,
Figlre 5 is a plot of the cempressible potential func- _

l
tion around the circ1lar cylihaer. bigure 6 gives the in-

compressible potential function around the cyliheer, and

figure 7 shows the difference between the compressible and

incompressible potential functions.

. The tangential relocity for compressible flow around

the circular cylineer was calculated frem velocity ecuations

cerived by the Rayleigh—Janzen Metnoc. These results are

given in table 2, ana figure 8 is a plot of the results ob-

tained. A 7
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; 1
9 El/i~ä§§ 1' 1 VALUES 0F POTENTIAL ARJUND CIHCULAR

CYLINDER WITHOIT CIRCULATION .
M= .5; U=554.8 ft/ sec; co- 1116 ft/ sec; R=··1 in.

9
@,==Incompressible potential function .

·@ = Compressible potential function

Q = Angle around cylinder ‘

9....% % % 9¤ 9 9:.92.9 90 2.0000 .5000 .7026 669.60 686.57 16.97
10 1.9696 .5122 .7085 9 659.42 676.76 17.54
20 1.8794 .54El .7544 629.22 647.57 18.55
50 1.7520 .5774 .7958 579.87 599.45 519.569
40 1.5520 .5941 9 .8795 512.91 555.20 20.299 50 1.2856 .5750 .9472 450.42 450.24 19.82
60 1.0000 .5001 .9275 554.80 552.58 17.58
70 .6840 .5724 .7587 229.00 242.29 15.29 9
80 .5474 .1992 .4511 116.51 125.47_ 7.16
90 ‘ .00000.00“

100 - .5474 —-.1992 -.4511 -116.51 -125.47 - 7.16
110 - .6840 -.5724 -.7587 -229.00 -242.29 -15.29

9 120 -1.0000 -.5001 -.9275 -554.80 -552.58 -17.58
150 -1.2856 -.5750 -.9472 -450.42 -450.24 -19.82
140 -1.5520 -.5941 -.8795 -512.91 -555.20 -20.29 1
150 -1.7520 -.5774 -.7958 -579.87 -599.45-19.56160-1.8794 -.5451 -.7544; -629.22 -647.57 -18.55;

1

9 1
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° ' gégég 1_(CONTINUED)
G ßo $51 ¢2 @0 @ @-@0

170 -1.9696 -.5122 -.7085 -659.42 -676.76 -17.54
180 -2.0000 -.5000 -.7026 -669.60 -686.57 -16.97
190 -1.9696 -.5122 -.7085 -659.42 -676.76 -17.54

5

ä -1.8794 - . 5451 -. 7544 -629 . 22 -647. 57 -18. 55
210 -1.7520 -. 5774 -. 7958 -579.87 -599. 45 -19. 56

7220 -1.5520 -.5941 -.8795 -512.91 -555.20 -20.29
7

250 -1. 2856 -. 5750 -.9472 -450. 42 -450.24 -19.82
240 -1.0000 -.5001 -.9275 -554.80 -552.58 -17.58
250 - .6840 -.572L -.7587 -229.00 -242.29 -15.29

ä - . 5474 -. 1992 -.4511 -116. 51 -125. 47 — 7. 16
270 .0000 .0000 .0000 0. 00 0.00

-280 . 5474 .1992 .4511 116. 51 125.47 7.16 7
‘ 290 .6840 .572l .7587 229.00 242.29 15.29 ·

- 500 1.0000 .5001 .9275 554.80 552.58 17.58
510 1.2856 .5750 .9472 450.42 450.24 19.82
520 1. 5520 .5941 -.8795 512.91 555. 20 20.297
550 1 . 7520 . 5774 . 7958 579 .87 599 . 45 19 . 56
540 1.8794 .5451 .7544 629.22 647. 57 18.55
550 1.9696 .5122 .7085 659. 42 676 .76 17.54

4

560 2.0000 ' .5000 .7026 7 669.60 686.57 16.97°

-7

7 77
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TANGENTIAL VELOCITY FOR 00MBR#SSIBLE FLOw
7 ARJUND A CIREULAR CYLINDER WITHOUT CIRCULATI JN

Radius of cylir1dez·=l; U =554.8 ft/sec;
oo ==1l16 ft/sec

.9 Velocity
I

Velocity "
W0

0.00 I 190 112.06 6
10 112.06 222.19

_ 20 .222.19 I 210 528.5950 528.58 I 220 428.95 6
I 40 428.95 I 250 520.20

I 50 520.20 I 240 598.629 598.62 I 250 659.55— 70 659.55698.5780
698.57 I 270 711.75

90 711.75 I 280 698.57
9

100 698.57 669.66
7

_1]0'
I659.55 I 500 598.62

I

7 120 598.62 I 510 520.20
150 520.20 I 520 428.95
1404 ‘428.95 I 550 528.59

I
7

· -150 528.59 I 540 222.19 I
160 222.19 I 560 112.06 _ I

7 170 .112.06 I 660 I6 I
Il80 0.00 I I

I
7



U

· I § Eot-•
I 0

5.
0· N $ E30 •«-•s-• um

2 I E Ewa ~I «-¤ oo0·„-e:—• +>SE2 Q C1 '•-•¤

0 -•-•0 ·
·¤g2 §3°2 2 Hä

0 S3
8%% ää· c: 0<: hb'?}¤••—•· f3'Ei00.¤s«wg _

' 2 ¤-4<=§._ 3 +>·•—•—— . 00~ •—ecum U
Ooo
0I 2” ‘ -„-e

U Cu I° Iä E ° § ° I
Velocity - Feet per second I

‘ I
I

I I



„35-

C. Membrane Boundaries

_ The·inside boundary of the soap membrane is formed from

the values of the conpressible potential function around the

circular cylinder as determined by the Rayleigh-Jansen Method.
9

A steel cylinder whose radius is one inch was used. The height p
of the cylinder was made everywhere equal to the potential func-

tion. The base of tue cylinder was used as a datum whose value

was minus 5000 feet squared per second.

A square outside boundary was used for ease of fabrica-

tion. The square is fourteen inches on a side. Undisturbed 9

flow was assumed at this distance from the cylinder since the

effect of the cylinder on this boundary is negligible. Figures

*9 and 10 show the undisturbed boundary heights. The points

plotted are values determined by the Rayleigh-Jansen Method.

Table 5 gives the values for the potential function on the

outside boundary as calculated. Figure ll is a plot of the

l
points on the boundary that eorrespond to the calculated values.

The outside of the circular cylinder boundary and the

inside of the square boundary were undercut at an angle to

prevent the soap bubole from moving down the boundaries.
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OUTSIDE BOUNDARY VALUES OF THE P0£DENtI3IAL FUNGTION
M ’= 0.3; U = 334.8 ft/sec; c0== 1116 ft/sec; Radius :1 in.

.
@0.:

Incompressible potential function '
”

@ = Compressible potential function

Q = Angle around cylinder

HH 4. 4
360 7.1429 .1193 2391.44 2395.04
340 7.1259 .1188 2385.75 2389.33

7

40 320 7. 0835 .1040 2371. 56 2374. 69
45 315 7.0717 .0948 2367.61 2370.46

600 4 4.1034 .0976 1373.82 ;Ä7é:3-6
1.2691 .0437 421.55 422.867

90 0 270 0.0000 .0000 0.00
100 260 -1.2591 -.0437 - 421.55 - 422.86

1 4
‘ 120 240 -4334 -.0973 -1373.82 -1376.75

135 _225 -7.0717 -.0948 -2367.61 -2370.46
140 220 -7.0835 -.1040 -2371.56 -2374.69
160 200 -7.1259 -.1188 -2385.75 -2389.35 4

4 180 180 -7.1429 -.1195 -2391. 44 -2395.04 _

L
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135 120 100 80 60 45

U 140 40

160 20 ‘

U180 0
° 4 Cylinder

5

200 V- 540 ‘

220 20

225 240 260 280 500 515
U Scale: 0¤&•ha1f

Figure 11. Location of outside boundary points
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I D. Qggp Solutions ‘

Many soap solutions were used in the attempt to find a
I solution which was stable. None of the solutions available

” were very stable. In fact, none of the solutions used gave

bubbles which were stable enough to allow any measurements to

be made.
The first solution given in Table 4 proved to be the best,

° although this solution gave membranes which lasted for only ten

seconds under ordinary conditions. In an attempt to increase

the stability of the soap membrane, the apparatus was moved in-

to the one hundred percent humidity room of the Applied Mechan-
4

I ics Department of the Virginia Polytechnic Institute. The dust

content of the air and the rate of evaporation of the soap so-

lution are important factors in the stability of a soap mem-

brane.(6*7) The increased humidity decreased both of these

? undesirable factors, but the membranes still lasted only thirty

seconds which is not a long enough period of time to permit any

measurements„
I Table 4 gives the various solutions which have been used

for soap bubbles. In addition a number of commercial soap

bubble solutions were tested. None of these solutions pro-

duced membranes with the required stability.
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N Table 4. Soap Solutions

Solution No. '
g

(

lt

· a. 400 parts 0rvus WA Paste
60 parts Triethanolamine ·

1 b. 99.5 parts water
. .5 parts CMC High Viscosity

N W Bubble Solution: 20 parts a.
80 parts b.

2. 25 parts nonionic (Triton)
. 75 parts water

55 parts glycerine —

5. 5 parts ccconut oil pctash soap
2 parts glycerine
1 part Methyl Cellulose

92 parts water

4. 1 part pure castile or palm oil soap( 8 parts distilled water
4 parts pure glycerine

5. 2 parts oastile soap
50 parts glycerine
40 parts water

6. 25 parts hard soap
I

15 parts glycerine
(

1000 parts water
Dissolve soap in the water, add glycerine,andmix
thoroughly. 0n standing the liquid becomes clear

at the bottom. The clear liquid is drawn off and
keeps indefinitely. It is this portion that is used
for making tcugh, 1ong—lasting soap bubbles.

7. 10 gm. Sodium Oleate
„ 400 cc. water N. N 100 cc. glycerine N

„ Dissolve oleate in water with occasional shaking. NDo not heat. Then add the glycerine and allow to stand
N

}
.
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1

4 for two to three days. Remove the clearer portion
and add one drop of stronger ammonium hydroxide.
Do not filter.

4 8. 10 cc. of pure oleic acid
. 76 cc. water

54 cc. glycerine

Shake well and add:
V

5.25 grms. of TEA in ·
50 cc. of water

9. 15 parts coconut potash soap (anhyd)
A 2 parts Gum arabic 1

6 parts glycerine ·
0.5 parts basic dye

„ 76.7 parts water

y 10. w 6 parts gelatin
4

4 ~
50 parts water
12 parts glycerine
15 parts diethylene glycol

7 parts denatured alcohol
~ 12 parts Nao. N.R.S.F. 1 6

Orvus WA Paste

Soak the gelatin in the water until swelled and _
then_heat until dissolved. Mix the glycerine, glycol
and alcohol and add this solution to the gelatin por-
tion. Finally diesolve in the Naceonol.

11. 5% sodium alkyl sulfate or sodium alkyl
aryl sulfonate

4% crude CMC (Carbory methyl cellulose)
91% water

12. 5.5% Ammonium oleate
Q

55 % glycerine
1

1 65.5% water
7 15. ”5% amonium oleate

50% glycerine6 45% water

1 1 1
1



1 14. 1% ammonium oleate ‘
10% glycerine
89% water 1

4
15. 50% lycerine

’ .
2.5% soap

47.5% water

16. 25% glycerine
4% alcohol ‘

4 5% soap6 5 66% water ·

17. 5% potassium oleate
‘

50% glycerine
45% water

18. 1 cc. triethanolamine oleate
· 5 cc. water

- 5 cc. glycerine 4

19. Various proportions of Atlantic Ultra
9 Wash and ethylene glycol

20. Various proportions of Atlantic Ultra
Wash and glycerine

21. 1 2 gm„ sodium oleate
1 liter water
50 cc. glycerine

22.% 1 gm. sodium oleate
2 liters water 9
6 cc. glycerine per liter of solution

1
111
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U
,, E. Rubber Membranes Ä

After none of the soap solutions proved to be sufficiently

stable, a rubber membrane was tested. One—fifth inch squares
Ä were ruled on an unstretched thin rubber sheet. The rubber

sheet was then placed on the boundaries and stretched a nomi-

nal amount.
To insure uniform tension, the membrane was stretched at

all points until each square was a perfect square and every

square was the same sine. Also all lines had to remain straight.

This required innumarable adjustments at the boundaries. Since

the rubber membrane is subjeoted to uniform tension, it satis-

fies the equation of the soap membrane and may be substituted

_ A
for the soap membrane.

Aluminum angle was fastened to the outside square bound•

ary, and the membrane was clamped to the angle by small, strong

paper clamps. An aluminum plate was cut to the exact shape of

the inside circular boundary. The rubber membrane was clamped

- between the boundary and the aluminum plate. The plate was
Ä _ secured to the boucdary by means of a screw in the center.

Time did not peimit the actual measurement of the slopes

~ around the circular cylinder; therefore, no results are avail-

able for comparison with the theoretical results obtained.
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F. §lgpg_Measurements

V
The slope of the membrane gives the velocity components

of the flow at all pcints. The only points of interest

aretheslopes at the boundary of the circular cylinder.

As suggested in a previous section of the thesis, the e

slopes may be measured with a telescope. If a rubber membrane

is used, it must be coated with some substance which will re-
flect light. Another method of slope determination for this

problem is contour mapping. Contour mapping may prove very

· useful if a rubber membrane is used rather than a soap bubble.
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p FUTURE RECOMMENDATIONS

A.number of suggestions which may prove helpful in future

experimental work are given below.

Soap membranes which are stable present the most difficult

problem. There are a number of possible solutions to this prob-

lem. First, a soluti>n which is sufficiently stable may be

found through continued research. Second, the size of the soap

membrane may be decreased. If the size is decreased to the p
point where the present solutions are sufficiently stable, the

experimental errors will increase considerably. The most prom-

ising solution is that the entire apparatus be enclosed in
( glass, lucite, or some other transparent material.

‘The air

‘ in the enclosure could then be purified, getting rid of all

dust particles and otder foreign matter. Perfectly clean sur-

rounding air is necessary for soap membranes of long duration.

(6,7)
(



VI
SUMMARY

The results can best be summarized in a table showing the

corresponding quantities in the analogy presented in this thesis.

M Table 5—
Compressible flow Soap Membrane

. 2 2
Basic equations %<x(/" ($2) + K2) Zxx(/+ZY)+Zyy(/*Zx)

-2

VxSymbolsL//: modified potential Z: Height of soap
· function membrane

X,Y: coordinates in the
reference plane · X,Y, zcoordinates

· in the reference
~ Z plane

Assumptions adiabatic gas constant, soap membrane is
U = -1 unloaded

Derivatives velocity components: Slopes:
U3; Q! t and tci md Co 1 2

UX =¤ velocity component in tl : gf-
Symbols 2 the x direction x

Uy = velocity component in te=.
the y direction 85

CO = velocity of sound at rest

-2 2 2 2
\/

U. U tl + tg-*--*2-1- = M ,/ :Ratios

CSymbgls.M: Mech number M euele between
M ‘ surface normalc: local sound velocity and Z exie
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