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I
INTRODUCTION

The analogy established between shear stress in a twist-
ed member and a sligatly inflated membrane extended above the
same boundary is well knowngz4) Since only long and tedious
approximate methods exist for calculating the shear stress
in non-circular meuwbers, this analogy has been quite valuable.

Recently an analogy was established between subsonic
compressible gas flow and a soap membrane which is not
inflatedges) The object of this paper is to extend this
analogy and to check it experimentally.

In the derivation of the analogy, the exact equation of
a membrane subjected to uniform tension and the basiec
eguation of steady, potential flow of a compressible, non-
vigcous fluld are usad, The derivations of these equations
are given in another section of the thesis., Euler's equation,
which provides a method for finding the equations of minimum
surfaces, will be used in the derivation of the exact

equation of an open soap bubble existing between given
boundaries 2#%?) Any membrane which is subjected to uniform
tension is a minimum surface. The basic equation of steady,
potential flow of a compressible, non-viscous fluld 1s
derived from fundamental principles and concepts of fluid
mecnanics.(?’es)

In the experimental verification of the analogy, a
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circular cylinder will be used. The potential ifunctions
arourd the boundary of the cylinder will be represented by
vertical heights abore some datum plane. In & similar
manner, the potential functions in the tree stream will be
represanted by heights above the saie datum, If the
cylinder is not to influence the value of the free stream
potential function, “he distance from the cylinder to the
point where the free streaw potential function is to be
calculated must be large., This distance is assumed to be
infinitely large.

The problem of :’'inding a soap solution which will form
this large bubble is tremendous, Large bubbles formed from
these solutiogs last only for a'short period of time,

An accurate deteruingtion of the slopes of the uembrane
at the boundary is required. This may be accomplished by a
number of methods. The best method available is through the
ugse of a microscope-telescope arrangement, although it
requires a large amount of calculations.

The analogy may be applied to any steady, potential
flow of a compressible, inviscid fluid in the subsonic
velocity range. The circular cylinder problem is used only
for experimental verification of the analogy. Aerodynaumlcists
are interested primarily in fluid flow about airfoils.
AMrfoils which are of classical interest are the Joukowsky
series of airfoils which are transformationg from circular

cylinders.
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II
THE REVIEW OF LITERATURE

Lee, G. H., An Introduction to Experimental Stress Anglysig,
John yiley & sons, Inc., 1350, pp £26-231.

The author gives the existing membrgne analogy between
shear stress in torsional members and a slightly inflated
soap bubble extended above the same boundary. He discusses
how the boundary for the soap membrane should be formed.
Also two different soap solutions which are gquite stable are
given., The first solution consists of £ grams of sodium
oleate per liter of water with 30 cc. of glycerin adaed.

The other solution i1s 1 gram of sodium oleate per 2 liters
of water with 6 cc. of‘glycerin added fof each liter of
solution,

fo lengthen the life of any soap meuwbrane, the rate of
evaporation must be controlled. All known soap solutions
evaporate and cause the membrane to burst, The rate of
evaporation is decreased by sealing the soap mewbrane in its

container.
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Heaslet, M. A., "Compressible Potential Flow with
ciréulation Abcut a Circular Cylinder,n

National aAdviscry Committee for perongutics,

Report 780, 1944.

There are several known methods for the approximate
solution of the basic equation of two-dimensional, ir-
rotational potential flow of a compressible fluid., The more
important ones are the method of small perturbations, the
Rayleigh-Janzen method, and the hodograph method.

The author gives the results of the three methods;
although he derives only the Rayleigh-Janzen method. The
Rayleigh~Janzen method 1s essentlially a perturbation method.
The solution of the basic differential equation for two-
dlmensional, compressible flow is assumed in the form of an
infinite power series in powers of the free stream Mach
number, !, The free stream liach number is defined as the
free stream veloclity divided by the veloéity of sound in
the free strean,

The solution is carried only to the term containing
the fourth power of =he Mach number. Graphs are given which

show the results of the three methods of solution considered.
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Liepmann, H. VW., and Puckett, A. E., Introduction t

pjerodynamics of a Compressible Fluigd,
John wiley and Sons, Inc., 1347, pp 157-188.

The authors give various approximate solutioﬁs of the
basic differential equation Qf steady, potential flow of a
compressible, non-viscous fluid.

The solution for the potentiai function is derived by
introducing a thickress parameter. The final solution is
in powers of this thickness parameter.

Next the solution is found by the Rayleigh-Janzen
method. The final solution in this case is in terms of
powers of the free stream Mach number.

The hodograph rethod is also discussed and applied to
the basic differential equation., Both the Chaplygin and
the Karman-Tsien methods transform the basic differential
equation to the hodcgraph plane. These two solutions are

also given by the authors.
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Dewar, J., "Soap Bubbles of Long Duration,"
Journal of the Franklin Institute, Vol. 188, No, 6,
1919, pp 713-749, and rgtudies on Liquid Filus,"
Journal of the Franklin Institute, Vol. 193, No. &,

1922, pp 145-188.

These articles are discussions of technigues used to
obtain soap bubbles lasting up to one year., The fact that
surroundings which are free from dust particles and other
foreilgn matter is of utmost importance is emphasized by
the author,

The results of a number of experiments with various
sized bubbles are given in tabular form. One example cites
bubbles twenty cm. in diameter which lasted from 28 to 40
days.

some of the solutions which were used contained five
per cent potassium oleate, fifty per cent glycerine and
forty-five per cent water; five per cent ammonium oleate,
fifty per cent glycerine, and forty-five per cent water;
three and one-half per cent ammonium oleate, thirty-three
per cent glycerine, and sixty-tﬁree and one-half pér.cent
water; and twenty-five per cent glycerine, four per cent

alcohol; five per cent soap, and sixty-six per cent water,
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III.
THEORY
A- The Differentis’, Equation of an Open Soap Membrane
For the analogy between shear stress in a twisted
member and a soap bubble extended above the same boundary,

the exact equation of the soap bubble is not used. The

equation of the soap bubble, neglecting the squares of the

3=

= .
slopes(;;a 5, ) » 8

2 2
R

In this equation p :.s the pressure to which the membrane 1s

subjected, T the uniform tension in the wembrane and z the
infinitesimal displazcement of the soap bubble after the
slight pressure is applied. The analogous eqguation for

the stress function @ is

2°F
EPL: 3_92 +2 =0. | , (2)

Euler's equaticn will give the equation of the
surface S, which has a minimum area for any fixed boundary.
The soap membrane represents the minimum surface between
the given boundary over which the membrane is stretched.

The formula for the surface area (S) is

s //// HoEf+ (37)F dndy (®)
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where x and y are the coordinates of a point and z 1s the
height of the surface above the point (x,y). A is the
projection of the svrface § in the x-y plane over which
the function is integrated.
Generally
- dZ IE

I-f{/:(&f/’f, 3x? 3y / dx dy (4)
where F (x, ¥, z,gf ,%f-) is a twice differentiable function
with respect to its variables which is a necessary require-
ment for the derivation of kuler's equation, The dependent

variable z is a function of x and y; 2z = z (x,y) . For

simplicity of manipulation, introduce the following notation:

a_@_‘_’ o =..a-..‘...’- )
P I x “r 7 2y (5)

The general equation is now of the form

]'=/{ Flx,y, z,,o‘.,q) dx dy. (4a)

For the derivation, first select any surface 0 = @ (x,¥)
where @ (x,y) = O on curve Bj as showvn in Figure 1. Curve
By is the projection of the curve B in the x-y plane, where
z(x,y) passes through curve B, Choose any set of surfaces
(Sy) so that, for any value of u, the surfaces will pass
through curve B, The equation of such a set of surfaces

(sy) is given by
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Zlx,y)=Z(x9) + «8(x,yg). (€)
For any one of thes«. surfaces,
. 9Z 26 oxZ J6 \
T = * -— a 2 —= —_— (7
/Dax’o“ax“” Qay\q-raay )
This gives the integral |
- (
[/ Flx,9, 5 F, Q)dx dy. (®)
Differentiating this under the integral sign gives
d(or2Loe2Lo)dxdy. (9)
Taking the last two terms under the integral sign and
integrating by parts, produces
= 9F - 9 éf. 98
/&PQ“(X ap 494(/?)9“{‘ (92)
and
F = 9F g ./ 3 /2F (9b)
L5t =539 é&g/a )6 dy.
Substituting these back into -O—‘-f , gives:

ux )0 9(8F)0}d dy “fa‘pedjf'/ édx, (10)
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The last two terms are zero since they are to be computed
on the boundary curve By in the x-y plane, In the x-y
plane, 0(x,y) = O. Equation {10) now becomes:

Lor[eE -2 () -2 ()6 ddy OV

From equation (6}, it is seen that when u = 0; z = z, P = p
and Q = q. Equation (11) now becoues

dI _rr[3F _2/3F\_ 3 soF .
dy '[{[az ax(ap) 3,9 37 ]9d1 d_y (12)

If the integral I is to be an extremal, then j%l
«

must be equal to zero, With this condition applied,

eguation (1) is now equal to zero.

Since © was chosen arbitrarily, the value of O is not
zero. The bracketed term in equation (13) is continuous

and must be equal to zero if equation (13) is equal to

zero. Therefore, the necessary condition for a minimum is
2F 4
Iz ax( ag 99) o (14)

Using the formula for computing the surface area (8):

S ///H "" "'(az) dxdy (15)

with Fuler's equation (14), the exact equation of an open




soap bubble or any membrane with uniform surface tension

may be derived.

liaking the fo..lowing substitutions:

P 9= Fe/l+pi+q”

in equation (15), gives
S=/[\//+ pi+q%  didy.

Using the above derived Euler eqguation:

%[, s02)%], 9%s ox)\2 92 Ja 2z
axﬂ[”'(ay) ]*é?' It ) | 5% & 55 =

The solution of eguation (18) gives the minimum
surface over any boundary. Equation (18) is the exact

equation of an open soap bubble since a meumbrane

(16)

(17)

stretched over a given boundary with uniform tension isg

the minimum surface above the boundary.
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B. Basic Differential Fguation of cubsonic Comprecscibile Flow.

For an anzlogy to exist, the basic ecuation ol cteuuy,
potential flow of a coupressible, non-viscous f'iuiu must be
of the stme form as equation (18) for an open so&p bubble.
This basic ecuation may be ueriveu from fluiu mechenical con-
siderations.(2’25) |

Consiuer the Eu.er equation for the cteauy, potential

flow of a non-viscous gas, wied outsiue forces are ueglecteu,

-2
- p grad % +grad p =0 (19)
the continuity equstion for steauy flow
div (pV) =¢ (20)

ana the formula for =he velocity of souna
c = [de (=1)
Vo
whicn may be exprested in another form
ct grad p =grad p. (22)
In equations (19), (20) anu (22), p is prescure, pis
agensity and v the velocity vector. It is seen from the con-

tinuity ecuation (20) that

V. yf‘ad-/o T —'/0 dl’v V. (2:.:)
Equafion (££) may be expressea as

= - v ..

v-grad © =z e grad p. (£4)
From equations (g£c) anwu (£4), the fcllowing releution exists

V.grad p =-c®p0 div 7. (5)

Multiplying equation (1Y) by the velocity vector sives

‘V.yraa{p = -0 V . grad —g—g (x6)
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Combining equations (25) and (£6), produces

Or/O \70 _9/”4 ZZ— CZP dl‘V 7 (27)
2

v ® -—z -amn - ' [4
V » grad > c2div v =0, | (28)
Introduce the ¢ potential function into eguation (28) by the
relationship v = grad¢

grad ¢ - [5rad F{gmd ¢) ]} c* div grad ¢ =0 (29)

Transferring equation (29) into its scalar form, gives

axz[ { ]*U[ /M)] 24; ;f aa; 0.  (z0)

In order to get equation (¢0) into the form of eguation

(18), use
P af=cf- v (21)

where all terms are velocity squarea terums.

This may be written in the form

2 2 |
a®=c- (3¥) -(32) (=2)
or
c®=a? +(2%)* +(9¢) (22)

Substituting the value of c2 from equation (:Z) into equation
(z0), gives the result
2, __g 2% 3¢ 99 . 3
[ (3 ] [a +( )] 28;(33 x 99 =0, (24)
This is the basic eqaation of steaay, potential flow ot a

compressible, invisciu fluid.
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C. Comparison of the Lifferential lcuatione of aa Jpen coap

membrane anu cubsonic Couprecsible Flow.

If equation (18, an¢ (i4) are compared, it is seen that
they &re of the cuue form. Dbefore zu analogy 271 be ‘ectub-
lisheu, both equations wmuct be uimensioules:i. To get cqua-
tion (18) into uimensionlese forwm, iatrowuce

x=XLj; gy=YL ; z=£L (<5)
where X, Y and Z are non-uimensional coorviaatec aua L has
the uimension of feet. After introuuctioun of tuece values,

equation (18) nas the following form:

4z 02 9PZ 2 7.
?97?[/*/5? ‘ aye[/*/a )] %37 x5y -0 (&)

In orcer to get equation (c4) iato its non-dimensional

form, introuuce

x=XL;y=YL;P=¥FLc.; c=Cc; a=Aq, (£7)
where X aznc Y are non-uimencional cooruinates,¥ is tne non-
wimensional potentizl anu C anu A are the non-iimencional
velocities. The uimensions of the other terms are: L in
feet and c, in ft/sec.
Equation (c4) now reaus

%%/[Aa’“@‘ﬂz] A3 } 5%4; gxy Fo e
There is a perfect analogy between eguations (c¢8) anu (c8)
if AR= 1; or since a= Ac,, if a =c,.

By means of equation (3Z),the above relation gives

c®= C,,e‘+ v* (c9)
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which is tne relation between souna velocity &nu velocity of
flow. If equation (&9) is satisfied, the zbove analogy is
perfect. |
The velocity of sound at rest (c=cm ), at the refer-

ence point ( c¢=cg) and at any other point in the f'low (c=¢)
is coanected with the velocity of tne flow at rest ( v;;o),
at the reference point ( v=v,) and at any point in the flow
( v=v) by the equations,

ci=cf Byt =t TS
Equation (29) can be transformed to

Ca-Cl = 1FL Vv

This result indicates that, since c. and c, are constants,

(40)

either the flow velccity must be constant or cee= ¢y and

¥ =-1. The first pcssibility has no physical meaning since
the flow velocity aces vary from point to poiut. Tne second
case requires the introduction of a gas with &an aaiabatic
gas constant of (-1).

The Mach number is

2 2
M=Y = [Ce=Cd
c 2 y-l ~%
From equation (40) it follows that

Coo > C,
therefore M1 if ¥>»-1

The analogy accordirg to the last result is valiu in the sub-

sonic range, with constant Mach number.




o

=]1Q- . i |

If the auiabatic gas constant, §=-1, tnen equation (40)
becomes -
2

2 2 2 2 .
Cowo =Cop = Vo = C =V (‘il)

by use of equation (z9) for ¥a-1,
Ca = C,,
therefore in (41), Vo==0, i.e. the reference point turne out

to be the point, where the flow ic at rest.

For the Hooke gas (¥ =-1) the general relation between

aensity anc velocity(27) e
- ¥l v2¥-
/O"/oo {= “E—- —C-:-é (42
becomes
£ | (42)

N ENTS 5
From (41) ana the above relation it follows that

C+\/-C(/0/)

Using the ueflnltlon of c®

= dEVQLO ' y 2 2
one obtains the ¢ift=rentisal equation 4L -c, -46% 3 frow
: ap P
which . 2 .
C, £ .
P:: K"_.g.ﬁ_ . (‘ﬂ:é)

P

Figure 2 shows & pl)t of this formula‘anu tne auiabutic reia-

tion, ﬂQ :FQQV— It is cleur thet by the ¥=-1 zc:umption

the actual adiabatic curve is suLstltuteo by itse tangent. (4)
Considering equations (42) ana (4:), eliminating cgy by

2 z ¢®-v® and introiucing i =Y, one obtains

-t
2 (1 Gt M7) (45)

Co




Poll+y)
P = 5(14Y) = Ypopo(1/p)

22
= < - ¢ pg (1/p)

Po

Figure 2. Plot of the edisbatic gas lew




= (1-M%)F | (46)

Equation (45) is the general relation between ceasity

anc¢ Mach number, while eguation (46) comnects ceunsity and
Lach number for the Hooke gas. It is interesting to note
that the power series expancions are eguivualent if the

fourth znd higher pcwers of tune Macn nuwber are neglected.
-1

'(/+X M)”'/-‘-M+ Mt («7)

_ 22‘_ / 2 # :

=(1-M°)% = [-FM7-F (48)

Figure 3. shows the-% = f(M) relation for ¥ 1.4 anc ¥=-1.

If the deviation is defined by

(P/g')ru.‘a. -(%)r=—/ , (49)
(-/%)Krl.‘?-

€=/00

then €< 1.7%7 if M< 0.5 and €<10% if M <€ 0.7. Tais ilaui-
cetes that for M < 0.5 the error introcuceu by the ¥=-1
assumption is expecteu to be les:. than the experimental

errors.




1.0

0.5

Figure 3. Plot of ‘Mech number vs. density ratio.
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v
EXPERLuENTAL VERLFLCAT1OW OF THE AWALOGY

A. A _Proposed Experiment

In this part ot the thesis, an experimeat is proposed
which maxes use of the analogy given above. A membrane
(automatically satisfying the reculremeats of & minimal sur-
face) is stretched between boundaries given by the fluid
mechanical part of the analogy. First a cifcular cylinder
is chosen for whicﬁ theoretical as well as experimental re-
sults are availsble for comparicon. Uniform flow is suppos-
ed at infinity, which makes the outsice bouncaries simple.
The prescribea value of the poteantial fuaction on the circu-
lar cylinaer is computea from any theoretical solution of
the basic differential equation of steaay, poteatial flow
of air arounu the cylinuer, neglecting viscosity «nu consia-
ering compressibility.(lz)

The slopes of the membrane are measureu by means of a
telescope supportea by a glass plate at & constant height
’above tne datum plane on which the bounuaries are erected.
The telescope is fixed to the glass pl;te at & conctunt
angle of 45 degrees., The glass plate is not fixed but may
be moved to any desired position. To prevent refraction, a
hole is drilled in the glas:e plate where the line of sight

of the telescope passes through the glass.
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A long slot is also cut in the glass plate beyonc the hole
through which the line of sight passes. This slot is 1n the
direction of the linz of sight of the telescope. The slot
is necessary for the insertion of a uepth gage.

The depth gage is usec to measure the heigiht of any
point for which the clope is desireu. A lucite linear ccale
is fitteu into this slot after the aepth guge ic removea.
The scale is formec on the bottom surface to preveat refrac-
tion due to light passing througn the scale. A light source
is located above the scale, anc the reflection ot the scale
from the bubble is r2ac by means of tne telescope. Tne slope
of the soap membrane at any point is determinea from these
measurements.

Figure 4 shows the problem set-up. The operation pro-
cedure is as follows. First sight on any cesireu point by
means of the telescope and the depth gage. The uepth gage
is used to locate anu measure the elevation of the uesirea
point. Once the telescope is focused on the Gesirea point,
the depth gage is rewmovea, ana the lucite scule is placed
in the slot. Extreme cére must bte taken curing this opera-
tion. 1f the glass plate ic¢ moveu, the point on wnicn the
telescope is focusea will be lost. The light source is then
placed above the tcale, ana the reflection oi the scale from

the soap membrane is reaa by meanc of the telescope.
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The slope of the membrane is then computeu by tne following

forwmulas

cle+d)

c2-ed

Figure 4 cefines the symbols useua in the above forwmula.

d--— arc ltan

The above procedure is repeatea for all wesirec points.
In this experimeat the slopes of t.ue wmembraune at poiats
around tne circular cyilnuer are uesireu, These =lopes give
the velocity components of the flow. The measurec values of
the velocity components may be compareu with 5oth tneoretical

and experimental values obtainea by other methods.

B. Compressible Potential Function Around A Circular Cylinder.

The values of the potential functlion arouana tne circu-
lar cylincer were calculiated by an apyroxiumate methoo.(lz)
The method used was the Rayleigh-Janzen method.

Thnis methou like most other approximate methocs con-
sists ot a series expansion. The poteantial function is ex-
pancea in terwe of even powers of tne free stream kiucn num-
ber. The first term of the expansion (containing the zero
power of the Mach nunber) isc the colution f{or the iacompres-
‘€ible flow problem. Eacn succeeuing term is a corrective
term for the effect of comprescibility. Cla:zcical wathema-
ties 1s usea to determine each.reqaireu term of tne expan-
sion. The terms are solutions of Poisson equations with

bounuary conaitions for the circular cyliacer.
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A large amount of work is requirea in tne cetercination
of each term, &iac each succeeulng term ls consicerably longer
than the preceuing o.e. After the algetraic expres:zion for
each term ic aerived, the work involvea in calculating tne
numerical velues for any given problem is tremencous.

Table 1 gives the results obtained for a cylincer with
a racius of one inch. Only three terws of the expancion were
concicerea. Tne thira term affect: the results very little
since the Mach number to tne fourth power ic the coefficient
for this term. A free stream Maca number of tnree-tentins
was chosen for thie ‘:slculation. Tne critical wacu namber
is reached on tne cylinder if the free ctream iicn aumber is
approximately forty-iwo huncreutns.

Figire 5 is & plot of tue couwprescivle poteatiul lunc-
tion arounu the eircilar cylianuer. Yigure © giveb the in-
compressible potential function wrounw tae cyilucer, and
figure 7 shows the uifference between tre cousiprecsible ana
incompressible potential fuactione.

The tsngentizl relocity for cowmpreszible flow usround
the circular cylincer wae calculateu frow velocity ecuations
cerived by the Rayleigh-Janzen Metnou. These recults are
given in table 2, &ni figure 8 1: = plot of the results ob-

tained.
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TABLE 1

VALUKS OF POTENTIAL ARJUND CIRCULAR

U = 334.8 £t/ sec;

CYLINDER %ITHO T CIRCULATIONW

Q,==Incompressib1e rotentiel function

co = 1116 ft/ sec; R

=] in.

® = Compressible potential function
© = Angle around cylinder
e Zo % g2 o d -G
0 2.0200 .50C0 . 7026 669.60 680.57 16.97
10 | 1.9696 .5122 .7085 | 659.42 | 676.76 | 17.34
20 | 1.8794 | .54%1 | .7344 | 629.22 | 647.57| 18.35
30 | 1.7320 | .5774 | .7938| 579.87 | 599.43| 19.56
40 | 1.53%20 .5941 ~ .8T793 | 512.91 | 533.20| 20.29
50 | 1.2856 | .573%0 | .9472| 430.42 | 450.24| 19.82
60 [ 1.0000 «50C1 .9273 3%4.80 352.38 | 17.58
70 .6840 | .3724 | .758T7 | 229.00 | 242.29 | 13.29
80 . 3474 .1992 4311 | 116.3%1 | 123.47 7.16
90 | .D7000 .0720 .0200 0.00 0.00 0.00
100 | - .34T74 |'=-.1992 | =.4311 | -116.31 | -123.47 | - 7.16
110 | - .6840 | ~-.3724 | -.7587 | =229.00 | =242.29 | -13.29
120 | -1.0000 | -.5001 -.927% | =33%4.80 | -352.%38 | -17.58
130 | -1.2856 | -.5730 | -.9472 | -4730,42 |~450.24 | -19.62
140 | -1.5320 | -.5941 | -.8793 | =512.91 |-533.20 | -20.29
150 | -1.7320 | -.5774 | -.7938 | -579.87 |-599.43 | ~19.56
160 | -1.8794 | -.5431 | =, 7344 | -€29.22 | -647.5T7 | -18.35
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TABLE 1 (CONTINUED)

e %o # 2 o ] $-9o
170 | -1.9696 | =.5122 | -.7085 | -659.42 | ~676.76 | ~17.34
180 | =2.0000 | =.5000 | -.7026 | -669.60 | -686.57 | ~16.97
190 | -1.9696 | -.5122 | -.7085 | -659.42 | -676.76 | ~17.34
200 | -1.8794 | =.5431 | -.7344 | -629.22 | -647.57 | -18.35
210 | -1.7320 | =.577~ | =.7938 | -579.87 | =599.43 | -19.56
220 | -1.5%20 | -.5941 | -.8793% | -512.,91 | -533.20 | -20.29
230 | -1.2856 | -.5730.| =.9472 | -430.42 | -450.24 |-19.82
240 | -1.0000 | =. 5001 | -.9273 | ~334.80 | -352.38 | -17.58
250 | - .6840 | -.372¢ | =.7587 | -229.00 | -242.29 | -13.29
260 | - .3474 | -.1992 | -.4311 | -116.31 | -123.47 |- 7.16
270 .0000 . 0000 D020 0.70 0.00 0.00
280 | .3474 | .1992 | .4311 | 116.31 | 123.47 | 7.16
200 | .6840 | .372¢ | .7587 | 229.00 | 242.29 | 13.29
300 1.0000 5001 9273 334,80 352.3%8 17.58
310 | 1.2856 | .573C | .9472 | 430.42 | 450.24 | 19.82
320 | 1.5320 | .5941 | .8793 | 512.91 | 533.20 | 20.29
330 | 1.7320 | .5774 | .7938 | 579.87 | 599.43 | 19.56
340 | 1.8794 | .5431 | .7344 | 629.22 | 647.57 | 18.35
350 | 1.9696 | .5122 | .7085 | 659.42 | 676.76 | 17.34
260 2.0000 ’ « 5000 7026 669.60 686.57 16.97
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TABLE 2

co = 1116 ft/sec

TANGENTIAL VELOCITY FOR COMrR+SSIBLE FLOW
ARJDUND A CIRIULAR CYLINDER WITHOUT CIRCULATI)N
Radius of cylinder=1; U =334.8 ft/sec;

Velocity e Velocity |
0.00 | 190 112,06
112.06 200 222.19
1222.19 210 328.59
328.58 220 | 428.93
428.93 | 230 | 520.20
520.20 240 598.62
598.62 250 | 659.55
659.55 260 | 698.37
698.37 270 | 711.75
711.75 230 | 698.37
698.37 290 | 659.55
659.55 300 | 598.62
598.62 310 520.20
520.20 320 428.93
1 428.93 330 | 328.59
328.59 340 | 222.19
222,19 350 | 112.06
. 112,06 %60 0.00

0.00
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C. Membrane Boundaries

The inside boundary of the soap membrane is formed from

the values of the compressible potential function around the
circular cylinder as determined by the Rayleigh-Jansen Method.
A steel cylinder whose radius is one inch waé used. The height
of the cylinder was made everywhere equal to the potential func-
tion. The base of tie cylinder was used as a datum whose value
was minus 3000 feet squared per second.

A square outside boundary was used fér ease of fabrica-
tion. The square is fourtecen inches on a side. Undisturbed
flow was assumed at this distance from the cylinder since the
effect of the cylinder on this boundary is negligible. Figures
9 and 10 show the undisturbed boundary heights. The points
plotted are val ues dstermined by thé Rayleigh-Jansen llethod.
Table 35 gives the values for the potential function on the
outside boundary as calculated. TFigure 11 is a plot of the
points on the boundary that correspond to the calculated values.

The outside of the circular cylinder boundary and the
inside of the square boﬁndary were undercut at an angle to

prevent the soap bubdle from movine down the boundaries.
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TABLE II1

OUTSIDE BOUNDARY VALUES OF THE POTENTIAL FUNCTION

M=0.3; U=334.8 £ft,/sec; co= 1116 ft/sec;
9, = Incompressible potential function
® = Compressible potential function

@ = Angle around cyYlinder

Radius =1 in.

2 2] Z g ®o ¢

0 | 360 | 7.1429 1193 | 2391.44 | 2395.04
20 | 340 | 7.1259 | .1188 | 2385.75 | 2389.33
40 320 T7.083%5 «1040 2371.56 2374.69
45 | 35 | 7.0717 | .0948 | 2367.61 | 2370.46
60 | 300 | 4.1034 | <0973 | 1373.82 1576.75
80 | 280 | 1.2591 | .0437 421.55 422.86
90 A 270 0.2000 0000 0.00 0.00
100 | 260 | =1.2891 | -.0437 | - 421.55 | - 422.86
120 | 240 | -4.1034 | -.0973 | -1373.82 | =1376.75
135 | 225 | -7.0717 | -.0948 | -2367.61 | -2370.46
140 | 220 | =7.0835 | =.1040 | =2371.56 | ~2374.69
160 | 200 | -7.1259 | -.1188 | -2385.75 | =2389.33
180 | 180 | =7.1429 | -.1193 | -2391.44

"2395-04’ i




Cylinder

200 ¢+ 1340
220 ¥ 320
k A " ) 2
225 240 260 280 300 315
Scale: One-half
Figure 11. Iocation of outside boundary points
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D. £oap Solutions

Many soap‘solutions were used in the attempt to find a
solution which was stable. None of the solutions available
were very stable. In fact, none of the solutions used gave
bubbles which were stable enough to allow any measurements to
be made.

The first solution given in Table 4 proved to be the best,
although this solution gave membfanes which lasted for only ten
seconds under ordinary conditions. In an attempt to increase
the stability of the soap membrane, the apparatus was moved in-
to the one hundred percent humidity room of the Applied Mechan-
ics Department of the Virginia Polytechnic Institute. The dust
content of the air ard the rate of evaporation of the soap so-
lution.are important factors in the stability of a soap mem-
brane.(6*7) The increased humidity decreased both of these
undesirable factors, but the membranes still lasted only thirty
seconds which is not a lons enough period of time o permit any
measurem=nts.

Table 4 gives the various solutions which have been used
for soap bubbles. Ir. addition a number of commercial soap
bubble solutions were tested. None of these solutions pro-

duced membranes with the required stability.
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Table 4. Soap Soluations

Solution RNo.

1.
a. 400 parts Orvus WA Paste
60 parts Triethanolamine

b. 99.5 parts water
.5 parts CMC High Viscosity

Bubble Solution: 20 parts a.
80 parts b.

2. 25 parts nonionic (Triton)
. 75 parts water
35 parts glycerine

5 parts- coconut 0il potash soap
2 parts glycerine

1 part Methyl Cellulose

2 parts water

30

9

part pure castile or palm oil soap
parts distilled water
parts pure glycerine

+ T

5. 2 parts castile soap
30 parts glycerine
40 parts water

6. 25 parts Hard soap
15 parts glycarine
1000 parts water

Dissolve s0ap in the water, add glycerine, and
mix thorousghly. On standing the liquid becomes clear
at the bottom, The clear liquid is drawn off and
keeps indefinitely. It is this portion that is used
for makine tongh, long-lasting soap bubbles.

7. 10 gn. Sodium Oleate
400 cec. water
100 cec. glyec:rine

Dissolve oleate in water with occasional shakins.
Do not heat. Then add the glycerine and allow to stand

Y
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for two to three days. Remove the clearer portion
and add one drop of stronger emmonium hydroxide.
Do not filter.

8. 10 cc. of pure oleic acid
76 cc. water
54 cc. glycerine

Shake well and add:

3,23 grms. of TEA in
30 2c, 0f water

9, 15 parts coconut potash sosp (anhyd)
2 parts Gum arabic
6 parts glycerine
0.3 parts basic dye
76.7 parts water

10. 6 parts gelatin
50 parts water
12 parts glycerine
1% parts diethylene glycol
7 parts denatured alcohol
12 parts Nac. N.R.S.F,
Orvus WA Paste

Soak the gelatin in the water until swelled and
then heat until dissolved. Mix the glycerine, glycol
and alcohol and add this solution to the gelatin por-
tion. Finally dissolve in the Nacconol.

11. 5% sodium alkyl sulfate or sodium alkyl
aryl sulfonate
4% crude CMC (Carbory methyl cellulose)
91% water

12. 3.54 Ammonium oleate
33 ¢ glycerine
63.5% water

13. '5% ammonium oleate

50% glycerine
45% water




14.

15.

16.

17.

18.

19.

20.

21‘

22.

4%

1% ammonium oleate
10% giycerine
89% water

50% glycerine
2.5% soap
47.5% water

25% glycerine
gé a’l.cohol
svap

66% water

5% potassium oleate
50% giycerine
45% water

1 cc. triethanolamine oleate
5 cc. water
5 cc. glycerine

Various proportions of Atlantic Ultra
t'ash and ethylene glycol

Varinus'proportions of Atlantic Ultra
Vash and glycerine

2 gm, sodium oleate
1 li‘exr water
30 cce. glycerine

1l gm. sodium oleate
2 liters water
6 cc. glycerine per liter of solution
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E. Rubber Membranes

After none of the soap solutions proved to be sufficiently
stable, a rubber membrane was tested. One-fifth inch squares
were ruled on an unstretched thin rubber sheet. The rubber
sheet was then placed on the boundaries and stretched a nomi-
nal amount.

To insure uniform tension, the membrane was stretched at
all points until each square was a perfect square and every
square was the same sige. Also all lines pad 10 remain Stréight.
This required innumerable adjustments at the boundaries. Since
the rubber membrane is subjected to uniform tension, it satis-
fies the equation of the soap membrane and may be substituted
for the soap membrane.

Aluminum angle was fastened to the outside 3juare bound-
ary, and the membrane was clamped to the angle by small, strong
paper élamps. An aluminum plate was cut to the exact shape of
the inside circnular boundary. The rubber membrane was dlamped
between the boundary and the aluminum plate. The plate was
secured to the bou:dery by meané of a screw in the center.

Time did not permit the actual measurement of the slopes

arounrd the circular cylinder; therefore, no results are avail-

able for comparison with the theor stical results obtained.
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F. Slope Measurements

The slope of the membrane gives the velocity components
of the flow at all pcints. The only points of interest are
the slopes at the boundary of the circular cylinder.

As sugzested in a previous section of the thesis, the
slopes may be measured with a telescope. If a rubber membrane
is used, it must be coated with‘some substance which will re-
flect 1igﬁt. Another method of slope determination for this

problem is contour mapping. Contour mapping may prove very

usgful if a rubber membrane is used rather than a soap bubble.
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v.
FUTURE RECOMMENDATIONS

A number of suggastions which may prove helpful in future
experimental work are given below.

Soap membranes which are stable present the most difficult
problem. Thers are a number of possible solutions to this prob-
lem. Pirst, a solution which is sufficiently stable may be
found throush continued research. Second, the size of the soap
membrane may be decreased. If the size is decreased to the
point wher; the present solutions are sufficiently stable, the
experimental errors will incrgase considerably. The most prom-
ising solution is that the entire apparatus be enclosed in
glass, lucite, or some other transparent material. The air
in the enclosure could then be purified, gettine rid of all
dust particles and otier foreisn matter. Perfectly clean sur-

rounding air is necessary for soap membranes of long duration.

(6,7)
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SUMMARY

The results can best be summarized in a table showing the

corresponding quantities in the analogy presented in this thesis.

Table 5

Compressible flow

Soap Membrane

Basic eguations

MRS ) +'?;Y(7+ xz)

-2 VJXY Vx (f/y:‘o

Zxx(/"'ZY *er(”‘zx)

“élZ&YiZké?;=19

Symbols ¥ : modified potential Z: Height of soap
function membrane
X,Y: coordinates in the
reference plane X,Y, :coordinates
: in the reference
plane
Assumptions adiabatic gas constant, soap membrane is
0=-1 unloaded
Derivatives velocity components: Slopes:
Ux Uy t, and ¢
& and o 1l 2
Ux = velocity component in t1 = -gf
Symbols the x direction x
Uy = velocity component in t2 = 421
<he y direction dy
Co = velocity of sound at rest
0.2 gl 2 2
\/ U,.- U 1+ t2
S—a-¥. = M V[V : =
Ratios C T3 417 1 122 sér
: M: Me¢ch number o
: angle between
Symbols surface normal

'c: lccal sound velocity

and z axis.
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