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(ABSTRACT)

      The applicability of restricted maximum likelihood (REML) in genetic analyses of

categorical data was evaluated using simulation and field data.  Four genetic models were

used to simulate underlying phenotypic variates, which were derived as the sum of additive

genetic and environmental effects (Model 1A and 1B) or additive genetic and permanent and

temporary environmental effects (Model 2A and 2B).  Fifty-eight replicates were simulated,

each of which contained 5000 ewes by 500 sires and 5000 dams and with up to five records

per ewe.  The usual transformation of heritability estimated on the categorical scale to the

normal scale for fertility and litter size performed better for a simple animal model than for a

repeatability model.  Genetic correlation estimates between the two categorical traits for

Model 1B and 2B were .49 ± .01 and .48 ± .04, respectively, and were close to the expected

value of .50.  However, permanent and temporary environmental correlations whose input

values were each .50 were underestimated with estimates of .41 ± .05 and .26 ± .03,

respectively for Model 2B, and .33 ± .02 for the temporary environmental correlation for

Model 1B.

        Bivariate genetic analyses of litter size with growth and fleece traits were carried out by

REML for the data of Suffolk, Targhee and Polypay.  Direct heritabilities for most growth

traits in all the breeds were low (<.20).  Maternal genetic and maternal permanent

environmental effects were important for all body weights except for the weaning weight at

120 d for Polypay sheep.  Estimates of heritability and permanent environmental effects for

litter size for these breeds ranged  from .09 to .12 and .00 to .05, respectively.  Heritabilities



for grease fleece weight and fiber diameter were high for Targhee and Polypay sheep.

Direct genetic correlations between growth and litter size were favorable for Suffolk and

Targhee but weak for Polypay sheep.  Genetic correlations between maternal effects for

growth and direct effects for litter size for the breeds were generally small.  Within-trait

maternal-direct genetic correlations for growth in the breeds were variable and generally

negative.  Direct genetic correlations of litter size with grease fleece weight and fiber

diameter were variable across the breeds.
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CHAPTER 1

Introduction

            In this chapter, the general motivation of the thesis is presented, along with the

specific objectives of the study.  In Chapter 2, genetic parameter estimates for growth, fleece

(fleece weight and fiber diameter) and reproductive traits (litter size and fertility) are

reviewed.  Because Fogarty (1995) has already published a review of this material, this

chapter emphasizes papers not included in his review, especially on maternal effects on

growth traits, genetic improvement for these traits by selection and genetic relationships of

litter size with growth and fleece traits in sheep.  Also the theory of categorical traits and

methodologies for analyses of discrete data in animal breeding are reviewed.  Several

studies comparing the performance of linear and non-linear methods in statistical genetic

analyses of discontinuous traits in different livestock species by field data and simulation

are discussed.  Finally in Chapter 2, different methodologies for (co)variance component

estimation are discussed.  Mathematical representations for within-trait covariance

estimation for growth traits and across-trait covariance estimation between litter size and

growth traits are given.  Efforts are made to address the models used in our study.  

             In Chapter 3, methodologies used in a Monte Carlo simulation study on

reproductive traits (litter size and fertility) are described.  The randomness of the SAS

pseudo-random number generator is tested by simulating 20 independent variates.  The

simulated phenotypic values in underlying normal and categorical scales are summarized

and discussed.  The derived genetic parameters obtained from multiple-trait restricted

maximum likelihood analyses are presented in Chapter 4.   Estimation of additive genetic,

permanent environmental and residual covariance between fertility and litter size are

emphasized.  Also the effect of setting residual covariance to zero and failure of open ewes
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to produce a litter size record on (co)variance estimation are studied.  In Chapter 5, field data

of three breeds, Suffolk, Targhee and Polypay, are used for bivariate analyses of litter size

with growth and fleece traits.  The importance of (co)variance components in the various

bivariate animal models was evaluated by likelihood ratio tests.  In addition, to obtain the

genetic parameters required for multiple-trait genetic evaluation for National Sheep

Improvement Program,  some related issues to (co)variance estimation by the derivative-free

approach, such as flat-ridge, dependence between two across-trait genetic covariances  and

the effect of setting residual covariance to zero on estimation of (co)variance components

are examined.

1.1 General Background

      Dickerson (1970) stated that the cost of animal products depends primarily upon the

efficiency of three basic functions: (1) female production, (2) reproduction, and (3) growth

of the young.  The female production conceptually contributes to all the outputs directly and

indirectly from those breeding females that are kept for reproducing next generation.

Outputs such as wool, milk etc. represent important sources of income for sheep

production, especially in western ranch conditions.  Most of female productive traits  are

normally and continuously distributed.  Genetic analyses of these traits are well understood.

During the history of sheep breeding, these productive traits have been the focus and

tremendous genetic improvement has been made in these traits.

       Growth of lamb, indicated by body weights and rate of gain at different phases of

growth are among the most economically important and easily-measured traits.   Knowledge

of the particular trait and phase of the animal’s growth upon which to base selection is

therefore of utmost importance.  In the eastern lamb production regions, fast lamb growth is

definitely a desirable property.  In recent years, more studies have addressed how to

efficiently utilize maternal genetic effects in genetic improvement of these traits.
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         Also in sheep production, reproductive traits such as fertility, prolificacy, fecundity

and lamb survival have been recognized as major factors influencing profitability, but were

less studied than the other two groups of traits.  Genetic relationships involving reproductive

traits were seldom studied.  These reproductive traits generally have not been selected for in

sheep improvement programs because they have low heritabilities, a discrete phenotypic

expression, and are expressed only in sexually mature ewes leading to low selection

intensities and long generation intervals (Bradford, 1985).   Among these reproductive traits,

litter size is the most important,  and thus most studied as an increase in the numbers of

lambs weaned per ewe per year offers the greatest single opportunity for increasing the

efficiency of any kinds of sheep production systems.  Several successful selection

experiments have changed the perception that genetic improvement for litter size by

selection cannot be justified due to its low heritability.   Litter size has been included in

genetic improvement programs in many countries.  Litter size is the trait receiving the

highest relative economic value in the Norwegian scheme (Perez-Enciso, 1995);  the British

Meat and Livestock Commission includes ewe reproductive performance in the selection

indices in all except terminal sire breeds; selection schemes to improve litter size are

implemented in most breeds in France; and LAMBPLAN, Australia’s performance

recording and genetic evaluation programme for meat sheep also takes ewes’ reproductive

traits explicitly into consideration (Fogarty, 1995).

       In the U.S., the National Sheep Improvement Program (NSIP) was established in 1986

to provide within-flock genetic evaluations for U. S. sheep producers.  The program utilized

single-trait prediction methods with variances derived from literature values.  In 1995, the

program was extended to provide across-flock evaluations for Targhee sheep, with

(co)variance estimates derived from NSIP Targhee flocks (Notter and Hough, 1995).

     The studies for genetic improvement of sheep reproductive traits in the past were

focused on two major areas: (1) methodologies for (co)variance  estimation and genetic

evaluation for these categorical traits, and (2) selection criteria and methods to maximize
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genetic gains for these traits.  Land et al. (1983) suggested two possible courses of action

for the development of selection criteria for sheep reproductive traits: 1) to assume that the

phenotypic expression of the trait depends on the value of an underlying continuous

variable (Falconer, 1989) and of fixed thresholds or 2) to assume that reproduction in both

sexes is under a similar genetic and hormonal control, and use the so-called physiological

traits as indirect measures of reproductive merit.

        Generally there are two groups of methodologies for (co)variance component

estimation and genetic evaluation for categorical sheep reproductive traits: linear and non-

linear methods.  Analyses of discrete traits assuming the threshold model in sheep breeding

are scare.  Pattersson and Danell (1985) analyzed litter size and lamb survival in four

Swedish sheep breeds, and Bodin and Elsen (1989) studied variability  of litter size in

different French sheep breeds using a threshold model.  Other studies in sheep where the

discrete nature of the data was taken into account are those of Gilmour (1983), who

analyzed data on foot-shape in lambs, and of Thompson et al. (1985) who estimated

heritability of fleece rot incidence and score in Australian Merino.  More recently,

comparisons of linear vs non-linear models in analyses of sheep reproductive traits were

made in several studies (Olesen et al., 1994; Perez-Enciso et al., 1995; Motos, 1993).

Theoretically, non-linear methods appear to be more appropriate for threshold traits than

linear models.  However, they are computationally more difficult than linear model

techniques.  This aspect has prompted the question ‘how advantageous are non-linear over

linear procedures when compared under the same circumstances?’  Most studies by

simulation and field data did not support non-linear models (Meijing and Gianola, 1985;

King, 1991; Matos, 1993; Perez-Enciso, 1995).  Except for very rare cases, the two

approaches performed similarly on many measures.

        In linear methods, for the purpose of genetic evaluation, Henderson’s BLUP is

considered the best procedure,  while for the purpose of (co)variance component estimation,

recently developed restricted maximum likelihood (REML) has been the method of choice
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in animal breeding.  Henderson’s mixed model equations under general conditions yield

best linear unbiased estimators (BLUE) of fixed effects and best linear unbiased predictors

(BLUP) of random effects (Henderson, 1984).  A strong argument favoring the use of

Henderson’s BLUP resides in the fact that when joint multivariate normality of genotypes

and data is assumed and dispersion parameters are known, BLUP can be viewed as the

‘maximum likelihood estimator’ of the best predictor or optimal decision rule to rank

candidates for selection.  Moreover, BLUP that maximizes the probability of correct

pairwise ranking among all linear, translation invariance predictors is unbiased under certain

selection schemes (Henderson, 1980).  The merit of REML in (co)variance estimation is

that REML estimators maximize only the portion of the likelihood that does not depend on

the fixed effect and can eliminate the bias of Maximum Likelihood estimators.  REML

estimators have most of these optimal properties; they are marginally  sufficient, consistent,

minimum variance, efficient and asymptotically normal (Harville, 1977).  Thus all

information available is utilized in an optimal way.

      Development of breeding objectives and effective improvement program requires

simultaneously considering the three kinds of economically important traits defined by

Dickerson (1970).  Knowledge of the genetic variation for these traits and covariation

among these traits is prerequisite.  Here, our special interest is the relationship of litter size

with growth and fleece traits.  Litter size is not only an economically important trait and

categorical in nature but is also a fitness trait.  Reduction in fitness associated with genetic

improvement programs has been detected in several livestock species.  Kerr and Cameron

(1994) observed that selection for aspects of efficient lean growth adversely affected

reproductive performance in Large White pigs.  Uribe (1995) estimated genetic correlations

of seven health traits with milk yield in dairy cattle and found that most were antagonistic.

Genetic correlations between production and reproduction were moderate to large and

antagonistic in dairy cattle (Distl et al., 1989; Hansen et al., 1983; Hermas et al., 1987;

Jansen, 1985; Johan et al., 1989).   Also several long selection experiments in dairy cattle
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and poultry confirmed the negative relationship between fitness and production traits

(Shank et al., 1978; Short et al., 1990; Dunklee et al., 1994a, b; Kress et al., 1994; Gowe et

al., 1993).  However, there is a dearth of information on reduced fitness associated with our

past sheep breeding programs.

1.2. Objectives of the Study

      The objective of the first part of this study was to examine the theory of threshold traits

and the robustness of derivative-free restricted maximum likelihood in genetic analyses of

two reproductive traits, fertility and litter size,  both in underlying and categorical scales.

The objective was accomplished by:

     (i).  simulating two underlying normal variates in a traditional nested design using Monte

Carlo simulation techniques in a four parameter setting, named Model 1A, 1B, 2A and 2B.

In Model 1A and 1B, a simple animal model was used while in Model 2A and 2B, a

repeatability model was used for both traits.  In Model 1B and 2B, two traits were correlated

with all correlations (genetic, permanent environmental and residual correlations) of .5.

Realized categorical values were derived from underlying variates by a set of threshold

values.

     (ii).  studying the statistical properties of underlying normal and categorical distributions

of two indenpendent traits or two correlated traits.

     (iii).  estimating genetic parameters, especially three correlations, using derivative-free

REML methods and statistically testing the location parameters for the estimates of various

second moment statistics obtained from genetic analyses of the replicates assorted by

models.

     (iv).  simulating 4 replicates for each of Model 1B-X and Model 1B-Y, which were

modified from Model 1B.  In Model 1B-X, input values of genetic and environmental

correlations were .50 and .00 and the reverse was true for Model 1B-Y.  
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     (v).  studying the effect of fixing environmental covariance to zero by comparing the

(co)variance estimates with or without this restriction.

     (vi).  studying the effect of selection on fertility on (co)variance component estimation.

     The objective of the second part was two-fold.  The first was to construct appropriate

bivariate models between litter size and growth or fleece traits for Suffolk, Targhee and

Polypay sheep using National Sheep Improvement Program data and to provide genetic

parameters required for multiple-trait genetic evaluation.  The second was to examine the

issues related to covariance estimation by derivative-free REML, such as flat-ridge

phenomena, dependence among different estimates and the effect of setting residual

covariance to zero  on genetic parameter estimation.
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CHAPTER 2

Literature Review

Abstract

      In this chapter, genetic parameters, including maternal effects for sheep reproductive,

growth and fleece traits as well as genetic relationships of litter size with fertility, growth

traits and two fleece traits (grease fleece weight and fiber diameter) were reviewed.  Also

some selection experiments for genetic improvement of litter size and fertility in sheep were

discussed.  Heritabilities for sheep reproductive traits were generally low while heritabilities

for growth and fleece traits were medium to high. Maternal effects were more important for

growth traits than for reproductive and fleece traits.  The selection experiments reviewed

here generally support that  genetic improvement for litter size and fertility can be made

through selection.  A positive correlation between litter size and fertility appears to be a

general pattern.  The genetic correlations among growth traits were medium to high.  It is

generally believed that more progress in weaning weight or gain can be made by selection

on postweaning weights and gains than on preweaning weights and gains.  The reported

genetic  correlations between liveweights at various age and litter size were very variable.

The weighted average correlations of litter size with all liveweights were .41.  It seems a very

weak or no genetic correlation between litter size and fleece traits.
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         In the second part, some basic concepts for the theory of categorical traits were

introduced.  Also genetic  analyses of categorical traits in animal breeding were reviewed.

The result from several studies using simulated or field data did not prove that non-linear

models performed better than linear models for genetic analysis of categorical data except

for some special cases.  Joint considering the fact that non-linear methods are

computationally more demanding, their merit relative to linear models was not justified

     Finally, different methodologies for (co)variance estimation were discussed.  Restricted

maximum likelihood (REML) was the method of choice for estimating variance components

in animal breeding.  Thus derivative-free REML was described in detail.  The reliability,

robust and convergence of Simplex method were also discussed.  Mathematical

representation for within-trait covariance estimation for growth traits and across-trait

covariance estimation between litter size and growth traits were given in last two sections.

Throughout the methods, efforts was made to accommodate the models used in our

research.

2.1. Genetic Improvement of Sheep Reproductive, Growth and Fleece
Traits

           Genetic improvements for the three kind of traits, reproductive, growth and fleece are

major goals for sheep breeding because the efficiency of sheep production depends

primarily upon three functions: female production, reproduction and growth of lambs

(Dickerson, 1970).  For wool and dual purpose breeds, wool production and fiber quality

would likely be major components that contribute to female production.  Fleece traits rank

third in importance following reproductive rate and growth (Botkin et al., 1988) although

not all sheep producers agree with it.  Range producers are likely to consider fleece traits of

greater importance than growth because of the importance of wool as an insulator essential

for adaptation to undesirable climate conditions, as well as the relative proportion of income

from wool in sheep industries of Southwestern and Western states.  Regardless of
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viewpoints, wool is a valuable product in most regions and countries, although tremendous

variation exists.  Several measurements are used to indicate wool value.  Fleece weight is the

most indicative of value, but staple length, fiber diameter, and clean wool yield are major

variables influencing values.  Most fleece traits are relatively high in heritability.  Genetic

improvement through selection in wool or dual purpose breeds is common and successful.

            Ewe productivity, defined as number ( or total weight )  of  lambs weaned per ewe

exposed, is dependent upon the component traits of fertility, litter size, lamb survival and

growth (Fogarty et al., 1985 ), and is also a major concern of the sheep industry.  Improving

female reproductive performance is an important objective for increasing the profitability of

sheep ( Abdulkhaliq et al., 1989 ), especially in lamb production.  There is much greater

potential for increasing both biological and economic efficiency of lamb production through

genetic improvement in reproductive rate than through improvement in growth rate or body

composition ( Dickerson , 1978 ).  Total production costs accounted for by replacement and

maintenance of breeding females are proportionally much higher for sheep and beef cattle

than for the other meat-producing species, mainly because of their relatively low

reproductive rate.  Improving reproductive performance is likely to increase both the

biological and economic efficiency of animal production enterprises (Dickerson, 1970).

Among these reproductive traits, litter size was of major interests as an increase in the

number of lambs marketed per ewe per year offers the greatest single opportunity (Shelton,

1971).   Turner (1969) concluded that litter size seemed to be the most useful selection

criterion for genetic improvement of this trait.  Although selection for litter size has been

successful (Clark, 1972; Turner, 1978), the rate of improvement has not been large, partly

because the trait is lowly heritable, categorical in nature and expressed only in females of

reproductive age that conceive and maintain pregnancy.

            The growth of lambs is more important for meat breeds than for wool breeds.  Its

economic importance is only next to female reproduction.  However the economic value of

growth of lamb is difficult to evaluate in Western range condition while in lamb production
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regions of  Eastern states fast lamb growth is definitely a desirable property.  The traits

indicating growth mostly include birth weight, weaning weigh at generally 2-5 months of

age, postweaning weight and gain up to 9 months of age and yearling weight.  Selection for

growth has been common practice in sheep (Al-Shorepy, 1995).  Selection criteria usually

are those weights which can be measured early in the animal’s life.

        Development of breeding objectives and effective genetic improvement programs

requires simultaneously considering the measures of all three kind  economically important

traits mentioned above.   Knowledge of the genetic variation for economically important

traits and genetic covariance among these traits is prerequisite.  The common practice in

wool and dual-purpose sheep breeding often did not take reproductive traits such as litter

size explicitly into account.  Recently,  possible reduction in fitness including reproduction

performance associated with today’s and past breeding programs have been a concern to

many animal breeders.  Therefore, Fogarty (1995) suggested that for genetic improvement

in lamb breeding enterprises, the important traits associated with reproduction and wool

production of ewe and survival, growth and carcass characteristics of the lamb should be

included.

2.1.1. Reproductive Traits

2.1.1.1. Litter Size

          The importance of litter size is that an increase in the number of lambs weaned per

ewe per year offers the greatest single opportunity for increasing the efficiency of any kind

of sheep production.   More studies have addressed to genetic improvement of this trait

than any other sheep reproductive trait.  A lot of genetic variation for litter size exists

between and within breeds.

          Litter size has low heritability and repeatability (Abdulkhaliq et al., 1989 ).  However,

there is a considerable range in heritability estimates for litter size in sheep.  Gonzalez

(1982; cited by Bradford, 1985) reviewed thirty estimates of heritability of litter size for
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different breeds or methods of estimation.  The range in the estimates was from -.15 to .35

with a mean of .10.  A more recent review by Fogarty (1995) gave a range of <0 to .34 with

a weighted mean of .10 (53 estimates) for litter size and <0 to 0.54, with a weighted mean of

0.08 ± 0.08 for lambs born per ewe joined.  There are high standard errors associated with

many of the estimates, and many reports did not include standard errors.  Three estimates of

realized heritability averaged approximately .07 (Fogarty, 1995).  Published estimates in the

past 15 years were generally in the same range ( Abdulkhalig, 1989; Atkins, 1986; Bunge,

1990; Clarke and Hohenboken, 1983; Gabina, 1989; Gama et al., 1991; Fahmy, 1990;

Fogarty et al., 1985; Fossceco and Notter, 1995; Iniquez et al., 1986; Long and Thomas,

1989; Mohd-Yusuff et al., 1992; Owen et al., 1986;  Shelton and Menzies, 1970; Shrestha

and Heaney, 1987; Waldron and Thomas, 1992 ).  The largest value reported was .41

(Gabina, 1989 ).   Basuthakur et al. (1973) reported a heritability of .12±.09 for number of

lambs born per ewe joined for Targhee sheep.  Two estimates of heritability for litter size

for Suffolk sheep were .02 and .09 ( Abdulkhalig et al., 1989; Barwick, 1989),  smaller than

the average value across all the breeds.  Few estimates of heritability for litter size in fall

lambing are available.  Al-Shorepy and Notter ( 1996 )  reported a heritability estimate of

.10, which was higher than the estimate of .05 using data from all seasons for the same

flock.

        Repeatability theoretically should represent the upper limit of heritability, assuming

that the traits being considered at different times are genetically identical ( Falconer, 1989 ).

Although not as useful as heritability, repeatability provides information on the joint

magnitude of genetic and permanent environmental effects.  Repeatabilities of litter size are

generally low, ranging from .08 to .24 ( Abdulkhalig, 1989; Atkins, 1986; Bunge et al.,

1990; Clarke and Hohenboken, 1983; Gabina, 1989; Fahmy, 1989, 1990; Fogarty et al.,

1985; Long and Thomas, 1989; Shelton and Menzies, 1970 ).  These results imply that the

maternal genetic and permanent environmental effects for litter size would be small.  
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        There are few studies that explicitly considered the maternal effects for litter size of

sheep.  Generally it is believed that litter size is seldom affected by maternal effects.

However, Vangen (1980, 1986) thought that maternal effects were important when analyzing

genetic parameters of reproductive traits, particularly litter size in pigs.  Maternal effects are

defined as the effects contributing to the phenotypic value of an individual contributed by its

dam, excluding the dam’s direct contribution through the sampled half of her genes  A

negative correlation between direct genetic effects and maternal effects exists for litter size in

swine (Robinson, 1972; Vangen, 1986; Southwood and Kennedy, 1990).  This negative

correlation could help explain the low heritability estimates for litter size from daughter-dam

regression and the small response to selection for litter size.  Southwood and Kennedy

(1990) estimated direct and maternal additive genetic variances, their covariance and error

variance for total numbers born, born alive, and weaned for Yorkshire and Landrace gilts

using a derivative-free restricted maximum likelihood procedure under an animal model.

Except for Landrace litters, estimates of maternal variance were relatively low for number

born alive, and increased for number weaned.  Estimates of the covariance were negative,

except for number born and number born alive with crossbred litter, and became

increasingly negative for number weaned.  Van der Steen (1985a, b) found that gilts raised

in large litters produced smaller litters than those raised in small litters which demonstrates a

maternal permanent effect on litter size.  These maternal influences decreased the daughter-

dam regression coefficient by 5 to 10%.  Standardizing the litters from which gilts were to

be selected eliminated this maternal influence.  Rutledge (1980) also found that gilts raised

in small litters produced more pigs than gilts in large litters.  Nelson and Robison (1976)

raised gilts in litters of 6 or 14 pigs to compare reproductive performance of female swine

reared in small and large litters.  Gilts raised in small litters had an advantage of 1.0 corpora

lutea and 1.2 embryos over gilts raised in large litters.

        Several scientists domonstrated that maternal effects existed in mice.  Falconer (1955,

1960, 1965, 1971) selected one line of mice for increased litter size, another for decreased
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litter size and maintained a control line.  The daughter-dam regression in the unselected

control line was zero.  However, fairly rapid response was obtained from within-litter

selection.  He thought that maternal effects reconciled this apparent inconsistency.  The

litters were not standardized at birth, so the litter size in which a female was raised became

part of the environmental variation which influenced the size of the litter size that she later

bore.  Females raised in larger litter were retarded in growth and tended to have smaller

litters.  Durrant et al. (1980) also found this maternal effect on litter size in mice.  At

generation 17, second parity dams from lines selected for large litter size, large 6-wk body

weight, index for increased litter size and decreased 6-wk body weight, and a control line

were randomly assigned to have litters standardized to 8, 12 or 16 pups.  Females raised in

litters of 16 pups had significantly smaller litter size, fewer number born alive and fewer

number born alive per female exposed than those raised in the litters of 8 or 12.  The

importance of maternal effects on initial response of litter size to selection in mice was also

demonstrated by Vangen (1986).  In this study, four lines were selected for increased litter

size at birth for 10 generations. One line was standardized to 4 pups, a second to 8 pups and

a third to 12 pups, while the forth was not standardized.  Selection response was highest in

the line with fewest pups and zero in the unstandardized line. Realized heritabilities were

high for the low level of standardization, moderate in the other 2 standardized lines and zero

in the unstandardized line.  However, standardization of the litters had no clear effect on the

total number born in response to selection for increased litter size after 20 generations

(Vangen, 1986). This may indicate that maternal effects are not important for long term

selection of increased litter size in mice.  

           For the first few decades of the modern era of genetics, animal breeders generally

believed, based on heritability estimates, that genetic variation in twining rate or litter size

was too low to justify trying to change it by genetic means for sheep, except perhaps to

utilize the one-time increase from crossing breeds (Bradford, 1985).  The expected change

in litter size per year due to selection for sheep would be low ( Hanrahan, 1980).  However,
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several successful experiments for selection for litter size of sheep changed the perception.

Today it is generally accepted that genetic potential for mean litter size in sheep can be set at

any desired level from one to three.  There are at least three methods potentially available for

genetic improvement in litter size in sheep: use of breed resources, selection within breeds

and use of major genes such as the Booroola ( Elsen et al. 1994).  Selection within breed

for litter size was successful although the rate of response was not large.  Bradford (1985)

reviewed seven experiments dated to 1985, which included four breeds in four countries.

These experiments generally supported that a potential genetic improvement of 1-2% or

better per year in lambs  born per ewe lambing  could be made through selection.  

        Radomska et al. (1984, cited by Bradford, 1985) created a nucleus flock of Polish

Merino sheep by selecting the 500 ewes with highest litter size from a population of 4000

ewes.  The remaining ewes were put into cooperative flocks each containing 1500 ewes. An

index based on litter size was used as the criterion of selection. Each breeding ram was

selected from the nucleus flock based on his dam’s index. Replacement ewes from the

cooperative flocks that entered the nucleus flock were selected on the basis of their own

index. Each replacement ewe born in the nucleus flock was selected based on her dam’s

index. One half of the nucleus replacement ewes were from the nucleus flock and the other

half were from the cooperative flocks.  All replacement ewes in the cooperative flocks were

from those flocks.  Litter size at first parity in the nucleus flock was 1.28 compared to 1.23

in the cooperative flocks for ewes born in the first year of selection.  

         More recently, Saboulard et al. (1995) reported their selection experiment for litter

size and clean fleece weight.  Two flocks of approximately 200 Western white-faced ewes

per flock were maintained at two locations.  Each flock was divided into four selection

groups of similar initial birth type and age.  The basis of selection in each flock was as

follows: Line I, single trait selection for litter size; Line II, single trait selection for clean

fleece weight; Line III, multiple trait selection for litter size and clean fleece weight; and Line

IV, visual selection based on conformation and general fleece quality.  Repeatability and
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heritability estimated were .18 and .16 ± .04 for litter size, respectively.  Linear regression

coefficients (number born/year) of annual response for litter size in Line I to IV were .018 ±

.008, .009 ± .006, .011 ± .005, and .009 ± .005, respectively.

       Change in ovulation rate has been found to reasonably explain the selection responses

in litter size ( Hanrahan, 1980).  Trounson and Moore (1972, Cited by Bradford, 1985)

collected fertilized ova from ewes in a line selected for multiple births and in a line selected

against multiple births.   Recipient ewes from each line received either one or three eggs

donated by ewes from ewes either in their line or in the other line.  Ovulation rates were

determined on all ewes in the study.  Ovulation rates were higher for the line selected for

multiple births than for the line selected against multiple births.  When three eggs were

transferred, neither the line of the recipient nor of the donor had any effect upon the number

of multiple births, indicating that uterine capacity had not changed with selection for

multiple births.  Therefore, change in ovulation rate accounted for the response in selection.

           Ovulation rate was measured by laparoscopy in three lines of Romney ewes selected

for high fecundity, low fecundity and at random for 5 years followed by 10 years of relaxed

selection (Meyer and Clarke, 1982).  Subsequent lambing records were kept for each ewe.

Uterine effeciency was estimated for the line as the marginal litter size response in ewes

conceiving to twin versus single ovulation.  Litter size was significantly higher for the high

than the other two lines.  Difference between lines were not significant for uterine

efficiency.  Ovulation rate differed by about .7 ovum between the high and low selection

lines.  Therefore , change in ovulation rate accounted for the difference between the high and

low lines in litter size.

        Ramboulliet sheep were selected for high and low reproductive performance for 19

years using the index : I = total number of lambs born in dam’s lifetime/(age of dam -1)

(Schoenian and Burfening, 1990). A control line was also maintained. Ovulation rate was

highest in the high line, intermediate in the control line and lowest in the low line.  Embryo

survival was similar in all three lines.  Litter size was largest in the high line, intermediate in
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the control line and smallest in the low line. Again, change in ovulation rate accounted for

the difference between the lines in litter size.

        A faster rate response in litter size is expected to occur if selection is based on

ovulation rate due to its higher heritability (Hanrahan, 1980; Bradford, 1985; Quirke et al.,

1985).  Heritability of ovulation rate was found to be .45 ± .07 for Finn sheep and .57 ± .28

for Galway sheep (Hanrahan, 1980).  Quirke et al. (1985) reported heritabilities for

ovulation rate ranging from .05 to .50.

        Fahmy (1989) found that ova loss and /or embryonic mortality played an important

role in dertermining the number of lambs born.  Perez-Enciso et al. (1995) examined the

usefulness of measuring ovulation rate in genetic progress of litter size in sheep and to

study different selection criteria combining ovulation rate and prenatal survival performance.

Response to selection for 5 generations within a population of 20 male and 600 female

parents were compared using Monte-Carlo simulation techniques with 50 replicates per

selection method.  Two breeds with low (Merino) and medium (Lacaune) prolificacy were

considered.  Records were generated according to a bivariate threshold model for ovulation

(OR) and prenatal survival (ES).  Four methods of genetic evaluation was compared:

univariate best linear unbiased prediction (BLUP) using litter size (LS) records only ( b-

LS); univariate BLUP on ovulation records (b-OR); bivariate BLUP using OR and LS

records (b-ORLS); and a maximum a posteriori predictor of a generalized linear model

where OR was analyzed as a continuous trait and ES as a binary threshold trait (t-ORES).

Response in LS was very similar to b-LS, b-ORLS and t-ORLS, whereas it was

significantly lower with b-OR, indicating that indirect selection for litter size by selecting

ovulation rate was not a advantage in this model.  Response in OR was maximum with b-

OR and minimum with b-LS.  In contrast, response in ES was maximum with b-LS.

         In another experiment (Fogarty, 1994), Ewes of Hyfer sheep, which was derived from

two generations of crossing with Dorset (1/2), Boorola Merino (1/4) and Tangie Fertility

Merino, were selected into the Selection Flock on the basis of their average weight of lamb
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weaned from three joinings in two years.  Rams were selected primarily on the basis of the

performance of their dams.  Unselected ewe progeny from the Selection Flock had 15%

higher weight of lamb weaned than Control Flock ewe progeny for three of four cohort

groups when they were exposed to three joinings at 8-month  intervals.  The response was

similar to that predicted from the selection differentials achieved and heritability for Hyfer

sheep.

          Bradford et al. (1994) reported litter size, fertility, lamb survival and 120-d weight of

lamb per ewe lambing for four lines of Targhee sheep maintained for over 30 years in a

range environment.  Two lines were selected for 120-d individual weight (HW, DH), and

one for multiple births (HT); HC was an unselected control.  Litter size was increased by

about .2 from initial screening of ewes into line HT, but did not increase subsequently in

spite of continued selection.  Litter size increased significantly in line HW, selected

continuously in the range environment, while fertility and lamb livability declined.  Rams in

line DH were imported from a more favorable environment for 17 years, and during that

period ewe fertility and lamb livability declined significantly.  With selection in this line in

the range environment during the second phase, there was significant improvement in these

traits.  Total 120-d lamb weight per ewe increased modestly in all three selected lines.

        Some scientists believed that indirect selection on male testis size may provided an

alternative for genetic improvement of litter size of ewe, because heritability of testis size at

early life of males ( 90 to 180 day of age) is usually high ( Matos et al, 1992; Fossceco and

Notter , 1995) and testis size has a positive genetic correlation with litter size (Matos and

Thomas, 1992)

2.1.1.2. Fertility

          Fertility is generally high and may not have a large effect on profitability in fall

breeding systems.  However, for out of season breeding in late spring and early summer
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when conception rates are often low, improving fertility could be quite important to a

successful accelerated breeding system.  

         Fertility for sheep is also lowly heritable. Most reported estimates are less than .1 (

Atkins, 1986; Bunge et al., 1990;  Clarke and Hohenboken, 1983; Fogarty et al., 1985;

Gibina, 1989; Long and Thomas, 1989; Mohd-Yusuff et al., 1992; Shelton and Menzies,

1970; Shrestha and Heaney, 1987 ).  The only estimate for out-of-season fertility is from

Al-Shorepy and Notter (1996 )  with a mean heritability of  .09 and a range of .07 to .11.  In

addition, a heritability of .09 was obtained by Fossceco and Notter ( 1995 ) for fertility of

fall-bred 7-month old ewe lambs used to form the base population for the same study.

         Analyses of reproductive traits present problems in devising adequate models,

especially to account for the discrete or binomial nature of the data,  a combination of full-

sib and half-sib progeny and extended relationships amongst parents (Forgaty, 1995).  The

recent development of restricted maximum likelihood (REML) procedures and associated

software has provided more widely available means of estimating genetic parameters for

these traits.  Therefore, Fogarty (1995) thought that more recent studies using animal model

REML procedures might be regarded as more reliable than earlier estimates for these traits.

          Fogarty (1995) gave a through review on genetic parameters for fertility.  The

weighted mean heritability estimates from 24 studies was .06 and the range was from < 0 to

.22, being generally smaller than that for litter size.  Animal model REML estimates were

about half this.  However, Iniquez et al. (1986) reported a estimate of .30 for Molam sheep,

which is mainly used in acceleration systems.  There was only a slight increase when

average ewe lifetime performance was considered.  High variation exists for fertility with a

average coefficient of variation of 45% (Forgaty, 1995), indicating that potential genetic

improvement through selection is possible.  The average repeatability were .09 for fertility,

slightly larger than its heritability, suggesting other genetic and non-genetic sources than

additive genetic effects are small.
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         Fertility may be dependent on a maternal and a paternal genetic component because

mating behaviors of both parents and the quality of their gem cells are responsible for the

success of a mating.  Nitter (1985) discussed genetic and maternal effects on sheep

reproduction and their influence on selection.  However, there is a dearth of information

about maternal effect on fertility.

          A number of non-genetic factors such as type of birth of dam, age of dam, season of

breeding, nutrition and management have profound effects on fertility.  However, this paper

did not intend to review these factors.  Shrestha and Heaney (1987) gave an estimate of

heritability of essentially zero for fertility in a ewe lamb flock treated with Fluorogestone

Acetate and PMSG.  They thought that genetic progress achieved by selection for fertility

was limited and of no practical value in ewe lambs.  However, there is overwhelming

evidence of genetic variation in the reproductive traits of mature ewes bred at a natural

estrus.

         There were few selection experiments on fertility, especially for fertility of out-season

breeding.  Al-Shorepy and Notter (1996) summarized the results of a selection  experiment

for fertility.  They applied mixed-model methodology to estimate genetic and environmental

trends for spring fertility and fall litter size in a composite sheep flock containing 50%

Dorset, 25% Rambouillet and 25% Finnsheep inheritance.  Genetic trends were 1.32 ±

.11% in the selected line compared with .57±.19% in the environmental control for spring

fertility and correlated response for litter size was .0065±.0015 lambs/yr in the selected line

compared with .0024±.0022 lambs/yr in the environmental control line.  Estimates of

permanent environmental trends for spring fertility were similar in the selected and

environmental control flocks ( .21± .7% Vs .22±.13% ).  However, Gabina (1989) thought

that fertility should not be selected in Rasa Aragonesa flocks under the system of 3 lambing

every 2 years in any of the mating seasons, because its repeatability and heritability were

close to zero.
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2.1.1.3. Relationship Between Fertility and Litter Size

           Few estimates of the genetic correlation between fertility and litter size have been

reported.  Fogarty et al.(1985 ) reported a genetic correlation of  -.34±.28 between fertility

and litter size and a phenotypic correlation of .03±.02 for ewes mated in the normal

breeding season. However, Al-Shorepy and Notter (1996) obtained a much stronger genetic

correlation of .56 between spring fertility and fall litter size, suggesting  that selection for

multiple births in an out-of-season breeding system should result in genetic improvement in

spring fertility.  Bradford ( 1985 ) noted an increase in fertility ( decrease in barrenness ) in

several selection experiments for litter size.  A positive correlated response thus appears to

be a general pattern, and is consistent with the decline in fertility of the line selected against

twinning (Bradford, 1985).

         Combining 6 estimates of genetic correlation between litter size and fertility in the

review by Forgaty (1995) , the mean and range are .31 and -.34 to .82.  Of 6 estimates, only

one is negative ( -.34, Fogarty et al., 1985).  It seems that litter size and fertility are favorably

related.

2.1.2. Growth Traits
   

       Body weight and rate of gain are among the most economically important and easily-

measured traits of sheep.  Knowledge of the particular trait and phase of the animal’s

growth upon which base selection is therefore of utmost importance.  The potential for

genetic improvement is largely dependent on the heritability of the trait and its relationship

with other traits of economic importance.
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2.1.2.1. Heritabilities for Growth Traits

2.1.2.1. Birth Weight

        Heritability for birth weight was generally low to medium.  According to the review by

Fogarty (1995), the mean and range of hertability estimates were .13 and .02 to .21,

summarized over 6 estimates for wool breeds, .23 and .07 to .45 over 19 estimates for dual

purpose breeds, and .17 and .06 to .31 over 7 estimates for meat breeds.  The estimates

obtained from REML methodologies were generally lower than these from traditional

methodologies ( paternal half sib, regression, etc.) and were lower than .10, indicating that

direct additive genetic effect for birth weight was small; other effects such as maternal effect

may be important.  Mavrogenis et al. (1980) gave an estimate of .13 for birth weight for

Chios sheep,  which was generally lower than the range above.   

2.1.2.1.2. Weaning Weight

         In the meat breeds, lamb were usually weaned at 60 day or less, while lambs from

most dual purpose or wool breeds were weaned at 4 month of age depending on production

systems.  Estimates of heritabilities for weaning weight in the literature range from .08 to

.41 ( 9 estimates) for wool breeds, .03 to .45 ( 43 estimates) for dual-purpose breeds and

.05 to .57 ( 14 estimates ) for meat breeds, respectively (Fogarty, 1995 ).  The weighted

means of literature estimates for the three types of breeds are .33 ± .10, .21 ± .11, and .21 ±

.18, respectively.  A heritability estimate not included in Fogarty’s review was .36 ± .12 for

Chios sheep ( Mavrogenis et al, 1980 ),

          The estimates of heritability for birth weight and early growth are generally low to

medium, which is usually attributed to the importance of variation in dam effects, especially
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in milk production, and to competition between litter mates.  The estimates tend to increase

with age ( Wolf et al., 1981).  Also the low estimates of heritability of early growth rate (

e.g. up to 70 days) may be due to absence of controlled environment and uniform condition

and large differences in solid food intake following initial restricted milk feeding before

weaning (Shrestha and Heaney, 1985).

2.1.2.1.3. Postweaning Weights and Gains

       Few reported estimates of heritabilities for postweaning gain are available, especially for

the cumulative postweaning gain.  Thrift (1973) obtained a heritability of .23  ± .12 for rate

of gain from 70 days to market in a Dorset × Western ewe flock, which was lower than a

previous estimate of .38 ± .13 for postweaning gain by Harrington et al (1962).  Waldron et

al (1990) reported heritabilities of .07, .22 and .33 for gain from birth to 60 days, birth to

120 days and from 60 to 120 days, respectively for Suffolk sheep.  Fogarty (1995)

summarized 42 estimates of heritabilities for postweaning weight up to 9 months of age for

dual-purpose breeds and 15 estimates for meat breeds. The range and means are .03 to .49

and .26 ± .09 for the dual-purpose breeds, and .06 to .41 and .28 ± .09 for meat breeds.

The heritabilities for growth traits tended to increase with increasing age, from birth to

weaning to postweaning measurements.  The interests in different weights is simply in

choosing the most adequate weight to use as a selection criterion to improve growth to

weaning (Al-Shorepy and Notter, 1995).  A common finding is that more progress in

weaning weight can be made by selection on postweaning weight than on weaning weight

itself, due to the higher direct heritability of the postweaning weight and its high genetic

correlation with direct components of weaning weight.  Therefore, Bradford (1985)

suggested that a weight collected in early life should be adequate for use in selecting for the

direct component of weaning weight in sheep.
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          Marvrogenis et al. (1980) observed that body weight at 15 weeks of age had the

highest heritability estimate of .73 ± .17 among 10 growth traits of Chios sheep.  Chios

sheep were usually weaned at 39 days.  Heritabilities for body weight at 10, 15, and 20

weeks and average daily gain from weaning to 20 weeks were .63 ± .16, .73 ± .17, .66 ± .16

and .56 ± .15.  Postweaning growth was more heritable than pre-weaning growth, probably

because nutrition was not a limiting factor after weaning.  Given these large heritabilities, it

appears that mass selection for rapid growth would be effective.

2.1.2.2. Maternal Effects for Growth Traits

         The importance of maternal effects on the growth of  lambs is well known. Such

effects arise from the ability of the mother to produce the milk needed for growth and other

maternal behaviors.  In the NSIP (National Sheep Improvement Program), both additive and

maternal EPD for growth traits have been included in the breeding program.  For sheep,

lambs were usually weaned at four months of age and maternal influences are often

expected to be more pronounced than  in cattle or swine (Bradford, 1972).  Accounting for

maternal effects would increase accuracy of selection (Robinson, 1996).  Results from

recent studies have shown that maternal effects have explained much of the variation in lamb

weight ( Nasholm and Danell, 1996; Burfening and Kress, 1993; Marie et al, 1993; Notter

and Hough, 1996 ).  Willham (1972) discussed the utilization of maternal effects in animal

breeding.

         Because Fogarty (1995) did not explicitly consider maternal effects in his review, I

intent to give a more detail review here.  Wolf et al. (1981) obtained litter variance as

proportion of phenotypic variance of .37 to .39 for birth weight, 4-week weight, 8-week

weight and 12-week weight, which were much larger than direct heritability ( -.02 to .06),

indicating that at birth and early growth maternal effect was more important than direct

additive effect.  Notter and Hough (1996) reported additive maternal genetic and maternal



29

permanent environmental effects as proportion of phenotypic variance were .10 and .09

respectively, for 60 d weaning weight and .05 and .08 for 120 d weaning weight for Targhee

sheep.  Burfening and Kress (1993) utilized information of maternal and paternal half-sibs,

full-sibs and offspring on dam and sire for three breeds, Ramboulliet, Targhee and

Columbia, and obtained maternal heritability of .30 to .65 and .07 to .48 for birth weight and

120-d weight, respectively, which are generally larger than direct heritability estimates.

Gjedrem (1967) reported that direct and maternal heritabilities were .12 and .17 for birth

weight, .12 and .21 for 14-d weight, .12 and .22 for 28-d weight, .13 and .20 for 42-d

weight and .18 and .12 for weaning weight, respectively.  Maria et al. (1993) obtained the

direct, and maternal heritabilities and maternal environmental effect (c2) of .04, .22 and .10

for birth weight, .34, .25 and .00 for weaning weight, .09, .01 and .07 for 90-d weight, .26,

.17 and .02 for daily gain from birth to weaning and .15, .01 and .03 for daily gain from

weaning to 90 day respectively.  Nasholm and Danell (1996) observed that direct

heritabilities increased with lamb age from .07 for birth weight to .21 for weight before

slaughter and maternal heritabilities declined with age from .30 to .07.  Also a non-

significant maternal heritability of .22 was noted for mature  ewe weight.  Tosh and Kemp

(1994) analyzed the data for three breeds and found that significant maternal genetic and

environmental effect existed up to 100 days of age for all three breeds.  Therefore, they

suggested that models that describe weight of lambs of diverse biological types should

include maternal effects even at 100 d.

        Relative few estimates of the within-trait direct-maternal genetic correlation for growth

traits are available.  Generally unreasonably large negative correlation estimates were

obtained in sheep (Al-Shorepy and Notter, 1996; Burfening and Kress, 1993; Marie et al,

1993; Notter and Hough, 1996; Tosh and Kemp, 1994) and in cattle (Koots et al., 1994a,

1994b; Robinson., 1996a, 1996b; Swalwe, 1993).  Marie et al. (1993) reported an additive

direct-maternal correlation of -.98 for weaning weight, -.99 for birth weight, -.97 for 90-d

weight, -.99 for average daily gain from birth to weaning and .99 for average daily gain from
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weaning to 90 days.  In the presence of such strong negative correlations, estimate of

additive direct and (or) maternal variance may be large and can be accepted only if the user

also accept and incorporates the additive maternal covariance into any resulting analyses

(Notter and Hough, 1996). However, Nasholm and Danell (1996) did not observe a negative

relationship between maternal genetic and direct genetic  effects.  Except for daily gain from

2 wk after being turned out to pasture until weaning (ram = -.11), the correlations for 17

growth traits were positive and ranged from .07 to .64.  Thus they thought that selection for

larger lamb weights alone would not only increase ewe weights but also improve the

maternal ability of ewe.  Nasholm and Danell (1996) observed that when maternal effects

for mature ewe weight were included in the model, the direct genetic variance decreased and

was partly replaced by maternal variance and direct-maternal covariance.  Therefore,

interpretation of genetic parameters for maternally influenced traits from animal models is

critically dependent upon the model(s) fitted the data.

2.1.2.3. The Relationships among Growth Traits

         Fogarty (1995) listed estimates of genetic and phenotypic correlations from 32 papers

dated to 1994 in his review.  Birth weight was more closely correlated with weaning weight

than other body weights and 16 estimates gave mean of genetic correlation of .41.  The

genetic correlations between birth weight and other weights were smaller with mean of .11 (

9 estimates ) with postweaning weight, .30 ( 3 estimates) with yearling weight and .30 (6

estimates ) with hogget weight, respectively.  

       The mean of genetic correlations between weaning weight and other traits were .86 ( 10

estimates ) for postweaning weight, .71 ( 9 estimates ) for yearling weight and .68 for

hogget weight, respectively. The mean of genetic correlations between postweaning weight

and other traits was .75 ( 4 estimates ) for yearling weight and .88 ( 4 estimates ) for hogget



31

weight.  The mean of genetic correlations between yearling weight and hogget weight was

.96 ( 4 estimates ).

          Mavrogenis et al. (1980) analyzed genetic relationship between 10 growth traits for

Chios sheep, including birth weight, age at weaning, body weight at 5, 10, 15, and 20 weeks

and average daily gain from birth to weaning and weaning to 20 weeks.  Birth weight had

low genetic correlations (.16 to .21) with all weights and gains.  These associations were,

nevertheless, positive, indicating some expected correlated response.  Genetic correlations

among the remain weights and gains ranged from .19 to .25.  It is evident that, although

these genetic correlations are favorable, substantial correlated response from selection on

any individual growth trait would not expected.  The low genetic correlations, particularly

between birth weight and other traits, are of considerable importance since birth weight as a

correlated trait should not pose any serious problem of increasing lambing difficulties.

     However, Stobart et al. (1986) obtained medium to high genetic correlation between birth

weight and various growth traits with .68 ± .20 with weaning weight, .22 ± .25 with weight

at 12 month of age, .44 ± .20 with weight at 18 month of age, .64  ±  .22 with weight at 30

months of age and .55  ± .16 with mature weight for Western range ewes, respectively.  The

genetic correlations among weaning weight, weight at 12 month of age, weight at 18 month

of age, weight at 30 month of age and mature weight are medium to high with range of .21

to .99.  Similarly, Martin et al. (1980) also observed that estimates of the genetic

correlations among the various lamb weights were high (.62 to 1.04), indicating that

selection for weight at one age should result in increased weights in all ages.

     The recent published estimates of genetic correlations among growth traits generally

followed the pattern of previous literature.  Nasholm and Danell (1996 ) obtained direct

genetic correlations of .44, .48 and .36 between birth weight and 120-d weight, weight at 1

day before slaughter and ewe mature weight, respectively.  It is obvious that correlated

response in birth weight would be expected from selection for growth.  They also found that

across-trait direct and maternal genetic correlations all were positive and medium to high.
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No unfavorable relationship was tested in Swedish Finewool sheep.  Also genetic

correlations among growth traits of Romanov lambs were, in general, postive, indicating that

selection for any of the traits should result in genetic improvement  in other traits (Maria et

al., 1993).

2.1.2.4. Selection for Growth Traits

       Selection for growth has been common in sheep, though it is not always advantageous (

Bradford and Meyer, 1986).  Most scientists agreed that selection for growth should be

based on traits which can be measured early in the animal life.  It is generally agreed that

more progress in weaning weight can be made by selection on postweaning weight or gain

than preweaning weight or gain, due to the higher direct heritability of the postweaning

weight and its high genetic correlation with the weaning trait in sheep ( Akins, 1986 ).

Mavrogenis et al. (1980) thought selection for either weight at 15 weeks or post-weaning

daily gain would be expected to yield a greater response than selection for preweaning daily

gain or weaning weight.  The absence of genetic antagonisms among body weights and

gains indicate that none of the traits studied should be seriously impaired through correlated

responses.  A possible exception might be birth weight, although genetic correlations

between birth weight and live weight at 10 or 15 weeks of age were low.

       Olson et al (1976a,b) studied the relationship among various growth traits and between

growth traits and carcass traits.  He concluded that with regard to genetic and phenotypic

estimates for growth traits, average gain from 14 to 22 weeks of age (h2 = .46 ) and body

weight at 22 weeks ( h2 = .44 ) should be the most effective selection criteria for improving

postweaning and preweaning growth with limited effect on birth weight.  Expected

improvement (in genetic σ’s) of boneless cuts from 25 week-old lambs per σ of mass

selection differential was nearly as large for selection on 22-week live weight (.63) or 14 - to

22-week gain (.52) as for hypothetical direct selection for boneless cut weight (.66).
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Selection for 22-week weight also should increase leg and carcass conformation (.5) and

quality grades (.4) as much as direct selection without increasing backfat, but is likely to

increase kidney fat (.3).

        I do not intend to review all the selection experiments for growth.  However, some

experiments reported in recent years are described.  Jurado et al. (1994) analyzed the weight

and growth data on 5136 lambs from 104 sires and 1552 dams collected during 5 yr (13

lambing seasons) of selection for high weaning weight in a single flock under range

conditions.  Ewes were culled based on fertility and replaced by ewe lambs selected for high

weaning weight.  Heritabilities of birth weight, weaning weight (30 d), preweaning weaning

daily gain, postweaning weaning daily gain, and weight at 90 d, respectively, were .13, .09,

.03, .15, and .11.  Genetic correlations were generally high.  Genetic and phenotypic

improvement of weaning weight were 22 ± 3.0 and 198 ± 11.3 g per lambing season,

respectively, with three lambing seasons per year.  At the end of the experiment, phenotypic

mean weight was 2.4 kg higher than initial values.  Estimated and theoretical response were

similar in the sire population.  At the 13th lambing season, average breeding value of 30-d

weight of ram population was 600 g higher than the mean initial breeding value in the base

population. Projected average breeding value of lamb population under random mating at

the 23rd lambing was equal to 404 g.

        Lax et al. (1979) compared single trait and index selection for high 90-day weight and

low 90-day fat probe at the seventh rib.  The index was the standardized deviation in weight

minus the standardized deviation in probe.  Traits were mass selected in rams only within

two replicates of each single trait and three replicates of each index selection group.

Selection for about one half of group was done with single born rams and other half with

multiple born rams.  Ram lambs were used for mating.  Ewes

 were first mated at approximately 19 month of age.  Each replicate had approximately 40

ewes and four rams.  A repeat mated control was used.  Selection was effective in all lines

over a 5-year period.  Weight selection increased 90-day weight by .62 ± .52 kg per year,
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with correlated increases of .035 ± .051 cm in fat probe and .049 ± .069 units in index.

Index selection increased 90-day weight by .33 ± .53 kg per year, decreased fat probe by

.017 ± .051 cm per year and increased index by .095 ± .069 units per year.

         However, selection for growth was not always successful.  Sakaul et al (1994)

observed  that the rate of improvement in growth were slow in the range condition in the

selection experiment.   In this experiment, two lines (DH and HW) were selected for

individual 120-d weight and one was for multiple births (HT) for 30 years; HC was an

unselected control.  Phenotypic response to selection for 120-d weight occurred, but at a

slow rate.  An examination of breeding values indicated that both DH and HW lines

responded to selection continuously until mid-1980s, but the response seemed to decrease

in the line HW thereafter; the trend in DH is less clear.  Low selection pressure and

inbreeding were ruled out as primary reasons for the observed response, and they thought

that inadequate nutrition might have hindered the selection response.  Inbreeding increased

almost linearly during the experiment, reaching approximately 11% in HC and HW, and 6%

in HT by 1992.  Realized heritabilities, calculated from response / selection differential

measured in each line, were .05, .06 and .07 for DH, HT and HW, respectively.  Estimates

of direct and maternal heritabilities were .16 and .22, respectively, in the base population.

The difference between estimated and realized heritabilities implies that the environment did

not permit the full expression of genetic potential for growth.

    

2.1.3. Fleece Traits

       Fleece traits rank third in economic importance following reproductive rate and growth

(Botkin et al., 1988).  Also fleece traits perhaps are most studied in the past sheep breeding.

We do not purpose to summarize all the fleece traits here.  Only grease fleece weight and

fiber diameter involved in our research were discussed here.
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2.1.3.1. Grease Fleece Weight

          The heritabilities for fleece characters are generally medium to high.  The mean  and

range of heritabilities of 81 estimates for grease fleece weight are  .35 and .06 to .84

(Fogarty, 1995).  If classfied by different kind of breeds, the mean and range of

heritabilities are .38 (25 estimates) and .10 to .65 for wool breeds, .35 (29 estimates) and

.06 to .84 for dual purpose breeds, .24 (3 estimates) and .16 to .38 for meat breeds,

respectively.  The mean and range of repeatability estimates are .58 and .34 to .84 for all

breeds,  which is bigger than its corresponding heritability estimates, suggesting that

permanent environment variation exists in the trait.

         Very few studies on maternal effect on fleece traits were reported.   A recent study

detected the presence  of significant maternal effects for grease and clean fleece weights and

body weights for Merino  sheep (Mortimer and Atkins, 1994).   Maternal heritability

estimates were about one-fifth the size of direct heritability estimates, which are .065 to .093

for grease fleece weight, .054 to .093 for clean fleece weight and .050 to .074 for body

weights.  Since fleece weight is expressed throughout an animal’s life, but selection is often

based on measured fleece weight at ages younger than 16 months, there is a need to

extended estimates of maternal effects to wider range of ages.

           Direct-maternal genetic covariances for fleece weights, although of moderate

magnitude, were not significant differently from zero (Mortimer and Atkins, 1994).  The

estimates of maternal-direct genetic correlations were -.23 for grease fleece weight, -.31 for

clean fleece weight and .27 for body weight.  Mortimer and Atkins (1994) thought that the

detection of significant covariances for these traits apparently requires large data sets.  Also

the evidence from long-term selection lines for fleece weight would suggest that a negative

covariance between direct and maternal genetic effects may exist for fleece weight at hogget

age (Mortimer and Atkins, 1994).       
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         In the another study, maternal genetic and permanent effects were estimated in a flock

of Merino sheep (Swan and Hickson, 1994).  Significant maternal effects were observed for

grease fleece weight and body weight measure at weaning.  Maternal genetic effects were

more important than permanent environment effects at this time.  There were carry-over

maternal effects on body weight, but not on grease fleece weight measured at same time.

Therefore, they thought that there is no immediate need to consider maternal effect on fleece

traits in breeding programs.   However, the effects on body weight may need consideration.

2.1.3.2. Fiber Diameter

         Average fiber diameter and its variation are both important in wool processing.  Mean

fiber diameter is the single most important quality character of wool and is directly related to

the monetary value of wool (Iman et al., 1992).  Heritability of fiber diameter has been

estimated by various researchers.  The review by Fogarty (1995) gave a mean of .51 (27

estimates ) and range of .17 to .84 for wool breeds and .52 and .18 to .62 for dual purpose

breeds.  The mean of 12 estimates for repeatability  are .70, suggesting that other genetic or

non-genetic effects exist.

          It is generally believed that fiber diameter is largely not influenced by maternal

genetic effects ( Mortimer and Atkins, 1994; Swan and Hickson, 1994).  Swan and Hickson

(1994) observed that there were no maternal effects on mean fiber diameter.   Mortimer and

Atkins (1994) thought maternal effects were likely to be significant for wool production in

growing animals, through their influence on surface area, but less important in adults.

2.1.4. Relationships Between Litter Size and Growth, and Fleece Traits

        Accurate estimates of genetic parameters of growth and reproduction are essential for

planning efficient meat sheep production systems and for predicting response to selection.
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Genetic covariances are essential in predicting indirect response to selection, and they are

needed to determine the optimum weighting and expected response of selection to improve

more than one trait

2.1.4.1. Litter Size and Growth

        There is little information in the literature regarding the relationship between litter size

and growth traits.  Al-Shorepy (1995) obtained the genetic correlations of litter size with

birth weight and 90-day weight of .17 and .33, respectively in a 1/2-Dorset crossbred

population.  The reported genetic correlations between liveweights at various ages and litter

size were very variable, ranged from -.61 to .92, whereas the phenotypic correlation were

less variable (.00-.23) (Fogarty, 1995).  The weighted average correlations with all

liveweights were .19 (genetic) and .10 (phenotypic) for lambs born per ewe joined, and .41

and .15 for litter size, respectively.

          Additive direct genetic correlation between live weight at various ages and the

components of ewe reproduction were also highly variable.  The weighted average genetic

and phenotypic correlation between live weights and litter size were .41 ( range from -.46 to

.78) and .15, respectively (Fogarty, 1995).  Growth traits are generally favorably related with

various reproduction traits.  The genetic correlations between birth weight and reproductive

traits were .30 (1 estimate) for lambs born/ewe joined, .34 (1 estimate) for lambs weaned/

ewe joined,  .20 ( 1 estimate) for lambs weaned/ewe lambing, .30 (1 estimate) for lambs

born/ewe lambing (litter size), .16 (1 estimate) for maternal lamb survival and .01 (1

estimate) for fertility, respectively;  The genetic correlations between weaning weight and

reproductive traits were .20 (3 estimate, .44, standard deviation) for lambs born/ewe joined,

.34 (1 estimate) for lambs weaned/ ewe joined, -.27 (4 estimate, .42, standard deviation) for

lambs weaned/ewe lambing, -.13 (1 estimate) for ovulation rate,  -.10 ( 6 estimates, .39,

standard deviation) for lambs born/ewe lambing,  .11 ( 1 estimate ) for lamb survival,
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maternal and -.16 ( 2 estimates, .01, standard deviation) for fertility.  The genetic

correlations between post-weaning weight and reproductive traits were .59 (1 estimate) for

lambs born/ewe joined, .21 (1 estimate) for ovulation rate, and .30 (2 estimates) for lambs

born/ewe lambing, respectively.  The genetic correlations between yearling weight and

reproductive traits were -.17 ( 2 estimate, standard deviation of .30) for lambs born/ewe

joined, .13 (1 estimate ) for lambs born/ewe lambing and -.34 ( 1 estimate) for fertility,

respectively.

        Stobart et al. (1987) studied the relationship between growth and productivity of range

ewes.  The genetic correlations between litter size and various growth traits were .26 ± .22

for birth weight, -.09 ± .27 for weaning weight, -.17 ± .27 for weight at 12 month of age,

.13 ± .24 for weight at 18 month of age and -.06 ± .21 for mature weight.  The

corresponding phenotypic correlations were .04, .13, .11, .20 and .14, respectively.  The

genetic and phenotypic correlations between average lambs weaned and various growth

traits were .80 ± .68  and .05 for birth weight, -.01 ± .58 and .08 for weaning weight, -.05 ±

.59 and .08 for body weight at 12 month of age, .13 ± .51 and .11 for body weight at 18

month of age and -.05 ± .44 and .07 for mature weight, respectively.  Akins (1986) obtained

a strong genetic correlation between adult body weight and litter size (.66, s.e. .18).

Therefore he suggested that greater response for litter size would come from a combination

of indirect selection ( on body weight ) and direct selection ( on dam’s litter size).

         There is a dearth of estimates on across-trait direct-maternal correlations between

growth and litter size, which could be important for multitrait genetic evaluation of livestock

2.1.4.2. Litter Size and Fleece Traits

           The correlations, especially genetic, between wool and reproduction traits were  also

highly variable, but the average of estimates in the literature was close to zero for most of

fleece trait and litter size ( Fogarty, 1995).  For lambs born per ewe joined, the weighted
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average genetic and phenotypic correlations were  -.06 and -.10 for grease fleece weight (

.12 and .07 for average lambs born), .31 and -.09 for fiber diameter (-.07 and .12 for

average lambs born), respectively (Fogarty, 1995).  The corresponding correlations for

lambs weaned per ewe joined were -.16 and -.10 (.11 and .06 for average performance over

a number of records), and -.13 and -.04 (-.12 and .11 for average performance over a

number of records), respectively.  For litter size,  the corresponding correlations were .01

and .03 (.06 and -.02 for average performance over a number of records), respectively for

grease fleece weight, .08 and -.04 , respectively for fiber diameter.  A genetic correlation of

.09±.48 and phenotypic correlation of .07  between grease fleece weight and number of

lambs born per ewe joined were reported for Targhee sheep (Basuthkar et al., 1973).

Considering reproduction as  ewe traits and grease fleece weight as a lamb trait,  Stein

(1985) obtained a genetic correlation of -.04 and -.20 for number of lambs per ewe at birth

and weaning, respectively.

2.2 Theory of Categorical Traits

          Categorical traits, also called discrete or threshold or quasi-continuous traits, denote a

group of traits that have the properties and numerical characteristics of discrete data and can

be conformable to one or a mixture of a group of discrete distributions. Although these

traits are presumably under polygenic control, their phenotypic values are discontinuous.

Therefore, for categorical traits, such as litter size, fertility and survival-related traits in sheep,

both discrete phenotypic distributions and some underlying continuous distributions are

assumed.

         Categorical traits have generated extraordinary levels of interest in the field of animal

breeding.  The possible reasons are that many important economic traits such as

reproductive traits or survival-related traits are categorical  in nature, and some  selection

experiments for categorical traits have proven potential  for genetic improvement.  Several
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authors (Hoeschele, 1986; Foulley, 1987; Soto-Murrillo, 1991) have presented extensive

reviews on methods for analysis of discrete data in animal breeding.   Generally there are

two main groups of procedures for analysis of discontinuous genetic data (Matos, 1993).

The distinction between the two groups depends on whether an underlying continuous

distribution is assumed or not.  The first group includes methods that ignore the discrete

nature of categorical data, and the analysis proceeds using linear methodology as if the data

were continuous, whereas the second invokes the threshold concept (Falconer, 1989) which

assumes an underlying, non-observable, normal distribution for the discrete variate.  The

link between the observable discrete variable and the underlying continuous scale is

generated by a set of fixed thresholds.  The underlying variable is described by linear

models, but the relationship between the underlying and the outward or observed scale is

nonlinear (Gianola and Foulley, 1983 ).

2.2.1. Two common discrete distributions

           Several discrete distributions, such as the binomial, multinomial, Poisson or negative

binomial distributions,   are of importance in animal breeding.  Fertility for sheep is

generally believed to be conformable to a binomial distribution (0-1 distribution) while litter

size for sheep is often conformable to a multinomial distribution.  However, several

scientists suggested that litter size in sheep may be distributed as a Poisson distribution.

Perez-Enciso et al. (1993) suggested that ovulation rate could be viewed as a Poisson

process.  Together with the high correlation found between ovulation rate and litter size in

sheep ( Waldron and Thomas, 1992), this makes the Poisson model appealing for genetic

analysis of litter size in polytocous species.  A positive relationship between the mean and

the residual variance for litter size was observed in an unselected flock by Urioste and

Danell (1987), who also suggested that this may indicate that litter size be distributed as

Poisson in sheep.
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2.2.1.1. Binomial Distribution

       Definition: Let X be the number of event A in the n Bernoulli experiments, so X is a

random variable and can be values of 0, 1, …, n, and,

      P {X=k} = 
n

k

 
 
  

 
pkqn-k, k=0, 1, …, n and 0 < p < 1.

      We say that X has a binomial distribution with parameters, n and p, denoted

X ~ B (n, p).

      In special case, when n=1, the binomial distribution become a (0-1) distribution with

      P {X=k} = pkq1-k, k=0,1

     For binomial distribution,  Mean, E (X) =np and Varinace, D(X) = np(1-p).

     For (0-1) distribution, E(X) = p and  variance, D (X) = p(1-p).

2.2.1.2 Poisson Distribution

      Definition: A random variable Xn ( n=1, 2, … ) has a Poisson distribution if its

probability function has the form:

      P (X=k) = Po(k|λ) = 
e− λλk

k!
, for k = 0, 1, 2, …

     For Poisson distribution, E(X) = D(X) = λ.

2.2.2. Threshold Concept and Link Functions

2.2.2.1. Threshold concept

     The threshold concept for categorical traits was first introduced by Wright (1934), when

he studied the inheritance of number of digits in an inbred strain of guinea pigs.  In

threshold model, each phenotype, such as fertility and litter size in categorical scale, is

associated with an underlying continuous variable which is not observed.  The underlying

variable, usually called liability or prevalence in human genetics ( Falconer, 1989), is
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affected by polygenes and environmental factors, and the genes are additive and have small

effects (Dempster and Lerner, 1950).  Like continuous traits, the liability is additive sum of

normal distributed genetic effects and independent normally distributed environmental

effects.  In linear model, the liability of an individual can be expressed as:

        li
 = η + e i

where η is the mean liability and ei ~ N(0,1).  Usually the variance of underlying variable is

taken as unit for convenience.  The association between the realized categorical and

underlying continuous scales  is given by a set of fixed thresholds in the liability scale.  Let

us consider m mutually independent and exhaustive categories of response. If the liability of

an individual is between thresholds t-1 and t, then the individual is scored as responding in

the tth scale.  The link between the underlying and realized scales can be established via the

standard normal distribution function.  The standardized liability values can be obtained by

subtracting the  mean from the threshold value and dividing by the phenotypic standard

deviation of liability (σ):

        µ = (t - η)/σ

   In the case of two categories , such as sheep fertility, µ gives the point in the underlying

scale at which there are probability masses equal to 1- π and π to the left and to the right of

the threshold, respectively, where π is the proportion of individuals showing the trait.

Therefore, given η,

         1 - π = Prob (li < t | η) = φ(u)du
−∞

µ

∫  = Φ (µ)

    where the φ and Φ are the standard normal density and cumulative distribution function,

respectively.  Also, given π, the distance between the threshold and mean of the standard

normal scale is obtained from the following inverse relationship:

        µ = Φ-1(1-π)

2.2.2.2. Link Functions
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      The link function relates the linear predictor η to the expected value µ of a datum, y.

Each distribution has a special link function between η and  µ (the notation here have

different meaning from last section).  The simplest link function is identity link, η = µ for

normal distribution.  If the data is in the form of counts arising from a Poisson process, the

restriction µ > 0 needs to be imposed.  In such cases, log link, η = log µ with inverse µ =

eη ,  is particularly useful and has given origin to the class of log-linear models in which the

effects are multiplicative, rather than additive.  If the distribution is binomial, the ` that 0 < µ

< 1 must be satisfied.  In this case, three link functions are often employed:

             (a). the logit function:

                              η = log
µ

1− µ
 
 
  

 
 

            (b). the probit function:

                             η = Φ-1(µ)

                  with inverse

                             µ = Φ (η) = 
1

2π−∞

η

∫ e
− x 2

2 dx

         where  Φ is the Normal cumulative distribution function, and

            (c). the complementary log-log function:

                            η = log [-log(1-µ)]

          The logit function, being the logarithm of an odds ratio, is easy to interpret.  It is

symmetric and nearly identical to the probit function in the range .1 < µ < .9 when both

function are appropriately standardized (McCullagh and Nelder, 1983).  Finally, the power

family of links, η= µα if α ≠ 0 and η = log (µ) if α = 0, can also be considered.

        Maximum likelihood estimates of b can be obtained through an iterative weighted

least-square procedure as demonstrated by Nelder and Wedderburn (1972):

        ′ X DV −1DXˆ b = ′ X DV −1y∗
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where X is the incidence matrix , D and V are diagonal matrices with elements equal to

(dηi/dµi) and a quantity proportional to the variance of yi, respectively, and

        y* = Xb + D-1(y-u)

is a vector of working variates to be reestimated at each iterate.  Therefore, D depends on the

link function, V depends on the distribution assumed, and y*
 is a linear combination of the

linear predictor and the discrepancy between observed and fitted value (Thompson, 1989).

Illustrations of generalized linear models can be found in Glimour (1983) and Ducrocq

(1990).

     

2.1.3. Estimation of Genetic Parameters for Categorical Traits

      The estimation of genetic parameters for categorical traits may prove complicated,

because the real distribution cannot be observed (Olausson and Ronnigen, 1975).  The most

extreme case arises when a character is classified into only two values.  Such character are

fertility of sheep, disease resistance, fleece defect and so on.  These traits will mostly be

recorded as pregnant or not, healthly or sick, and normal or defective.

       Robertson and Lerner (1949) suggested that heritability of a trait be measured in terms

of its probability of expression (p scale), with values of 1 and 0 assigned to each individual

that expresses or fails to express the trait, respectively.  However, using p scale introduce

some problem for evaluation of all-or-none traits (Dempster and Lerner, 1950).

Considerable measurement errors may result because genetic variation which may be

completely additive for the underlying scale may lose this property in the p scale.  Since the

phenotypic value are 0 and 1, it is unlikely that gene substitution would have the same effect

near these two limits on the p scale range. Unlike the underlying variate, the environmental

variance is dependent on the range of the p scale.  At an incidence around .5, the

environmental variance would be minimal and with lower or higher incidence the variance

would increase.  The categorical nature of measures on the p scale may obscure finer

degrees of measurable variation and thus detection of genetic differences between
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individuals and families associated with those finer degrees of variation.  Robertson and

Lerner (1949) recommended arc-sine transformation for binomial traits with only two

classes.  They and other scientists (Dempster et al., 1950), however, used another way of

estimating heritability of threshold characters with special reference to mortality in poultry.

Their development has assumed an underlying normal distribution of genetic and

environmental values with a linear relationship between the genetic value on the normal scale

and the genetic value on the binomial scale.  The theory suggests that heritability on the

binomial scale is

        hb
2 = 

hn
2z2

p(1− p)

      where hn
2  is the heritability on the normal scale, z is the height of the ordinate of normal

distribution at the threshold that determines whether the binomial variable is one or zero, and

p is the frequency of ones.  The accuracy of this relationship between the two scales  was

studied by several scientists ( Van Vleck, 1972; Olausson and Ronnigen, 1975).  The two

simulation studies agreed well each other that transformation of heritability estimates made

on the binomial scale for an all-or-none character to the underlying normal scale by

multiplying the estimate by (p(1-p))/z2 was generally applicable for half-sib design data but

may be over-estimated substantially if the estimate was from parent-offspring correlation

design and particularly when p is not between .25 and .75.  The over-estimate will be greater

when normal heritability is larger than when it is small.  

       Falconer (1965) proposed an efficient method of estimating heritability on the

underlying scale for disease liability in human.  The heritability is estimated from the

regression

       t = mR - mp / i = xp - xR / i

        h2  = t/r

   where the subscripts P and R refer to the population and relatives respectively, m is the

mean as a deviation from the threshold, x is the normal deviate of the threshold from the
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mean, i is the mean deviation of affected individuals from population mean and r is the

coefficient of relationship.  The error introduced by assuming the variance to be the same in

the relatives of affected individuals as it is in the population as a whole leads to the

correlation estimates from above equation being too low by a factor of 5 or 10 per cent

(Edward, 1969).  A modified formula that takes account of the unequal variances is the

following:

         t = 
x − xR [1− (x 2 − x R

2 )(1− x / i)]

i + xR
2 (i − x)

       where x and i without subscript refer to the population, and xR refer to relatives; the sign

of square root is taken to make t between 0 and 1.

       Gianola (1979) derived general expressions relating heritability in underlying normal

scale to heritability in observed scale, where the expression of the character is a response in

one of the several mutually exclusive and exhaustive categories.  

        hc
2 = hn

2 

[ zi (wi + 1 − wi )
i=1

m −1

∑ ]2

[ w i
2 pi − ( wi pi )

2 ]
i =1

m

∑
i =1

m

∑

     Where m is number of response categories, pi  is the expected incidence in the ith

category, {zi} are ordinates of the standard normal density function evaluated at the

abscissas to {pi}, and {wi} are the scores assigned to the categories, 0-1 for sheep fertility

and 1-4 for litter size.  With two categories, the formula become identical to the expression

derived by Robertson (1950).

       Methods for estimation of genetic and phenotypic correlation for threshold characters

have not been studied to the same extent as heritability.   Olausson and Ronnigen (1975)

simulated two correlated traits, one normally distributed and the other binomial distributed

(all-or-none).  They concluded that the genetic correlation between two traits can be

estimated by half-sib correlation method in the ordinary way without transformation of the

estimate except for low level (5% and 10%) of the all-or-none trait.  The estimates will be
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almost the same as if the underlying normal distribution had been used, except for low

heritability level (.1) and for low incidence levels (5% and 10%) of all-or-none trait , where

correction on the estimate made on the all-or-none data is recommended.  However,

phenotypic correlation between the two traits was highly  biased downward.  

      Van Vleck and Gregory (1992) utilized multiple trait restricted maximum likelihood to

analyze the ovulation rate for simulated measures  of ovulation rate with underlying

multivariate normal distributions.  A data set with eight measures of ovulation rate treated as

separate traits was used as a template to simulate data sets of eight multivariate normal traits

that were then truncated to binomial traits.  Ten replicates for each combination of

heritability (.15, .25, and .35) and genetic correlation (.50, .66 and .90) were simulated on

normal scale.  They concluded that the usual transformation of heritability estimated on the

binomial scale overestimated heritabilty on the normal scale.  Genetic correlations on the

binomial scale seriously underestimated the correlation on normal scale.

2.2.4  Genetic Analyses of Categorical Traits, A Review

      A brief review of methodologies used for categorical data in animal breeding is

presented in this section.  Then in later sections, mathematical presentations for some

common methods for categorical traits will be given.

2.2.4.1. Linear Models

         Many methodologies for categorical traits have been investigated in animal breeding,

which can generally be classified into two groups, linear and non-linear models.   In the

linear models,  Least Squares (Harvey, 1982), generalized least squares (GSK) ( Harvey,

1982) and the log-linear model (Gianola, 1982; Rutedge and Gunsett, 1982)  are procedures

that have been used in the estimation of fixed effects for categorical data.

       Harvey (1982) suggested that Ordinary Least Squares (OLS) procedures be used for

binomial data and Weighted Least Square procedure for percentage data.  He justified his
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recommendation by (1) flexibility in model selection and estimation of variance-covariance

components and (2) existence of readily available computer software.  However, a careful

interpretation of results needs to be done since tests of significance, standard errors and

confidence intervals are only approximations because no distribution assumptions are

required for a least square analysis.

       The GSK procedure is used to analyze categorical data arranged in an two-way

contingency table, where the r rows represent combinations of levels of fixed effects and c

columns represent mutually exclusive response categories.  This procedure produce

minimum χ2 estimates.  The function of the true cell probabilities of response, F(π) are

modeled as linear or nonlinear combinations of fixed effects:

          F(π) = Xb,

       where b is the vector of fixed effects and X is a known incidence matrix.  GSK is then

used to estimate ˜ b .  ˜ b  is a best asymptotic normal (BAP) estimate of b and has same

properties as the maximum likelihood estimator but is easier to obtain.

         Log-linear approach utilizes maximum likelihood estimates.  However, large sample

theory gives asymptotic equivalency to GSK.  In log-linear approach, the logarithm of the

expected cell number is expressed as a linear function of parameters.  A limitation of log-

linear models is their general restriction to nested models.  If an interaction effect is

included in the model, then all lower order interactions and main effects must be included.

      Among linear models, perhaps Henderson’s mixed models are most often used in

genetic analyses of categorical data.  This algorithm yields best linear unbiased estimates

(BLUE) of fixed effects and best linear unbiased predictors (BLUP) of the random effects

when assumptions hold.  These methodologies have been extensively used with discrete

traits in the areas of dairy cattle (Weller and Ron, 1992; Van Vleck and Gregory, 1992),

beef cattle, swine (Keel et al., 1995; Roehe and Kennedy, 1995) and sheep (Waldron and

Thomas, 1992).
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         Linear model procedures do not adequately account for the discrete nature of the data.

Thompson (1979), Gianola (1980) and Hoeschele (1986) identified and extensively

discussed some problems in the analysis of categorical traits by linear models.  Some of

most critical problems are: 1) variances of  categorical traits are heterogeneous, 2) BLUP

solutions do not take into consideration the restriction that the sum of response probabilities

must be total 1 across all categories of responses, 3) the additive genetic variance in the

outward scale depends on the incidence of the trait in the population, 4) it is possible that

non-additive genetic effect are present in the outward scale even in the case where all the

genetic variation is additive in the underlying scale, and 5) when the conditional expectation

of the predictand given the data is not linear, the ranking properties of the best linear

predictor appear not to be optimal.

2.2.4.2. Non-linear models

       The non-linear model methodologies developed for animal breeding situations resulted

from combining the theory of generalized linear models (Matos, 1993) and the threshold

model (Falconer, 1989).  The term “generalized linear model(GLM)” was introduced by

Nelder and Wedderburn (1972), and GLMs are an extension of classical linear models that

include as special cases linear models and analysis of variance models.  Two important

features of GLM are that linearity is a property of the fitted values given by the model and

not of the data, and variance can be dependent on means.  The assumptions of homogeneity

of variances and normality for residual term, therefore, are not critical.  In GLM,

observations are assumed to be independent (or at least uncorrelated), and only one term is

allowed in the model ( McCullagh and Nedler, 1983).  

       There are numerous non-linear model methods (Smith, 1989).  Gilmour’s method was

originally for dichotomous data (Gilmour et al, 1985 ) and later extended to multiple

ordered categories (Gilmour et al, 1987), which applied GLM theory directly on the
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underlying scale.  Iterative procedures are needed to solve the resulting system of equations,

which is structurally similar to that obtained by Harville and Mee (1984).

         The method of Harville and Mee (1984) is based on a mixed model version of

threshold model and can considered an extension of maximum likelihood. The resulting

equations can be resolved by EM algorithm.  This approach yields the same results as that

of Gianola and Foulley (1983).  But, the interpretation is different because the latter

approach was derived using a Bayesian approach.  Foulley et al ( 1987) extended the

method of Gianola and Foulley (1983) to traits distributed as Poisson-Binomial in a

polytocous species.

        With regarding to variance component estimation, the methods of Harville and Mee

(1984) and Gilmour et al (1985) can be viewed as an extension of REML.  With respect to

Bayesian methods for variance components, procedures for continuous data assuming

normality (Gianola and Fernando, 1986) has been extended for discrete traits (Hoeschele et

al, 1987; Foulley et al., 1987).  The general principle for obtaining estimators of dispersion

parameters is based on integration of joint posterior distribution of the dispersion and

location parameters with respect to the location parameters.  

        Tempelman and Gianola (1993) proposed an algorithm to compute estimates of

variance components in Poisson models.  This algorithm, termed DFMML ( derivative free

marginal maximum likelihood ), invokes the same normal approximation on the conditional

posterior of the location parameters as the EM algorithm of Foulley et al. (1987).  However,

instead of using gradients, DFMML work directly with the logarithm of marginal likelihood

of the variance components.  Foulley and Im (1993) extended to Poisson variables the

approach of Gilmour (1985) for estimating fixed effects by maximum quasi-likelihood in

the analysis of threshold discrete data with a generalized linear mixed model.

       Recently, Bayesian analysis of binary or polychotomous threshold traits via Gibbs

sampling have been investigated (Hoeschele and Tier, 1995).  Also several scientists have

extended non-linear model methodologies to joint  analysis of categorical and continuous
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traits (Foulley et al., 1987; Hoeschele et al, 1995; Jenss and Foulley, 1993; Simianer and

Schaeffer, 1989; Zhang, 1994).  

2.2.4.3. Comparison Between Linear and Non-linear Methodologies

        Meijering and Gianola (1985) compared  the ability of BLUP and of the non-linear

procedure (GFCAT) of Gianola and Foulley (1983) to rank cattle sires using Monte Carlo

simulations of categorical data under three different models.  In most cases, both methods

performed similarly.  Only when response was binary, the layout was highly unbalanced

and a mixed model was appropriate to describe the underlying variate, did CFCAT elicit

significantly larger responses to truncation selection than BLUP at h2= .2 or .5 and when

the incidence in the population was below 25%.  The largest observed difference in selection

efficiency between the 2 methods was 12%.    

          King ( 1991 ) compared the merit of different methods including those which treated

the traits as if they were continuous (REML and Henderson’s method 3) and the other

methods which recognized the categorical nature of the traits using Bayesian analysis with

an informative prior or a generalized linear model analysis.  He concluded that the Bayesian

method had smaller MSE’s for heritability and correlation estimates, produced similar rank

correlation and required substantially less total computer time than the pseudo-expectation

method. However, nonlinear models are theoretically more complex and computationally

more demanding than linear models. In another simulation study, Matos (1993) observed

advantages for nonlinear models only in specific instances. For example, heritability

estimates on the binomial scale become progressively smaller in relation to the constant

value for heritability on the underlying continuous distribution as the frequencies of the

binomial classes approach 0 and 1.

      Weller and Ron (1992) compared threshold and linear models in the analysis of

fertility traits and in the estimation of genetic parameters using field data from Israeli

Holsteins.  Evaluations of random and fixed effects affecting heifer and cow fertility
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computed by threshold model and linear model were highly correlated.  In another study (

Meuwissen et al, 1995), the ordinary animal or linear mixed model (LMM), which ignored

the categorical nature of the trait, was compared to a generalized linear mixed model

(GLMMp) that assumes a linear mixed model for underlying continuous variable for

selection efficiency on categorical traits.   In a closed nucleus breeding scheme, rate of

genetic gain increased by 1 to 2 %, when GLMMp was used instead of LMM.  However,

when considering a binary traits, rate of gain can be increased by up to 84% by gathering

more information on high-incidence categories, indicating that in some cases accounting for

the categorical nature of traits is recommended, because it involves only a straightforward

extension of the linear animal model and increase rates of gain substantially.

       Olesen et al (1994) compared different methodologies, which included linear mixed

model (LM), threshold model (TM) and Poisson mixed model(PM) for genetic analysis of

number of lambs born from 1-yr-old ewes with 37,718 and 18,633 records of two

Norwegian breeds, Dala and Spalsau, respectively.  Models fitted included flock-year as a

fixed effect and the random effect of sire.  The models were compared with respect to

goodness of fit, predictability, and ranking of sires.  All models performed similarly with

respect to goodness of fit, predictability, and ranking of sires.  

           In summary, the result from the above studies using simulated or field data did not

show that non-linear models perform better than linear model for genetic analysis of

categorical data except for some special cases.  Also non-linear methods are

computationally more demanding.   Their merit relative to linear models was not justified.  

2.3 (Co)variance Component Estimation

         Statistically, the second moment statistics are called variance parameters, which mainly

include variances and covariances for random variable as well as various variance ratios,

standard deviations and correlation coefficients  derived from variances and covariances

such as heritability, genetic correlation and repeatability.  Various methodologies exist to
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estimate (co)variances.  As the estimation of (co)variance components is one of major tasks

faced by animal breeders,  searching for more reliable, accurate methodologies has been one

of the foci in animal breeding.  Common methods for variance component estimation

encompass analysis of variance (ANOVA), which includes traditional ANOVA, various

correlation and regression methodologies, as well as the methodologies with modifications

to the ANOVA sum of square for unbalanced data such as Henderson’s Method 1, 2, 3, 4

(Henderson, 1984),  Minimum-norm-quadratic unbiased estimation (MINQUE) ( Searle,

1989), maximum likelihood estimation (ML) (Harville, 1977), restricted maximum

likelihood estimation (REML) ( Meyer, 1989, 1991) and recently developed non-linear

methodologies based on Bayesian approaches.

       In the numerous forms of analysis of variance mentioned above, variance components

are estimated by equating observed mean squares to expression of their expected values.

ANOVA has the nice feature that the estimators are unbiased regardless of whether the data

are normally distributed and it is especially useful in the analysis of controlled experiments

where the structure of the data has a regular form.  However, ANOVA also has two

significant practical limitations.  First, ANOVA estimates of variance components require

that sample sizes be reasonably well balanced among fixed effect classes, with the number

of observation for each set of conditions being nearly equal.  In field situations, individuals

are often lost, and even the most carefully crafted balanced design can quickly collapse into

an extremely unbalanced one.  Henderson’s methodologies was proposed to account for

this, but their sampling properties are poorly known.  Although a balanced data set can

sometimes be constructed prior to analysis by ignoring information from some individuals,

this is clearly not an efficient way to utilize data.  Second, field observations often yield

records on a variety of relatives, such as offspring, parents, sibs etc., that cannot be analyzed

jointly with ANOVA.

      Unlike ANOVA estimators, maximum likelihood (ML), and most notably, restricted

maximum likelihood (REML) estimators do not place any special demands on the design or
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balance of data and hence are ideal for the unbalanced designs that arise in quantitative

genetics.  Further, ML/REML estimates can readily be obtained for any arbitrary pedigree

of individuals.  A logical approach to estimating variance components from observations in

complex pedigree might seem to be the use of maximum likelihood procedures.  ML was

first introduced for variance component estimation by Hartley and Rao (1967).

Conceptually, ML attempts to identify the values of the parameters of the distribution that

maximize the  likelihood of the observed data.  As is the case for almost all ML methods,

this distribution is assumed to be multivariate normal.  ML estimators are efficient in the

sense that they simultaneously utilize all of the available data and also have smallest

asymptotic error.  

              Compared with REML, one drawback with variance estimation via the usual

maximum-likelihood approach is that all fixed effects are assumed to be known without

error.  This is rarely true in practice, and as a consequence, ML estimators of variance

components are biased.  Most notably, estimates of residual variance tend to be biased

downward.  The reason for this is that the observed deviations of individual phenotypic

values from an estimated population mean tend to be smaller than their deviations from the

true (parameter) mean.  Such errors can became quite large when a model contains

numerous fixed effects, and particular when sample size are small.  Unlike ML estimators,

REML estimators maximize only the portion of the likelihood that does not depend on the

fixed effect.  In this sense, REML is a restricted version of ML.  The elimination of bias by

REML is analogous to the removal of bias that arise in the estimate of a variance component

when the mean squared deviation is divided by the degrees of freedom instead of by the

sample size.  However, REML does not always eliminate all of the bias in parameter

estimation, since many methods for obtaining REML estimates cannot return negative

estimates of a variance component.  While this seems a desirable property, it has the side

effect of upwardly biasing estimates.  
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         In the following sections, we will introduce several mathematical methodologies.   For

general framework of (co)variance component estimation,  Derivative-free REML is

described.  Then, specifically, mathematical formula for estimation of within-trait direct-

maternal covariance for growth traits and across-trait genetic covariances between litter size

and growth traits was derived.  Throughout the methods, effort is made to accommodate the

models used in our research.  Derivative-free REML will be emphasized with regarding to

methodology and application.

2.3.1. Derivative-free REML

       REML was first suggested by Thompson (1962) and then developed further by

Patterson and Thompson (1971).  REML is marginally sufficient, consistent, efficient and

asymptotically normal ( Harville, 1977).  Thus, all information available is utilized in an

optimal way.  Over the last decade, restricted maximum likelihood (REML) has become the

method of choice for estimating variance components in animal breeding and related

disciplines trying to partition the phenotypic variation into genetic and other components,

thanks to an increase in the general level of computational resources available and the

development of numerous specialized algorithms exploiting specific features of the data

structure or model of analysis as well as utilizing a variety of numerical techniques (Meyer,

1989).  REML requires that the likelihood function be partitioned into two parts including

one which is free of fixed effects and operates on the likelihood of linear functions of the

data vector with expectations zero, the so-called error contrasts or, equivalently, on the part

of the likelihood ( of data vector ) which is not dependent of fixed effects.  This results in

the loss in degrees of freedom due to fitting of fixing effects being taken into account

(Patterson and Thompson, 1971).  The main difference between ML and REML is that

REML utilize the likelihood of linear function ′ K y  instead of observation vector y.

         Let us consider a general linear model,
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                  y = Xb + Zu + e

with y, b, u and e representing the vectors of observations, fixed effects, random effects and

residual errors, respectively, and X and Z the corresponding design matrices. Assume that

E(y) = Xb; E(u)= E(e) = 0; V(u) = G = Aσ a
2 , where A is additive relationship matrix;

V(e)= R = Iσ e
2 , and cov( u, e ) = 0; then:

              V ( y) = ZG ′ Z  + R = ZA ′ Z σ a
2  + Iσ e

2 ,  

             Variance components estimates from REML are function of only u, which suggests

estimating σ a
2  and σ e

2  from a function of data (y), say ′ K y  with ′ K Xb  = 0, where ′ K  is a

matrix whose rows correspond to different error contrasts and there are at most n-p linearly

independent error contrasts.

    E ( ′ K y ) = ′ K Xb   = 0, so  ′ K X  = 0 ( translation invariance) and r ( ′ K ) = N - r (X)

      ′ K y  = ′ K Zu + ′ K e, with ′ K y  ~ N ( 0, ′ K VK),

      The logarithm of the restricted multivariate normal likelihood can be written as :

         Λ = -.5 [ (n-p)log (2π) + log | ′ K VK | + ′ y K ( ′ K VK)-1 ′ K y ].

       Although ′ K X  = 0 guarantees invariance, the maximization of Λ does not require

knowing ′ K .  A somewhat more familiar identity with constraints already imposed on X is

         Λ = -.5 [ const + log  |V| + log | ′ X V −1X | + (y − Xb ′ ) V− 1(y − Xb) .

      Where const = (n-p)log (2π) is affected by choice of V   to maximize Λ.   n is the

number of records and p is the rank of the part of the coefficient matrix due to fixed effects.

     Harville (1977) and Searle (1979) developed an equivalent form of Λ that is important

for derivative-free REML (DFREML):

     Λ = -.5 [ const + log  |R| + log |G| + log |C|  + ′ y Py ]. where,

     C is the full-rank coefficient matrix for the MME and ′ y Py  with P =

V−1 − V −1X( ′ X V − 1X)− 1 ′ X V −1 , is the generalized residual sum of squares.
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     Often, evaluating the log likelihood is less confusing if instead of maximizing Λ, -2Λ is

minimized; i.e.

      -2Λ = const + log |R| + log |G| + log |C|  + ′ y Py .

    The derivative-free method, very simply, is to try different R and G until the combination

that minimizes the log likelihood, -2Λ , is found for the data, y.  Depending on different

models,  the log-likelihood function, -2Λ,  was minimized with respect to direct heritability

(ha
2 = σa

2/σ2 ), additive maternal effects (  m2 = σm
2/σ2), the genetic covariance between

direct and maternal effect as a proportion of the product of two variances, the permanent

environmental variance due to the animal or dam as a proportion of phenotypic variance (

PEa
2   and PEm

2) as well as all the other across-trait covariances included in the models.  The

error variance was estimated directly from the residual sum of the squares.

      In the expression to be minimized, the constant is ignored.  At each round the other four

term must be calculated.  The easy terms are log|R| and log|G|.  For example, for the model

for growth traits in this dissertation, with R = In σ e
2 , log|R| = nlog(σ e

2) and with

           G =  

Aσ a
2 Aσ am 0

Aσ am Aσm
2 0

0 0 Ipσ p
2

 

 

 
 
 

 

 

 
 
 

.  Then,

    log|G| = 2 log|A| + qlog
Aσ a

2 Aσ am

Aσ am Aσm
2

 + plog(σp
2).

     The log|A| is also a constant but if wanted can be computed easily as a by-product of a

one -time calculation of A-1.  By Choleski decomposition, A=L ′ L ,

        log|A| = log|L| + log | ′ L | , so that  log|A| = 2 log(lii )∑ .

        Similarly, multiple trait versions of log|R| and log|G| are not difficult to compute.  The

difficult terms of Λ to evaluate are log |C|  and ′ y Py .  The strategy proposed by Smith and

Graser (1986) to calculate those terms is based on Gaussian elimination.  Meyer (1989,

1991) incorporated the idea of Smith and Graser (1986) into a remarkable series of



58

DFREML programs that took advantage of sparseness of C using linked list technique.

The search strategy for updating R and G for MME was the simplex method which is a

generally efficient method for non-linear optimization and easily accommodates

constraining R and G to their parameter space.

        Several scientists studied the reliability, robustness, convergence properties of the

Simplex method ( polytope method) (Boldman and Van Vleck, 1993; Meyer, 1989, 1991,

1992).  Based on some studies, minimization techniques such as the polytope method which

are based on function comparison are not susceptible to rounding error but few guarantees

can be made concerning convergence.  A potential problem is false convergence to a point

other than the minimum.  Meyer (1989) reported that while the number of likelihood’s

required for convergence varied with the starting values, final estimates were invariant to the

starting values selected and suggested that local maxima are not a problem with REML

estimation via the DF algorithm.  Kavac and Groeneveld (1989) used the polytope

procedure in a multiple trait animal model to estimate additive genetic and residual

covariance matrices of two traits (backfat thickness and daily gain) from 649 field test

scores of boars.  They found that different starting values converged to two distinct

parameter sets and concluded that local maxima can exist in multivariate data sets.  Boldman

and Van Vleck (1990), working with the simulated data of Meyer (1989), found that

different direct-maternal correlation (ram) priors converged to different final estimates.  They

found that the variation in estimates for the DF algorithm may result from the failure of the

polytope algorithm to locate the global maximum rather than the existence of local maxima.

Further study indicated that when the analyses utilizing the polytope method were restarted

at the claimed minimum with an initial step size of .2,  the same final parameter vector was

obtained in all analyses. The increased reliability of the final estimates would seem to be

well worth the additional likelihood evaluations required for a restart.  For this restart, a

reduced step size, i.e., < .2, is likely to be sufficient.
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2.3.2. Covariance between Direct Genetic and Maternal Genetic Effects for Growth

Traits

      Consider the following model for growth traits in sheep:

                Y = Xb + Zau + Zmm + Zpp + e

with  E (Y) = Xb, E (u) = E (m) = E (p) = E(e) = 0,

Var 

u

m

c

e

 

 

 
 
 

 

 

 
 
 

 =  

Aσ a
2 Aσ am 0 0

Aσ am Aσm
2 0 0

0 0 Ipσ p
2 0

0 0 0 I eσ e
2

 

 

 
 
 

 

 

 
 
 

 ,  and

     Var ( Y ) = Za ′ Z a σ a
2  + Zm ′ Z m σ m

2  + (Za ′ Z m + Zm ′ Z a )σ am  + Ip σ p
2  + Ieσ e

2

       where Y, b, u, m, p, e denote the vectors of observation and of fixed, direct additive

genetic, maternal genetic, permanent environmental and residual effects, respectively and X,

Za, Zm, and  Zp represent the corresponding incidence matrices.  

        Let ˜ σ a
2 , ˜ σ m

2 , ˜ σ am , ˜ σ p
2  and ˜ σ e

2  be prior values. Then, MME are,

     

′ X X ′ X Z a ′ X Z m ′ X Zp

′ Z aX ′ Z aZa + Aλ 11 ′ Z aZm + Aλ12 ′ Z aZp

′ Z mX ′ Z mZa + Aλ12 ′ Z mZm + Aλ22 ′ Z mZp

′ Z pX ′ Z pZa ′ Z pZm ′ Z pZp + I pλ33

 

 

 
 
 

 

 

 
 
 

 

b

u

m

p

 

 

 
 
 

 

 

 
 
 

 = 

′ X Y

′ Z aY

′ Z mY

′ Z pY

 

 

 
 
 

 

 

 
 
 

     where,

λ11  = ˜ σ e
2 ˜ σ m

2  / ( ˜ σ a
2 ˜ σ m

2  - ˜ σ am
˜ σ am )

λ22  = ˜ σ e
2 ˜ σ a

2  / ( ˜ σ a
2 ˜ σ m

2  - ˜ σ am
˜ σ am )

λ12  = - ˜ σ e
2 ˜ σ am  / ( ˜ σ a

2 ˜ σ m
2  - ˜ σ am

˜ σ am )

λ33 = ˜ σ e
2  / ˜ σ p

2

     The solution of MME can be expressed as:  
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b

u

m

c

 

 

 
 
 

 

 

 
 
 

 = 

C00 C 01 C02 C03

C10 C11 C12 C13

C20 C21 C 22 C23

C30 C 31 C32 C33

 

 

 
 
 

 

 

 
 
 

 

′ X Y

′ Z aY

′ Z mY

′ Z pY

 

 

 
 
 

 

 

 
 
 

 = 

C0

C1

C2

C3

 

 

 
 
 

 

 

 
 
 

 ′ W Y

     For MINQUE, choose the following quadratic forms:

           ˆ ′ u ˆ u , ˆ ′ m m , ˆ ′ u ˆ m + ˆ ′ m ˆ u , ˆ ′ p ˆ p 

        ′ Y Y − ′ ˆ b ′ X Y − ′ ˆ u ′ Z a Y − ′ ˆ m ′ Z mY − ′ ˆ p ′ Z p Y

      Their mathematical expectations are:

      E ( ˆ ′ u ˆ u ) = E ( ′ Y W ′ C 1C1 ′ W Y)

                = tr (W ′ C 1C1 ′ W )Var (Y)

                = tr (W ′ C 1C1 ′ W Za ′ Z a )σ a
2  + tr ( W ′ C 1C1 ′ W Zm ′ Z m )σ m

2  +

                         tr (W ′ C 1C1 ′ W (Za ′ Z m + Zm ′ Z a ))σ am  + tr ( W ′ C 1C1 ′ W )σ p
2  +

                         tr (W ′ C 1C1 ′ W )σ e
2

    E( ˆ ′ m ˆ m ), E ( ˆ ′ u ˆ m + ˆ ′ m ˆ u ), E( ˆ ′ p ˆ p ) can be derived similarly.

         E ( ′ Y Y − ′ ˆ b ′ X Y − ′ ˆ u ′ Z aY − ′ ˆ m ′ Z mY − ′ ˆ p ′ Z p Y)

          = E ( ′ Y Y - ′ Y WC ′ W Y)

          = tr (V) - tr (WC ′ W V)

        = tr ( ′ Z a Za  - ′ Z a WC ′ W Za )σ a
2  + tr ( ′ Z m Zm - ′ Z m WC ′ W Zm )σ m

2  +

               tr ( ′ Z a Zm + ′ Z m Za  - ′ Z m WC ′ W Za - ′ Z a WC ′ W Zm )σ am  +

               tr ( ′ Z p Zp  - ′ Z p WC ′ W Zp )σ p
2  + tr ( I - WC ′ W )σ e

2 .

      If we let the value of these quadratic forms equal their expectation and set up these

equations, we can solve them to get estimates of each variance and the covariance, σ am .

      For REML, following iterative equations will be used,

     ˜ σ e
2  = ( ′ Y Y − ′ b ′ X Y − ′ u ′ Z a Y − ′ m ′ Z mY − ′ p ′ Z p Y)/ (N-r(X))
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     ˜ σ a
2  = ( ˆ ′ u ˆ u  + ˆ σ e

2 tr C11)/q

     ˜ σ m
2  = ( ˆ ′ m ˆ m + ˆ σ e

2 tr C22)/q

     ˜ σ am  = ( ˆ ′ u ˆ m  + ˆ σ e
2 trC12)/q

     ˜ σ p
2  = ( ˆ ′ p ˆ p  + ˆ σ e

2 trC33)/r(p)

    Where, q= the number of levels of u = the number of levels of m,

             r(p) = the number of levels of p,

             r(x) = the column rank of matrix x,  and

                 N = total number of observations

2.3.3. Across-trait Covariance Estimation between Growth Traits and Litter Size

in Sheep

         The general representation for the complete bivariate animal model for growth and

litter size in our study can expressed as:

  
y1

y2

 
  

 
    = 

X1 0

0 X2

 
  

 
  

b1

b2

 
  

 
   + 

Zα 1 0

0 Zα 2

 

  
 

  
u1

u2

 
  

 
   + Zm1 m1[ ]  + 

Zp1 0

0 Zp2

 

  
 

  
c 1

c 2

 
  

 
   + 

e 1

e 2

 
  

 
  

            Where yi  is a si × 1 vector of records, the subscripts, 1, 2, representing  growth traits

and litter size, respectively.  bi denote the vector of fixed effects (contemporary groups in

this case); Xi is the matrix that associates bi with yi;  ui  is the vector of breeding values for

direct effects; Zαi is the matrix that associates ui with yi;  m1  is the vector of breeding values

for maternal genetic effects for growth traits; Zm1 is the matrix that associates m1 with y1;  c1

is the vector of permanent environmental plus nonadditive genetic effects contributed by

dams to records of their progeny;  Zp1  is the matrix that associates c1 with y1; c2 is the vector

of permanent environmental effects contributed by animals;  Zp2  is the matrix that

associates c2 with y2.  For this model,

      E 
y1

y2

 
  

 
   = 

X1b1

X2b2

 
  

 
  ,   E 

u1

u2

 
  

 
   =  E 

m1 
  

 
   = 

c 1

c 2

 
  

 
   = 

0

0
 
  

 
  ,



62

and the variance-covariance matrix for genetic effects is,

    V [ u1
’, u2

’, m1
’] = G⊗A ,   

     G = 

g11 g12 g1m1

g12 g22 g2 m1

g1m1 g2 m1 m11

 

 

 
 

 

 

 
 

     The variance-covariance matrix for permanent environmental effect is as follows:

     V [ c1
’, c2

’] = Pe⊗Ic,    where,

     Pe =  
c11 c12

c12 c22

 
  

 
  

       As the c1, c2 are located in different fields in the data structure,  covariance (c12) between

the two effects is not allowed, and thus was set to zero (Boldman et al., 1993).

     The variance-covariance matrix for residual effects is

     V [ e1
’, e2

’] = R⊗Ie,  where

      R =  
r11 r12

r12 r22

 
  

 
  

     Let  y = 
y1

y2

 
  

 
  , Xb = 

X1b1

X2b2

 
  

 
  , u = 

u1

u2

m1

 

 

 
 

 

 

 
 

, and c = 
c 1

c 2

 
  

 
  , thus,

         y ~ N [Xb, Za
’(G⊗A)Za + Pe⊗Ic + R⊗Ie]

2.3.3.1. DF-REML

       In the derivative-free REML approaches, there is no closed form for estimation of

covariance nor iteration formula for different dispersion parameters.  Instead, the derivative-

free method, very simply, is to try different R* and G* until the combination that maximizes

the log likelihood, ∧ or minimizes  -2∧ , is found for the data, Y, where

      -2Λ = const + log |R*| + log |G*| + log |C|  + ′ y Py .
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      In derivative-free REML, the permanent environmental  matrix (Pe⊗Ic) is combined with

the genetic matrix (G⊗A) to form the expanded matrix G*

       EM-REML (EM = Expectation-Maximization) can be considered as a special case of

EM-Bayesian methodologies, which we will discuss in next section.

2.3.3.2. Bayes Framework

      Methods to estimate dispersion parameters have been developed from a Bayesian

background for different data structures.  Procedures for a single polychotomous trait have

been described by Harvill and Mee (1984) and Hoeschele et al. (1987) and by Hoeschele

and Tier (1995).  Methods for multivariate binary traits were suggested by Foulley et al

(1987a), Janss and Foulley (1993), and Hoeschele et al (1995) and  extended to joint

analyses of categorical and continuous data.  Gianola et al (1986) discussed multivariate

continuous data in detail

       Essentially,  most researchers in this area recommend an algorithm analogous to the

EM algorithm (Dempter et al, 1977) for REML and its multitrait extension.

      Assume that b has a flat prior distribution (uniform distribution in this case) and u and

c are multivariate normal distributed and independent each other.  Thus,

     P(b) ∝ constant,

     As for priors for R, Pe and G, we assume inverted Wishart distribution. For example,

the distribution of priors of R is,

    P(R|ve Ve) ∝ R
− ( ve + p+1)

2 exp[-( tr(R −1Ve
−1)

2
]

             ve  and Ve are hyperparameters of the distributions, which we assume known.  The

distributions of priors for Pe and G can be expressed similarly.

            The joint posterior distribution of all the parameters is given by

           P(b, u, c, R, Pe, G| y) ∝ P(y|b, u, c, R)P(c|Pe)P(Pe)P(u|G)P(G)P(R)
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In context of (co)variance component estimation by EM, the joint distribution of D can be

maximized with respect to G and Pe by maximizing E{ ln P(c|Pe)}, E{ P(u|G)} at each

iterate, the resulting iterative scheme for the [t+1] th round is,

g i ′ i 
[ t +1]  = [ ˆ ′ u iA

−1ˆ u ′ i + tr(A−1Ci ′ i )[ ] /q i ′ i 

     where tr(.) is the trace operator.

Similarly,

 c i ′ i 
[t +1]  = [ ˆ ′ c i ˆ c ′ i + tr(Ci ′ i )[ ]/ pi ′ i 

 and,

  r [t+ 1] = (ˆ ′ y ˆ y − ˆ b ′ X ˆ y − ˆ ′ u ′ Z ˆ y − ˆ ′ c ′ Z ˆ y ) /(N-r(X)), where,

   r[t+1] = 
r11 r12

r12 r22

 
  

 
  

[t +1]

and r(X) is column rank of r(X)
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CHAPTER  3

           Estimation of Covariances between Fertility and Litter
Size in Fall-lambing Sheep: A Simulation Study

I.  Models and Phenotypic Parameter Estimation

Abstract

            Methodologies used in a Monte Carlo simulation study of reproductive traits

were described.  Reproductive outputs were simulated as functions of assumed

underlying phenotypes.  Realized expressions of fertility (0 vs 1) with a mean of .37 and

of multinomial litter size (1, 2, 3, 4) with mean of 2.12 were created by truncation of the

underlying phenotypic distributions.  Four genetic models were used to simulate

underlying phenotypic variates, which were derived as the sum of independent, normally

distributed additive genetic and environmental effects (Model 1A and 1B) or additive

genetic and permanent and temporary environmental effects (Model 2A and 2B).  Four

data sets were simulated for each of Model 1A and 1B and ten data sets for each of

Model 2A and 2B.  Each contained 5000 ewes by 500 sires and 5000 dams and with up

to five records per ewe.  Heritabilities for underlying fertility and litter size were .25 and
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.1225, respectively, for Models 1A and 1B and .15 and .1225, respectively, for Models

2A and 2B.  Permanent environment as a proportion of underlying phenotypic variance

was .10 for both traits in Models 2A and 2B.  Also the randomness of the SAS pseudo-

random number generator was tested by simulating 20 independent variates.  On the basis

of t-tests for estimates of mean and variance as well as Pearson correlation analyses for

the 20 variates, the SAS random generator can be efficiently applied in the large data

simulation.  Results of simulated phenotypic values in the underlying normal and the

categorical scales indicated that correlated responses from phenotypic selection on

fertility increased the mean of litter size and reduced its phenotypic variance when the

two traits were correlated.

Key words: Sheep, Reproduction, Monte Carlo, Simulation, Phenotypic values, Litter

size, Fertility.

3.1. Introduction

         Improving female reproductive performance is an important objective for increasing

the profitability of sheep (Abdulkhaliq et al., 1989 ), especially in lamb production.

There is much greater potential for increasing both biological and economic efficiency of

lamb production through genetic improvement in reproductive rate than through

improvement in growth rate or body composition ( Dickerson , 1978 ).  Total production

costs accounted for by replacement and maintenance of breeding females are

proportionately much higher for sheep and beef cattle than for other meat-producing
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species, mainly because of their relatively low reproductive rate.  Ewe productivity,

defined as number ( or total weight )  of  lambs weaned per ewe exposed, is dependent

upon the component traits of fertility, litter size, lamb survival and growth (Fogarty et

al., 1985 ).

         Fertility is generally high and further improvement may not have a large effect on

profitability in fall breeding systems.  However, for out of season breeding in late spring

and early summer when conception rates are often low, improving fertility could be quite

important to successful accelerated breeding systems.

         Another important trait is litter size.  An increase in the number of lambs weaned

per ewe per year offers the greatest single opportunity for increasing the efficiency of

lamb meat production.   More studies have addressed genetic improvement of this trait

than any other sheep reproductive trait.  Genetic variation for litter size exists both

among and within breeds.  It is generally accepted that selection to improve litter size is

effective (Bradford, 1985).  The results published  were in reasonably good agreement

with each other with an expected response of 1 to 2% or more per year. However,

Waldron and Thomas ( 1992 )  thought that although selection for litter size has been

successful, the rate of improvement has been limited because the trait is only observable

in females of reproductive age that conceive and maintain their pregnancy.

         Selection experiments for reproductive traits of sheep to date have all been with

wool  or dual-purpose breeds except for the selection experiment for fertility at Virginia

Polytechnic Institute and State University.  Al-Shorepy and Notter (1996) summarized

the results of that experiment.  They applied mixed-model methodology to estimate
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genetic and environmental trends for spring fertility and fall litter size in a composite

sheep flock containing 50% Dorset, 25% Rambouillet and 25% Finnsheep inheritance.

Genetic trends were 1.32 ± .11% in the selected line compared with .57 ± .19% in the

environmental control for spring fertility and .0065 ± .0015 lambs/yr in the selected line

compared with .0024 ± .0022 lambs/yr in the environmental control line.  Estimates of

permanent environmental trends for spring fertility were similar in the selected and

environmental control flocks ( .21 ± .7% vs .22 ± .13% ).

       Estimates of heritability for reproductive traits generally have been low (Abdulkhaliq

et al., 1989 ).  Literature estimates for heritabilty of litter size in sheep published before

1982 were summarized by Gonzalez ( 1982; cited by Bradford, 1985 ).  There were about

30 estimates in his review for different breeds or methods of estimation, ranging from .15

to .35 and with a mean of .10.  Three estimates of realized heritability  averaged

approximately .07.  Published results in the past 15 years were generally in the same

range ( Abdulkhalig, 1989; Atkins, 1986; Bunge, 1990; Clarke and Hohenboken, 1983;

Gabina, 1989; Gama et al.,1991; Fahmy, 1990;  Fogarty et al., 1985; Fossceco and Notter,

1995; Iniquez et al., 1986; Long and Thomas, 1989; Mohd-Yusuff et al ., 1992; Owen et

al., 1986;  Shelton and Menzies, 1970; Shrestha and Heaney, 1987; Waldron and Thomas,

1992 ).  The largest value reported is .41 ( Gabina, 1989 ).  Few estimates of heritability

for litter size in fall lambing are available.  Al-Shorepy and Notter ( 1996 )  reported a

heritability estimate of .10, which was higher than the estimate of .05 using data from all

seasons for the same flock.
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         Fertility is also lowly heritable. Most reported estimates are less than .1 ( Atkins,

1986; Bunge et al., 1990;  Clarke and Hohenboken, 1983; Fogarty et al., 1985; Gibina,

1989; Long and Thomas, 1989; Mohd-Yusuff et al., 1992; Shelton and Menzies, 1970;

Shrestha and Heaney, 1987 ).  The only estimate for out-of-season fertility is from Al-

Shorepy and Notter (1996 )  with a mean heritability of  .09 and a range of .07 to .11.  In

addition, a heritability of .09 was obtained by Fossceco and Notter ( 1995 ) for fertility of

fall-bred 7-month old ewe lambs used to form the base population for the same study.

         Few estimates of the genetic correlation between fertility and litter size have been

reported. Fogarty et al.( 1985 ) reported a genetic correlation of  -.34 ± .28 between

fertility and litter size and a phenotypic correlation of .03 ± .02 for ewes mated in the

normal breeding season. However, Al-Shorepy and Notter (1996) obtained a much

stronger genetic correlation of .56 between spring fertility and fall litter size, suggesting

that selection for multiple births in an out-of-season breeding system should result in

genetic improvement in spring fertility.  Bradford ( 1985 ) noted an increase in fertility

(decrease in barrenness ) in several selection experiments for litter size.  A positive

correlated response thus appears to be a general pattern, and is consistent with the decline

in fertility of the line selected against twinning in another experiment (Bradford, 1985).

         Repeatability theoretically should represent the upper limit of heritability, assuming

that that the traits being considered at different times are genetically identical ( Falconer,

1989 ).  Although not as useful as heritability, repeatability provides information on the

joint magnitude of genetic and permanent environmental effects.  Repeatability of litter

size and fertility are generally low, ranging from -.56 to .15 for fertility and from .08 to
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.24 for litter size( Abdulkhalig, 1989; Atkins, 1986; Bunge, 1990; Clarke and

Hohenboken, 1983; Gabina, 1989; Fahmy, 1989, 1990; Fogarty et al., 1985; Long and

Thomas, 1989; Shelton and Menzies, 1970 ).  These results imply that the permanent

environmental component for reproductive traits is also small.

         Methods to estimate variance components for normal, continuous data are well

understood. However, approaches for ordinal, categorical data such as litter size and

fertility are not as well understood.  An understanding of the behavior of the threshold

traits is crucial to derive reliable genetic parameter estimates and to provide a sound basis

for designing selection programs. Therefore, the objective of this study was to simulate

reproductive data for  sheep in an out-of-season breeding program and to study their

statistical properties as well as to evaluate the genetic parameter and (co)variance

component estimation methods using mixed model methodology.

3.2. Material and Methods

         A stochastic simulation program was created to allow simulation of reproductive

traits.  Reproductive outputs were generated by simulating two normally distributed

traits representing underlying phenotypic potential for fertility and litter size.

Corresponding expression of binomial fertility ( 0 vs 1 ) and multinomial litter size (1, 2,

3, 4) were then created by truncation of the underlying phenotypic distributions.  These

variables were chosen because they provide a minimal set for predicting the reproductive

traits of interest in out-of-season breeding of sheep.  A similar approach was used by

King ( 1991 ), Johnson and Notter ( 1987a, b ), Notter and Johnson ( 1987, 1988 ) and
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Van Vleck and Gregory ( 1992 ) to simulate reproductive trait such as litter size,

ovulation rate, fertility and postpartum interval for mice and beef cattle.

3.2.1. Population Structure

    Data were generated using a nested design.  All the data sets were created assuming 500

sires and 10 dams per sire.  Lambs produced from these mating were simulated as male or

female by assigning a random number with a sex ratio of 50:50.  Five thousand ewe lambs

were then randomly selected as the foundation flock.  If fewer than 5,000 ewe lambs were

simulated, then all were assigned to the foundation flock.  Ewes were mated at random to

service sires from same population at a ratio 25:1 for up to 5 years.  A new set of service

sires was simulated for each mating year.  A binomial fertility value was simulated for

each ewe and litter size was simulated for each ewe that conceived.  No effects of service

sire on fertility or litter size were simulated.  For each year, a random death loss of .12

was assumed in the ewe flock.  If a ewe was open in any year, no records were generated

for either underlying and realized litter size.  It  was assumed that all variance components

were constant on underlying scale among years, generations and sexes.

3.2.2. Simulation Methodology

      The Monte Carlo method was used to simulate underlying phenotypic values.

Programming statements were written in SAS language ( SAS, 1989 ).  Several preliminary

analyses were used to evaluate the randomness of the pseudo-random number generator.

3.2.2.1. Model Description   
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        Model 1: Y = G + E

        In this model, only genetic (G) and environmental (E) effects were included for both

fertility and litter size, which can be written as: Yij = Gi + Ej, Gi ∼ N (µ, σg
2 ), Ej ∼ N ( 0,

σe
2 ), σge = 0 and Yij ∼ N ( µ, σg

2 + σe
2 ),  where Yij is the phenotypic value for the trait of

interest on the normal scale,  Gi is the additive direct genetic value,  Ej is the temporary

environmental value, σg
2 is the additive genetic variance, σe

2  is the temporary

environmental variance and σge  is the additive genetic by temporary environmental

covariance.

      To simulate phenotypic values for the daughters ( ewes ) , the model applied was:

      Xijk = 1/2 BVi + 1/2 BVj + Mij + Ek

where, BVi and BVj were breeding values of the sire i and dam j, respectively, which were

simulated as:

         BVi = Riσg,  where Ri is a random normal variate.

        The Mij is the Mendelian sampling value, equal to Rij * Sqrt ( 1/2σg
2 ), where, R ij is a

random normal variate, and Ek, the residual value, is simulated as:

       Ek = Rk * σe, where, σe is the standard deviation of  the environment effect.

       The variance V of Xijk was thus equal to:

           V(Xijk)= 1/4σBVs
2
 + 1/4σBVd

2
 + σM

2 + σe
2, where , σBVs

2
 = σBVd

2
 = σg

2 = 2σM
2

        Contributions of sire, dam, Mendelian sampling and error was assumed to be

independent.  Categorical fertility and litter size were assigned  phenotypic values by

truncation of these underlying variates.
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       In the  model 1A, the two underlying phenotypic variables for fertility and litter size

were assumed to be independent whereas in model 1B, underlying fertility and litter size

were assumed to be correlated.  The algorithm to simulate normal fertility was the same as

in model 1A, whereas data for normal litter size were derived from conditional

probabilities given simulated values for fertility.  For example, the BV for litter size on

the underlying normal scale [ BV(L) ] was derived from simulated BV for fertility [BV(F)]

as :

            BVF ( L ) = rg * ( σgl/σgf ) * BV(F) + Ri * Sqrt [ (1-rg
2 ) ] * σgl

where rg was the genetic correlation between normal fertility and litter size, and σgl and

σgf  were genetic standard deviations of litter size and fertility, respectively.  The additive

genetic variance of litter size that was dependent on fertility was:

          V [ BV(L)|BV(F) ] = ( 1 - rg
2 ) * σgl

2

         The same methodology was applied to simulate Mendelian sampling and

environmental components.  The phenotypic values for categorical variates were

transformed from the underlying scale by the threshold methodology.

Model 2: Y = G + PE + E

          A new, independent permanent environmental component was introduced for

model 2.  For model 2A,  fertility and litter size again were assumed to be uncorrelated.

The formulas used to generate BV and environmental components were the same as for

Model 1.  Permanent environmental deviates were simulated as:

       PEi = Ri * σpe,
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      where σpe, is the permanent environmental standard deviation for the trait being

simulated.  Data for the two categorical traits were then generated by threshold

methodology from normal fertility and litter size.

      For Model 2B, the two reproductive traits were  assumed to be potentially correlated

because of genetic , permanent environmental, and temporary environmental correlations.

Data for normal fertility were generated by the same algorithm used in Model 2A.  For

normal litter size, the random components were simulated as in Model 1B.

       In summary, for independent trait simulation, the following methods were used:

1.  All direct genetic (G), permanent environmental (PE) and temporary environmental (E)

components for underlying traits were assumed to be additive and normally distributed.

No higher order genetic-genetic, genetic-environmental, or environmental-environmental

interactions were simulated.  The distribution parameters for the components can be

expressed as : Gi ∼ N ( µ, σg
2 ), Pej ∼ N ( 0, σpe

2 ), El ∼ N ( 0, σe
2 ), and were used as

input parameters to the simulation.

2.  A standard normal variate was randomly generated and multiplied by the square root

of the additive genetic variance to obtain the breeding value of the sire.

3.  A second standard normal variate was randomly generated and multiplied by the

square root of  the additive genetic variance to obtain the breeding of the dam.

4. Mendelian sampling variances were generated by simulating a third random normal

variate which was multiplied by the square root of one half the additive genetic variance.

The breeding value of offspring was simulated by summing of the average  breeding value

of sire and dam and the Mendelian sampling term.
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5.  A fourth standard normal variate was generated and multiplied by the square root of

the permanent environmental variation to obtain the random permanent environmental

effect of Model 2.

6.  A fifth standard normal variate was simulated and multiplied by the square root of the

residual variation to obtain the random temporary environment of the daughter.

7.  The breeding value and the environmental components (temporary or both temporary

and permanent) were added to the mean of the trait to obtain the underlying phenotype of

the daughter.

8.  Phenotypes of categorical traits (fertility and litter size) were obtained from the

corresponding underlying traits by applying a set of threshold values.

9.  Service sires were assumed to not contribute to a ewe’s reproductive performance.

         For correlated models (Model 1B and Model 2B), normal deviates for fertility were

simulated as shown above.  For litter size, breeding values and permanent and temporary

environmental values were then derived from the conditional distribution of litter size

given the correlated fertility deviates.

3.2.2.2. Population Parameters and Assumptions

         The simulation study was based on the result of  an out-of-season breeding program

(Al-Shorepy and Notter, 1996).  The main characteristics of the program include a typical

high prolificacy lowland meat breed or composite as  the breeding flock.  The fertility of

ewes in the out-of-season breeding program often  was  low.
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       Threshold values and resulting expected means and distributions for fertility and litter

size for each of five years are listed in table 3.1.  The expected mean and variance for the

underlying scale were zero and one with the same other expected properties of the

standard normal distribution.  However, when correlation between the two traits was

introduced, the mean of litter size would represent a correlated response to selection

because only ewes that conceive would subsequently lamb.  The expected means for

categorical fertility for the five years were .149, .309, .652, .564 and .201, respectively,

with an overall pooled mean of .375.  For litter size , expected means for the five years

were 1.83, 2.06, 2.21, 2.06 and 2.35, respectively, with a mean of 2.12,  which is higher

than the value reported by Al-Shorepy and Notter (1996) from field data.  However , the

overall mean  for spring fertility generally agreed with their data (.41).  The distribution of

realized litter sizes of 1, 2, 3 and 4  over all five years was 21.1, 51.3, 21.3 and 6.3%,

respectively, which showed a skewed discrete distribution with a longer right tail.

      Table 3.2 gives the specific input variance components and genetic parameters used in

this study.  Heritability of fertility on the underlying scale was assumed to be .25 when a

permanent environmental component was not included in the models (Model 1A and 1B)

) but was reduced to .15 when a permanent environmental component accounting for 10%

of phenotypic variation was included in Model 2.  Anticipated heritabilities for binomial

fertility were derived using the method of Falconer (1989) and were .137 and .082,

respectively, for underlying heritabilities of .25 and .15 using a mean incidence of fertility

of .37.  Input heritabilities of litter size on underlying scale for all models were .1225.

The corresponding transformed value (Gianola, 1979) was .1025 for a litter size
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distribution of 21.0% singles, 51.3% twins, 21.3% triplets and 6.3% quadruplets.  The

permanent environmental component was assumed to account for 10% of phenotypic

variance for litter size in model 2. Genetic, permanent and temporary environmental

correlations between  underlying normal fertility and litter size were all initially set to .5

for Model 1B and 2B.  In supplemental analyses using Model 1, genetic and temporary

environmental correlations between fertility and litter size were also set to 0 and .5

(Model 1B-X) or .5 and 0 (Model 1B-Y).

3.2.3. Evaluation of simulation results

          Overall, 28 data sets were initially simulated for this study, representing initial

evaluations of models 1A, 1B, 2A and 2B, and 25 additional simulated data sets were

created to address special issues.  Software  for multiple trait derivative-free restricted

maximum likelihood (MTDFREML) developed by Boldman et al. (1993) was used to

estimate (co)variances and genetic parameters for underlying and realized categorical

traits.

         Simulated phenotypic means and standard deviations across replicates were used to

test the null hypothesis that the mean = µ, where µ was an input parameters with

assumption of no selection.  Every replicate data set was considered as a random sample

from a population with location parameters and data structure listed in tables 3.1 and 3.2.

The estimates derived from MTDFREML analyses were assumed to be consistent with

normal distribution with an unknown population variance.  The test statistic was t = ( X -

µ ) / (S / √ n  ),  where X is the mean of the phenotypic parameter estimate and µ is the

population parameter  which was equivalent to the input parameter value, S is the
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standard deviation for the estimates and n is sample size.  The t statistic is comformable

to a t distribution with n-1 degrees of freedom.   Throughout the study, two-tailed t tests

were used.  The significant α levels (two-tailed) of .05 and .01 were applied as the testing

criteria.

3.3. Result and Discussion

3.3.1. Testing of Randomness of SAS Pseudo-random Number Generator

         Before simulation of the actual data for this study, twenty independent variates

were simulated by SAS  using the standard normal deviate function with mean zero.  The

first 10 variates were simulated with input standard deviation of 1.00; the final 10 variates

had input standard deviations of .35, .50, 2.10, 2.50, 3.50, 5.00, 6.80, 12.50, 100, and

1000, respectively;  Ten thousand records for each variate were created.  Theoretically,

these variate are conformable to normal distributions with N ∼ ( 0, σx
2 ) where  σx is the

input standard deviation.  The range of the means for the twenty variates was .0007 to -

1.2634.  As expected, variates with a larger input standard deviation had larger deviation

of the estimated mean from the input value.  When observed means of twenty variates

were tested using t tests  against the null hypothesis that µ = 0,  two means were

significantly different from 0 at α of .05 with the remaining eighteen variate means not

being significant different from zero.  The pooled mean of twenty variates was -.0394 and

was significantly different from zero by t test.  The first ten standard normal variates had

a mean .0103 and standard deviation 1.0011, which was not significant different from the

input population parameters.  A Pearson correlation analysis was carried out for the
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twenty independent variates. The absolute range of 90 correlation coefficients was from

.0002 to .0214.  No single correlation coefficient was significantly different from the

expected value.  Although the frequency with which sample means differed from their

input value of 0 was slightly largher than expected (2/20 versus 1/20), this random

number generator was judged to be satisfactory for conduct of this study.

3.3.2.  Phenotypic Statistics and Testing

         Summary statistics for simulated data sets of two models are listed in tables 3.3 and

3.4.  The number of data sets for model 1A, 1B, 2A and 2B were 4, 4, 10, and 10

respectively.  Generally, means and standard deviations for four traits were close to

expectations.  Coefficients of variation for underlying variates were meaningless due to

the extremely small means of the variates.  The range  in values for the data sets were

consistent with the normal distribution.

           All means and standard deviations except for those noted were tested against their

expected value ( input parameters ) by t test.  The existence of correlations between the

two normal variates in some models tended to reduced the phenotypic variance of litter

size.  The t test showed that phenotypic standard deviations of underlying litter size in

models 1B and 2B were highly significantly ( P < .01 ) smaller than the expected values of

1.0.  Moreover, the mean binomial fertility for all models also significantly differed from

the input parameter, which may be due to unbalanced data structure among the five years.

The data in the first year had the most observations but a much lower expected mean of

14.9%.  The correlated response from selection on fertility increased the means of
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categorical litter size from the expected value of 2.13 to 2.47 for model 1B and 2B,

respectively.  Thus ewes that conceived were inherently more prolific than those that did

not conceive for these models.  The binomial fertility theoretically should be conformable

to all-or-none distribution with mean = p (0.375 ) and variance = pq ( 0.484 ).  It seems

that binomial fertility in this study was underestimated.  All means for binomial fertility

in the four models differed from the mean input value ( P < 0.05 or P < 0.01 ), which

suggested  that estimates of fertility would be vulnerable to unbalanced data.

3.4.  Implications

1.  The SAS random generator can be efficiently applied in large data set simulation

although some sampling variations still exist.

2.  Phenotypic selection for fertility increased the mean of litter size and reduced its

phenotypic variance when the two traits were genetically correlated.

3.  Binomial fertility was more vulnerable to unbalanced data than multinomial litter size.
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Table 3.1. Threshold values on the standard, normally distributed scale and proportions
of observations in classes on the discrete scale for fertility and litter size by year
_______________________________________________________________________
Year Traita Threshold Probability Category Expectation
________________________________________________________________________
1 NF 1.0365 14.9% 0,1 .149

NL X < .2533 40.1% 1
X <.8418 39.3% 2
X < 2.0540 18.0% 3 1.83
X > 2.0540 2.0% 4

______________________________________________________________________
2 NF .5000 30.9% 0,1 .309

NL X < -.6745 25.1% 1
X < .6745 49.8% 2
X < .1.5342 18.8% 3 2.06
X > 1.5342 6.3% 4

________________________________________________________________________
3 NF -.3854 65.2% 0,1 .652

NL X < -1.0365 14.9% 1
X < .5244 55.0% 2
X < 1.5550 24.2% 3 2.21
X > 1.5550 5.9% 4

________________________________________________________________________
4 NF -.1256 56.4% 0,1 .564

NL X < -.6745 25.1% 1
X < .6745 49.8% 2
X < 1.5342 18.8% 3 2.06
X > 1.5342 6.3% 4

________________________________________________________________________
5 NF .8418 20.1% 0,1 .201

NL X < -1.2817 9.9% 1
X < .3854 55.3% 2
X < 1.2817 24.8% 3 2.35
X > 1.2817 10.0% 4

________________________________________________________________________
All NF 37.5% 0,1 .375

NL 21.1% 1
51.3% 2 2.12
21.3% 3
6.3% 4

________________________________________________________________________
a : NF and NL are underlying fertility and litter size, respectively.
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Table 3.2. Input genetic parameters for fertility and litter size
______________________________________________________________________

Model
________________________________________

Parametera 1A 1B 2A 2B
______________________________________________________________________

Fertility
h2 .25 .25 .15 .15
pe2 - - .10 .10
tN .25 .25 .25 .25
h2

B .137 .137 .082 .082
σg .500 .500 .387 .387
σpe .000 .000 .316 .316
σe .866 .866 .866 .866

Litter size
h2 .1225 .1225 .1225 .1225
pe2 - - .10 .10
tN .1225 .1225 .2225 .2225
h2

B .1025 .1025 .1025 .1025
σg .350 .350 .350 .350
σpe .000 .000 .100 .100
σe .937 .937 .882 .882

Fertility - litter size
rg .00 .50 .00 .50
rpe - - .00 .50
re .00 .50 .00 .50
__________________________________________________________________

a: h2 = heritability for the underlying traits, pe2 = permanent environment variance as a
proportion of the phenotypic variance, tN = repeatability for the underlying traits, hB

2 =
heritability for binomial fertility, σg = direct additive genetic standard deviation, σpe =
permanent environmental standard deviation, σe = temporary environmental standard
deviation ( residual standard deviation), rg = direct genetic correlation, rpe = permanent
environmental correlation, and re = residual correlation.
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Table 3.3. Summary statistics of simulation data sets for fertility and litter size: data 
structure.

______________________________________________________________________

Model
___________________________________________

Item Trait 1A 1B 2A 2B
______________________________________________________________________

No. Animals
      in A-1 9033 ± 18 9075 ± 4 9034 ± 6 9041 ± 6

No. ewes/sire 10 10 10 10

No. ewes/dam 1.4 1.4 1.4 1.4

No. records Fertility 19629±52 19611±32 19664±31 19673±41
Litter size 7091±59 7174±53 7080±27 7198±34

No. records/ewe
Fertility 3.9 3.9 3.9 3.9
Litter size 1.4 1.4 1.4 1.4

_______________________________________________________________________
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Table 3.4. Summary statistics of simulation data sets for sheep fertility and litter size: 
Mean and Standard deviationsa.

________________________________________________________________________

Models NF NL BF BL
________________________________________________________________________

Model 1A
No. data sets 4 4 4 4

Mean .0033 .0328* .3613* 2.1375*

±.0120 ±.0058 ±.0035 ±.0030
SD 1.0022 1.0006 .4803* .8152d

±.0018 ±.0030 ±.0010 ±.0025
Model 1B

No. data sets 4 4 4 4
Mean .0139 .4683d .3658* 2.4653**

±.0067 ±.0018 ±.0024 ±.0010
SD 1.0018 .9342** .4815* .8136d

±.0022 ±.0039 ±.0009 ±.0023
Model 2A

No. data sets 10 10 10 10
mean -.0009 .01636** .3595** 2.1248

±.0033 ±.0034 ±.0010 ±.0029
SD 1.0014 1.0011 .4800** .8130d

±.0023 ±.0029 ±.0003 .0015
Model 2B

No. data sets 10 10 10 10
Mean .0177** .4677d .3659** 2.4678**

±.0051 ±.0059 ±.0014 ±.0047
SD 1.0030 .9329** .4817** .8159d

±.0016 ±.0022 ±.0004 ±.0010
_______________________________________________________________________

a : NF= underlying fertility, NL = underlying litter size, BF= categorical fertility, and BL
= categorical litter size, and SD = standard deviation.
**: P < .01.
* : P < .05.
d: Not tested.
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CHAPTER 4

Estimation of Covariances between Fertility and Litter size in Fall-
lambing Sheep: A Simulation Study. II. Derived Genetic
Parameters

Abstract

       A stochastic computer simulation was used to simulate reproductive traits of sheep.

The objective was to compare covariances between fertility and litter size on the underlying

and realized categorical scales when litter size was expressed only for ewes that conceived.

Reproductive outputs were simulated as functions of assumed underlying phenotypes.

Realized expressions of fertility (0 vs 1) with a mean of .37 and of multinomial litter size (1,

2, 3, 4) with mean of 2.12 were created by truncation of the underlying distributions of

phenotypic potential.  Four genetic models were used to simulate underlying phenotypic

variates, which were derived as the sum of independent, normally distributed additive genetic

and environmental effects (Model 1A and 1B) or additive genetic and permanent and

temporary environmental effects (Model 2A and 2B).  Four replicates were simulated for

Models 1A and 1B.  Ten data sets were simulated for Models 2A and 2B.  Each contained

5000 ewes by 500 sires and 5000 dams and with up to five records per ewe.  Heritabilities for

underlying fertility and litter size were .25 and .1225, respectively, for Models 1A and 1B

and .15 and .1225, respectively, for Model 2A and 2B.  Permanent environment as a
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proportion of underlying phenotypic variance was .10 for both traits in Models 2A and 2B.

For each data set, genetic parameters and variance components were estimated by REML.

Mean estimates for each model were tested against input parameters by t test.  The usual

transformation of heritability estimated on the categorical scale to the normal scale for

fertility and litter size performed better for a simple animal model than for a repeatability

model.  Genetic correlation estimates between the two categorical traits for Model 1B and 2B

were .49 ± .01 and .48 ± .04, respectively, and were slightly smaller than the expected value

of .50.  However, permanent and temporary environmental correlations were more seriously

underestimated.  For Model 2B, permanent and temporary environmental correlation

estimates were .41 ± .05 and .26 ± .03, respectively.  For Model 1B, the temporary

environmental correlation estimate was .33 ± .02.  Failure of open ewes to produce a litter

size record resulted in underestimates of true genetic, permanent and temporary

environmental covariances and correlations.

Key words: Sheep, Reproduction, Covariance components, Simulation.

4.1.  Introduction

         So-called quasi-continuous, threshold or categorical traits have the properties and

numerical characteristics of discrete data and can be conformable to one or a mixture of a

group of discrete distributions such as the binomial, multinomial, Poisson or negative

binomial.  Categorical traits have generated extraordinary levels of interest in the field of

animal breeding.  The possible reasons are that many important economic traits such as
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reproductive traits or survival-related traits are categorical  in nature, and some  selection

experiments for categorical traits have established the potential  for their genetic

improvement. Several authors (Hoeschele, 1986; Foulley, 1987; Soto-Murrillo, 1991) have

presented extensive reviews on methods for analysis of discrete data in animal breeding.

Generally there are two main groups of procedures for analysis of discontinuous genetic data

(Matos, 1993).  The distinction between the two groups depends on whether an underlying

continuous distribution is assumed or not.  The first group includes methods that ignore the

discrete nature of categorical data, and the analysis proceeds using linear methodology as if

the data were continuous, whereas the second invokes the threshold concept (Falconer, 1989)

which assumes an underlying, non-observable, normal distribution for the discrete variate.

The link between the observable discrete variable and the underlying continuous scale is

generated by a set of fixed thresholds.  The underlying variable is described by linear models,

but the relationship between the underlying and the outward or observed scale is nonlinear

(Gianola and Foulley, 1983 ).

          Different methodologies for genetic analysis of discrete reproductive traits have been

investigated by several authors ( King, 1991; Matos, 1993 ). King ( 1991 ) compared the

merit of different methods including those which treated the traits as if they were continuous:

REML (Restricted Maximum Likelihood) and Henderson’s method 3. The other methods

recognized the categorical nature of the traits using Bayesian analysis with an informative

prior or a generalized linear model analysis. King concluded that the Bayesian method had

smaller MSE’s for heritability and correlation estimates, produced similar rank correlation,

and required substantially less total computer time than the pseudo expectation method.
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However, nonlinear models are theoretically more complex and computationally more

demanding than linear models. In another simulation study, Matos (1993) observed

advantages for nonlinear models only in specific instances. For example, heritability estimates

on the binomial scale become progressively smaller in relation to the constant value for

heritability on the underlying continuous distribution as the frequencies of the binomial

classes approached 0 and 1.

         There is a dearth of information about the relationship between litter size and fertility in

sheep, especially for the sheep outside the normal breeding season.  Summarizing over six

estimates of genetic correlation between litter size and fertility during the normal breeding

season in the literature gave an mean of estimates of .31 with range of -.34 to .82 (Fogarty,

1995).  Bradford (1985) noted an increase in fertility (decrease in barrenness) in several

selection experiments for litter size.  A positive correlated response thus appears a general

pattern.  Al-Shorepy and Notter (1996) obtained a much stronger genetic correlation of .56

between spring fertility and fall litter size, suggesting that selection for multiple births in an

out-of season breeding system should result in genetic improvement in spring fertility.

        The current study used stochastic simulation models of out-of-season sheep

reproduction. The models were developed to allow simulation of categorical reproductive

performance as a function of underlying genetic and environmental variation in reproductive

potentials. The models included additive genetic and permanent and temporary environmental

components. The two models applied were described in detail in Chapter 3.  The objective of

the study was to investigate the applicability of REML for (co)variance estimation for

categorical sheep reproductive traits.
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4.2.  Materials and Methods

4.2.1. Data Simulation

     The phenotypic characteristics of the simulated data for four models were discussed in

Chapter 3.  Overall, more than 40 data sets were simulated using pairs of heritabilities (h2) for

underlying normal fertility and litter size of  ( .25, .1225 ), ( .25, .1225 ), ( .15, .1225 ) and

(.15, .1225 ).  Values of h2  and associated genetic, permanent environmental and temporary

environmental standard deviations were shown in Table 3.2 of the Chapter 3.

     Heritabilty on the underlying scale (hx
2) for fertility was converted to h2 on the realized

binomial scale (hp
2) as(Falconer, 1989):

           hp
2 =  [ z2 / ( p * (1-p) ] * hx

2                                 [ 1 ]

where p is average frequency of occurrence for the trait and z is the height of the curve at the

truncation point for frequency p.

      Heritabilty on the underlying scale (hn
2) for litter size was converted to h2 on the realized

multinomial scale (hc
2) as (Gianola, 1979):

            hc
2 = hn

2 

[ zi (wi + 1 − wi )
i=1

m −1

∑ ]2

[ w i
2 pi − ( wi pi )

2 ]
i =1

m

∑
i =1

m

∑
[2]

     where m is number of response categories, pi  is the expected incidence in the ith  category,

{zi} are ordinates of the standard normal density function evaluated at the abscissas to {pi},

and {wi} are the scores assigned to the categories, 0-1 for sheep fertility and 1-4 for litter

size.  No culling effect and zero correlation between fertility and litter size were assumed for

the transformation.
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4.2.2. Linear Models

       Variance estimates were obtained by using MTDFREML software developed by

Boldman et al. ( 1993 ).  In matrix notation, the Models 2A and 2B (Chapter 3) can be

written as:

       Y = Xβ + Zαa + Zcc + e [ 3 ]

Where,  Y is the vector of records, β is the vector of the fixed effects ( year ), a is the vector

of random additive genetic effects with association matrix Zα, c is the vector of random

permanent environmental effects with association matrix Zc and e is the vector of residual

effects.  Models 1A and 1B (Chapter 3) can be written using the same equations, but without

the permanent environmental effect. For all models, no random service sire effect was

simulated, and the service sire effect was therefore not included in the analysis.

     The variance-covariance structure for random effects was:

      V = 

a

c

e

 

 

 
 

 

 

 
 

  = 

Aσ a
2 0 0

0 I pσ pe
2 0

0 0 Ieσ e
2

 

 

 
 

 

 

 
 
                [ 4 ]

              where A is the numerator relationship matrix, Ip is an identity matrix with order equal

to the number of the ewes and Ie  is an identity matrix with order equal to the number of

records. Estimates of heritability (h2) and repeatability (t)  are given by

         h2 = σa
2 / σp

2  and t = ( σa
2 + σpe

2 ) / σp
2           [ 5 ] and [ 6 ].

, respectively. where σp
2 = σa

2 + σpe
2 + σe

2  or σp
2 = σg

2 + σe
2 , depending on whether or not

permanent environmental effects were simulated.



106

4.2.3. REML (Co)variance Component Estimation

         Variance components were initially estimated using a single trait animal model with

derivative-free restricted maximum-likelihood (DFREML ) procedures. Then with estimates

from single trait analysis as starting values, bivariate analyses were performed. If the two

traits were independent, a small starting value was utilized for the covariance, whereas for

correlated traits, expected genetic, permanent and residual covariances were used as the

starting values. Sometimes several runs were carried out. Only the best set of estimates, based

on the log values of  likelihood, was retained. If some results were not expected, several

testing programs were run to address special issues for estimation of the (co)variance

components and genetic parameters.

4.2.4. Statistical Testing

       All the variance component and genetic parameter estimates were tested against their

input values using two-tailed t tests. Every data set was considered to be a random sample

from a population with genetic parameters listed in Table 3.2 of  Chapter 3. The estimates

derived from MTDFREML analyses were assumed to be conformable to normal distribution

with an unknown population variance.  The t statistic is, thus:

       t = ( X - E(X) ) / ( S / √n )                   [ 7 ].

where X is mean genetic parameter or variance component estimate, E(X) is the expected

value of the corresponding population parameter, S is the standard deviation of estimates and

n is sample size. The t statistic is conformable to a t(n-1) distribution. Two significance levels,
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.05 and .01, were used as testing criteria.  To allow statistical testing of effects of culling on

fertility on variance component estimates for litter size, litter size data were simulated for all

ewes and then reduced to include only data on ewes that lambed for each of 10 simulated data

sets.  A t statistic was constructed as:         t = d / Sd [ 8 ]

where d is the mean difference of parameter estimates before and after selection and Sd is

standard error of d.

4.3.  Result and Discussion

4.3.1. Genetic Parameter and Covariance Component Estimates

            Genetic parameter and variance component estimates for each model are listed in

Tables 4.1 through 4.10.  For each model, data are presented for univariate and bivariate

Multiple-Trait DFREML analyses.

4.3.1.1. Univariate vs Bivariate Analyses:  When fertility and litter size were independent

(Model 1A and 2A) , almost all estimates from univariate analyses were consistent with

those from bivariate analyses, with differences only at the third decimal point (Tables 4.1,

4.2, 4.7 and 4.8). However, for correlated traits (models 1B and 2B), estimates from

univariate analyses for litter size differed from those from bivariate analyses (Tables 4.3, 4.4,

4.9 and 4.10).  Various genetic parameter and variance component estimates for both

underlying and realized litter sizes derived from single trait analyses were generally smaller

than those from bivariate analyses for these models. The mean heritabilities for litter size

derived from univariate and bivariate analyses were 0.120 and 0.138  for model 1B and 0.118

and 0.126 for model 2B, respectively. On the categorical scale, the corresponding values were
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.103 and .110, respectively for model 1B and .100 and .111, respectively for model 2B.

These results suggested that a multiple-trait animal model should be used in case of correlated

traits.

4.3.1.2. Variance Components and Derived Ratios:  The differences in variance component

estimates and derived ratios between underlying and realized variates were much larger for

fertility than for litter size because litter size had four categories and more closely approached

a normal distribution.  Heritability estimates for both underlying and categorical fertility and

litter size were generally in good agreement with the input values in all models except that for

normal litter size in Model 2A.  The t tests showed that (co)variance component and genetic

parameter estimates for all four models were generally not significantly different from

expectations for underlying fertility.  However, t tests for underlying litter size revealed less

uniform results.  One important finding was a reduced variance component estimate from

univariate analyses for normal litter size in Models 1B and 2B ( Table 4.3 and 4.9).  A

significant ( P < 0.05 ) reduction for all variance components in model 2B from univariate

analyses was confirmed by t tests.  However, most of the ratios of variance components to

phenotypic variance were not significantly different from the expected values because the

different variance components were proportionately reduced.  The genetic, permanent

environmental, residual and phenotypic variances were reduced by 19%, 26%, 14%, and

16%, respectively.  However, bivariate analyses for model 2B yielded estimates of both

variance components and their ratios that were of the expected magnitude.  Heritability of

normal litter size for model 2A was larger (P<0.01) than expected (0.1225) for both univariate

and bivariate analyses.  The pooled estimate from 15 data sets was still significantly (P <
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0.05) larger than the input parameter (Table 4.17), while the variance and the proportion of

phenotypic variance contributed by the permanent environmental component was

underestimated.  The reason for these results is not clear.

            For categorical fertility and litter size, only the departure of heritabilities from their

transformed expectations from underlying values and of the genetic, permanent and

temporary environmental correlation estimates from their corresponding input values were

tested.  Considering the unbalanced data structure that resulted from random death losses

across years, the transformed heritability values for both fertility and litter size were derived

separately for each year.  The mean of the transformed heritabilities over years was used as

the expected value.  Heritability estimates for binomial fertility were generally very close to

the expected value .137 for model 1A and 1B and .082 for model 2A.  However, heritability

for binomial fertility in model 2B was underestimated in both univariate and bivariate

analyses.  For categorical litter size, heritability estimates were in good agreement with

expected values in model 1A and 1B and 2B but were overestimated in model 2A.  These

results indicated that transformation performed better for a simple animal model, when only a

additive genetic component was included, than for a repeatability model.  Several previous

studies addressed  the applicability of heritability transformation for categorical traits

estimated by different methods (Van Vleck, 1972; Olausson and Ronnigen, 1975; Van Vleck

and Gregory, 1992).  All the authors agreed that such a transformation was relatively good for

paternal half-sib analyses, but was less good for analyses based on progeny on parent

regression when the underlying distribution was normal.  Mantysaari et al. (1991, cited by

Van Vleck and Gregory, 1992) using a simulated sire model (no relationship) with REML,



110

found close agreement between heritability on the binomial scale and heritability on the

normal scale for two binomially distributed traits derived from a bivariate normal distribution.

However, Van Vleck and Gregory (1992) used a simple animal model to analyze simulated

data sets consisting of eight measures of ovulation rate treated as separate traits.  The model

also included seven birth groups (year and calving season of birth) and six calendar months of

first measurement.  They concluded that the usual transformation of heritabilities estimated

on a binomial scale overestimated heritability on the underlying normal scale.

4.3.1.3. Covariance Components and Corresponding Correlations:  Genetic and environmental

covariance component estimates for correlated traits were in  good agreement with input

correlation values (0.5) for underlying traits.  The t tests for covariance components and

correlation estimates (genetic, permanent environmental and residual correlations) between

the two traits on the underlying scale for all models were performed against the expected

value of 0.5.  Only one phenotypic covariance (see Table 3.2) differed significantly from

expectation (P<0.05), which may be attributable to chance. These results demonstrated that

the covariance components between two traits with normal distributions could be accurately

estimated by REML methodology.

        The genetic correlation estimates for the two categorical traits for models 1B and 2B

were 0.487 and 0.475 respectively, close to the expected value of 0.5.  However, estimates of

permanent and temporary environmental correlations were much smaller.  For model 2B, rpe

and re were 0.407 and 0.264 respectively. For model 1B, re was 0.330.  Methods for

estimation of genetic and phenotypic correlations for threshold characters have not been

studied to the same extent as heritability.  Van Vleck and Gregory (1992) analyzed simulated
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ovulation rates by multiple-trait derivative-free REML approach and eight measures of

ovulation rate were treated as separate traits.  Their results showed that genetic correlations

on the binomial scale seriously underestimated the correlation on the normal scale.  However,

Olausson and Ronnigen (1975) concluded from their simulation study for joint analysis of

two correlated traits, one normally distributed and the other binomially distributed (all-or-

none), that the genetic correlation between the two traits could be estimated by the half-sib

correlation method in the ordinary way without transformation of the estimate except for low

levels of incidence (5% and 10%) for the all-or-none trait.  The estimates were almost the

same as if the underlying normal distribution had been used, except for low heritability levels

(.1) and low incidence levels (5% and 10%) of the all-or-none trait, where correction of the

estimate made on the all-or-none data was recommended.  However, the estimated

phenotypic correlation between the two traits was highly biased, which implied that the

residual correlation may  have been seriously underestimated, similar to the result of our

study.

4.1.3.4. Alternative Models:  In order to evaluate the interaction between genetic and

environmental covariances,  four replicates using Model 1B but with different structure of

covariances were simulated for Model 1B-X and Model 1B-Y, respectively.  Input genetic

and environmental correlations were .50 and .00, respectively for Model 1B-X while for

Model 1B-Y, the corresponding values were .00 and .50.  The results of genetic analyses for

the two models are presented in Tables 4.5 and 4.6, respectively.  In the two correlation

settings, the means of genetic and environmental correlations between underlying normal

fertility and litter size over 4 replicates were close to expected values.  However, on the
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categorical scale, both genetic and environmental correlations were significantly overestimated

in Model 1B-X (P<.05 or P<.01) while in Model 1B-Y the environmental correlation was

significantly underestimated (P<.05).   The REML procedures gave fairly accurate estimates

for normally distributed traits irrespective of relationships between the traits.  However,

REML did not perform as well for categorical data, especially for estimation of covariance

between categorical traits.

4.3.2. Should Environmental Covariance (σe1e2) Be Set to Zero ?

         Model 1B was used as a template to create two additional data sets with records of

5,000 ewes for 5 years.  The results of DFREML analyses are shown in Table 4.11 and Table

4.12.  Comparison between two alternatives of setting σe1e2 =0 or not setting σe1e2 =0 clearly

showed  no effect on normal or binomial fertility. However, setting σe1e2 = 0 biased variance

components of normal and multinomial litter size downward by 10 -25% although genetic

parameter estimates did not deviate from expected values because the different variance

component were reduced proportionately.

            Setting σe1e2 = 0 also significantly affected the estimates of genetic correlation and

generally biased genetic covariance and genetic correlation estimates downward.  For

underlying variates, compared with not setting σe1e2 = 0, setting σe1e2 = 0 reduced genetic

covariance and correlation by 29 and 18%, respectively, while for categorical traits, these

statistics were reduced by 67 and 63%, respectively.  One noteworthy observation was that

the log values of likelihoods for both approaches were almost the same for categorical traits.
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           The results of the study suggested that true existence of environmental sources of

correlation would reduce estimates of the genetic covariation, if environmental correlation

were arbitarily set to zero. A set of starting values for environmental correlation including .01,

.1, .25, .5, .75, .9, .99 were tried.  Only starting values of .01 and .99 affected final converged

values.  In conclusion, zero and extremely small or large values for covariance should be

avoided as starting values for DFREML methodology.

4.3.3. Effects of Selection on Fertility

         Various (co)variance component and genetic parameter estimates for five simulation

data sets with or without culling litter size records of open ewes are presented in Tables 4.13

and 4.14 for model 2A and in Table 4.15 and 4.16 for model 2B.  Selection resulted from

random death loss and from open ewes.  Only effects of selection on open ewes were studied.

All the correlations were set to .5 ( rg = rpe = re = .5 ).

       Clearly, there was no or an extremely small culling effect with independent traits (model

2A, Table 4.13 and 4.14).   No single parameter estimate for the data without culling was

significantly different from that for the data with culling.  Actually, for litter size and fertility

in both scales, the (co)variances and derived genetic or non-genetic parameters were

essentially the same between the two groups of data which differed according to culling

practice.  Also small t values for the difference of  the estimates derived from two groups of

data sets  suggested that the MTDFREML methodology can deal well with selection effect

for independent traits with normal distributions (Table 4.13 and 4.15).

     However, for correlated traits, failure of open ewes to produce a litter size record tended

to reduce estimates of genetic, permanent and temporary environmental covariances and
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correlations, especially for genetic covariance and correlation. The t tests showed highly

significant ( P < 0.01 ) reduction for the genetic covariance and correlation in Model 2B

(Table 4.16).  In addition, selection based on fertility caused estimates for both genetic and

environmental components for categorical litter size to be unstable.  Atkin (1986) observed

that estimates of both repeatability and heritability of barrenness were likely to be biased

downwards by such culling so that the incorporation of barrenness as a trait for selection in

British hill sheep must  remain a open question.  He also observed that if traditional

approaches for (co)variance estimation were used, culling of ewes represents a possible

source of bias in the estimation of genetic parameters.   Analyses showed that barren ewes

were selectively culled. A similar situation to this was also reported by McGuirk (1973) and

Forest and Bichard (1974) in their data sets.  The genetic, permanent environmental, residual,

and phenotypic variance for categorical litter size with culling open ewes  were larger than the

ones without culling of open ewes by 3, 9, 9 and 8% in Model 2B (Table 4.16).

4.4.  Implications

        The usual transformation of heritability estimated on the categorical scale generally

performed better for a simple animal model than for a repeatability model.  Genetic

correlations between the two categorical traits generally were close to the input value,

indicating no need for transformation between the two scales.  On the other hand, permanent

environmental and temporary environmental correlations on categorical scales were

significantly underestimated.  Setting residual covariance to zero reduced genetic correlations
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between fertility and litter size on both scales, especially on the categorical scale.  Essentially

the same log values of likelihoods were obtained with setting residual covarinace to zero or

not, indicating that the likelihood ratio test is not sensitive to residual covariance, i.e., this

parameter is flat although its true value is .50.  For correlated traits, failure of open ewes to

produce a litter size record tended to reduce permanent and environmental covariances and

correlations, especially for genetic covariance and correlation.
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Table 4.1. (Co)variance component and genetic parameter estimates of reproductive traits of
model 1A:  univariate analysesa.

________________________________________________________________________

Normal. Normal Binomialc Multinomialc

Parameterb fertility litter size fertility litter size
________________________________________________________________________

σa
2 .2570 .1314 .0257 .0721

±.0043 ±.0018 ±.0005 ±.0025
σe

2 .7323 .8703 .1667 .5747
±.0089 ±.0073 ±.0010 ±.0067

σp
2 1.0034 1.0017 .1925 .6467

±.0044 ±.0060 ±.0007 ±.0047
h2 .255 .133 .135 .110

±.0029 ±.0025 ±.0029 ±.0041
e2 .745 .868 .865 .890

.0029 ±.0025 .0029 ±.0041
________________________________________________________________________

a: The sample size is 4.
b: σa

2 = direct additive genetic variance. σe
2 = residual variance. σp

2 = phenotypic variance.
h2= heritability. e2 = residual variance as the proportion of phenotypic variance.
c: The only parameter for categorical fertility and litter size that was tested
    was heritability.
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Table 4.2. (Co)variance component and genetic parameter estimates of reproductive traits of
model 1A:  bivariate analysesa.
_______________________________________________________________________

Normal. Normal Covariance Binomial MultinomialCovariance
Parameterb fertility litter size /correlation fertilityc litter sizec /correlationc

______________________________________________________________________

σa
2(σaa) .2572 .1320 .0049 .0257 .0723 .0002

±.0043 ±.0019 .0076 ±.0005 ±.0025 ±.0019
σe

2(σee) .7461 .8700 -.0093 .1667 .5745 .0002
±.0051 ±.0074 ±.0049 ±.0010 ±.0068 ±.0005

σp
2(σpp) 1.0032 1.0021 -.0044 .1924 .6468 .0004

±.0047 ±.0060 ±.0118 ±.0007 ±.0030 ±.0029
h2(rg) .255 .133 .023 .135 .110 .003

±.0029 ±.0025 ±.0409 ±.0029 ±.0041 .0446
e2(re) .745 .868 -.0125 .865 .890 .000

±.0029 ±.0025 ±.0048 ±.0029 .0041 ±.000
________________________________________________________________________

a:  The sample size is 4.
b:  σa

2(σaa) = direct additive genetic variance (covariance). σe
2(σee) = residual variance

(covariance). σp
2(σpp)= phenotppic variance (covariance). h2(rg) = heritability (genetic

correlation). e2(re) = residual variance as the proportion of phenotypic variance (residual
correlation).
c: All the variances component and parameters for categorical fertility and litter size were not
tested except heritability and correlations.
*: p<0.05.
** : p<0.01
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Table 4.3. (Co)variance component and genetic parametera estimates of reproductive traits of
model 1B:  univariate analysesa.
________________________________________________________________________

Normal. Normal Binomialc Multinomialc

Parameterb fertility litter size fertility litter size
________________________________________________________________________

σa
2 .2528 .1002 .0256 .0653

±.0036 ±.0123 ±.0006 ±.007
σe

2 .7530 .7413 .1679 .5768
±.0052 ±.0065 ±.0008 ±.0057

σp
2 1.0058 .8415 .1935 .6421

±.0042 ±.0068 ±.0006 ±.0042
h2 .253 .120 .133 .103

±.0048 ±.0135 ±.0025 ±.0111
e2 .748 .880 .868 .898

±.0048 ±.0135 ±.0025 ±.0111
________________________________________________________________________

a: The sample size is 4.
b: σa

2 = direct additive genetic variance. σe
2 = residual variance. σp

2 = phenotypic variance.
h2= heritability.  e2 = residual variance as the proportion of phenotypic variance.
c: All the (co)variances component and parameters for categorical fertility and litter size were
not tested except  heritabilities.
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Table 4.4. (Co)variance component and genetic parameter estimates of reproductive traits of
model 1B:  bivariate analysesa.
_______________________________________________________________________

Normal. Normal Covariance Binomial MultinomialCovariance
Parameterb fertility litter size /correlation fertilityc litter sizec /correlationc

______________________________________________________________________

σa
2(σaa) .2537 .1376 .0927 .0255 .0822 .0217

±.0037 ±.0169 ±.0065 ±.0007 ±.0080 ±.0010
σe

2(σee) .7526 .8644 .4059 .1680 .6481 .1088
±.0053 ±.0088 ±.0056 ±.0008 ±.0110 .0050

σp
2(σpp) 1.0064 1.0020 .4985 .1935 .7302 .1305

±.0042 ±.0082 ±.0068 ±.0006 ±.0052 ±.0042
h2(rg) .253 .138 .500 .133 .110 .478

±.0048 ±.0170 ±.0181 .0025 ±.0108 ±.0111
e2(re) .748 .863 .503 .868 .890 .330**

.0048 ±.0170 ±.0063 ±.0025 .0108 ±.0123
________________________________________________________________________

a: The sample size is 4.
b: σa

2(σaa) = direct additive genetic variance (covariance). σe
2(σee) = residual variance

(covariance). σp
2(σpp)= phenotypic variance (covariance). h2(rg) = heritability (genetic

correlation).  e2(re) = residual variance as the proportion of phenotypic variance (residual
correlation).
c: All the (co)variances component and parameters for categorical fertility and litter size were
not tested except  heritability and correlations.
*: p<0.05.
** : p<0.01



121

Table 4.5. (Co)variance component and genetic parameter estimates of reproductive traits of
model 1B-X:  bivariate analysesa

_______________________________________________________________________

Normal. Normal Covariance Binomial MultinomialCovariance
Parameterb fertility litter size /correlation fertilityc litter sizec /correlationc

______________________________________________________________________

σa
2(σaa) .2501 .1113 .0857 .0263 .0833 .0332

±.0056 ±.0098 ±.0057 ±.0006 ±.0063 ±.0024
σe

2(σee) .7480 .8944 .0010 .1653 .6437 .0757
±.0048 ±.0065 ±.0059 ±.0026 ±.0052 ±.0089

σp
2(σpp) .9982 1.0057 .0867 .1916 .7270 .1205

±.0024 ±.0071 ±.0089 ±.0009 ±.0114 ±.0197
h2(rg) .250 .112 .514 .136 .114 .698**

±.0063 ±.0037 ±.0275 .0040 ±.0075 ±.0306
e2(re) .750 .888 .000 .864 .886 .232**

±.0063 ±.0037 ±.0084 .0040 ±.0075 ±.0252
________________________________________________________________________

a: The sample size is 4.
b: σa

2(σaa) = direct additive genetic variance (covariance). σe
2(σee) = residual variance

(covariance). σp
2(σpp)= phenotypic variance (covariance). h2(rg) = heritability (genetic

correlation). e2(re) = residual variance as the proportion of phenotypic variance (residual
correlation).
c: All the (co)variances component and parameters for categorical fertility and litter size were
not tested except  heritability and correlations.
*: p<0.05.
** : p<0.01
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Table 4.6. (Co)variance component and genetic parameter estimates of reproductive traits of
model 1B-Y:  bivariate analysesa.
_______________________________________________________________________

Normal. Normal Covariance Binomial MultinomialCovariance
Parameterb fertility litter size /correlation fertilityc litter sizec /correlationc

________________________________________________________________________

σa
2(σaa) .2496 .1195 -.0064 .0249 .0751 .0014

±.0027 ±.0053 ±.0025 ±.0004 ±.0039 ±.0022
σe

2(σee) .7535 .8634 .3987 .1674 .6836 .1333
±.0038 ±.0140 ±.0104 ±.0004 ±.0316 ±.0180

σp
2(σpp) 1.0031 .9829 .3923 .1923 .7587 .1347

±.0051 ±.0125 ±.0111 ±.0005 ±.0322 ±.0199
h2(rg) .248 .122 -.038 .130 .098 .030

±.0020 ±.0058 ±.0150 ±.0032 ±.0058 ±.0487
e2(re) .752 .878 .494 .870 .902 .388

±.0020 ±.0058 ±.0103 ±.0032 ±.0058 ±.0454
________________________________________________________________________

a: The sample size is 4.
b:  σa

2(σaa) = direct additive genetic variance (covariance). σe
2(σee) = residual variance

(covariance). σp
2(σpp)= phenotypic variance (covariance). h2(rg) = heritability (genetic

correlation).  e2(re) = residual variance as the proportion of phenotypic variance (residual
correlation).
c: All the (co)variances component and parameters for categorical fertility and litter size were
not tested except  heritability and correlations.
*: p<0.05.
** : p<0.01



123

Table 4.7. (Co)variance component and genetic parameter estimates of reproductive traits of
model 2A:  univariate analysesa.
________________________________________________________________________

Normal. Normal Binomialc Multinomialc

Parameterb fertility litter size fertility litter size
________________________________________________________________________

σa
2 .1541 .1514** .0160 .0824

± .0072 ± .0072 ± .0006 ± .0056
σc

2 .0966 .0698** .0097 .0382
± .0066 ± .0061 ± .0008 ± .0075

σe
2 .7532 .7811 .1661 .5216

± .0032 ± .0046 ± .0005 ± .0050
σp

2 1.0039 1.0023 .1918 .6422
± .0041 ± .0058 ± .0004 ± .0028

h2 .154 .150** .083 .126*

± .0071 ± .0065  ± .0030 ± .0081
c2 .096 .071** .0520 .059

± .0069 ± .0060 ± .0044 ± .0123
e2 .750 .781 .866 .811

± .0033 ± .0028 ± .0027 ± .0057
________________________________________________________________________

a: The sample size is 4.
b: σa

2 = direct additive genetic variance. σe
2 = residual variance. σp

2 = phenotypic variance.
h2= heritability. e2 = residual variance as the proportion of phenotypic variance.
c: All the (co)variances component and parameters for categorical fertility and litter size were
not tested except  heritabilities.
*: p<0.05.
** : p<0.01.
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Table 4.8. (Co)variance component and genetic parameter estimates of reproductive traits of
model 2A:  bivariate analysesa.
_______________________________________________________________________

Normal. Normal Covariance Binomial MultinomialCovariance
Parameterb fertility litter size /correlation fertilityc litter sizec /correlationc

________________________________________________________________________

σa
2(σaa) .1531 .1545** - .0010 .0151 .0805 .0015

± .0023 ± .0087 ± .0033 ± .0008 ± .0049 ± .0011
σc

2(σcc) .0980 .0656** - .0013 .0106 .0376 - .0005
± .0064 ± .0070 ± .0024 ± .0007 ± .0077 ± .0009

σe
2(σee) .7529 .7826 .0007 .1664 .5260 .0032

± .0033 ± .0044 ± .0022 ± .0006 ± .0050 ± .0051
σp

2(σpp) 1.0036 1.0031 - .0017 .1920 .6441 .0038
± .0042 ± .0061 ± .0034 ± .0003 ± .0030 ± .0054

h2( rg) .152 .155** - .013 .079 .123* .04
± .0071 ± .0081 ± .0213 ± .0046 ± .0073 ± .0364

c2( rc) .098 .066** - .021 .055 .058 - .027
±.0065 ± .0072 ± .0290 ± .0040 ± .0125 ± .0492

e2(re) .750 .781 .000 .867 .816 .010
± .0033 ±.0035 ± .0026 ± .0030 ± .0054 ± .0174

________________________________________________________________________
a: The sample size is 4.
b:  σa

2(σaa) = direct additive genetic variance (covariance). σe
2(σee) = residual variance

(covariance). σp
2(σpp)= phenotypic variance (covariance). h2(rg) = heritability (genetic

correlation). e2(re) = residual variance as the proportion of phenotypic variance (residual
correlation).
c: All the (co)variances component and parameters for categorical fertility and litter size were
not tested except  heritability and correlations.
*: p<0.05.
** : p<0.01



125

Table 4.9. (Co)variance component and genetic parameter estimates of reproductive traits of
model 2B:  univariate analysesa.
________________________________________________________________________

Normal. Normal Binomialc Multinomialc

Parameterb fertility litter size fertility litter size
________________________________________________________________________

σa
2 .1485 .0991**        .0140 .0648

±.0053 ± .0051 ±.0008 ± .0040
σc

2 .1026 .0745** .0113 .0459
± .0041 ± .0075 ± .0008 ± .0055

σe
2 .7492 .6658** .1674 .5347

± .0031 ± .0037 ± .0073 ± .0015
σp

2 1.0008 .8395** .1858 .6454
± .0031 ± .0036 ± .0073 ± .0015

h2 .148 .118 .071* .100
± .0055 ± .0059 ` ± .0038 ± .0061

c2 .103 .089 .058 .069
± 0.0042 ± 0.0091 ± 0.0047 ± 0.0086

e2 .747 .794 .867 .827
± .0026 ± .0040 ± .0021 ± .0037

________________________________________________________________________
a: The sample size is 4.
b: σa

2 = direct additive genetic variance. σe
2 = residual variance. σp

2 = phenotypic variance.
h2= heritability. e2 = residual variance as the proportion of phenotypic variance.
c: All the (co)variances component and parameters for categorical fertility and litter size were
not tested except  heritabilities.
*: p<0.05.
** : p<0.01.
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Table 4.10. (Co)variance component and genetic parameter estimates of reproductive traits of
model 2B:  bivariate analysesa.
_______________________________________________________________________

Normal. Normal Covariance Binomial MultinomialCovariance
Parameterb fertility litter size /correlation fertilityc litter sizec /correlationc

________________________________________________________________________

σa
2(σaa) .1486 .1248 .0664 .0141 .0771 .0155

± .0054 ± .0049 ± .0064  ± .0007 ± .0039 ± .0015
σc

2(σcc) .1030 .1033 .0545 .0114 .0531 .0096
± .0040 ±.0056 ± .0041 ± .0008 ± .0057 ± .0010

σe
2(σee) .7493 .7732 .3758 .1674 .5877 .0809

± .0031 ± .0050 ± .0034 ± .0004 ± .0079 ± .0108
σp

2(σpp) 1.0008 1.0012 .4967 0.1928 .7102 .1076
± .0031 ± .0071 ± .0052 ± .0004 ± .0107 ± .0101

h2(rg) .148 .126 .484 .071* .111 .475
± .0055 ± .0052 ± .0410 ± .0038 ± .0062 ± .0383

c2(rc) .103 .102 .536 .058 .075 .407
± .0042 ± .0057 ± .0440 ± .0047 ± .0076 ± .0452

e2(re) .747 .773 .495 .867 .817 .264**

± .0026 ± .0040 ± .0034 ± .0021 ± .0040 ± .0293
________________________________________________________________________
The sample size is 4.
b:  σa

2(σaa) = direct additive genetic variance (covariance). σe
2(σee) = residual variance

(covariance). σp
2(σpp)= phenotypic variance (covariance). h2(rg) = heritability (genetic

correlation). e2(re) = residual variance as the proportion of phenotypic variance (residual
correlation).
c: All the (co)variances component and parameters for categorical fertility and litter size were
not tested except  heritability and correlations.
*: p<0.05.
** : p<0.01
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Table 4.11. Effect of  “ set cove12 = 0 “ on the estimation of  ( co ) variance components
for underlying variates
_______________________________________________________________________

Fert(1) Fert(2) DIFF LS(1) LS(2) DIFF COV(1) COV(2) DIFF
________________________________________________________________________

σa
2(σaa)  .2572 .2550 .0022 .1549 .1160 .0389 .0950 .0674 .0276

±.0053 ±.0058 ±.0170 ±.0094 ±.0119 ±.0081
σe

2(σee) .7498 .7507 -.0009 .8439 .7375 .1064 .3977 .000 .3977
±.0024 ±.0022 ±.0074 ±.0022 ±.0064 ±.00

σp
2(σpp)1.0070 1.0057 .0013 1.0089 .8535 .1554 .4927 .0674 .4253

±.0077 ±.0080 ±.0096 ±.0072 ±.0055 ±.0081
h2(rg) .255 .255 .000 .155 .140 .015 .475 .390 .085

±.005 ±.005 ±.015 ±0.01 ±.025 ±.030
e2(re) .745 .745 .000 .845 .860 -.015 .495 .000 .495

±.005 ±.005 ±.015 ±.010 ±.005 ±.000
-2LogL 22916.6 23672.7 -756.1

±70.2 ±31.6
________________________________________________________________________
Note:  (a). (1) is estimates of  REML when cov12 is not set to be zero. (2) is estimates of

REML when cov12 is set to be zero.
        (b).Fert = normal fertility. LS = normal litter size. DIFF = difference between 

estimates with and without setting residual covariance to zero. COV = 
covariance components and correlations between the normal fertility and litter 
size.

       (c). σa
2(σaa) = direct additive genetic variance (covariance). σe

2(σee) = residual 
variance (covariance). σp

2(σpp)= phenotypic variance (covariance). h2(rg) = 
heritability (genetic correlation). e2(re) = residual variance as the proportion of 
phenotypic variance (residual correlation).

         (d).The sample size is 2.
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Table 4.12. Effect of  “ set cove12 = 0 “ on the estimation of (co) variance component for
categorical variates.
________________________________________________________________________

Fert(1) Fert(2) DIFF LS(1) LS(2) DIFF COV(1) COV(2) DIFF
________________________________________________________________________

σa
2(σaa) .02246 .0246 .0000 .0907 .0719 .0188 .0228 .0073 .0155

±.0002 ±.0002 ±.0058 ±.0048 ±.0014 ±.0025
σe

2(σee) .1690 .1690 .0000 .6441 .5768 .0673 .1063 .0000 .1063
±.0014 ±.0014 ±.0117 ±.0004 ±.0094 ±.0000

σp
2(σpp) .1936 .1936 .0000 .7348 .6487 .0861 .1291 .0073 .1218

±.0012 ±.0012 ±.0059 ±.0044 ±.0080 ±.0025
h2(rg) .130 .130 .000 .120 .110 .010 .480 .175 .305

±.000 ±.000 ±.010 ±.010 ±.0100 ±.055
e2(re) .870 .870 .000 .880 .890 -.010 .325 .000 .325

±.000 ±.000 ±.010 ±.010 ±.025 ±.000
-2LogL -9173.3 -9173.3

±159.35 ±159.35
________________________________________________________________________
Note:  (a). (1) is estimates of REML when cove12 is not set to be zero. (2) is estimates of

REML when cove12 is set to be zero.
        (b).Fert = categorical fertility. LS = categorical litter size. DIFF = difference 

between estimates with and without setting residual covariance to zero. COV = 
covariance components and correlations between the categorical fertility and 
litter size.

        (c). σa
2(σaa) = direct additive genetic variance (covariance). σe

2(σee) = residual 
variance (covariance). σp

2(σpp)= phenotypic variance (covariance). h2(rg) = 
heritability (genetic correlation). e2(re) = residual variance as the proportion of 
phenotypic variance (residual correlation).

         (d).The sample size is 2.
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Tabe 4.13. The culling effect on variance component estimation of  underlying scale of
sheep reproduction for model 2A.
________________________________________________________________________

Alldata Sdata DIFF Alldata Sdata DIFF Alldata Sdata DIFF
N. Fert. N.Fert. N.LS. N.LS. COV COV

________________________________________________________________________

σa
2(σaa) .1613 .1612 .0001 .1196 .1120 .0076 -.0055 -.0076 .0021

±.0053 ±.0058 ±.0079 ±.010 ±.0030 ±.0038
σc

2(σcc) .0904 .0904 .0000 .0953 0.0966 -.0043 .0057 .0028 .0028
±.0069 ±.0073 ±.0066 ±.0093 ±.0038 ±.0034

σe
2(σee) .7503 .7480 .0003 .7794 .7828 -.0034 -.0004 -.0026 .0022

±.0050 ±.0051 ±.0040 ±.0080 ±.0014 ±.0042
σp

2(σpp)1.0020 1.0016 .0005 .9943 .9943 -.0001 -.0003 -.0073 .0071
±.0053 ±.0052 ±.0051 ±.0098 ±.0027 ±.0086

h2(rg) .160 .160 .002 .120 .110 .006 -.040 -.062 .022
±.005 ±.004 ±.008 ±.010 ±.021 ±.031

c2(rpe) .090 .090 .000 .100 .100 .002 .060 .036 .020
±.007 ±.007 ±.007 ±.009 ±.040 .042

e2(re) .750 .750 -.002 .780 .790 -.004 -.000 -.004 .002
±.004 ±.003 ±.004 ±.004 ±.002 ±.007

________________________________________________________________________
Note: (a).Alldata was the group of data sets without culling open ewes. Sdata was the 

group of data sets with culling open ewes.
          (b). N. Fert = normal fertility. N. LS = normal litter size. COV = covariance 

components and correlations between the normal fertility and litter size.
         (c). σa

2(σaa) = direct additive genetic variance (covariance). σc
2(σcc) = permanent 

variance (covariance). σe
2(σee) = residual variance (covariance). σp

2(σpp)= 
phenotypic variance (covariance). h2(rg) = heritability (genetic correlation). c2(rc) 
= permanent variance as the proportion of phenotypic variance (residual
correlation). e2(re) = residual variance as the proportion of phenotypic variance 
(residual correlation).

         (d).The sample size is 5.
         *: p<0.05.
         **: p<0.01.
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Tabe 4.14. The culling effect on variance component estimation of categorical traits of
sheep reproduction for model 2A.
________________________________________________________________________

Alldata SDATADIFF Alldata SDATADIFF Alldata SDATADIFF
C.Fert. C.Fert. C.LS. C.LS. COV. COV.

________________________________________________________________________
 

σa
2(σaa) .0165 .0166 .0001 .0688 .0618 .0076 .0000 -.0004 .0021

±.0008 ±.0008 ±.0047 ±.0055 ±.0008 ±.0006
σc

2(σcc) .0098 .0091 .0000 .0491 .0533 -.0043 -.0005 .0128 .0028
±.0010 ±.0011 ±.0043 ±.0066 ±.0004 ±.0131

σe
2(σee) .1662 .1665 .0003 .5320 .5322 -.0034 .0009 .0063 .0022

±.0007 ±.0009 ±.0024 ±.0038 ±.0009 ±.0020
σp

2(σpp) .1925 .1924 .0001 .6498 .6474 -.000 .0005 .0069 .0071
±.0007 ±.0007 ±.0016 ±.0037 ±.0011 ±.0022

h2(rg) .080 .090 .000 .106 .098 .006 -.0020 -.0120 .022
±.005 ±.006 ±.006 ±.009 ±.0231 ±.0183

c2(rpe) .050 .050 .000 .080 .080 .000 -.012 .042 .0200
±.005 ±.005 ±.007 ±.011 ±.020 ±.059

e2(re) .850 .870 .002 .820 .820 -.004 .002 .020 .002
±.013 ±.004 ±.005 ±.006 ±.004 ±.007

________________________________________________________________________
Note: (a).Alldata was the group of data sets without culling open ewes. Sdata was the 

group of data sets with culling open ewes.
          (b). C. Fert = categorical fertility. C. LS = categorical litter size. COV = 

covariance components and correlations between the categorical fertility and 
litter size.

         (c). σa
2(σaa) = direct additive genetic variance (covariance). σc

2(σcc) = permanent 
variance (covariance). σe

2(σee) = residual variance (covariance).σp
2(σpp)= 

phenotypic variance (covariance). h2(rg) = heritability (genetic correlation). c2(rc) 
= permanent variance as the proportion of phenotypic variance (permanent 
environmental correlation). e2(re) = residual variance as the proportion of 
phenotypic variance (residual correlation).

         (d).The sample size is 5.
         *: p<0.05.
         **: p<0.01.
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Table 4.15 . The culling effect on variance component estimation of underlying normal
variates of sheep reproduction for model 2B.
_______________________________________________________________________

Alldata Sdata DIFF Alldata Sdata DIFF Alldata Sdata DIFF
Fert Fert LS LS COV COV

________________________________________________________________________

σa
2(σaa) .1479 .1471 .0008 .1154 .1127 .0027 .0666 .0648 .0018

±.0020 ±.0020 ±.0049 ±.0092 ±.0110 ±.0051
σc

2(σcc) .1011 .1020 -.0005 .1099 .1111 -.0012 .0511 .0518 -.0007
±.0027 ±.0025 ±.0049 .0098 ±.0039 ±.0067

σe
2(σee) .7552 .7551 .0001 .7773 .7731 .0042 .3835 .3808 .0027

±.0027 ±.0026 ±.0026 ±.0095 ±.0013 ±.0052
σp

2(σpp) 1.0043 1.0042 .0001 1.0026 .9970 .0056 .5016 .4974 .0042
±.0027 ±.0026 ±.0098 ±.0068 ±.0030 ±.0041

h2(rg) .147 .148 -.001 .115 .112 .003 .513 .504 .009
±.002 ±.002 ±.0050 ±.0097 ±.0201 ±.0246

c2(rpe) .100 .103 -.003 .110 .107 .003 .481 .477 .004
±.002 ±.003 ±.0054 ±0.0091 ±.0283 ±.0465

e2(re) .753 .754 -.001 .775 .775 .000 .500 .498 .002
±.002 ±.002 ±.002 ±.006 ±.002 ±.005

________________________________________________________________________
Note:  (a).Alldata was the group of data sets without culling open ewes. Sdata was the 

group of data sets with culling open ewes.
          (b). N. Fert = normal fertility. N. LS = normal litter size. COV = covariance 

components and correlations between the normal fertility and litter size.
         (c). σa

2(σaa) = direct additive genetic variance (covariance). σc
2(σcc) = permanent 

variance (covariance). σe
2(σee) = residual variance (covariance). σp

2(σpp)= 
phenotypic variance (covariance). h2(rg) = heritability (genetic correlation). c2(rc) 
= permanent variance as the proportion of phenotypic variance (permanent 
environmental correlation). e2(re) = residual variance as the proportion of 
phenotypic variance (residual correlation).

         (d).The sample size is 10.
        *: p < 0.05.
         **: p < 0.01.
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Table 4.16. The culling effect on vaiance component estimation of categorial variates of
sheep reproduction for model 2B.
________________________________________________________________________

Alldata Sdata DIFF Alldata Sdata DIFF Alldata Sdata DIFF
C.Fert C.Fert C.LS C.LS COV COV

________________________________________________________________________

σa
2(σaa) .0155 .0152 .0003 .0649 .0652 -.0003 .0171 .0132 .0039**

±.0035 ±.0004 ±.0031 ±.0055 ±.0008 ±.0016
σc

2(σcc) .0100 .0103 -.0003 .0591 .0643 -.0052 .0110 .0107 .0003
±.0004 ±.0005 ±.0030 ±.0051 ±.0009 ±.0016

σe
2(σee) .1673 .1673 .0000 .5261 .5796 -.0535** .0944 .0868 .0076

±.0003 ±.0004 ±.0022 ±.0081 ±.0008 ±.0035
σp

2(σpp) .1927 .1927 .0000 .6501 .7091 -.0590** .1225 .1107 .0118*

±.0011 ±.0004 ±.0028 ±.0058 ±.0010 ±.0036
h2(rg) .082 .079 .003 0.101 .092 .009 .539 .410 0.129**

±.001 .002 ±.005 .008 ±.021 ±.039
c2(rpe) .052 .052 .000 .090 .090 .000 .454 .413 .041

±.003 ±.003 ±.005 ±.008 ±.029 ±.056
e2(re) .868 .868 .000 .809 .817 .008 .317 .273 .044**

±.001 ±.001 ±.003 ±.006 ±.003 ±.013
_______________________________________________________________________
Note: (a).Alldata was the group of data sets without culling open ewes. Sdata was the 

group of data sets with culling open ewes.
          (b). C. Fert = categorical fertility. C. LS = categorical litter size. COV = 

covariance components and correlations between the categorical fertility and 
litter size.

         (c). σa
2(σaa) = direct additive genetic variance (covariance). σc

2(σcc) = permanent 
variance (covariance). σe

2(σee) = residual variance (covariance). σp
2(σpp)= 

phenotypic variance (covariance). h2(rg) = heritability (genetic correlation). c2(rc) 
= permanent variance as the proportion of phenotypic variance (permanent 
environmental correlation). e2(re) = residual variance as the proportion of 
phenotypic variance (residual correlation).

         (d).The sample size is 10
         *: p < 0.05.
         **: p < 0.01..           
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Table.4.17. The pooled (co) variance component and genetic parameter estimates of
reproduction trait for model 2A.
________________________________________________________________________

N.Fert N.LS COV B.Fert P.LS COV
________________________________________________________________________

σa
2(σaa) .1558 .1403 .0033 .0743 .0156 .0006

±.0052 ±.0084 ±.0026 ±.0043 ±.0006 ±.0007
σc

2(σcc) .0955 .0770** .0001 .0428 .0101 .0040
±.0049 ±.0069 ±.0020 ±.0058 ±.0006 ±.0044

σe
2(σee) .7520 .7826 -.0004 .5281 .1665 .0042

±.0028 ±.0038 ±.0020 ±.0036 ±.0005 ±.0034
σp

2(σpp) 1.0029 1.0002 -.0036 .6452 .1922 .0048
±.0032 ±.0051 ±.0035 ±.0023 ±.0003 ±.0036

h2(rg) .154 .141* -.023 .115** .081** .0227
±.005 ±.008 ±.0187 ±.006 ±.004 ±.025

c2(rc) .095 .078** -.002 .066 .053 -.004
±.005 ±.007 ±.024 ±.009 ±.003 ±.038

e2(re) .750 .783* -.001 .818 .867 .013
±.002 ±.003 ±.003 ±.004 ±.002 ±.012

________________________________________________________________________
Note:  (a).N. Fert = normal fertility. N. LS = normal litter size. B. Fert = binomial

fertility. P. LS = multinomial litter size. COV1 = covariance components and 
correlations between the normal fertility and litter size. COV2 = covariance 
components and correlations between the categorical fertility and litter size.

         (b). σa
2(σaa) = direct additive genetic variance (covariance). σc

2(σcc) = permanent 
variance (covariance). σe

2(σee) = residual variance (covariance). σp
2(σpp)= 

phenotypic variance (covariance). h2(rg) = heritability (genetic correlation). c2(rc) 
= permanent variance as the proportion of phenotypic variance (permanent 
environmental correlation). e2(re) = residual variance as the proportion of 
phenotypic variance (residual correlation).

         (c).The sample size is 15.
         (d).Binomial Fert. and multinomial  LS as well as their covariance are not

     tested by T test except  heritability of  categorical fertility.
         *: p < 0.05.
         **: p < 0.01.
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CHAPTER 5

Genetic Variation and Covariation among Growth, Fleece
Characteristics and Reproduction in Three Sheep Breeds

Abstract

         Bivariate genetic analyses of litter size with growth and fleece traits were carried out

by REML for three breeds, Suffolk, Targhee and Polypay.  Likelihood ratio tests were

employed to evaluate the importance of different (co)variance  components in various

animal models.  Heritabilities for weaning weights at 60 and 90 d and for 60- to 120-d

cumulative postweaning gain for Suffolk sheep were .19, .12, and .17, respectively.

Heritabilities for weaning weights at 60 and 120 d, and for 60- to 120-d and 120- to 365-d

cumulative postweaning gains for Targhee sheep were .14, .16, .27 and .19, respectively.

Heritabilities for birth weight, weaning weights at 60 and 90 d, and 60- to 120 d

cumulative gain for Polypay sheep were .19, .11 and .10 and .22, respectively.  Maternal

genetic and maternal permanent environmental effects were important for all body

weights of the three breeds except for weaning weight at 90 d for Polypay sheep,

indicating that explicitly considering these effects should result in more genetic

improvement in growth traits.  Estimates of heritability and permanent environmental

effects for litter size were close to each other among the three breeds and ranged  from .09

to .12 and .00 to .05, respectively.  The heritabilities for grease fleece weight were the



137

same (.44) for both Targhee and Polypay sheep.  The heritability estimate for fiber

diameter for Targhee sheep was .50.  Direct genetic correlations between various growth

traits and litter size were favorable for Suffolk and Targhee sheep but weak for Polypay

sheep, indicating that growth and litter size can be selected simultaneously without

marked adverse effects.  Genetic correlations between maternal effects for growth and

direct effects for litter size for all three breeds were generally small and not significantly

different from zero, and thus do not present a serious problem for simultaneous genetic

improvement of litter size and maternal performance for growth traits.  Within-trait

maternal-direct genetic correlations for growth in the three breeds were variable and

generally negative.  Strong and significant negative estimates were obtained for weaning

weight at 60 d for Targhee sheep (-.89 to -.90), and for Polypay sheep (-.53 to -.56).  

Grease fleece weight and fleece diameter were unfavorably related with litter size; the

corresponding estimates were -.09 and .29 to .30, respectively, for Targhee sheep.  In

contrast, grease fleece weight was favorably related with litter size (rg= .21) for Polypay

sheep.   Some dependence between estimates of two across-trait genetic correlations

between litter size and growth traits were detected, suggesting that the two parameters

were confounded.  Generally, fixing residual covariance between growth, fleece traits and

litter size to zero did not affect the estimates of other components in the models although

the residual correlations often were be large.  Statistical tests indicated that these

correlations were not significantly different from zero.  From a sampling viewpoint, the

observation that none of the residual correlations between litter size and other traits from

different models for all three breeds differed significantly from zero would force us to
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carefully reconsider environmental covariance component.  Further studies on effects of

data structure, REML methodology, and the Simplex iteration process will be needed to

verify these strong correlations.  The flat ridge for two across-trait genetic correlation

estimates may be attributed to high sampling correlations.  To overcome this obstacle

would be a major task for covariance estimation in future studies.

Keywords: Sheep, Litter Size, Growth, Fleece Traits, Maternal Effects, Genetic

Correlations, (Co)variance Components

5.1. Introduction

         Genetic improvements for reproductive, growth and fleece traits are major goals for

sheep breeding because the efficiency of sheep production depends primarily upon three

functions: female production, reproduction,  and growth of lambs (Dickerson, 1970).

Improving reproductive performance is likely to increase both the biological and economic

efficiency of animal production enterprises (Dickerson, 1970).  Among these reproductive

traits, litter size is of major interest because an increase in the number of lambs marketed

per ewe per year offers the greatest single opportunity for economic gain (Shelton, 1971).

Turner (1969) concluded that litter size seemed to be the most useful selection criterion

for genetic improvement of reproduction.  Although selection for litter size has been

successful (Clark, 1972; Turner, 1978), the rate of improvement has not been large, partly

because the trait has a low heritability, is categorical in nature and is expressed only in

females of reproductive age that conceive and maintain pregnancy.  
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           Knowledge of genetic relationships between litter size and other economically

important traits is generally lacking.  However, development of breeding objectives and

effective genetic improvement programs requires simultaneous consideration of the three

kinds of economically important traits mentioned above.   Knowledge of genetic variation

for economically important traits and genetic covariances among these traits is

prerequisite.  Traditional practices in wool and dual-purpose sheep breeding seldom took

reproductive traits, such as litter size, into account.  Recently, possible reductions in

fitness including reproduction performance associated with current and past breeding

programs have been a concern to many animal breeders.  Therefore, Fogarty (1995)

suggested that for genetic improvement in lamb breeding enterprises, the important traits

associated with reproduction and wool production of the ewe and survival, growth and

carcass characteristics of the lamb should be included.

             Fogarty (1995) summarized published genetic parameters for live weights, fat and

muscle measurements, wool production, and reproduction in sheep. Estimates of

heritabilities for weaning weight in the literature range from .08 to .41 (9 estimates) for

wool breeds, .03 to .45 (43 estimates) for dual-purpose breeds and .05 to .57 (14

estimates) for meat breeds (Fogarty, 1995 ).  The weighted means of literature estimates

for the three types of breeds are .33 ± .10, .21 ± .11, and .21 ± .18, respectively.  The

heritabilities of weaning weight, postweaning live weight and yearling live weight for

Targhee were .16, .12 and .25 (Ercanbrack and Price,1972), respectively.  In Fogarty’s

review, no heritability estimates were available for Polypay sheep (a composite breed

consisting of 25% each of Dorset, Targhee, Rambouillet and Finnsheep inheritance).  Al-
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Shorepy and Notter (1996) reported that heritability estimates for weights from birth to

120 d ranged from .04 to .19 in a composite sheep population containing 50% Dorset,

25% Rambouillet and 25% Finnsheep breeding.

         Few reported estimates of heritabilities for postweaning gain are available,

especially for cumulative postweaning gain.  Thrift (1973) obtained a heritability of .23  ±

.12 for rate of gain from 70 days to market in a Dorset × Western ewe flock, which was

lower than a previous estimate of .38 ± .13 for postweaning gain by Harrington et al.

(1962).  Fogarty (1995) summarized 42 estimates of heritabilities for postweaning weight

up to 9 months of age for dual-purpose breeds and 15 estimates for meat breeds.  The

ranges and means were .03 to .49 and .26 ± .09 for the dual-purpose breeds and .06 to .41

and .28 ± .09 for meat breeds.  The heritabilities for growth traits tended to increase with

increasing age, from birth to weaning to postweaning measurements.  Analysis of different

weights allows a breeder to choose the most appropriate weight to use as a selection

criterion to improve growth to weaning.  A common finding is that more progress in

weaning weight can be made by selection on postweaning weight than on weaning weight

itself, due to the higher direct heritability of the postweaning weight and its high genetic

correlation with direct components of weaning weight.

          Heritabilities for fleece characters are generally medium to high.   The mean

heritabilities from 81 estimates for grease fleece weight and 43 estimates for mean fiber

diameter were .35 and .51, respectively (Fogarty, 1995).
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          It is generally accepted that litter size has low heritability and repeatability.

However, there is a considerable range in heritability estimates for litter size in sheep.

Gonzalez (1982; cited by Bradford, 1985) reviewed 30 estimates of heritability of litter

size for different breeds or methods of estimation.     The range in the estimates was from

-.15 to .35 with a mean of .10.  A more recent review by Fogarty (1995) gave a range of

<0 to .54, with a weighted mean of .08 ± .08 for lambs born per ewe joined. Basuthakur et

al. (1973) reported a heritability of .12 ± .09 for number of lambs born per ewe joined for

Targhee sheep. Al-Shorepy and Notter (1996) reported a heritability of .10 for number of

lambs born for the composite population mentioned above.  There are high standard

errors associated with many of the estimates, and many reports do not include standard

errors.  Designing adequate methods, especially to account for the discrete or multinomial

nature of the data still is a challenging issue for genetic analyses of reproductive traits.

The restricted maximum likelihood procedure (REML) is considered an appropriate

means of estimating genetic parameters for litter size.  Hence Fogarty(1995) thought that

animal model REML procedures might provide more reliable estimates than earlier ones

for reproductive traits.  Although heritability for litter size was quite low, the coefficient

of variation (CV) was high.  The mean CV for lambs born was 58% (Forgarty, 1995),

which indicates the possibility of genetic improvement in litter size in sheep.

       Additive direct genetic correlations between live weights at various ages and the

components of ewe reproduction are also highly variable.  The weighted average genetic

and phenotypic correlations between live weights and litter size were .41 ( range from -

.46 to .78) and .15, respectively (Fogarty, 1995).  The correlations, especially genetic,
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between wool and reproductive traits were also highly variable, but the average of

estimates in the literature was close to zero for most fleece traits and litter size.  For litter

size, the weighted average genetic and phenotypic correlations were .12 and .07

respectively for grease fleece weight, and -.07 and .12 for fiber diameter (Fogarty, 1995).

The only correlation estimate between wool and reproduction for Targhee was that

between grease fleece weight and number of lambs born per ewe joined, with a genetic

correlation of .09 ± .48 and a phenotypic correlation of .07 (Basuthkar et al., 1973).  Al-

Shorepy and Notter (1996) obtained genetic correlations of litter size with birth weight

and 90-day weight of .17 and .33, respectively in a 1/2-Dorset crossbred population.

           The importance of maternal effects on growth of  lambs is well known. Such

effects arise from the ability of the mother to produce the milk needed for growth and

from other maternal behavior.  In the NSIP (National Sheep Improvement Program), both

additive and maternal EPD for growth traits are reported.  For Polypay and Targhee

sheep in western flocks, lambs are usually weaned at four months of age and maternal

influences are often expected to be more pronounced than  in cattle or swine (Bradford,

1972).  Accounting for maternal effects would increase accuracy of selection (Robinson,

1996a, b).  Results from earlier studies have shown that maternal effects have explained

much of the variation in lamb weight ( Nasholm and Danell, 1996; Burfening and Kress,

1993; Maria et al, 1993; Notter and Hough, 1996 ).  Notter and Hough (1996) reported

that additive maternal genetic and maternal permanent environmental effects as a

proportion of phenotypic variance were .10 and .09, respectively, for 60 d weaning

weight and .05 and .08 for 120 d weaning weight for Targhee sheep.  However,  relatively
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few estimates of the within-trait direct-maternal genetic correlation are available.

Frequently, unreasonably large negative correlations have been obtained in sheep (Al-

Shorepy and Notter, 1996; Burfening and Kress, 1993; Maria et al, 1993; Nasholm and

Danell, 1996; Notter and Hough, 1996) and in cattle (Koots et al., 1994a, 1994b;

Robinson., 1996a, 1996b) .  Maria et al. (1993), for example,  reported an additive direct-

maternal correlation of -.98 for weaning weight.  In the presence of such a strong

correlation, estimate of additive direct and (or) maternal variance may be large and can be

accepted only if the user also accepts and incorporates the additive maternal covariance

into any resulting analyses (Notter and Hough, 1996).  Nasholm and Danell (1996)

observed that when maternal effects for mature ewe weight were included in the model,

the direct genetic variance decreased and was partly replaced by maternal variance and

direct-maternal covariance.  Therefore, interpretation of genetic parameters for maternally

influenced traits from animal models is critically dependent upon the model(s) fitted to

the data.  There is a dearth of estimates on across-trait direct-maternal correlations

between growth and litter size, which could be important for multitrait genetic evaluation

of livestock.  

            The present paper studied the genetic relationships of growth of lambs, maternal

ability, and fleece characteristics with litter size for three breeds, Suffolk, Targhee and

Polypay, with intent to evaluate the relative importance of different (co)variance

components, especially three within-trait and across-trait genetic covariances between

growth and litter size,  and to construct appropriate multitrait animal models for the U.S.

National Sheep Improvement Program (NSIP).   
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5.2. Materials and Methods

5.2.1. Data Structure

        Body weight, fleece data and litter size records from NSIP were obtained from 125

Suffolk, 20 Targhee, and 53 Polypay flocks.  Data were collected from 1984 through

1996.

5.2.1.1. Weight Data.   Body weights were recorded at 30, 60, 90, 120, 180 and 365 d of

age for NSIP sheep flocks.  For this study, preweaning weights were treated as weaning

weights, since a preweaning weight can be interpreted as a potential weaning weight

(Notter and Hough, 1996).  From these weights,  60- (WW60) and 90- (WW90) weaning

weights and 60-120 d (PWG) postweaning gain were chosen for genetic analyses for

Suffolk sheep.  The characteristics of the data structure for the three growth traits was

shown in Table 5.1.  Numbers of records in the complete data set for these traits for

Suffolk sheep were 12746, 2853 and 5621, respectively.   For Targhee sheep, 60-

(WW60) and 120- (WW120) day weaning weights and 60 to 120 d (PWG) and 120 to

360-d (YG) postweaning gains were used in the final genetic analyses (Table 5.2).

Numbers of records for the four traits were 4650, 7428, 1406, 3241, respectively.  Birth

weight (BW), 60- (WW60) and 90-(WW90) weaning weight, and 60 to 120-d

postweaning gain (PWG) were chosen for genetic analyses for Polypay sheep (Table 5.3).

Numbers of records for the four weights were 7452, 6561, 1690, 3046, respectively.
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         Weaning weights were adjusted to a standard age of t days by adding t times the

preweaning ADG to birth weight when birth weight was reported or as t times the

preweaning weight per day of age  when birth weight was not reported. Age-adjusted

weaning weights were then further adjusted for dam age, type of birth and rearing and

lamb sex using multiplicative factors from NSIP.  The most variable trait for Suffolks was

PWG, with a coefficient of variation of 32.90% and a range of .54-68.64 kg.  The most

variable trait for Targhees was YG, with a coefficient of variation of 57.46% and a range

of 1.36-95.79 kg.  Next was PWG, with a coefficient of variation of 26.41% and a range of

2.72-34.87 kg.  The most variable trait for Polypayswas PWG, with a coefficient of

variation of 32.45% and a range of .27 to 43.31 kg.  All the extreme values (outliers that

were larger than mean±4SD) for each trait were excluded in the final genetic analyses.

         Contemporary groups for body weights were formed based on flock, management

code, date of weighing, and a producer-supplied location code.  Contemporary groups for

cumulative postweaning gain also included the weaning contemporary groups.  The four

management codes for weaning weights discriminated between lambs that were or were

not creep fed and between dams that were all feed alike or fed according to the number of

lambs being nursed.  The management codes for postweaning weights discriminated

between animals fed as market lambs and those fed on a postweaning gain tests.  Animals

of different sexes were grouped together for weaning weight but were grouped separately

for postweaning weights.  Animals were excluded from the data if their contemporary

group contained only a single litter, if information on ewe age or type of birth and rearing

was missing, or if the lamb was reared artificially or by a foster dam.  The latter
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restriction accounted for most of the weaning weights that were discarded.  For

postweaning weights, animals were also required to have a valid weaning weight.   

5.2.1.2   Fleece Data.  Grease fleece weight (FWT) and fiber diameter (FD) for Targhee

sheep were chosen from four NSIP fleece traits (grease or clean fleece weight, fiber

diameter and staple length ); few clean fleece weights and staple lengths were reported for

both Targhee and Polypay sheep.  Fiber diameter was also excluded from the final

Polypay data due to small number of records available.  Fleece traits were to be recorded

at about 1 yr of age or at one year intervals for older animals.   Most grease fleece weights

and fiber diameters were from yearlings.  Fleece weights were linearly adjusted to either

an initial shearing age of 365 d (for yearlings) or a shearing interval of 365 d (for older

animals), assuming a constant rate of wool growth during the year.  Post-yearling animals

were required to have both current and previous shearing dates recorded.  Fiber diameters

were not adjusted.  Fiber diameter was the least variable trait in Targhees with a

coefficient of variation of 8.68% and a range of 15.20 to 30.40 µm (which corresponding

to fineness from 90’s to 54’s).  Adjusted grease fleece weight was more variable than fiber

diameter, with a coefficient of  varation of 32.61% and a range of 1.32 to 12.44 kg.  The

adjusted mean ± SD for FWT for Polypay sheep was higher than that for Targhee sheep.

Outliers (> mean ± 4SD) for the two fleece traits were not included in the final data set.

Contemporary groups for fleece data were based on date of shearing, age at shearing

(yearling versus older), sex, management code and producer-supplied location codes.

Animals were excluded from the data if the contemporary group contained only one
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animal, if age at shearing of yearling was not between 280 and 510 d, or if shearing interval

of older sheep was not between 160 and 550 d.   

5.2.1.3.  Litter Size.  The litter size records was preadjusted according to age of dam at

time of lambing.  The adjusted sample mean± SD for litter size was 1.95±.70, 1.69±.62

and 2.09 ± .78, respectively for the three breeds.  Litter size was very variable for all

three breeds with coefficients of variation of 35.87%, 36.34% and 37.18%, respectively.

(Table 5.1-5.3).  The adjusted records were assigned to contemporary group by the

following procedures: the lamb records were sorted by lambing date, and beginning with

the first lambing date, all dams lambing within 30 days were in the same contemporary

group. If a lambing date was outside the initial 30 day window, that lambing date became

the starting date of the next 30 day window for the next group.  Any group containing

only a single dam’s record was eliminated.

5.2.1.4.  Pedigree Data.  A total of 29115, 17633 and 16795  animals in A-1 (numerator

relationship matrix) were included in the final pedigree files for Suffolk, Targhee and

Polypay, respectively.  The number of inbred animals in the three breed data were 1519,

2485 and 1615, respectively.  The corresponding mean inbreeding coefficients for the

inbred animals in the three breeds were .076, .068 and .086 respectively.

5.2.2. Genetic Analyses:

5.2.2.1. Linear Models

          The general representation for the complete bivariate animal model was as follows:
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Where: y1 = the s1×1 vector of records for growth traits and s1 is the number of 

observations for the growth (or fleece) trait,

y2 = the s2×1 vector of records for litter size and s2  is the number of observations for 

litter size,

bj = the pj×1 vector of the contemporary groups for trait j (j =1,2),

uj =qj×1 vector of additive genetic effects for trait j,

mj =mj×1 vector of maternal genetic effects for trait j (j=1),

cj =cj×1 vector of permanent environmental effects for trait j,

e j  =sj×1 vector of residuals for trait j,

Xj =s×p incidence matrix corresponding to βj,

Zαj =sj×qj incidence matrix corresponding to µj,

Zmj = sj×mj incidence matrix corresponding to mj,

Zpj = sj×cj incidence matrix corresponding to cj,

p j = the number of levels of the contemporary group,

qj = the number of additive genetic effects, which could be greater or equal to s

mj = the number of maternal genetic effects and

cj = the number of permanent environmental effects.

          The expectations and variance-covariance matrices of random variables are:
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     where: G =3×3 additive genetic variance-covariance matrix

A= (q+m)×(q+m) additive genetic relationship matrix,

Pe=2×2 permanent environmental variance-covariance matrix,

R =2×2 residual variance-covariance matrix,

Ic  = (c1 + c2 )×(c1+ c2) identity matrix,

Ie = (s1 + s2)×(s1+s2) identity matrix,

gjj = additive genetic variance of trait j,

mjj = maternal genetic variance of trait j,

cjj = permanent environmental variance of trait j,

rjj = residual variance of trait j,

gij = additive genetic covariance between trait i and j,
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gimj = genetic covariance between direct additive effects of trait i and maternal genetic

effects of trait j,

mij= maternal genetic covariance between trait i and j,

cij = permanent environmental covariance between trait i and j,

rij = residual covariance between trait i and j.

The unknown parameters are the location parameters

Q’={β’, µ’, m’, c’} and dispersion parameters D’={G’, Pe’, R’}.

            Contemporary groups were fitted as the only fixed effect.  Including all the

random genetic and environmental effects was not necessary as not all sources of

(co)variance were expected to be important for all traits.  Consequently a series of

reduced models was fitted to evaluate the significance of the various parameters.

         The complete descriptions of the fourteen models are shown in Table 5.5 and

abbreviations and their corresponding definitions used in this paper are listed in Table 5.4.  

The (co)variance structure for additive genetic and additive maternal effects can then be

described for the fourteen models as follow:

       For Model B3-B5 and B7 - B14,
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       In Model B3, all the additive, maternal and permanent environmental effects

attributed to the dam were included for growth traits (body weights).  For litter size, both

additive genetic and permanent environmental components were fitted.  No covariance

between permanent environment attributed to dam for growth traits and permanent

environment attributed to the animal for litter size was allowed.  Temporary

environmental covariance was fitted although there is no reason for growth traits and litter

size necessarily to be influenced by the same temporary environmental effects.

           Model B4 was same as Model B3 except a permanent environmental component

for LS was not fitted.  Depending on whether permanent environmental effects for litter

size were fitted (Targhee and Polypay data) or not (Suffolk data), Model B5 differed

from Model B3 or B4 by setting temporary environmental covariance to zero.  The model

B5 was further reduced in Model B6 with exclusion of permanent environmental

components for growth traits (body weights).  The alternative to this model reduction

was made in Model B7 by fitting permanent maternal effects but not maternal genetic

effects for growth traits.  Models B8-14 were constructed to test importance of different

genetic covariances or covariance combinations.  Model B15 and Model B16 were used

foe bivariate analyses between postweaning gains or fleece traits and litter size. A simple

animal model with only additive genetic and temporary environmental effects was used

for both postweaning gains, fleece traits and litter size in Suffolk data but a repeatability

animal model was fitted for litter size in Targhee and Polypay data.  No residual

covariance was allowed in Model B16.



152

           Also noted by Meyer et al. (1991, 1994), with single records for growth traits and

repeated records for litter size in bivariate analyses,  fitting a ‘full’ repeatability model (

i.e., fitting permanent environmental effects due to the animal for both traits, Model B1

and B2 in this study),  and attempting to partition the residual variance for the traits with

single records into its permanent and temporary environmental components and to

estimate permanent environmental covariance will led to computational problems.

Generally, variance could not be partitioned between the permanent components due to

animal and dam for growth traits if both components were included in the models (B1 and

B2).  Also the converged likelihood value was  difficult to interpret if covariance between

the permanent components due to animal for growth traits and litter size was allowed.

Consequently, Models B-1 and B-2 were excluded from this study.

5.2.2.2. (Co)variance Component Estimation

        Estimates of variance and covariance components were obtained by Restricted

Maximum Likelihood (REML) using a derivative-free algorithm, fitting an animal model

throughout and incorporating all pedigree information available.  Maternal genetic and

permanent environmental  effects of dam and permanent environmental effects due to the

animal (for litter size) were taken into account by including appropriate random effects

into the model of analysis.  All the presented estimates of (co)variance components and

genetic parameters for growth and litter size were obtained from bivariate analyses of each

of the growth and fleece traits together with litter size.  Throughout the study,  the

categorical nature of litter size was ignored.   All available pedigree information was

included in the analysis to eliminate bias due to selection and to increase the accuracy of
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estimation through additional relationship ties among animals (Table 5.1 - 5.3).  All the

calculations were carried out using multiple trait, derivative-free REML procedures

(Boldman, et al., 1993).

          The principle of the derivative-free method is to iterate different R and G until the

combination that maximizes the log likelihood, ∧ , is found for the data, Y.  Depending on

the different models, the log-likelihood function was maximized with respect to direct

heritability (ha
2=σa

2/σp
2), additive maternal effects (m2=σm

2/σp
2),  the within-trait genetic

covariance between direct and maternal effects as a proportion of the square root of the

product of two variances (ra1m1), the permanent environmental  variance due to the animal

or dam as a proportion of phenotypic variance (pea
2 and pem

2) as well as all the other

across-trait correlations (ra12 and ra2m1) included in the models. The error variance was

estimated directly from the residual sum of squares.

           In order to obtain good starting values for bivariate analyses, univariate REML

analyses were carried out to provide estimates of variance and within-trait covariance

components for each trait.  Using these estimates as starting values, we first maximized

the likelihood for bivariate analyses with respect to the covariance and across-trait

covariance components only, fixing the variances to their univariate estimates.  Then the

likelihood was maximized with respect to the variance components, fixing the covariances

to their values obtained in the first step.  Finally, the maximization was performed with

respect to all the (co)variances.  Moreover, some evidence for convergence of multivariate

animal model REML procedures to local maxima was observed.  In this case, restarts were

performed with different starting values to attempt to avoid local maxima.  For all
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analyses, the convergence criterion was considered to be reached when the variance of

function values (-2logL) in the simplex was less than 10-9.

5..2.2.3. Likelihood Ratio Tests.

           The overall importance of each (co)variance component for each trait and each

covariance component between growth traits and litter size was assessed by comparing

the ratios of likelihood of sequentially reduced models.   The likelihood-ratio test  statistic

was defined as:

              ∧(θ|z) = -2ln ( l (θr |z)/ l (θ |z) ) = -2 ( L(θr |z) - L(θ |z))

Where l (θ |z)  is the likelihood ( and L the log-likelihood) evaluated at the MLE

(Maximum Likelihood Estimates) at convergence and l (θr |z) is the maximum of the

likelihood function, subject to the restriction that r parameters that are unconstrained in

the full likelihood analysis are assigned fixed values. The ratio -2 ( L(θr |z) - L(θ |z)) is

asymptotically distributed as chi-square with degrees of freedom equal to the difference in

the number of parameters in models i and j given sufficiently large sample size, where ∧ is

the value of the maximum likelihood function for the model following achievement of the

convergence criterion.  

5.3.  Results and Discussion

5.3.1. Suffolk Sheep

5.3.1.1 60-d Weaning Weight and Litter Size:
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            The estimates of (co)variance components and genetic parameters for 60-d

weaning weight and litter size for Suffolk sheep are presented in Table 5.6, 5.7 and 5.8.

As the study was mainly focused on the behavior and properties of various location and

dispersion parameters by multivariate REML approaches, the univariate estimates are not

shown here.  Also due to length limitations, only the converged results from four models

are shown, which consist of the ‘full model’ (B3), ‘best variance model’ (B4), ‘standard

model’ (B5) and ‘best covariance model’ (B10 in this case).  For bivariate analyses of 60-

d weaning weight and litter size, 12 models(B3-B14) were constructed and each of the

other models was tested against B5 (Table 5.9).  It was obvious that model construction

influenced estimates of (co)variance components and genetic parameters.  Heritabilities

for both traits seemed to be more stable than other estimates across different models.  The

heritability estimates ranged from .17 to .19 for 60-d weaning weight and .09 to .10 for

litter size from the four models and were in good agreement with literature estimates

(Fogarty, 1995; Fossceco and Notter, 1995).  

           The additive genetic correlation estimates ranged from .37 to .39,  and were also in

good agreement with literature estimates. This correlation suggested that larger animals at

weaning would be more likely to produce more lambs per lambing in later life.  The

genetic correlation between maternal genetic effects on growth traits and direct additive

effects on litter size ranged from .25 to .35.  No unfavorable across-trait genetic

correlations were observed between 60-d weaning weight and litter size.  However,

unfavorable within-trait genetic correlations between direct and maternal effects on 60-d

weaning weight were obtained and ranged from -.24 to -.33 for the four models..
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            According to likelihood values, Model B5 was the ‘best’ model, in which additive

genetic, maternal genetic and permanent environmental components were fitted for 60-d

weaning weight and only an additive genetic component was allowed for litter size.  No

temporary environmental covariance between 60-d weaning weight and litter size was

assumed.  Thus, Model B5 was considered the ‘best or standard model’.  A series of

sequential reduced models was constructed to test the importance of different

components by likelihood ratio tests.

         Testing Model B3 against B5 indicated that the permanent environmental

component for litter size was not important (P> .05).  The converged value for variance

of these effects was essentially zero, irrespective of the model used.  Thus, the

component was dropped in subsequent models.  Whether or not the  residual covariance

was fitted, no marked differences (B4 vs B5) in likelihood value were observed, indicating

the two traits shared no temporary environment.  The converged values for different

(co)variances and parameters for B4 and B5 also were essentially the same, suggesting the

two were statistically equivalent although B5 was biologically more meaningful.  In

models after B5, σe12=0 was assumed.  

         Models B6 and B7 were constructed to test for a permanent environmental

component due to dam and a maternal genetic component (including associated genetic

covariances, σa2m1  and  σa1m1).  Likelihood ratio tests against B5 indicated that both

maternal components were important ( P<.01 and P <.05) and should remain in the

model.
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          A series of models was constructed to test importance of individual covariances

(B8-B10) and their joint effects (B11-B14).  Exclusion of additive direct genetic

covariance between the two traits reduced the likelihood value significantly (P<.05),

suggesting that it is necessary in the model.  However exclusion of genetic covariances

between direct and maternal effects for 60-d weaning weight (B10) or between direct

genetic effects for litter size and maternal genetic effects for 60-d weaning weight (B9) did

not result in significant reduction in likelihood value (P>.05), compared with B5 in which

the two components were included.  Thus, including either did not add meaningful

information.

          However, all the joint effects of different combinations of three covariances were

significant, suggesting that the three covariances were not all independent of each other.

Testing B11 against B9 or B10 indicated that within-trait and across-trait genetic

covariances between maternal and direct effects were jointly significant (P< .05), which

was contradictory to individual covariance likelihood ratio tests.  However, Model B12

(tested against B8) indicated that within-trait genetic covariance between maternal and

direct effects for the growth trait was not significant (P>.05), which was further justified

by testing B14 against B13.  All the joint tests showed that additive direct covariance or

genetic covariance between direct additive effects on litter size and maternal genetic

effects on 60-d weaning weight were important.

          In the models after B3, only direct additive effects were fitted for litter size.

Generally estimates of (co)variance components and genetic parameters from bivariate
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analyses for litter size were more stable than those for 60-d weaning weight, irrespective

of the models used for the other trait

5.3.1.2. 90-d Weight and Litter Size:

           Results from bivariate analyses between 90-d weight and litter size for four models

for Suffolk sheep are presented in Table 5.10, 5.11 and 5.12, respectively.  The models

were the same as the models for 60-d weaning weight and litter size except that the ‘best

covariance model’ was B12.  The likelihood ratio tests are listed in Table 5.13.  Estimates

of heritabilities for 90-d weight from different models were slightly lower than those for

60-d weaning weight,  with the range of .12 to .15.  The calculated total heritabilities

ranged from .15 to .19.  Heritabilities for litter size were stable with a range of .09-.10.

Phenotypic and environmental variances generally were less sensitive to the models

selected than for WW60.

             It is generally believed that no temporary environmental correlation exists

between litter size and 90-d weight.   Exclusion of σe12 in B5 did not result in much loss in

likelihood over that in B4.  Permanent environmental effects of litter size were not

important (B3 vs B4) and  the estimate was essentially zero.

             Failure to fit either permanent maternal environmental or additive maternal effects

(B6 and B7) reduced the likelihood significantly over that for model B5 when the two

components were included (P < .01 and P<.05).  Results from likelihood ratio tests (B5

vs B6, B7) indicated that the environmental influence of the dam was more important

than additive maternal genetic influences on this trait.
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              Estimates of the genetic correlation between direct effects of the two traits

ranged from  .43 to .51.  However,  exclusion of the covariance did not change the

likelihood (B8 vs B5) markedly.  The genetic correlation between maternal genetic effects

for weaning weight and direct genetic effects for litter size ranged from .95 to 1.00.

Results from model B9 indicated that excluding the covariance decreased the likelihood

value significantly (P<.01).  Exclusion of this component (B9) also increased additive

genetic variance and reduced maternal genetic variance for 90-d weight by too much to be

acceptable.  The strong correlation implied that ewes with good maternal performance on

90-d weight  tended also to have larger litter sizes.  Estimates of σa1m1 were positive

except for B8, when direct genetic correlation between 90-d weight and litter size was

ignored;  the range of the estimates was from .16 to .25.  Failure to fit σa1m1 (B10)

increased likelihood only slightly compared with B5,  indicating that this component was

not important.  Also exclusion of σa1m1 did not change estimates of most parameters for

90-d weaning weight or litter size, except that the additive genetic correlation was

reduced.   Similar results were observed by Al-Shorepy and Notter (1996).

            Failure to fit two maternal genetic covariances (σa1m1 and σa2m1, B11) reduced

likelihood values markedly.  In Comparing B11 with models B9 and B10, the two genetic

covariances were essentially independent, i.e., the two covariances were additive.

         The results from joint covariance tests suggested that across-trait additive direct

genetic covariance and across-trait covariance between direct genetic effects for litter size

and maternal genetic effects for 90-d weight were correlated because their joint effects
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were not simply the sum of their individual effects.  Therefore,  some literature estimates

of additive genetic correlation between growth traits and litter size obtained without

fitting maternal components may have been inflated.

5.3.1.3. Postweaning Gain and Litter size:

          The results from bivariate analyses of postweaning gain (PWG) and litter size (LS)

for Suffolk sheep are shown in table 5.14.  The simple animal model with only additive

genetic effects was used for both traits.  Fitting a temporary environmental covariance

(σe12) did not influence the converged likelihood value (B15 vs B16).  However, failure to

fit σe12 reduced the phenotypic correlation from .61 to .02; the corresponding phenotypic

covariance decreased from 4.89 to .16.  Genetic correlation between the two traits was

inflated by 6.25%.

           The estimates of direct heritability for PWG was .17, which is lower than some

literature estimates (Thrift, et al., 1973; Harrington, et al., 1962).  Few estimates of

genetic correlation between cumulative postweaning gain and litter size were previously

reported.  This study gave an estimate of .16-.17, indicating that postweaning growth of

the lambs would be lowly positively correlated with their subsequent lambing

performance.

5.3.2. Targhee Sheep

5.3.2.1. 60 d weaning weight and litter size:   

          Variance component estimates for 60 d weaning weight and litter size and across-

trait covariances for Targhee sheep are shown in Table 5.15, 5.16 and 5.17, respectively.
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In this case, the ‘best covariance model’ was B13.  The heritability estimates from the

four best models for 60 d weaning weight all were .14, which is much larger than that (.01)

from previous single trait analysis using part of the data set but not fitting the maternal-

direct genetic covariance for the trait (Notter and Hough, 1996).  However, the values

were in good agreement with literature estimates (Fogarty, 1995; Fossceco and Notter,

1995).

          Maternal genetic effects were large (m2 = .22) for all four models, and more than

double the previous estimate from univariate analyses (m2 = .10; Notter and Hough,

1996) when within-trait direct-maternal genetic covariance was not fitted. However,  the

estimates of the maternal permanent environmental component (.09 to .10) from bivariate

models were generally in  agreement with .09 from the previous univariate analyses.

Likelihood ratio tests  ( B6 and B7 vs B5) indicated that both maternal components were

important ( P<.01 and P <.05) and should be kept in the models.

         The permanent environmental contribution attributed to animals for litter size was

small (pe2 = .01) and not significant (P>.05 from B4 vs B5).  However,  for all the

bivariate models for 60 d weaning weight and litter size except B4 the permanent

environmental component for litter size was always fitted.  Heritability estimates for

litter size  were stable, and ranged from .11 to .12 and were slightly larger than those (.09-

.10) for Suffolk sheep.

        The temporary environmental correlation between 60 d weaning weight and litter

size was small and not important (P>.05, B3 vs B5).  Estimates of variance components

and derived parameters from B3 (with σe12 ) and B5 ( without σe12 ) were essentially the
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same, suggesting that the two models were equivalent.  Also, because there is no

perceived reason for weaning weight and litter size to share temporary environmental

influences (Notter and Hough, 1996; Waldron and Thomas, 1992),  from B5 no

temporary environmental covariance was assumed.   The additive genetic correlation

estimates were low, ranging from .10 to .22, and were smaller than those for Suffolk sheep

(.37-.39) but still in agreement with literature estimates.  This correlation also suggested

that larger animals at weaning would produce more lambs per lambing in later life.  In

contrast  to Suffolk, the genetic correlations between maternal genetic effects on 60 d

weaning weight and direct additive effects for litter size were unfavorable and ranged from

-.18 to -.23.  Also, strong unfavorable within-trait genetic correlations (-.89 to -.90)

between direct and maternal effects for 60-d weaning weight were obtained.

            According to likelihood values, Model B5 was the ‘best’ model, in which additive

genetic, maternal genetic and permanent environmental components were fitted for 60-d

weaning weight while additive genetic and permanent environmental  components were

fitted for litter size.  Temporary environmental covariance between 60-d weaning weight

and litter size was not fitted.  Thus, Model B5 was considered the ‘best’ or ‘standard

model’.  A series of sequential reduced models was constructed to test importance of

individual covariances ( B8-B10) and their joint effects (B11-B14).  Exclusion of additive

direct genetic covariance between the two traits did not reduce the likelihood value

significantly (P>.05), suggesting that including the covariance did not add meaningful

information.  Also exclusion of genetic  covariance  between direct genetic effects for litter

size and maternal genetic effects for 60-d weaning weight (B9) did not result in significant
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reduction in the likelihood value (P>.05) if compared with B5 in which the component

was included.  However, exclusion of genetic covariances between direct and maternal

effects for 60-d weaning weight (B10) caused significant reduction of the likelihood value

(P<.01), indicating the genetic correlation was statistically real although perhaps

biologically not meaningful (Nasholm and Danell, 1996).

            Likelihood ratio tests for the joint effects of different combinations of three

genetic covariances  generally agreed with tests for individual covariance tests.  The joint

effects of σa1m1  and σa2m1, or σa1m1 and σa12  or all three covariances together were highly

significant (P<.01),  while that of σa12 and σa2m1 was not.  In contrast to the  Suffolk data,

association between the estimates of the three genetic covariances was not detected.

5.3.3.2. 120-d Weaning Weight  and Litter Size:

           Results from bivariate analyses between 120 d weaning weight and litter size for

four representative models for Targhee data are presented in Table 5.19, 5.20 and 5.21.

The models were the same as the models used for bivariate analyses of 60-d weaning

weight and litter size for Targhee sheep except for the ‘best covariance model’, which was

B11.  The likelihood ratio tests are shown in Table 5.22.  For 120 d weaning weight,

estimates of heritabilities from different models were .15 to .16 and  slightly larger than

that (.14) for 60-d weaning weight for this breed, but much larger than the previous

estimate (.10) from a single trait model (Notter and Hough, 1996).  Additive maternal

effects were correspondingly reduced (m2 = .05-.06) while maternal permanent

environmental effects (.08) were of same magnitude as those observed at 60 d,  indicating

that the environmental influence of the dam was more important than maternal genetic
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influence at 120 d of age.  Failure to fit either maternal permanent environmental or

additive maternal effects (B6 or B7) reduced the likelihood significantly over that for B5

when the two components were included (P < .01 and P<.01).

                 Heritability estimates  for litter size from the bivariate analysis were stable

with a range of .10 -.12, and of the same magnitude as those from bivariate analyses of 60

d weaning weight and litter size but larger than those (.09-.10) for Suffolk sheep. The

permanent environmental contribution attributed to the animal (.01-.02) for litter size was

similar to that obtained from the bivariate analyses of 60 d weaning weight and litter size

and still was not significant (P>.05) ( B4 vs B5)

               Exclusion of σe12 in B5 did not result in much loss in likelihood over that in B4.  

There were significant correlations between direct genetic effects of the two traits with

the range of .46 to .48 (P<.05) being similar to those (.43 to .51) for 90 d weaning weight

and litter size for Suffolk sheep.  This correlation also implied that the Targhee sheep

with high performance for 120-d weaning weight  would tend to have larger litter sizes

later in life.  The genetic correlations between maternal genetic effects for 120 d weaning

weight and direct genetic effects for litter sizes ranged from -.35 to -.36 and were not

significant (P>.05).  Relatively small, unfavorable within-trait genetic correlations

between direct and maternal effects (-.03 to -.10) were also obtained.

          Failure to fit two maternal genetic covariance components (σa2m1 and σa1m1, B11)

did not reduce likelihood values markedly.  Testing against individual covariances (B9 and

B10) further confirmed that the two covariances were not important.  However, although

the joint effect of σa12 and σa2m1 was significant (P<.05), testing B13 against  B8 and B9
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resulted in the conclusion that  both covariances were not significant (P>.05).  This did

not agree with individual covariance  tests, suggesting at least some kind of association

between the two covariances involved. That is, the across-trait additive direct genetic

covariance and across-trait covariance between direct genetic effects for litter size and

maternal genetic effects for 120 d weaning weight were themselves correlated.  

5.3.2.3. 60 - 120 d Postweaning Gain (PWG) and Litter Size(LS):

             The simple animal model with only additive genetic effects for PWG and the

repeatability model for litter size was used.  Heritabilities for 60-120 d cumulative

postweaning gain ( Table 5.23) indicated that additive effects were more important (.27)

than those for the two weaning weights at 60 and 120 d.  Also the h2 estimate was larger

than that for Suffolk sheep, but in good agreement with some literature estimates (Thrift,

et al., 1973; Harrington, et al, 1962).  Fitting a temporary environmental covariance (σe12)

did not influence the value of the converged likelihood (B12 vs B13) nor the parameter

estimates.  The additive direct genetic correlation for this breed was .44, much larger than

that (.16-.17) for Suffolk sheep,  indicating that selection on  postweaning growth of the

lambs should result in genetic improvement of litter size.

5.3.2.4. 120 -365 d Postweaning Gain (YG) and Litter Size(LS):

         The same models  as those for PWG and LS were used.  As shown in Table 5.24,

heritability for YG was smaller(.19) than that  for PWG, which may reflect the fact that

yearling weights came primarily from western flocks whereas 120 d postweaning weights

came primarily from eastern flocks (Notter and Hough, 1996).  These authors reported

that additive effects for postweaning gain were more important  in relatively well-fed
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eastern lambs (h2 = .33) than in the more extensively managed western lambs (h2 = .20).

Maternal effects on postweaning gains were tested in preliminary analyses but were not

significant (Notter and Hough, 1996). Therefore, maternal components were dropped in

the study.  Setting residual covariance to zero also did not result in any marked changes in

the converged likelihood value and parameter estimates.  A weak direct genetic correlation

(.08 to .09) between YG and LS was obtained.  

5.3.2.5. Fleece Traits and Litter Size:

        For both grease fleece weight (FWT) and fiber diameter (FD),  a simple model with

only direct additive components was used,  while for litter size, a repeatability model was

used (Table 5.25 and Table 5.26).  Heritability for FWT (.41) was the same as the

previous estimate from univariate analysis , but heritability for FD (.50) was smaller than

the previous estimate (.58) (Notter and Hough, 1996).  The heritability estimate for litter

size was .11, larger than that obtained for Suffolk sheep.  Unfavorable genetic correlations

for FWT and FD with litter size were observed;  their values were -.09 and .29 to .30,

respectively. Notter and Hough (1996) Also observed a genetic antagonism between

fleece weight and fiber diameter.   Therefore , simultaneous improvement in litter size and

the two fleece traits would require explicit consideration of these antagonisms.  When

residual covariances between FWT, FD and litter size were allowed (B15), strong residual

correlations , .84 and .62, respectively for the two pairs, were obtained.  However,

likelihood ratio tests showed that the two residual correlations were not significantly

different from zero.  



167

5.3.3. Polypay Sheep

5.3.3.1. Birth Weight and Litter Size:

          Estimates of variance components and their ratios for birth weight (BW) and litter

size were obtained from bivariate analyses and are listed in Table 5.27 and 5.28,

respectively.  The covariances and corresponding  correlation  estimates are shown in

Table 5.29.  In this case, the ‘best covariance model’ was B14.  The results of likelihood

ratio tests for all twelve models are shown in Table 5.30.  The heritability estimates for

BW varied among different models, with a range of .15 to .23, which is well within the

range of literature estimates (Fogarty, 1995).  In contrast to that for Suffolk and Targhee

sheep, heritability for litter size for Polypay sheep was sensitive to the models.  When a

permanent maternal component was not included,  the heritability  (h2 = .12) was higher

than that for the other three models (h2 = .09).  Ratios (m2) of variance due to maternal

genetic effects to phenotypic variance for BW was .06 to .10, smaller than some literature

estimates.  Burfening and Kress (1993) gave estimates of .30-.45 (m2) from information

on maternal and paternal half-sibs, full-sibs, offspring on dam and offspring on sire for

Rambouillet, Targhee and Columbia sheep.  Gjedrem (1967) obtained an estimate of .17

(m2) from a sire-maternal grandsire model for Dala and Steigar sheep.  Maria et al. (1993)

reported an estimate of .22 for m2 for BW of Romanov by an univariate animal model, and

Nasholm and Danell (1996) observed an estimate of .30 by an animal model for Swedish

Finewool sheep.  The maternal environmental  effects (c2) for BW  were .21-.22 and larger
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than previous estimates (Maria et al., 1993, c2=.10, Romanov sheep).  Likelihood ratio

tests showed that maternal genetic and environmental effects for birth weight were highly

significant (P<.01) and significant (P<.05), respectively, implying that the two should

kept in the bivariate model.  Likelihood ratio tests showed PEa  for litter size approached

significance ( P< .05 ).  For uniformity throughout the models, PEa
  for litter size was

fitted.

       The temporary environmental correlation between birth weight and litter size was

unreasonably large, with a value of .78 when this covariance component was included in

the analysis (Model 3 and Model 4).  Similar values were also observed for other growth

traits with litter size in Suffolk and Targhee sheep.  Biologically these values are not

interpretable.  Likelihood ratio tests showed that the covariance was not important

(P>.05), which further places  the large values into question.  Therefore,  from model B5

on,  re was fixed to zero.  Fortunately,  excluding re did not influence the converged

estimates of other components  and the values were essentially the same for the two

alternative models ( Model B3 and Model B5).  The covariance (σc12) between  maternal

permanent effects for BW and permanent effects of animal for LS was not estimable by

MTDFREML software because the two effects were on different fields in the data

structure  (Boldman et al., 1993).  Throughout the remaining models, σc12 was set to zero.

The additive genetic correlation estimates were variable , ranging from .14 to .27.

Likelihood ratio tests indicated that this covariance was not significant (P>.05).  Both

maternal-direct  genetic correlations (ra1m1  and ra2m1) were negative.  Within-trait

correlations (ra1m) for birth weight were relatively stable , with values of -.34 to -.45.
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Literature estimates of ra1m1 were highly variable ranging from .11 to -.99 (Nasholm and

Danell, 1996; Burfening and Kress, 1993; Maria etal., 1993).   Likelihood ratio tests

showed that neither of the two maternal-direct genetic covariances or their joint effects

were significant (P>.05), suggesting that BW and LS were basically genetically

independent.

5.3.3.2. 60 d Weaning Weight (WW60) and Litter Size (LS):   

          Variance component estimates for 60 d weaning weight and litter size and across-

trait covariances  are shown in Table 5.31, 5.32 and 5.33, respectively.  The ‘best

covariance model’ was B13.  For bivariate analyses of 60-d weaning weight along with

litter size, twelve models(B3-B14) were constructed and tested against B5 (Table 5.34).

As observed in Targhee sheep,  heritabilities for both traits seemed robust to different

models.  The heritability estimates  for WW60 for Polypay sheep  were .10-.11, slightly

smaller than .14 for Targhee,  but still were in agreement with literature estimates

(Fogarty, 1995; Fossceco and Notter, 1995).  As observed in a previous section,  h2 for

LS was larger in Model 4 when PEa for LS was not fitted.

         Maternal additive effects (m2 =.11-.12) were smaller than those for Targhee sheep

(m2 = .22), while the reverse was true for the maternal permanent environmental

component (pem
2=.15 vs pem

2=.09-.10) , indicating that non-genetic maternal effects at

weaning are more important for Polypay than  for Targhee sheep.  Al-Shorepy and

Notter (1996) obtained m2  of .10 and  pem
2 of .09 for a crossbred sheep population

containing 50% Dorset, 25% Rambouillet and 25% Finnsheep breeding.  Failure to fit
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either of the maternal components caused significant reduction in likelihood (Model B6

and B7 vs B5).

         The temporary environmental correlation between 60 d weaning weight and litter

size was small (re = .09) and not important (P>.05, B3 vs. B5).  Estimates of (co)variance

components and derived parameters from B3 (with σe12 ) and B5 ( without σe12 ) were

essentially the same.  From model B5 on, no temporary environmental covariance was

assumed.   The unfavorable additive genetic correlation estimates ranged from -.12 to -.15,

which was not in agreement with that for Targhee (.10 to .22) or Suffolk, (.37-.39), but

still were within the range of literature estimates.  Likelihood Ratio tests for individual

and joint covariances indicated that additive direct covariance was not important (P>.05),

suggesting that the corresponding correlation between WW60 and LS is not real or very

weak.  Also, variable and weak genetic correlations between maternal genetic effects for

60 d weaning weight and direct additive effects for litter size were observed (.17 to .23)

and were not significant (P>.05).  It was also found that if one covariance estimate was

flat, the other would also tend to be flat, suggesting that the two covariances were not

independent due to sampling correlations.  However, the within-trait genetic correlations

(-.53 to -.55) between direct and maternal effects for 60-d weaning weight for Polypay

were negative, large, and significant (P < .05).

5.3.3.3. 120-d Weaning Weight and Litter Size:

           Results from bivariate analyses between 120 d weaning weight and litter size for

four models are presented in Table 5.35, 5.36 and 5.37, respectively. The ‘best covariance

model’ was B14.  The likelihood ratio tests are shown in Table 5.38.  For 90 d weaning
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weight, estimates of heritabilities from different models were variable and ranged from .05

to .13.  The estimates seemed to be influenced by the large sampling variances and

correlations between the estimates of three genetic covariances, indicating that the

estimate of additive variance was not only dependent on the magnitude of the true value,

data structure, and choice of quadratic forms, but also on the estimates of some , if not all,

other components.  Additive maternal effects at 90 d were markedly reduced (m2 = .01-

.02) and essentially not different from zero by LR tests on joint effects of σm
2, σa1m1 and

σa2m1.   Maternal permanent environmental effects (.21-.22) became larger,  indicating that

the environmental influence of the dam was more important than the additive maternal

influence at 90 d of age.  Failure to fit maternal permanent environmental effects (B6)

reduced the likelihood significantly over that for model B5 (P < .01).

         Patterns of heritability estimates for litter size from different models were the  same

as observed during the bivariate analyses with WW60 and BW, i.e., failure to fix the

permanent environmental contribution attributed to the animal (pe2=.04) for litter size

inflated h2 by 20-30%.  Essentially the same value for pe2 for litter size was obtained

from all three pairs of bivariate analyses.  However, only effects obtained from this

analysis were significant (P<.05).

        An unreasonably high temporary environmental correlation between litter size and

90 d weaning weight was obtained (re=.80),  Exclusion of σe12 in B5 did not result in

significant reduction in the likelihood.   The additive direct genetic correlation between the

two traits was highly variable (ranging from .09 to .44) as was the genetic correlation

between maternal genetic effects for 90 d weaning weight and direct genetic effects for
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litter size (ra2m1) with a range of .18 to .98.   A negative relationship between  ra12  and

ra2m1 was detected, i.e.,  a constant sum of the two correlation estimates was obtained

across the four models.  Within-trait genetic correlation ( ra1m1) was small and not

significantly different from zero.  LR ratio tests confirmed that all three genetic

covariances were not significant and not necessary to retain in the model.  

5.3.3.4. 60 - 120 d Postweaning Gain (PWG) and Litter Size(LS):

       Heritabilities for 60-120 day cumulative postweaning gain ( Table 5.39) indicated that

additive effects were more important (h2=.22) than for body weights.  Temporary

environmental covariance (σe12) between the two traits was not significantly different

from zero, although the corresponding correlation estimate was .78.  The additive direct

genetic correlation were essentially zero, smaller than those for Targhee (ra12=.44) and

Suffolk sheep (ra12 = .16-.17).

5.3.3.5. Fleece Weight  and Litter Size

        Heritability for FWT (h2=.44) was similar to that (h2 = .41) for Targhee sheep.

However, a positive genetic correlation (ra12 = .21) between fleece weight and litter size

was obtained for Polypay sheep (Table 5.40), indicating that unlike Targhee sheep,

selection on fleece weight would not impose adverse effects on litter size.   When residual

covariances between FWT and litter size were allowed (B15), a strong residual

correlations  (re =.87) was obtained.  Likelihood ratio tests showed that the residual

covariance  was not significantly different from zero.  
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5.3.4. General Discussion

5.3.4.1. Models and  Parameter Estimation:

           In the ‘standard’ bivariate model (B5) between body weights (BW, WW60, WW90

and  WW120) and litter size for the three breeds, all four of the potentially important

variance components (additive, additive maternal, permanent maternal environmental, and

temporary environmental) were fitted for body weights.  However, none of other traits

(LS, PWG, YG, FWT and FD) required fitting all the variance components. The decision

on whether to include a maternal genetic or permanent environmental component in the

animal models depends on empirical knowledge about the biological impact of these

random effects on the traits studied and likelihood ratio tests from univariate or bivariate

analyses.  When information about these parameters is lacking , a sire model instead of an

animal model would be preferred.  Otherwise the estimates of heritabilities for the trait

may be inflated in the presence of large maternal genetic effects and large maternal-genetic

covariance.

          Direct heritability estimates for body weights in the three breeds were low to

medium and were in good agreement with previous literature estimates (Fogarty, 1995;

Maria, et al, 1993; Notter and Hough, 1995).  However, maternal genetic and maternal

permanent environmental effects were relatively large and important for all body weights

except for weaning weight at 90 d for Polypay sheep, indicating that explicitly considering

these effects should result in more genetic improvement in growth traits.  Also, permanent

maternal environmental effects on the lamb tended to increase with age, while the reverse

trend was observed for genetic maternal effects.  
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               Estimates of heritability and permanent environmental effects for litter size across

various bivariate animal models were close to each other among the three breeds and ranged

from .09 to .12 and .00 to .05, respectively, suggesting that the genetic basis underlying

litter size was essentially the same for all three breeds.  

                For PWG, YG, FWT and FD, no maternal genetic or permanent environmental

effects were fitted because the results from this and other studies (Maria et al, 1993;

Waldron and Thomas, 1992; Notter and Hough, 1995; Mortimer and Atkins, 1994; Swan

and Hickson, 1994) indicated the two effects were generally small and not important.

Swan and Hickson (1994) thought that there was no immediate need to consider maternal

effects on fleece traits in a Merino breeding program.  Genetic analyses with Model B15,

in which a simple animal model was fitted for PWG, YG, FWT and FD and a simple

animal model (for Suffolk data) or a repeatability model (for Targhee and Polypay data)

was fitted for litter size, gave estimates of direct heritability of 60-120 d cumulative

postweaning gain (PWG) of .17, .44 and .22, respectively for Suffolk, Targhee and

Polypay sheep.  The heritability estimate for 120-360 d cumulative postweaning gain for

Targhee sheep was .19.  These values are generally larger than those for weaning weights

for the three breeds.  Thus, postweaning gains would provide alternative measures to

improve growth rate in sheep.  The heritabilities for grease fleece weight were the same

(.44) for Targhee and Polypay sheep.  Heritability estimates for fiber diameter for Targhee

sheep was .50.  These large values suggest that mass selection would be effective to improve

fleece traits in the three breeds.

5.3.4.2.   Residual Covariance (σ    e12    ) and Corresponding  Correlation (r    e12     )
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         Whether or not a residual covariance between growth traits or fleece traits with litter

size should be fitted was tested throughout the three breeds.  Frequently temporary

environmental covariance between growth traits and litter size have been assumed to be

zero (Waldron and Thomas, 1992).  The reasoning for this assumption is that records for

the two traits are taken at quite different times: before 1 year of age for most growth

traits,  and after 12 months of age for litter size.  The temporary environmental effects on

growth traits are not expected to be the same as those for litter size.  

               For all three breeds, likelihood ratio (LR) tests of model B4 (or B3) against

model B5 for bivariate analyses of body weights at birth, 60 d, 90 d and 120 d with litter

size and model B15 against B16 for other traits (PWG, YG, FWT and FD) with litter size

indicated that temporary environmental covariances of growth traits, and of fleece traits

with litter size were not important, although some kind of statistical correlations existed.

Also, the estimates of other variance components and genetic parameters generally were

not affected by fixing the temporary environmental covariance to zero.  

                However, large estimates of residual correlations were found between litter size

and BW, WW90, PWG and FWT with values of .78, .80, .78 and .78 for Polypay sheep.

Also very strong temporary environmental correlations were obtained in bivariate genetic

analyses of the other two breeds.  Interpreting these correlations is difficult.  From LR

tests, these large values seemed unreal.  However, in terms of estimation, what are the

sources of these covariances?  Also from a sampling viewpoint, it would not be likely that

none of 14 residual correlations for the 14 pairs of traits from various bivariate models

were significantly different from zero.  Permanent environmental carry-over effects  could
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cause common temporary environment  between litter size and other traits but were

unlikely to explain such strong correlations.  Further studies on effects of data structure,

REML methodology and the Simplex iteration process will be needed to verify these

correlations.

5.3.4.3.  Three Within-Trait And Across-trait Genetic Covariances and Correlations (

r    a1m1    , r    a2m1     and r    a12    ):

          Theoretically within-trait genetic correlation (ra1m1 ) contributes to the phenotypic

variance of the trait.  Maternal-direct genetic correlations for growth traits in three breeds

were variable and ranged from -.90 to .25, while most of them were small and negative.

Large and significant negative estimates were obtained between litter size  and weaning

weight at 60 d for Targhee sheep (-.89 to -.90, P < .01) and for Polypay sheep (-.53 to -.56,

P < .05).  Many authors have reported unrealistically high negative estimates of ra1m1 for

various growth traits for sheep (Nasholm and Danell, 1996; Tosh and Kemp, 1994; Maria

et al. 1993; Notter and Hough, 1996) and cattle ( Robinson, 1996a , b; Swalve, 1993;

Canter, et al. 1993).  However, interpreting these high negative correlations is difficult.

Robison (1972) proposed that negative direct-maternal genetic correlations may be

environmentally induced.  Swalve (1993) and Meyer et al ( 1993) concluded that negative

covariances could be amplified  by the management system.  

         Robinson (1996a,b) did a detailed study to trace the reasons for the high negative

genetic correlations between maternal and direct genetic effects in beef cattle.  By

examination of the correlations between estimated breeding values and the fitting of

alternative models, she thought that such correlations were a consequence of other effects
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in the data, rather than evidence of a true negative genetic relationship.  Her simulation

study established that sire × year variation and negative dam-offspring covariance could

be responsible, in addition to genetic antagonisms.  These causes will often be difficult to

distinguish from true negative genetic correlations .  Therefore  Robinson (1996b)

suggested that the best method of detection is to fit alternative models and assess their

significance using likelihood ratio tests.  As the correlations involve additive genetic

variance (σa
2 ) and maternal genetic variance (σm

2) and one covariance (σam), the

correlation depends on the accurate partition and convergence of the three parts.  Meyer

(1989) observed that for data including 3 generations, sufficient comparisons between and

within generations were available to estimates σa
2 and σm

2 virtually independent of each

other, while estimates of σam were highly variable and showed a strong negative

association with σm
2
.  

           Al-Shorepy and Notter (1996) also found that partition of maternal genetic and

permanent environmental effects was often difficult due to confounding of these effects.

For animal breeding data, six kinds of relationships often are used, i.e. individual(Ind),

sire-offspring(S-O), dam-offspring (D-O), paternal half-sibs (PHS), maternal half-

sibs(MHS) and full sibs (FS),  to estimate various parameter and (co)variance

components.  Meyer, in an unpublished paper, gave expectations of (co)variance

components for different models and data structure.  For  example, if additive genetic

(σa
2), maternal direct  (σm

2) and environmental (σc
2 ) components  are fitted  and Ind, S-O,

D-O , PHS and MHS relationships are included,  the estimates of σa
2  and σam are
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unbiased.  However, σm
2 is upward biased by 2σec (covariance between permanent and

temporary environmental effects)  and σc
2 is downward biased by 2σec.  

          Another important effect is REML iteration.   Given β and ui (i=1,.....,s) known,

the (co)variances are estimated by the following iteration formula:

           σe
2 = (y′y - β′X′y - Σuiz iy)/(N-r(x)) and

           σi
2 = (ui

′ui + σe
2 trCii )/qi

where Cii is  sub matrix of C and

        C = 
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Note that C11 ≠ (X′X)  and Cii ≠ (Zi′Zi+Iλi)
 , i.e. Cii is function of Zi , Zj (j≠i), λi , and

λj.  Therefore , σi
2  is not independent on σj

2 ,  because of the iteration process itself and

because of confounded effects through the Z  matrix.  The converged values of σi
2 are

dependent  on u i and σj
2 (j≠i).  If one parameter is flat , the other (s) will also tend to be

flat, although not both of them are necessarily flat.  In terms of the likelihood surface, this

implied a maximum along a flat ridge, i.e. an area where for a constant sum of the two

parameters, the value of the likelihood changes very little with changes in the parameter

values (Meyer, 1989).

         There is very little literature on theoretical considerations about estimation of

covariances, especially across-trait covariances, which are vital for multitrait genetic

evaluation.  Also, we are not clear about the expectation of these covariances in different

models and in field data.  However, general methodology for variance components should
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apply for estimation of covariances,  although covariance estimation needs much more

data and a suitable  data structure.   Additive genetic covariances theoretically are more

robust than other estimates because they have the largest degrees of freedom.  So are

additive direct genetic correlations, which consist of three component (σa1
2, σa2

2
  and

σa12),  all of which are robust with small Simplex sampling errors.  However, it should be

noted that this covariance is affected by σa2m1 and pem
2 for growth traits.  The results

from genetic analyses of Suffolk and Targhee data clearly indicated that additive genetic

covariance between growth traits and litter size was confounded with additive genetic

covariance between maternal genetic effects for growth and additive direct effects for litter

size.  Failure to fit either one would increase the value of the other.  For example, additive

genetic correlations between 60-d WW and LS for Suffolk sheep were increased from .38

(model B5) to .54 (model B9).  Likelihood ratio tests showed that the joint effects of the

two corresponding genetic covariances was larger than the sum of their individual effects.

Similar results also were observed in genetic analyses of WW60 and LS for Targhee sheep.

          Inclusion or exclusion of some variance components affected estimation of genetic

covariance.  Failure to fit permanent environmental effects due to the dam for 90-d

weaning weight decreased the additive genetic correlation with LS from .43 (model B5) to

.24 (model B6).  All these results showed that estimates of additive genetic covariance not

only depend on the presence of other genetic covariances such as σa2m1, but also on

variance components, such as permanent environmental variance of the dam for growth

traits.
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                Additive genetic correlation estimates (or ranges)  of litter size with BW,

WW60, WW90 , PWG and  FWT for Polypay were .14 to .27, -.12 to -.15, .00 to .44,    

-.05 and .21, respectively.  Substantial variation was observed.  Across-trait genetic-

maternal correlation (ra2m1) estimates were also variable, with estimates (or ranges) of -.13

to -.23, .17 to .23, and .18 to .98 for BW, WW60, WW90 with LS.  The general dynamic

trend was an increase in one covariance accompanying decreases in the other, which

indicated some kind of association,  called a flat ridge by Meyer (1989).  Therefore,

accurate estimates for the two covariances  would be hindered during the REML Simplex

process.  Unlike results from the other two breeds, LR tests failed to reveal any

dependence between the two covarince components in Polypay,  i.e., individual effect

tests agreed with two-component joint and three-component joint tests.  The reason was

that individual effects were so small that we did not detect the association between the

two components by joint effect tests.  Dependence between σa1m1 and the other two

genetic covariances was not  detected in any of the breeds.  Morever, partition of these

covariances was affected by additive genetic variance.  Meyer (1992) concluded in her

simulation study that estimates of (co)variance components due to maternal effects were

subject to large sampling error and high sampling correlations, even for a “reduced” model

ignoring dominance effects and for family structures providing numerous types of

covariances between relatives which have been specifically designed for the estimation of

maternal effects.  She found that for small data sets and models of analysis fitting both

genetic and maternal environmental effects and a direct-maternal covariance, this

frequently induced the need to constrain estimates to the parameter space. Consequently,
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large sample theory predictions of sampling errors and correlation estimates do not agree

with empirical results.   She suggested that further research is required to evaluate the

implications of such large sampling  (co)variances on the accuracy of selection indexes

including both direct and maternal effects, i.e. the expected loss in selection response

because of inaccurately estimated parameters used to derive index weights.

5.4. Implications

       Heritabilities for growth traits for Suffolk, Targhee and Polypay were low to

medium and smaller than average values of previous literature estimates.  On the other

hand, maternal genetic and maternal environmental effects for all body weights in the three

breeds were large and important, implying that explicitly considering these effects should

result in more genetic improvements in the growth traits.  Mass selection should be

effective to improve fleece characteristics for Targhee and Polypay sheep due to high

direct heritabilities.  Genetic correlations between direct and maternal effects for growth

and direct effects for litter size were generally favorable or small and negative, thus not

imposing serious problems for simultaneous genetic improvement of growth and litter

size as well as maternal performance for growth traits.  Within-trait maternal-direct

genetic correlations for growth in the three breeds were small and variable, indicating that

strong, negative maternal-direct correlations for growth traits are not a universal

phenomenon as implied by some scientists.  Potentially unfavorable relationships

between fleece traits and litter size should be taken into account.  Reducing sampling



182

variance and correlations among different covariance estimates should be a major tasks for

covariance estimation in the future studies.
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Table 5.1. Characteristics of the data structure for three growth traits and litter size in
Suffolk sheep.
____________________________________________________________________

WW60 WW90 PWG LS
(kg) (kg) (kg)

______________________________________________________________________

No. of records 12746 2853 5621 10295

No of animals 12746 2853 5621 5038

Animals in A-1 29115 29115 29115 29115

Levels of fixed 648 165 722 658
effects

Levels for 29115 29115 - -
maternal effects

Levels for pe 4276 1221 - 5038

Trait,

    Mean 32.18 47.18 23.51 1.95

    SD 6.81 10.06 7.73 .70

    CV 21.18 21.32 32.90 35.87

    MIN 9.03 16.39 .54 .95

    MAX 80.18 83.22 68.64 4.60

_______________________________________________________________________
Note: WW60, WW90 = 60-d, 90-d weaning weight.  PWG = 60 - 120 d cumulative
postweaning gain.  LS = No. of lambs born.  pe = permanent environment effects.  SD =
standard deviation.  CV = coefficient of variation.  MIN = minimum value and MAX =
maximum value.  A-1 = the inverse of the additive genetic relationship matrix.
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Table 5.2. Characteristics of the data structure for growth (kg), grease fleece weight (kg)
and fiber diameter (µ), and litter size in Targhee sheep.
________________________________________________________________________

WW60 WW120 PWG YG FWT FD LS
________________________________________________________________________

No. of records 4650 7428 1406 3241 5471 3908 7591

No of animals 4650 7428 1406 3241 5471 3908 7591

Animals in A-1 17633 17633 17633 17633 17633 17633 17633

Contemporary 117 81 55 68 164 113 182
groups

Levels for 17633 17633 - - - - -
maternal effects

Levels for pe 1654 2621 - - - - 3131

Trait,

    Mean 24.57 36.82 17.96 32.33 3.81 22.19 1.69

    SD 5.54 7.47 4.74 18.58 1.24 1.92 .62

    CV 22.53 20.29 26.41 57.46 32.61 8.68 36.34

    MIN 8.54 6.81 2.72 1.36 1.32 15.20 .95

    MAX 51.12 67.46 34.87 95.79 12.44 30.40 4.60

_______________________________________________________________________
Note: WW60 = 60-d weaning weight. WW120 = 120-d weaning weight. PWG = 60-120 d
cumulative post-weaning gain.  YG = 120-365 d cumulative post-weaning gain. FWT=
fleece weight. FD=fiber diameter. LS=No. of lambs born.  pe = permanent environment
effects.  SD= standard deviation. CV= coefficient of variation. MIN=minimum value and
MAX= maxmum value. A-1 = the inverse of the additive genetic relationship matrix.
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Table 5.3. Characteristics of the data structure for growth, fleece weight, and litter size in
Polypay sheep.
________________________________________________________________________

BW WW60 WW90 PWG FWT LS
________________________________________________________________________

No. of records 7542 6561 1690 3046 1099 6061

No of animals 7542 6561 1690 3046 1099 2709

Animals in A-1 16795 16795 16795 16795 16795 16795

Contemporary 340 274 80 240 74 403
groups

Levels for 16795 16795 16795 - - -
maternal effects

Levels for pe 2507 2304 695 - - 2709

Trait,

    Mean 5.19 26.08 29.82 19.41 4.15 2.09

    SD .99 5.50 8.02 6.30 1.26 .78

    CV 19.01 21.09 26.90 32.45 30.35 37.18

    MIN 1.73 7.63 15.93 .27 1.59 1.00

    MAX 8.99 44.17 56.21 43.31 10.26 6.30
_______________________________________________________________________
Note: BW = birth weight.  WW60=60-d weaning weight.  WW90 =90-d weaning weight.
PWG =  60-120 d cumulative post-weaning gain.  FWT= fleece weight.  LS = No. of
lambs born. pe = permanent environment effects.  SD = standard deviation.  CV =
coefficient of variation.  MIN = minimum value and  MAX = maxmum value.  A-1 = the
inverse of the additive genetic relationship matrix.
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Table 5.4. Abbreviations and corresponding definitions
_____________________________________________________________________

Abbreviation Definition
______________________________________________________________________

σ2
a Direct additive genetic variance

σ2
m Maternal additive genetic variance

σam Covariance between direct and maternal genetic effects

σ2
pea(m) Permanent environmental variance due to animal ( due to dam)

σ2
e Residual variance

σ2
p Phenotypic variance

h2 Direct heritability, σ2
a/σ2

p

m2 σ2
m/σ2

p

ht
2 σ2

a + 0.5σ2
m + 1.5σ2

am

ram Correlation between direct and maternal additive genetic effects

pe2 σ2
pe/σ2

p

e2 σ2
e/σ2

p

_______________________________________________________________________
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Table 5.4. Abbreviations and corresponding definitions(continued).
_____________________________________________________________________

Abbreviation Definition
______________________________________________________________________

P Phenotypic value for the trait.

A Additive direct genetic value.

M Additive maternal genetic value.

PEa Permanent environmental value attributed to animal.

PEm Permanent environmental value attributed to dam.

E Temporary environmental value.

σe12 Residual covariance between the two traits.

σa12 Additive direct genetic covariance between the two traits.

σa2m1 Genetic covariance between direct additive effects for litter 
size and maternal additive effects for the growth traits.

σa1m1 Genetic covariance between additive direct and maternal 
additive effects for the growth traits.

1 = growth traits or postweaning gains or fleece traits; 2 = litter size.

______________________________________________________________________
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Table 5.5. Model descriptions for bivariate analysis of some growth traits together with
litter size in three breeds of sheep.
_______________________________________________________________________

Model Description
_______________________________________________________________________

B-3: For the growth traits, P = A + M + PEm + E
For litter size, P = A + PEa + E.  All the associated covariances are fitted.

B-4 For the growth traits, P = A + M + PEm + E
For litter size, P = A + E.  All the associated covariances are fitted.

B-5 Same as Model B4 except fixing cove1e2= .0000.
B-6 For the growth traits, P = A + M + E

For litter size, P = A + E.

B-7 For the growth traits, P = A + PEm + E
For litter size, P = A + E.

B-8 Same as Model B5 except one additional constraint, cova1a2 = .0000
B-9 Same as Model B5 except one additional constraint. cova2m1 = .0000
B-10 Same as Model B5 except one additional constraint. cova1m1 = .0000
B-11 Same as Model B5 except two additional constraints,  cova2m1 = .0000

and cova1m1 = .0000.
B-12 Same as Model B5 except two additional constraints , cova1m1 = .0000

and cov a12 = .0000.
B-13 Same as Model B5 except two additional constraints ,  cova2m1 = .0000

and cov a12 = .0000.
B-14 Same as Model B5 except for fixing all covariance to be zero.
B-15 For postweaning gain or fleece traits, P = A + E, for litter size (Suffolk data) or P

= A + PEa  + E (Targhee and Polypay data).
B-16 Same as Model B-12 except with cove12 = .0000.
________________________________________________________________________



191

Table 5.6. Estimates of (co)variance components and genetic parameters for 60-d weaning
weight (kg) from bivariate analyses together with litter size in Suffolk sheep
_____________________________________________________________________

B-3 B-4 B-5 B-10
______________________________________________________________________

σ2
a 5.42 5.63 5.71 4.95

σ2
m 1.36 1.70 1.68 1.03

σam -.65 -.98 -1.02 -

σ2
pem 3.21 3.14 3.18 3.10

σ2
e 20.63 20.53 20.48 20.88

σ2
p 29.97 30.02 30.03 29.95

h2 .18 .19 .19 .17

m2 .05 .06 .06 .03

ht
2 .17 .17 .17 .18

ram -.24 -.32 -.33 -

pem
2 .11 .10 .11 .10

e2 .69 .68 .68 .70
_______________________________________________________________________
Note: (a). Definitions of parameters are listed in Table 5.4.
          (b). Models are described in detail in Table 5.5
.
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Table 5.7.  Estimates of (co)variance components and genetic parameters for litter size
from bivariate analyses with 60-d weaning weight in Suffolk sheep
_____________________________________________________________________

B-3 B-4 B-5 B-10
______________________________________________________________________

σ2
a .0435 .0438 .0440 .0440

σ2
pe .0000 - - -

σ2
e .4157 .4160 .4157 .4158

σ2
p .4592 .4598 .4597 .4598

h2 .09 .10 .10 .10

pe2 .00 - - -

e2 .91 .90 .90 .90
_______________________________________________________________________
Note:(a). Definitions of parameters are listed in Table 5.4.
         (b). Models are described in detail in Table 5.5.
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Table 5.8. Estimates of covariance componentsa and of corresponding correlationsb from
bivariate analyses of 60-d weaning weight (WW60, kg) and litter size (LS) in Suffolk
sheep
_____________________________________________________________________

B-3 B-4 B-5 B-10
______________________________________________________________________

σa12 .189 .186 .190 .154

σa2m1 .086 .089 .087 .102

σe12 2.564 .998 - -

σp12 2.795 1.228 .233 .233

ra .39 .37 .38 .39

ra2m1 .35 .33 .32 .25

re .88 .34 - -

rp .75 .33 .06 .07

_______________________________________________________________________
     aσa12 = direct additive covariance between WW60 and LS.  σa2m1 = additive genetic
cross-trait covariance between direct effects for LS and maternal effects for WW60.
    bra = direct, genetic correlation between WW60 and LS.  ra2m1 = genetic correlation
between direct effects for LS and maternal effects on WW60.  re = residual correlation.  rp

= phenotypic correlation.
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Table 5.9.  Likelihood ratio tests for different models of bivariate analyses for 60-d
weaning weight and litter size in Suffolk sheep.
________________________________________________________________________

Model -2 log La tests against X2 b Probability.
________________________________________________________________________

B-3 76427.60 B-5 .30 P> .05(df=2)

B-4 76427.31 B-5 .01 P> .05(df=1)

B-5 76427.30 - - -

B-6 76462.30 B-5 35.00 P< .01(df=1)

B-7 76437.63 B-5 10.33 P< .05(df=3)

B-8 76433.15 B-5 5.85 P< .05(df=1)

B-9 76430.19 B-5 2.89 P> .05(df=1)

B-10 76429.44 B-5 2.14 P> .05(df=1)

B-11 76434.66 B-5 7.36 P< .05(df=2)

B-12 76435.73 B-5 8.43 P< .05(df=2)

B-13 76457.10 B-5 29.80 P< .01(df=2)

B-14 76459.89 B-5 32.59 P< .01(df=2)
____________________________________________________________________
a Log L = log likelihood.
b X2  = the difference of -2 log L between the model and the model tested against.
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Table 5.10. Estimates of (co)variance components and genetic parameters for 90-d
weaning weight (kg) from bivariate analyses together with litter size in Suffolk sheep
_____________________________________________________________________

Model B-3 B-4 B-5 B-12
______________________________________________________________________

σ2
a 6.80 7.69 6.46 5.72

σ2
m 2.14 2.12 2.00 4.08

σam .88 .64 .92 -

σ2
pem 8.31 8.56 8.73 7.93

σ2
e 32.51 31.94 32.51 33.01

σ2
p 50.63 50.94 50.61 50.74

h2 .13 .15 .13 .11

m2 .04 .04 .04 .08

ht
2 .18 .19 .17 .15

ram .23 .16 .25 -

pem
2 .16 .17 .17 .16

e2 .64 .63 .64 .65
_______________________________________________________________________
Note: (a). Definitions of parameters are listed in Table 5.4.
          (b). The models are described in detail in Table 5.5
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Table 5.11. Estimates of (co)variance components and genetic parameters from bivariate
analyses for litter size together with 90-d weaning weight in Suffolk sheep
_____________________________________________________________________

B-3 B-4 B-5 B-12
______________________________________________________________________

σ2
a .0418 .0430 .0431 .0448

σ2
pe .0000 - - -

σ2
e .4170 .4160 .4158 .4151

σ2
p .4587 .4590 .4589 .4599

h2 .09 .09 .09 .10

pe2 .00 - - -

e2 .91 .91 .91 .90
_______________________________________________________________________
Note:(a).).Definitions of parameters are listed in Table 5.4.
         (b).The models are described in detail in Table 5.5
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Table 5.12. Estimates of covariance componentsa and of corresponding correlationsb from
bivariate analyses of 90-d weaning weight (WW90, kg) and litter size (LS) in Suffolk
sheep
_____________________________________________________________________

B-3 B-4 B-5 B-12
______________________________________________________________________

σa12 .272 .253 .227 -

σa2m1 .285 .288 .289 .427

σe12 1.555 3.643 - -

σp12 1.969 4.041 .371 .214

ra .51 .44 .43 -

ra2m1 .95 .96 .98 1.00

re .42 1.00 - -

rp .41 .84 .08 .04

_______________________________________________________________________
     aσa12 = direct additive covariance between WW90 and LS. σa2m1 = additive genetic cross-
covariance between direct effects for LS and maternal effects for WW2. σe12 = residual
covariance. σp12 = phenotypic covariance.
     bra = direct, genetic correlation between WW90 and LS. ra2m1 = genetic correlation
between direct effects for LS and maternal effects on WW90.  re = residual correlation. rp

= phenotypic correlation.
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Table 5.13. Likelihood ratio tests for different models of bivariate analyses for 90-d
weaning weight and litter size in Suffolk sheep.
_____________________________________________________________________

Model -2 log La tests against X2 b Probability
_____________________________________________________________________

B-3 21100.04 B-5 .35 P> .05(df=2)

B-4 21099.76 B-5 .10 P> .05(df=1)

B-5 21099.69

B-6 21120.42 B-5 20.73 P< .01(df=1)

B-7 21110.40 B-5 10.71 P< .05(df=3)

B-8 21100.48 B-5 .79 P> .05(df=1)

B-9 21110.59 B-5 10.9 P< .01(df=1)

B-10 21099.42 B-5 -.27 P> .05(df=1)

B-11 21110.46 B-5 10.77 P< .01(df=2)

B-12 21099.46 B-5 -.23 P>.05(df=2)

B-13 21124.98 B-5 25.29 P< .01(df=2)

B-14 21124.98 B-5 25.29 P< .01(df=3)
____________________________________________________________________
a Log L = log likelihood.
b X2  = the difference of -2 Log L between the model and the model tested against.
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Table 5.14. Estimates of (co)variance componentsa and of genetic parameters (
corresponding correlations )b from bivariate analyses of post-weaning gain (PWG, kg) and
litter size (LS) in Suffolk sheep
________________________________________________________________________

Model B-15 B-16
____________________________ __________________________

Trait PWG LS COV PWG LS COV
________________________________________________________________________

σ2
a(σa12) 4.80 .041 .071 4.76 .041 .073

σ2
e(σe12) 23.73 .418 2.148 23.76 .418 -

σ2
p(σp12) 28.52 .459 2.219 28.52 .459 .073

h2(ra) .17 .09 .16 .17 .09 .17

e2(re) .83 .91 .68 .83 .91 -

rp - - .61 - - .02

-2log L 33577.52 33577.53

________________________________________________________________________
Note:(a).).Definitions of parameters are listed in Table 5.4.
         (b).The models are described in detail in Table 5.5
              aσa12 = direct additive covariance between PWG and LS.  σe12 = residual 

covariance.  σp12 = phenotypic covariance.
         bra = direct, genetic correlation between PWG and LS.  re = residual 

correlation. rp = phenotypic correlation.
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Table 5.15. Comparison of Estimates of (co)variance components and genetic parameters
for 60-d weaning weight from  bivariate analyses, together with litter size in Targhee
sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-13
______________________________________________________________________

σ2
a 2.37 2.40 2.38 2.42

σ2
m 3.76 3.82 3.83 3.77

σam -2.66 -2.71 -2.71 -2.73

σ2
pem 1.65 1.64 1.65 1.69

σ2
e 12.09 12.09 12.09 12.07

σ2
p 17.21 17.23 17.23 17.21

h2 .14 .14 .14 .14

m2 .22 .22 .22 .22

ram -.89 -.90 -.90 -.90

pem
2 .10 .09 .10 .10

e2 .70 .70 .70 .70
_______________________________________________________________________
Note: (a).  Definitions of parameters are listed in Table 5.4.
          (b).  Models are described in detail in Table 5.5.
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Table 5.16. Comparison of Estimates of (co)variance components and genetic parameters
for litter size from bivariate analyses, together with 60-d weaning weight in Targhee
sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-13
______________________________________________________________________

σ2
a .0366 .0399 .0359 .0348

σ2
pe .0039 - .0047 .0053

σ2
e .2902 .2915 .2901 .2899

σ2
p .3307 .3314 .3307 .3301

h2 .11 .12 .11 .11

pe2 .01 - .01 .02

e2 .88 .88 .88 .88

_______________________________________________________________________
Note: (a).  Definitions of parameters are listed in Table 5.4.
          (b).  Models are described in detail in Table 5.5.
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Table 5.17. Estimates of covariance componentsa and of corresponding correlationsb from
bivariate analyses of 60-d weaning weight (WW1) and litter size (LS) in Targhee sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-13
______________________________________________________________________

σa12 .031 .065 .066 -

σa2m1 -.068 -.089 -.086 -

σe12 .196 - - -

σp12 .193 .020 .023 -

ra .10 .21 .22 -

ra2m1 -.18 -.23 -.23 -

re .10 - - -

rp .08 .01 .01 -

______________________________________________________________________
     aσa12 = direct additive covariance between WW60 and LS.  σa2m1 = additive genetic
cross-covariance between direct effects for LS and maternal effects for WW60.  σe12 =
residual covariance.  σp12 = phenotypic covariance.
     bra = direct, genetic correlation between WW60 and LS.  ra2m1 = genetic correlation
between direct effects for LS and maternal effects on WW60.  re = residual correlation.  rp

= phenotypic correlation.



203

Table 5.18. Likelihood ratio tests for different models of bivariate analyses for 60-d
weaning weight and litter size in Targhee sheep.
_____________________________________________________________________

Model -2 log La tests against X2 b Probability
_____________________________________________________________________

B-3 24003.32 B-5 .19 P> .05(df=2)

B-4 24003.70 B-5 .57 P> .05(df=1)

B-5 24003.13 B-5 - -

B-6 24020.36 B-5 17.23 P< .01(df=1)

B-7 24042.01 B-5 38.88 P< .01(df=3)

B-8 24003.72 B-5 .59 P> .05(df=1)

B-9 24005.49 B-5 2.36 P> .05(df=1)

B-10 24016.22 B-5 13.09 P< .01(df=2)

B-11 24018.76 B-5 15.63 P< .01(df=2)

B-12 24016.31 B-5 13.18 P< .01(df=2)

B-13 24006.24 B-5 3.11 P> .05(df=2)

B-14 24019.33 B-5 16.20 P<.01(df=3)
___________________________________________________________________
a Log L = log likelihood.
b X2  = the difference between the model and the model tested against.



204

Table 5.19. Comparison of estimates of (co)variance components and genetic parameters
for 120-d weaning weight (kg) from  bivariate analysesa, together with litter size in
Targhee sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-11
______________________________________________________________________

σ2
a 5.34 5.22 5.30 4.90

σ2
m 1.74 1.68 1.80 1.77

σam -.24 -.10 -.30 -

σ2
pem 2.71 2.69 2.73 2.65

σ2
e 22.89 22.96 22.91 23.10

σ2
p 32.44 32.45 32.44 32.42

h2 .16 .16 .16 .15

m2 .05 .05 .06 .05

ram -.08 -.03 -.10 -

pem
2 .08 .08 .08 .08

e2 .71 .71 .71 .71
_______________________________________________________________________
Note: (a).  Definitions of parameters are listed in Table 5.4.
          (b).  Models are described in detail in Table 5.5.
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Table 5.20. Comparison of estimates of (co)variance components and genetic parameters
for litter size from  bivariate analysesa, together with 120-d weaning weight in Targhee
sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-11
______________________________________________________________________

σ2
a .0365 .0393 .0347 .0344

σ2
pe .0033 - .0056 .0058

σ2
e .2908 .2918 .2899 .2901

σ2
p .3306 .3312 .3541 .3303

h2 .11 .12 .11 .10

pe2 .01 - .02 .02

e2 .88 .88 .88 .88
_______________________________________________________________________
Note: (a).  Definitions of parameters are listed in Table 6.2.
          (b).  Models are described in detail in Table 6.3.
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Table 5.21. Estimates of covariance componentsa and of corresponding correlationsb from
bivariate analyses of 120-d weaning weight (WW120, kg) and litter size ( Trait 2, LS) in
Targhee sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-11
______________________________________________________________________

σa12 .209 .206 .205 .111

σa2m1 -.091 -.089 -.089 -

σe12 .115 - - -

σp12 .279 .162 .161 .111

ra .47 .46 .48 .27

ra2m1 -.36 -.35 -.35 -

rc12 .00 - - -

re .04 - - -

rp .09 .05 .05 .03

_______________________________________________________________________
     aσa12 = direct additive covariance between WW120 and LS. σa2m1 = additive genetic
cross-covariance between direct effects for LS and maternal effects for WW120.  σe12 =
residual covariance. σp12 = phenotypic covariance.
     bra = direct, genetic correlation between WW120 and LS. ra2m1 = genetic correlation
between direct effects for LS and maternal effects on WW120.  re = residual correlation. rp

= phenotypic correlation.
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Table  5.22. Likelihood ratio tests for different models of bivariate analyses for 120-d
weaning weight and litter size in Targhee sheep.
_____________________________________________________________________

Model -2 log La tests against X2 b Probability
_____________________________________________________________________

B-3 43700.20 B-5 0.16 P> .05(df=2)

B-4 43701.04 B-5 1.00 P> .05(df=1)

B-5 43700.04 - - -

B-6 43718.07 B-5 18.03 P< .01(df=1)

B-7 43713.29 B-5 13.25 P< .01(df=3)

B-8 43706.81 B-5 6.77 P< .05(df=1)

B-9 43703.60 B-5 3.56 P> .05(df=1)

B-10 43700.23 B-5 .19 P> .05(df=1)

B-11 43703.70 B-5 3.66 P> .05(df=2)

B-12 43707.07 B-5 7.03 P< .05(df=2)

B-13 43706.83 B-5 6.79 P< .05(df=2)

B-14 43707.12 B-5 7.08 P< .05(df=3)
____________________________________________________________________
a Log L = log likelihood.
b X2  = the difference between the model and the model tested against.
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Table 5.23. Estimates of (co)variance components and genetic parameters (corresponding
correlations) from bivariate analyses of  60-120 d cumulative  postweaning gain (kg)
together with litter size in Targhee sheep
_____________________________________________________________________

Model B-15 B-16

Trait PWG LS COV PWG LS COV
______________________________________________________________________

σ2
a(σ2

a12) 3.60 .037 .156 3.54 .035 .155

σ2
pe(σ2

c12) - .005 - - .006 -

σ2
e(σ2

e12) 9.80 .290 .408 9.82 .290 -

σ2
p(σ2

p12) 13.40 .330 -.252 13.36 .330 .155

h2(rg) .27 .11 .44 .27 .11 .44

pe2(rc12) - .02 - - .02 -

e2(re12) .73 .88 -.24 .73 .88 -

-2logL 6502.93 6502.93

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 6.2.
          (b).The models are described in detail in Table 6.3
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Table 5.24. Estimates of (co)variance components and genetic parameters (corresponding
correlations) from bivariate analyses of  120-1365 d cumulative  postweaning gain (kg)
together with litter size in Targhee sheep
_____________________________________________________________________

Model B-15 B-16

Trait YG LS COV YG LS COV
______________________________________________________________________

σ2
a(σ2

a12) 7.88 .035 .045 7.84 .035 .042

σ2
pe(σ2

c12) - .006 - - .006 -

σ2
e(σ2

e12) 33.04 .290 .277 33.11 .290 -

σ2
p(σ2

p12) 40.92 .330 .322 40.96 .330 .042

h2(rg) .19 .10 .09 .19 .11 .08

pe2(rc12) - .02 - - .02 -

e2(re12) .81 .88 .09 .81 .88 -

-2logL 19531.08 19531.08

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.2.
          (b).The models are described in detail in Table 5.3
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Table 5.25. Estimates of (co)variance components and genetic parameters (corresponding
correlations) from bivariate analyses of  grease fleece weight (kg) together with litter size
in Targhee sheep
_____________________________________________________________________

Model B-15 B-16

Trait FWT LS COV FWT LS COV
______________________________________________________________________

σ2
a(σ2

a12) .137 .035 -.006 .138 .035 -.006

σ2
pe(σ2

c12) - .006 - - .005 -

σ2
e(σ2

e12) .198 .290 .200 .198 .290 -

σ2
p(σ2

p12) .335 .330 .194 .335 .330 -.006

h2(rg) .41 .11 -.09 .41 .11 -.09

pe2(rc12) - .02 - - .02 -

e2(re12) .59 .88 .84 .59 .88 -

-2logL 7159.76 7159.76

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.4.
          (b).The models are described in detail in Table 5.5.
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Table 5.26. Estimates of (co)variance components and genetic parameters (corresponding
correlations) from bivariate analyses of  fiber diameter together with litter size in Targhee
sheep
_____________________________________________________________________

Model B-15 B-16

Trait FD LS COV FD LS COV
______________________________________________________________________

σ2
a(σ2

a12) 1.00 .035 .054 1.00 .035 .056

σ2
pe(σ2

c12) - .006 - - .006 -

σ2
e(σ2

e12) 1.00 .290 .337 1.00 .290 -

σ2
p(σ2

p12) 2.00 .331 .391 2.00 .331 .056

h2(rg) .50 .11 .29 .50 .11 .30

pe2(rc12) - .02 - - .02 -

e2(re12) .50 .88 .62 .50 .88 -

rp

-2logL 5616.48 5616.48

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.4.
          (b).The models are described in detail in Table 5.5.
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Table 5.27.  Comparison of estimates of (co)variance components and genetic parameters
for birth weight from bivariate analyses, together with litter size in Polypay sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-14
______________________________________________________________________

σ2
a .16 .13 .14 .11

σ2
m .07 .07 .07 .04

σam -.05 -.03 -.03 -

σ2
pem .16 .15 .15 .16

σ2
e .38 .40 .40 .41

σ2
p .73 .72 .72 .72

h2 .23 .19 .19 .15

m2 .10 .09 .09 .06

ram -.45 -.34 -.36 -

pem
2 .22 .21 .21 .22

e2 .53 .55 .55 .57

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.4.
          (b). Model are described in detail in Table 5.5.
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Table 5.28.  Comparison of estimates of (co)variance components and genetic parameters
for litter size from bivariate analyses by different models, together with birth weight in
Polypay sheep
_____________________________________________________________________

B-3 B-4 B-5 B-14
______________________________________________________________________

σ2
a .0460 .0617 .0460 .0461

σ2
pe .0211 - .0217 .0211

σ2
e .4423 .4494 .4414 .4423

σ2
p .5095 .5111 .5092 .5096

h2 .09 .12 .09 .09

pe2 .04 - .04 .04

e2 .87 .88 .87 .87

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.4.
          (b). Model are described in detail in Table 5.5.
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Table 5.29. Estimates of covariance componentsa and of corresponding correlationsb from
bivariate analyses of birth weight (BW) and litter size (LS) in Polypay sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-14
______________________________________________________________________

σa12 .024 .012 .013 -

σa2m1 -.013 -.008 -.008 -

σe12 .321 - - -

σp12 .339 .008 .009 -

ra .27 .14 .17 -

ra2m1 -.23 -.13 -.14 -

re .78 - - -

rp .56 .01 .02 -

_______________________________________________________________________
     aσa12 = direct additive covariance between BW and LS.  σa2m1 = additive genetic cross-
covariance between direct effects for LS and maternal effects for BW.  σe12 = residual
covariance.  σp12 = phenotypic covariance.
     bra = direct, genetic correlation between BW and LS.  ra2m1 = genetic correlation
between direct effects for LS and maternal effects on BW.  re = residual correlation.  rp =
phenotypic correlation.
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Table 5.30. Likelihood ratio tests for different models of bivariate analyses for birth
weight and litter size for Polypay sheep.
_____________________________________________________________________

Model -2 log La tests against X2 b Prob.c

_____________________________________________________________________

B-3 18396.90 B-5 .8696 P> .05(df=2)

B-4 18399.29 B-5 3.2592 P> .05(df=1)

B-5 18396.04 B-5 - -

B-6 18483.57 B-5 87.5341 P< .01(df=1)

B-7 18404.36 B-5 8.3378 P< .05(df=3)

B-8 18397.05 B-5 1.0177 P> .05(df=1)

B-9 18396.48 B-5 .4489 P> .05(df=1)

B-10 18398.30 B-5 2.2715 P> .05(df=1)

B-11 18398.65 B-5 2.6269 P> .05(df=2)

B-12 18398.67 B-5 2.6424 P> .05(df=2)

B-13 18396.55 B-5 .5241 P> .05(df=2)

B-14 18398.72 B-5 2.6980 P> .05(df=3)
___________________________________________________________________
a Log L = log likelihood.
b X2  = the difference of -2 log L between the model and the model tested against.
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Table 5.31.  Comparison of estimates of (co)variance components and genetic parameters
for 60-d weaning weight from bivariate analyses , together with litter size in Polypay
sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-13
______________________________________________________________________

σ2
a 2.09 2.05 2.13 2.19

σ2
m 2.23 2.17 2.24 2.30

σam -1.18 -1.11 -1.21 -1.23

σ2
pem 3.01 3.00 3.01 2.97

σ2
e 13.46 13.49 13.43 13.40

σ2
p 19.61 19.59 19.60 19.63

h2 .11 .10 .11 .11

m2 .11 .11 .11 .12

ram -.55 -.53 -.55 -.55

pem
2 .15 .15 .15 .15

e2 .69 .69 .69 .68

_______________________________________________________________________
Note: (a). Definitions of parameters are listed in Table 5.4.
          (b). Model are described in detail in Table 5.5.



217

Table 5.32. Comparison of estimates of (co)variance components and genetic parameters
for litter size from bivariate analyses, together with 60-d weaning weight in Polypay
sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-13
______________________________________________________________________

σ2
a .0438 .0611 .0452 .0458

σ2
pe .0238 - .0222 .0214

σ2
e .4414 .4499 .4421 .4421

σ2
p .5090 .5111 .5094 .5093

h2 .09 .12 .09 .09

pe2 .05 - .04 .04

e2 .87 .88 .87 .87

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.4.
          (b). Model are described in detail in Table 5.5.
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Table 5.33. Estimates of covariance componentsa and of coresponding correlationsb from
bivariate analyses of 60-d weaning weight (WW60) and litter size (LS) in Polypay sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-13
______________________________________________________________________

σa12 -.044 -.042 -.043 -

σa2m1 .070 .063 .068 -

σe12 .218 - - -

σp12 .209 -.010 -.009 -

ra -.15 -.12 -.14 -

ra2m1 .23 .17 .21 -

re .09 - - -

rp .07 .00 - -

_______________________________________________________________________
     aσa12 = direct additive covariance between WW60 and LS. σa2m1 = additive genetic cross-
covariance between direct effects for LS and maternal effects for WW60.  σe12 = residual
covariance. σp12 = phenotypic covariance.
     bra = direct, genetic correlation between WW60 and LS. ra2m1 = genetic correlation
between direct effects for LS and maternal effects on WW60.  re = residual correlation.  rp

= phenotypic correlation.
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Table 5.34. Likelihood ratio tests for different models of bivariate analyses for 60-d
weaning weight and litter size for Polypay sheep.
_____________________________________________________________________

Model -2 log La tests against X2 b Probability
_____________________________________________________________________

B-3 37522.34 B-5 .04 P> .05(df=2)

B-4 37525.94 B-5 3.64 P> .05(df=1)

B-5 37522.30 - - -

B-6 37567.09 B-5 44.79 P< .01(df=1)

B-7 37540.19 B-5 17.89 P< .01(df=3)

B-8 37522.41 B-5 .11 P> .05(df=1)

B-9 37523.09 B-5 .79 P> .05(df=1)

B-10 37526.69 B-5 4.39 P< .05(df=1)

B-11 37528.11 B-5 5.81 P> .05(df=2)

B-12 37527.12 B-5 4.82 P> .05(df=2)

B-13 37523.48 B-5 1.18 P> .05(df=2)

B-14 37528.15 B-5 5.85 P> .05(df=3)

________________________________________________________________________

a Log L = log likelihood.
b X2  = the difference of -2 log L between the model and the model tested against.
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Table 5.35. Comparison of Estimates of (co)variance components and genetic parameters
for 90-d weaning weight from bivariate analyses, together with litter size in Polypay
sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-14
______________________________________________________________________

σ2
a 2.43 .95 1.92 1.35

σ2
m .17 .29 .30 .00

σam -.51 .10 -.53 -

σ2
pem 4.15 3.99 4.31 4.23

σ2
e 13.10 14.01 13.45 13.66

σ2
p 19.34 19.35 19.45 19.25

h2 .13 .05 .10 .07

m2 .01 .02 .02 .00

ram -.80 .19 -.69 -

pem
2 .21 .21 .22 .22

e2 .68 .72 .69 .71

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.4.
          (b). Model are described in detail in Table 5.5.
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Table 5.36. Comparison of Estimates of (co)variance components and genetic parameters
for litter size from  bivariate analyses, together with 90-d weaning weight in Polypay
sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-14
______________________________________________________________________

σ2
a .0463 .0617 .0500 .0430

σ2
pe .0226 - .0179 .0244

σ2
e .4401 .4512 .4414 .4402

σ2
p .5089 .5230 .5093 .5077

h2 .09 .12 .10 .08

pe2 .04 - .04 .05

e2 .86 .88 .87 .87

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.4.
          (b). Models are described in detail in Table 5.5.
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Table 5.37. Estimates of covariance componentsa and of corresponding correlationsb from
bivariate analyses of 90-d weaning weight (Trait 1, WW1) and litter size ( Trait 2, LS) in
Polypay sheep.
_____________________________________________________________________

B-3 B-4 B-5 B-14
______________________________________________________________________

σa12 .149 .000 .029 -

σa2m1 .016 .131 .081 -

σe12 1.918 - - -

σp12 2.076 .065 .069 -

ra .44 .00 .09 -

ra2m1 .18 .98 .65 -

re .80 .00 .00 -

rp .66 .02 .02 -
______________________________________________________________________
     aσa12 = direct additive covariance between WW90 and LS. σa2m1 = additive genetic cross-
covariance between direct effects for LS and maternal effects for WW90.  σe12 = residual
covariance. σp12 = phenotypic covariance.
     bra = direct, genetic correlation between WW90 and LS. ra2m1 = genetic correlation
between direct effects for LS and maternal effects on WW90.  re = residual correlation.  rp

= phenotypic correlation.
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Table 5.38. Likelihood ratio tests for different models of bivariate analyses for 90-d
weaning weight and litter size for Polypay sheep.
_____________________________________________________________________

Model -2 log La tests against X2 b Probability
_____________________________________________________________________

B-3 11561.89 B-5 -1.0 P> .05(df=2)

B-4 11567.51 B-5 4.62 P< .05(df=1)

B-5 11562.89 - - -

B-6 1586.25 B-5 23.36 P< .01(df=1)

B-7 1561.73 B-5 -1.16 P> .05(df=3)

B-8 1563.21 B-5 .32 P> .05(df=1)

B-9 1562.96 B-5 .07 P> .05(df=1)

B-10 1562.67 B-5 -.22 P> .05(df=1)

B-11 1563.77 B-5 .88 P> .05(df=2)

B-12 1563.64 B-5 .75 P> .05(df=2)

B-13 1565.09 B-5 2.20 P> .05(df=2)

B-14 1565.44 B-5 2.55 P> .05(df=3)
____________________________________________________________________

a Log L = log likelihood.
b X2  = the difference of -2 log L between the model and the model testsed against.
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Table 5.39. Estimates of (co)variance components and genetic parameters (corresponding
correlations) from bivariate analyses of  60-120d cumulative  postweaning gain together
with litter size in Polypay sheep
_____________________________________________________________________

Model B-15 B-16

Trait PWG LS COV PWG LS COV
______________________________________________________________________

σ2
a(σ2

a12) 3.22 .046 -.017 3.22 .046 -.017

σ2
pe(σ2

c12) - .021 - - .021 -

σ2
e(σ2

e12) 11.69 .442 2.155 11.69 .442 -

σ2
p(σ2

p12) 14.91 .510 2.137 14.91 .510 -.017

h2(rg) .22 .09 -.05 .22 .09 -.05

pe2(rc12) - .04 - - .04 -

e2(re12) .78 .87 .95 .78 .87 -

-2logL 17665.84 17665.84
_______________________________________________________________________

Note: (a).Definitions of parameters are listed in Table 5.4.
          (b).The models are described in detail in Table 5.5.
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Table 5.40. Estimates of (co)variance components and genetic parameters (corresponding
correlations) from bivariate analyses of  grease fleece weight together with litter size in
Polypay sheep
_____________________________________________________________________

Model B-15 B-16

Trait FWT LS COV FWT LS COV
______________________________________________________________________

σ2
a(σ2

a12) .23 .047 .022 .23 .047 .022

σ2
pe(σ2

c12) - .022 - - .021 -

σ2
e(σ2

e12) .30 .441 .282 .30 .442 -

σ2
p(σ2

p12) .530 .510 .304 .530 .510 .022

h2(rg) .44 .09 .21 .44 .09 .21

pe2(rc12) - .04 - - .04 -

e2(re12) .56 .87 .78 .56 .87 -

-2logL 4594.73 4594.72

_______________________________________________________________________
Note: (a).Definitions of parameters are listed in Table 5.4.
          (b).The models are described in detail in Table 5.5



226

CHAPTER 6

Summary

Most scientists agree that low heritabilities and repeatabilities and the discrete nature of

expression of sheep reproductive traits are major factors limiting a faster rate of genetic

improvement.  Also, procedures for estimation of genetic parameters and (co)variance

components for these discrete traits are more complicated then those required for other traits

with normal distributions.  There are two kinds of methodologies for genetic analyses of

sheep discrete reproductive traits: linear models and nonlinear models.  Nonlinear models

take the discrete nature of data into account and thus appear to be the more adequate

method.  However, these models are theoretically more complex  and computationally more

demanding than linear models.  Previous simulation and field data studies comparing the

performance  of linear and nonlinear models have been unable to reveal advantages of

nonlinear models relative to linear models (Matos, 1993; Meijering and Gianola, 1985;

King, 1991).  Analyses of discrete traits using the nonlinear models in sheep breeding are

scarce.

Over the last decade, restricted maximum likelihood (REML) has become the method of

choice for (co)variance component estimation in animal breeding.  REML has many

desirable statistical properties and is especially suitable for genetic analyses of large animal

breeding data sets with complex pedigree structures.   However, as for other methodologies

(ANOVA, Henderson’s methods, MINQUE, Beyesian approaches), REML is not free of

drawbacks.  For example, REML does not always eliminate all biases in parameter

estimation because many methods for obtaining REML estimates cannot return negative
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estimates of a variance component and few guarantees can be made concerning convergence

to global maxima.  

This study provides some insights into the applicability of REML in genetic analyses of

discrete data in sheep using simulation and field data.  In Chapters 3 and 4, two categorical

sheep reproductive traits, fertility and litter size in fall-lambing sheep, were chosen to study

the threshold theory.  Our special interests were estimation of genetic, permanent

environmental, and temporary environmental correlations between the two traits on both the

underlying normal and the realized categorical scales by derivative-free multitrait REML.

This simulation work also provided excellent material for studying the applicability and

robustness of the linear methodology in genetic analyses of normally distributed and

categorical traits.  The results generally supported transformation theory (Gianola, 1979) for

converting between heritabilities on the two scales, although the transformation performed

less satisfactorily for repeatability models.  Genetic correlations between the two categorical

traits generally were close to the input value, indicating no need for transformation.  On the

other hand, permanent and temporary environmental correlations on categorical scales were

significantly underestimated; thus some kind of correction is suggested.

In REML, temporary environmental covariances are directly estimated from residual sums

of cross-products divided by residual degrees of freedom.  Although this covariance is not

so important as the genetic one,  the relationship between the two could be important.  Two

additional data sets were simulated to evaluate the effects on genetic covariance estimation of

setting the temporary environmental covariance to zero.  The results clearly showed that

setting the residual covariance to zero reduced the estimates of the genetic correlation

between fertility and litter size on both scales.  However, the same likelihood was obtained

from the simulated data for both situations, indicating that the residual covariance was not

sensitive to the assumed parameters.
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It is generally believed that the use of mixed models can eliminate bias due to selection by

taking into account relationships among animals as well as effects of cumulative selection

and nonrandom mating, provided that all information related to the selection is included in

the analysis (Henderson, 1975).  However, few studies have examined if these properties

apply for categorical  data.  Thus, the repeatability models, with two independent traits or

two correlated traits with corresponding input genetic, permanent and temporary

environmental correlations of .5, were used to study effects of selection.  The conclusion

was that  REML can provide accurate  estimates of (co)variance components for normal data

with selection.  However, for correlated categorical traits,  failure of open ewes to produce a

litter size record tended to reduce genetic, permanent environmental, and temporary

environmental covariances and correlations.   Therefore, other methodologies involving

nonlinear approaches should be investigated for covariance estimation in future studies.

In Chapter 5, the genetic analyses were extended to the joint analyses of litter size with one

of several continuous growth or fleece traits.  The field data were collected from Suffolk,

Targhee and Polypay flocks participating in the National Sheep Improvement Program.

Summaries of results are shown in Tables 6.1 and 6.2.  Heritabilities for various growth

traits were slightly smaller than the average values of literature estimates (Fogarty, 1995)

and fairly consistent across the breeds.  Maternal genetic and maternal permanent

environmental effects were important for all body weights except for weaning weight at 90 d

for Polypay sheep, indicating that explicitly considering these effects should result in more

genetic improvements in growth traits.  Heritabilities for litter size were similar for the three

breeds and ranged from .09 to .11.  Permanent environmental effects for litter size were

small and not important.  In contrast, the heritabilities for the two fleece traits were high.
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In contrast to many previous studies (Al-Shorepy and Notter, 1996; Burfening and Kress,

1993; Maria et al.,1993; Nasholm and Danell, 1996), strong negative genetic correlations

between maternal and direct effects for growth traits for the three breeds were not always

obtained, indicating that a strong negative correlation is not a universal phenomenon as

implied by some scientists.  However, distinguishing other effects in the data, such as sire ×

year variation, negative dam-offspring covariance, or environmental effects, from a true

genetic antagonism would often be difficult (Robinson, 1996 a,b).  There was some

evidence indicating that direct genetic variance was often confounded with maternal variance

and direct-maternal covariance,  so that interpretation of genetic parameters for maternally

influenced traits from animal models is critically dependent upon the model(s) fitted to the

data (Meyer, 1992; Notter and Hough, 1996).

Generally no genetic antagonisms between direct effects or maternal effects for growth and

direct effects for litter size were observed.  Most of the estimates for these cross-trait genetic

correlations were positive or weakly negative, and thus do not impose serious problems for

simultaneous genetic improvement of litter size and growth.  

Three issues related to (co)variance estimation and likelihood ratio tests were also

investigated.  Some scientists have assumed no temporary environmental covariance

between growth and litter size because records for the two traits are taken at quite different

times: before 1 year of age for most growth traits and after 12 months of age for litter size.

Thus, a value of zero was used for the component (Waldron and Thomas, 1992).  The effect

of this assumption was investigated.  Generally, fixing temporary environmental covariance

did not affect the converged likelihood and parameter estimates although the corresponding

residual correlation (ranging from -.24 to .95) was often large.  Essentially the same

likelihoods were obtained irrespective of setting the covariance to zero or not, indicating  that

the likelihood ratio test is not sensitive to the component.  From a sampling viewpoint, it was
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highly unlikely that none of 14 estimates were significantly different from zero.  Further

studies about effects of data structure, REML methods and the Simplex process are

required to account for these high correlation estimates.

Limited evidence from some bivariate analyses (for example, between weaning weights at 60

and 90 days and litter size for Suffolk) suggested that the direct genetic correlation between

two traits and the genetic correlation between maternal effects for growth and direct effects

for litter size were confounded.  However, within-trait direct-maternal genetic correlations

usually were not dependent on the other two genetic correlations.

Sampling properties are important criteria to evaluate the applicability of various

methodologies in genetic analysis of animal breeding data (Hoeschele and Tier, 1995;

Meyer, 1989, 1992; Templeman and Gianola, 1993).  A minimum sampling variance and

correlation among different parameters are desirable.  In the context of REML, the sampling

properties are often expressed in term of the likelihood surfaces, and high sampling

correlations implies a maximum  along a flat ridge, i.e., an area where a constant sum of the

two parameters and the value of the likelihood change very little with changes in the

parameter values (Meyer, 1989).   High sampling correlations between two across-trait

genetic correlations, especially between litter size and growth for Polypay, were observed.  

It seemed that the flat surface for the correlations often occurred when one or both

parameters  themselves were flat.  The methodologies to obtain accurate genetic estimates,

and especially accurate genetic covariances and corresponding correlations, in flat ridge

conditions would be a major focus in future studies.    
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Table 6.1. Genetic parametera estimates obtained from “standard model (B5)’ or B15 for
the three breeds
___________________________________________________________________

h2 m2 pe2 ram
___________________________________________________________________

Suffolk

WW60 .19 .06* .11** -.33
WW90 .13 .04* .17** .25
PWG .17 - - -
LS .09-.10 - - -
___________________________________________________________________

Targhee

WW60 .14 .22** .10** -.90**

WW120 .16 .06** .08** -.10
PWG .44 - - -
YG .19 - - -
FWT .41 - - -
FD .50 - - -
LS .11 - .01-.02 -
____________________________________________________________________

Polypay

BW .19 .09* .21** -.36
WW60 .11 .11** .15** -.55*

WW90 .10 .02 .22** -.69
PWG .22 - - -
FWT .44 - - -
LS .09-.10 - .04 -
__________________________________________________________________
a: h2 = Direct heritability, σ2

a/σ2
p;  m

2 = σ2
m /σ2

pe; 
 pe2 = σ2

pe/σ2
p;  ram = Correlation

between direct and maternal additive genetic effects, where, σ2
a, σ2

m, σ2
pe and σ2

p are
genetic additive, maternal genetic, permanent environmental variance due to dam for
growth traits (or due to animal for litter size) and phenotypic variance.
*: P < .05.
**: P < .01
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Table 6.2. Correlationa estimates of growth and fleece traits with litter size
__________________________________________________________

Trait ra12 ra2m1
__________________________________________________________

Suffolk

WW60 .37-.39* .25-.35
WW90 .43-.51 .98-1.00**

PWG .16-.17 -

Targhee

WW60 .10-.22 -.18- -.23
WW120 .27-.48* -.35- -.36
PWG .44 -
YG .08-.09 -
FWT -.09 -
FD .29-.30 -

Polypay

BW .14-.27 -.13 - -.23
WW60 -.12 - -.15 .17-.23
WW90 .00-.44 .18 - .98
PWG -.05 -
FWT .09 -
__________________________________________________________

a: ra12 = direct additive genetic correlation of litter size with growth or fleece traits.  ra2m1 =
genetic correlation between direct effects for litter size and maternal effects for growth traits.
*: P < .05.
**: P < .01.
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