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(ABSTRACT)

While Geographic Information Systems (GIS) have proven to be effective tools for the

management and analysis of forest resources data, estimates of the reliability of area and

distance measures computed in GIS have been lacking. Using fairly weak assumptions regarding

the variability of point location errors, expressions for computing the mean, variance and

covariance of polygon area, and an approximate distribution for distance are derived.

Assumptions about point location errors include unbiasedness, independence between X

and Y coordinate errors, known and equal variance of errors in X and Y coordinates, and

correlation between errors at adjacent points. For the derivation of distance from a point to a

line, the assumption of normality of errors is added. Because the variance of polygon area that

was derived depends on the location of the centroid, a centroid location which minimizes

polygon variance was defined.



After the mean and variance of polygon area errors were obtained, polygon area was

shown to be approximately normally distributed in a simulation of errors in regular polygons.

Distance between a point and a line consists of two cases: distance from the point to a vertex of

the line, and perpendicular distance to a line segment. The square of vertex distance was shown

to be distributed as a non-central chi—square random variable when normal errors are assumed.

The normal distribution was demonstrated to be a reasonable approximation for perpendicular

distance under similar assumptions.

As an application of the polygon variance and covariance formulas, the variability of

value of a tract of land was estimated, based upon fixed per-acre values and assumptions

regarding variability of location errors. Under moderate assumptions of variability and

correlation, the coefficient of variation of mean tract value was 8%. To demonstrate the

application of the distribution of distance, a probabilistic point-in—polygon analysis was

performed using timber cruise plot locations in a timber stand map. Over half of the plots were

ambiguously located when evaluated using the most liberal set of assumptions tested. The

advantages and disadvantages of the models developed herein are discussed.
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Chapter 1 - INTRODUCTION

GEOGRAPHIC INFORMATION SYSTEMS IN FOREST MANAGEMENT

Forest resource management is, by its nature, concerned with spatially occurring

phenomena. Data collected and used by ruource managers are associated with earth locations.

Decisions made by forest managers are typically implemented at specific situ. It comes as no

surprise, therefore, that foruters have exhibited a great deal of interut in Geographic

Information Systems (GIS).

The tremendous invutment in GIS systems recently by public and private forestry

organizations has helped to create a substantial market for computer mapping hardware,

software, and servicu. Even a cursory review of current literature suggests that nearly all large

forestry organizations (those managing perhaps 500,000 acres or more of land) rely upon GIS for

spatial data management and analysis. If the pruent trend continues, it is not difficult to

imagine that within the next decade, almost every acre of professionally managed forut land in

North America may be represented in digital form in some GIS system.

While most foruters using GIS recognize that their data and ruults contain error, this

acknowledgement is not communicated to users of these analysu unlus specific statements are

made as to accuracy and precision. Users of forut resource reports and inventory estimates may

be quite accustomed to statements about accuracy and precision. Thue statements may come

in the form of confidence intervals or standard deviations, and acknowledge the probabilistic

1
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nature of the figures reported. However, this stochastic treatment of the attributcs of spatial

phenomena has not been extended to a stochastic treatment of the location of spatial

phenomena. Recent GIS literature and studies have begxm to call attention to this serious

shortcoming.

Forestry reprments only one aspect of GIS use. Concurrent with widespread application

of GIS in forestry has been its growth in such üelds as urban and regional planning, geologic and

hydrologic investigations, automated cartography, land records management, and utility

mapping. The forestry perspective on GIS often diH°ers from some of these other applications.

, For example, forestry applications are characterized by large area coverage, small scale maps,

quantiücation of many·variable phenomena, and an orientation towards analyses and provision

of summary statistics, in addition to production of cartographic products. For this reason,

many of the studim of GIS errors performed by practitioners in other fields may not be directly

applicable in formt management situations.

CONCERNS ABOUT ERRORS IN GIS

Numerous recent articles have called for studim on the sources and effects of GIS errors.

A new National Science Foundation consortium on GIS has selected accuracy analysis as its

primary initiative for rmearch. Most studim on error reported so far have considered a

classification of the sourcm or types of errors, or have viewed error and accuracy from the

perspective of the map producer. Some of the accuracy studies have rmulted in qualitative

descriptions or models of spatial error, which are not appropriate for quantitative analyses.

Thus, while cartographers have been investigating spatial error from a map producer’s
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orientation, and in a somewhat qualitative manner, foresters are also concerned with

quantiiication of error from a user’s point-of-view; e.g., the likelihood that estimated tand

acreages are correct.

The primary expression of spatial error that has been used to date is a positional

accuracy statement such as that included in the United States National Map Accuracy

Standards (Thompson, 1979):

"For maps on publication scales larger than 1:20,000 not more than 10 percent

of the points tested shall be in error by more than 1/30 inch, measured on the

publication scale..."

However, such a statement does not provide a map user with any information on the impact of

locational errors on resulting area or length estimates, and therefore does not communicate

much information relevant to the forestry user’s application.

An example of what is missing from GIS accuracy studies is a quantiiication of the

variability of area estimates. Acreage ügures are pervasive in the data used in resource

Y management decisions. Yet when acreage iigures are printed on a map or in a report, there is

rarely any indication that these are estimates. When resource variables such as timber volume

are expressed on a per-acre or per·hectare basis, the implication is that these numbers will

eventually be multiplied by an estimate of area. Therefore, area errors will have a

multiplicative effect in many analyses, and an error statement becomes important.
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APPLICATIONS OF A SPATIAL ERROR MODEL

The application of GIS in forestry would be greatly enhanced by an explicit recognition

of the errors in digital spatial databases and a more thorough understanding of the impacts of

these errors on the resource management decisions which rely upon GIS analyses. First, since

forestry GIS databases typically contain information from a variety of sources, scales, and

accuracies, it would be helpful to incorporate information regarding the quality of the source

data into the database itself. Next, once information is available regarding the variability of

source data (or if assumptions can be made about this variability), a technique is needed to

translate information about positional variability into information about area or distance

variability. For example, a procedure to derive confidence intervals on the area of timber stands

(given a map and some statement or assumptions about its locational precision) would be

valuable. Such a procedure should be statistically sound, capable of being automated and

included in typical GIS analyses, and sufliciently flexible to accommodate different assumptions

about source data variability.

A model of spatial error in a GIS would contribute toward a better understanding of the

relative magnitude of spatial errors and attribute errors. If estimates of area are found to be

more variable than estimates of per-acre values, for example, a dißerent allocation of inventory

resources may be in order: more on deriving area estimates and less on per-acre value estimates.

On the other hand, if area estimates are found to be less variable than previously assumed,

perhaps more confidence in GIS analyses would be justified.

Another use of a spatial error model would be the analysis of error propagation through
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the combination of various source maps in map overlay procedure. At preent, concerned GIS

users have expressed uneasines about the reliability of overlay products. A quantiücation of

possible range of error would be quite useful, and would require an error modeling capability.

STATEMENT OF PURPOSE

The purpose of this study is to develop a procedure for incorporating information or

assumptions about the locational variability of data in GIS database into analyse typically

encountered in forestry applications of GIS. This will be done by creating a stochastic model of

area and distance errors based upon assumptions about locational accuracy. Next, a method for

expressing area and distance variability to a GIS user wiH be developed; this method will be

suitable for automation in the type of GIS systems currently popular in foretry applications.

Finally, the use of the model and its interpretation will be demonstrated through example

applications typical of forest management decision processes.



Chapter 2 · LITERATURE REVIEW

This study will consider those aspects of errors in GIS that are pertinent to forestry GIS

users. Therefore, an overview of the main features of GIS and a discussion of forest

management applications is in order.

DEFINITION AND IMPORTANCE OF GIS

Cowen (1988) recently reviewed some defmitions of GIS and concluded: "GIS is best

defined as a decision support system involving the integration of spatially·referenced data in a

problem-solving environment? As noted in the Forestry Handbook (Wenger, 1984) the purpose

of Geographic Information Systems
“is

not so much to draw maps as to provide information on

the spatial location of the resources". In the first comprehensive text on GIS, Burrough (1986)

lists the five basic sub-systems necessary in GIS:

1) Data input and verification;

2) Data storage and database management;

3) Data output and presentation;

I
4) Data transformation;

5) Interaction with the user.

While a.ll the above modules are necessary, the one that sets GIS apart from automated

drafting systems is the connection between the spatial information and a database management

system containing resource attribute data.

6
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Geographic Information Systems have evolved over the recent years into eüective means

of accomodating exactly the types of spatially—referenced data that forest managers rely upon.

Prior to the development of modern GIS systems, resource data were either analyzed apart from

their lspatial context, or combined through a tedious manual process of drafting and overlaying

of translucent maps of the same scale (McHarg, 1971). The advent of computerized map

analysis techniques has initiated a revolution in the way spatial analyses of resource data are

performed. It is now possible to readily combine diverse maps of different sources and scales,

and to perform complex analyses such as proximity analysis, spatial routing, and multiple map

overlay (Johnston, 1987). Physical products such as colored thematic maps, perspective view

diagrams, and spatially aggregated reports can now be generated in considerably less time than

ever befone. All these capabilities introduced by GIS have provided the resource manager with

analytic powers that will change the way resource management decisions are made and

implemented (Shumway, 1986).

The rapid infusion of GIS technology into resource management organizations is

evidenced by the investment in such systems. The money spent by public and private forestry

organizations on GIS hardware and software alone has helped create a market for GIS which

could reach $500 million by 1991 (Lang, 1988). The initial purchase of a GIS system represents

only a fraction of an investment in GIS. Creation of the digital spatial databases used in GIS

requires an even larger expenditure than does the initial system acquisition. A huge market for

GIS database "conversion", or digitizing, services has been spawned by this demand.

Employment opportunities for those with GIS skills have abounded in both the companies

providing systems and services, and the companies and agencies which are considered the "end

users” of GIS technology.
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FOREST MANAGEMENT APPLICATIONS OF GIS

Forestry applications of GIS often differ from cultural applications (urban planning,

utility mapping) and from the growing land records management applications (which usually

refer to a Land Information System - LIS, or a cadastre). Several contrasts between these

applications can help identify the relevance of accuracy studie.

First, the scope of foretry operations in which GIS typically have been applied is larger

than in many other fields. Foret products companie and public resource management agencie

using GIS may be responsible for the management of hundreds of thousands of acres of forested

land, often extending over numerous counties and multiple state. In contrast, most other non-

forestry applications of GIS are concerned with citie, counties, development areas, or regions of

smaller size. In public foret management, the scope of responsibility usually includes multiple

resource concerns. For example, while private foretry companie may be interested in prirnarily

timber, and perhaps wildlife resource, the U.S. Forest Service must also consider cultural

resource (archeological sites and historic features), water reource (sensitive soils, watersheds,

surface and subsurface water quality and quantity), mineral resources, recreation facilitie and

opportunities, and non—game wildlife specie and habitats. This depth of interest create a need

for multiple "layers” of spatial data which cover the same areas on the earth. For example, in a

workload analysis for a GIS to be installed at the George Washington National Foret in

Virginia, 49 data layers were identified (Tomlinson Associate, 1985). While some non-foretry

applications of GIS (such as regional planning) may also require attention to multiple reources,

they rarely cover the areal extent that many foret management companies or agencies must

deal with.



·

In keeping with the broad scope of formtry GIS, data are typically recorded at a smaller

scale. While some municipalities utilize GIS databases at source scales as large as 1:1200

(Hanson, 1988), the broad scope of formt management GIS usually requires coverage at a much

smaller scale. Scale is a critical consideration in error analysis since small scale maps are almost

always more generalized than larger scale maps, and since a given error on a small scale map

will represent a larger offset on the ground than an error of the same magnitude on a large scale

map.

The forest resource, being a biological one, is often more difficult to delineate and

measure as precisely as man-made featurm. For example, boundarim of formt stands or soils

units cannot be mapped at the same level of precision at which cadastral mapping of ownership

boundarim is performed. As noted by Goodchild and Dubuc (1987), natural resourcm data

differ in character from socio-economic data, which may include primarily lines arbitrarily

defined by man (such as administrative and political boundarim). The authors note: “Lines

which follow streets are likely to have very different errors from linm which are defined to follow

rivers..” Thus, the nature of the features being mapped imparts an important characteristic to

mapping errors.

The orientation of formtry GIS is more towards measurement and analysis than towards

production of a physical map product. In many GIS systems used by cartographers or planners,

the GIS is a means to produce a physical map, which is the end product (Weibel and

Buttentield, 1988). In contrast, in most formtry GIS applications, the map is a means of

reprmenting spatial phenomena which are often combined with economic data and operational

parameters, and an integrated analysis is the end product (Sieg, 1988). Consequently, a GIS

which never produces a physical cartographic product may still be extremely useful to a formt
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manager. Goodchild (1980a) notes "The most useful products of a geographical information

system are measures of some kind, such as the area of a homogeneous patch of land of certain

characteristics, the length of a line, or the distance between specified points." The orientation of

any accuracy study in forestry will need to focus not so much on the planimetric accuracy of a

map product as on the accuracy of the spatial extent (distance and area) of the phenomenon

being mapped. Indeed, accurate location of a feature on a forester’s map is rarely as critical as

accurate expression of area or distance.

Some non-forestry applications of GIS require very high levels of accuracy and precision.

For example, some land~records-information systems contain legal, authoritative descriptions of

land ownership, and accuracy is critical (Sonnenburg, 1988). Forestry applications of GIS may

vary widely in the required accuracy and precision. In many forest management situations, the

GIS is used only as a first step in identifying areas for treatment or study. Rarely will such

decisions be implemented on the ground based solely upon information from a GIS. A prudent

manager would typically precede any costly management activity with tield veriiication of

information leading to the decision. For example, when selecting timber stands for fertilization,

a query of the stand and soil attributes contained in the GIS might be perforrned to identify

potentially responsive stands. These candidate stands would then be reviewed in the field prior

to making a final selection. Thus, when absolute location of a feature is needed for

implementation of a decision, it will usually be obtained from an on-site inspection, not from a

map. In an article on a decision-support system involving GIS, Covington et. al. (1988) state

that their system "is thus an interactive tool that ultimately depends on human judgement and

expertise for a tina] decision". This "preliminary selection" type of GIS application does not

require a high level of accuracy and precision. At the other extreme, payment for contracted

silvicultural treatments is commonly made on a per·acre basis. Often, GIS is used in
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conjunction with aerial photographs to determine acreage treated. In cases in which per-acre

treatment costs are high, the financial impact of errors in area estimates can be signiücant.

DATA STRUCTURES

Because this study will deal directly with the representation of spatial features in a GIS,

a discussion of the manner in which features are recorded is appropriate.

A GIS database typically contains spatial features which are identified by unique labels

or code numbers, and which are recorded in one of several formats. Information about the

attributes of a feature is then contained in a database management system (DBMS) and cross-

referenced with the spatial feature by the label or identiüer code (Parker, 1988). For example, a

timber stand in a GIS may be identified by a stand number, which servcs as an index to records

in a DBMS which contain the attributes of the stand, such as height, age, site index, density,

stocking, volume, etc. (Figure 1). The aggregation of data for all features of a given type in the

spatial and attribute database comprises one “layer" of information, e.g. the timber stand layer.

Additional layers pertaining to other feature types might be included in the same way to contain

information on soils, wildlife, recreation, transportation, economic criteria, etc.

GIS can be divided into two broad categories based upon the data structure, or the way

in which spatial features are represented in the computer. These are commonly termed "raster”

and "vector" structures. Much has been written about the differences between them, and their

relative advantages and disadvantages. Maffini (1987) states: "Both raster and vector data
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structure have a place in GIS and will continue to prevail for many more years”. Peuker and

Chrisman (1975), Monmonier (1982), Peuquet (1984), and Burrough (1986) are excellent source

for discuions of cartographic data structure.

The older of thee structure is the raster, or pid cell structure, in which the land

surface is repreented by a regular tessellation, usually rectangular grid cells, which are

registered to earth coordinate. In this structure, ground attribute are recorded for each cell, or

pixel, in the grid. The earth location of each item of information is implied by its position in

the pid. Thus, a feature such as a timber stand is repreented by a collection of adjacent grid

cells, each encoded with a label correponding to the stand. In the digital database of a raster

system, a logical record typically consists of a concatenation of the numbers or letters

repreenting cells in a row or column of the pid. The pid structure has been used extensively

in conjunction with data derived from satellite, due to the raster format of digital remote

sensing products. However, this structure require a great amount of computer storage space

when the reolution of the pid cells is fine. Raster storage is often ineüicient for repreentation

of sparse linear networks or for point feature. Large grid cells are generally undeirable because

of the depee of generalization involved when recording only one feature label per cell. Large

cells also produce blocky, les appealing output products unles the scale of the product is small

relative to the reolution of the pid. One advantage of the pid cell structure is that it remains

the primary technique for computer representation of data that vary continuously across the

landscape, such as elevation (Carter, 1988). In addition, almost all computer graphics display

device use a raster structure. For thee reasons, the grid cell structure will continue to be used

depite its shortcomings.

In the vector format, feature on the earth are identified as 0-dimensional (points), 1-
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dimensional (lines), or 2—dimensional (polygons). Cartmian coordinatm, such as state plane zone

or Universal Transverse Mercator (UTM) coordinates are recorded for points. These earth

coordinatm arc derived from mathematical projections of the curved surface of the earth onto

planes (see Snyder, 1982). State plane coordinates record the location of a point in feet, relative

to an arbitrary origin defined for each zone. UTM coordinates typically reprment the location of

a. point in meters relative to a UTM zone origin. Thus, a point is defined by a northing, or Y-

axis distance, and an casting, or X-axis distance, in feet or meters. The X, Y coordinate of a

point is therefore the fundamental element of which higher order features (lines and polygons)

are composed.

There are at least two subtypes of vector structures. One is called the polygon format,

in which lines are encoded as a series of points (sometimes called vertices), and polygons are

encoded with a complete list of the points that make up the lines that bound them. When

encoding adjacent polygons using this structure, all the boundary points that are shared by

polygons are recorded twice: once for each polygon. While this technique allows all the points

comprising a polygon to be located close together in physical computer storage (which speeds

some processing steps), it involvm a redundancy of all points shared by more than one polygon.

Another vector structure is called the arc-node format. This structure definm nodm as

the endpoints of arcs, which are strings of points (see Figure 2). As in the polygon structure,

points are represented by single coordinate pairs. Lines are created by linking connected arcs.

Polygons are then identified by indicating a series of connected arcs which close. This data

structure is more complex, involving numerous pointers which cross-reference nodm, arcs, and

polygons, yet provides more efficiency in storage. It is this structure which has gained the most

popularity in formt management applications in the recent years, and is the structure which
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will be used in this study, for reasons which will be diseussed later.

It is important to note that in neither of these vector structures are actual lines or

vectors explicitly recorded. Rather, lines, ares, and polygons are implied by the adjacency of

point eoordinates in computer storage. Any error model for vector structures must recognize

that these structures really involve only points and that the relationships between them are

implied.

Other data structures exist, such as quadtrees (Rosenfield, 1980), generalized balanced

ternary structures (van Rloessel, 1988), and vaster structures (Peuquet, 1984). However, these

have not yet found wide acceptance and will not be considered here.

CALLS FOR ERROR STUDIES

As geographical information systems have developed technologically and expanded in

application, more attention has been focused on the reliability of the results coming from these

systems. Numerous authors have called for map-makers to begin providing error statements

that are more directly interpretable by map users (Bennett, 1977; Aronoü, 1982a; Chrisman,

1984a; Bailey, 1988). Others have noted that more research is warranted in this area. Vitek et

al. (1984) state
“We

believe that the next step in the reünement of geographie information

systems is specifying the aecuracy of the output products". As recently as 1987, Berry (1987)

noted that this has not been accomplished: "... effective procedures to spatially eharacterize map

variance and model uncertainty have yet to be developed".
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The National Science Foundation recently established a National Center for Geographic

Information Analysis. Accuracy analysis has been selected as the first research initiative of this

center (Goodchild, 1988). An entire chapter in Burrough’s textbook (1986) is devoted to error

analysis and GIS accuracy. All of these sources indicate the strong interest in better models and

procedures for dealing with the various aspects of errors in GIS.

ERRORS IN GIS — INTRODUCTION

Before discussing the literature on GIS error studies, the use of the term “error” must be

placed into context. First, the terms "error" and "va.riability" are sometimes used

interchangeably, and can lead to some confusion. Use of the word error may seem to some to

imply that a mistake has been made, or that a recorded value is incorrect due to some fiaw or

defect in the data collection proc »«·: On the other hand, variability is concerned with deviations

from a mean, which may or may not be the
“true”

value of interest. Thus, the term variability

is often used in recognition of the fact that a "correct” or "true” value may not exist, or may be

unkuowable. This is often the case in natural resources, which contain a great deal of

randomness, or in which attempts at precise quantification may be clouded by poor definition of

terms. For example, the use of site index values to represent the potential height growth of a

timber stand does not imply that all trees of a given species growing on a given site will achieve

a specified height at a given age. Instead, site index is defined as an average height of dominant

or codominant trees at a base age (Avery and Burkhart, 1983); this usage accommodates the

natural variability of forest ecosystems. Thus, when measured heights of trees do not

correspond to a height predicted from site index equations, the difference, or error, does not
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necessarily imply that a mistake has been made. Similarly, the map location of a boundary

between naturally occurring features should be taken to represent a tendency of objects of

different types to occur on opposite sides of a possibly non-existent line (Averack and Goodchild,

1984). For example, an experienced forester is not at all surprised to note that hardwood trees

will exist in a timber stand designated on a map as "pine".

The point here is that the term “err0r” will be used in this study to indicate that a

there is a difference between features as they exist on the earth and the abstraction or

representation of those features as they are portrayed on a map or in a digital data file. Switzer

(1975) refers to reality as a "true map” and to any map at hand as an "estimated map". The

difference between the "true map" and the "estimated map" constitutes error. Sometimes this

diüerence is due to a i]aw or defect, but often will be due simply to the inherent variability of

the features being mapped.

Another point about error in maps and spatial databases is that errors are inescapable.

The mapping process is one of creating a model of reality, and as such requires generalization

(Peuquet, 1984). This generalization step necessarily involves the loss of some information, and

results in a difference between the model and reality; it results in error. As Goodchild (1982)

points out, the generalization process is one of “error that is deliberate". In addition to

requiring generalization, mapping usually involves the representation of features ou the curved

surface of the earth by a plane, which immediately introduces errors in distances, areas, shapes,

and/or relative angles. Thus, spatial errors can be aclmowledged to be inevitable, and can be

considered to include natural variation.
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ERRORS IN GIS · CATEGORIZATIONS

Several recent works have provided classifications of GIS errors. Mead (1982) listed

numerous important causal factors in GIS errors, including source map scale, age of data,

completeness, degree of modiücation, and others. His purpose in categorizing such errors was to

enable different source materials to be compared for possible inclusion in a database. Walsh et

al. (1987) categorized errors as "inherent” (dealing with source materials), and "operational"

(deriving from the process of being manipulated in a GIS). However, while their categorization

pointed out the different stages in which errors may occur, it did not permit classification of

individual errors into one of their categories. For example, according to their definitions, a

source map error, if propagated through a GIS manipulation, becomes an operational error.

Burrough (1986) describes the foHowing three groups of error sources:

I) Obvious sources of error,

H) Errors resulting from natural variation or from original measurements, and

HI) Errors arising through processing.

When discussing errors in topographic data, Vitek and Richards (1978) note that both

horizontal and vertical errors are possible. However, it may be impossible to distinguish

between them. For example, consider a grid representation of an elevation surface, as in Figure

3. The value in each grid cell represents the elevation in feet above mean sea level (MSL) of a

given location on the earth’s surface. If the true elevation of cell A were known to be 115 feet

above MSL, we could say that the cell was in error. However, we could not say reliably whether

a vertical error of 5 feet had occurred, or whether a horizontal error had occurred, in which case

the cell directly to the east of cell A was positioned improperly. Therefore, in grid data sets
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Figure 3. Example of a gridded elevation surface. Cell values represent feet above mean sea

level (MSL).
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such as this, while hard to categorize, error is relatively easy to diagnose: the value recorded for

a cell does not match the "truth" for that location on the ground. This is not the case in vector

systems, in which a boundary may be misplaced and the attributes of areas adjacent to the

boundary may be in error.

The horizontal and vertical errors mentioned by Vitek and Richards correspond to the

boundary and classification errors mentioned by Hord and Brooner (1976), and to the positional

and attribute errors described by Chrisman (1987a). Chrisman notes that the inaccuracy with

which a line is drawn is sometimes due to the indeterminacy of attribute definitions. As an

example, he suggests that the problem with drawing wetland boundaries may lie more with the

definition of what constitutes wetland than the ability to locate areas on the ground.

The above categorizations of GIS error serve mainly to organize our thinking about the

diverse kinds of errors which contribute to the failure of a map to accurately depict reality. By

refining the classification of Walsh, et al. (1987), it may be useful to distinquish between errors

present in source materials, and those introduced in the »:~: of digitizing and manipulating

data in a GIS database. A review these types of errors will be helpful in understanding the

structure of GIS errors in general.

ERRORS IN GIS - SOURCE DATA

Source data errors may be considered to be either locational or attribute errors

(Chrisman, 1987a), acknowledging that it is sometimes impossible to distinguish between them.
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Most data in forestry GIS databases come from physical maps. Thus, any errors existing in the

source maps will likely remain in the digital data. Attribute data are typically derived from

field inventory and entered into a DBMS which is integrated with the GIS. Thus, for the

purposes of this review, locational and attribute source errors may be considered separately.

Locational source errors are introduced in the mapping process. The majority of natural

resources maps used by foresters originate from aerial photographs. Even USGS topographic

quadrangle maps, often considered as ultimately reliable base maps, are derived from

photogrammetric processes. Thus, all the elements of the photogrammetric system used in

creating source maps may contribute to GIS errors. Camera lens distortions, scale variation due

to camera tip or tilt and topographic displacement will all contribute to map errors. Substantial

attention has been paid to these sources of error in the photogrammetry literature (Wolf, 1974;

Slama, 1980; Smith, 1987; Wiles, 1988). Human factors enter when aerial photographs are

visually interpreted for delineation of features, and when the human hand is used to retrace

lines. "Fuzzy", or indeterminate, boundaries (e.g., wetland borders) complicate the

interpretation process and lend another level of variability. Maps derived from non-

photogrammetric sources (field surveys, sketch maps, etc.) will also contain errors from such

sources as faulty or misread instruments, failure to adjust for magnetic declination, procedural

or arithmetic mistakes, etc. (Breed et al., 1971).

Attribute errors include misclassiiication of features, errors in measurement of feature

attributes (e.g., tree heights), modeling errors when attributes are estimated (e.g., timber

volumes), sampling errors, and direct blunders in recording or transcribing data. In addition,

generalization errors occur when a single value is recorded for an area of land, and an

unwarranted degree of homogeneity is implied (Leung, 1987).
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ERRORS IN GIS · PROCESSING

Processing errors may be defined as those errors that result from the entry and

manipulation of data in a GIS database. These errors begin with digitizing. Manual digitizing

is much like drafting, and includes both physiological and technological factors which contribute

to error. Some of these factors have been discussed by Traylor (1979) and modeled by Keefer

(1988). Implied in the term “digitizing" is the process of assigning discrete values to

continuously occurring phenomena. This computerization of coordinates requires use of numbers

with fmite precision; thus, some rounding error is inevitable. In addition, when lines are

digitized, a finite subset of points is selected from the infinity of points contained in a line.

Thus, digitizing is a sampling process and introduces a sampling error. Furthermore, digitizing

usually represents a redrafting of a line from some source map and is therefore essentially a

generalization of an already generalized line.

An integral part of computerizing spatial data is "registration", or the referencing of

points on maps to earth coordinate systems. A variety of techniques are available for registering

maps, and with the exception of some work by Petersohn and Vanderohe (1982), little attention

has been paid to the influence of the registration process on spatial errors in databases. There is

a deiinite need for further study in the area of registration error, but it is beyond the scope of

this study.

Once spatial features have been digitized into a vector system, they are represented by

collections of coordinate pairs. Typieal GIS algorithms such as proximity calculation, overlay

analysis, scale change, coordinate translation, and plotting involve arithmetic manipulation of
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these coordinates. Several authors have discussed the impact of finite computer precisiou on the

accuracy of geographic data after such manipulation. Morrison (1980) suggested that computer

precision represents the limiting resolution with which maps can accurately be portrayed, but

this is refuted by Blakemore (1984) and Burrough (1986). One possible approach to resolving

numeric precisiou problems is simply to allocate more storage for higher precision. Chrisman

(1984b) has discussed some aspects of the finite precisiou of computer coordinates, and suggests

"we should push for computer maps that show the graininess and imprecision of our basic

information". He argues for judicial selection of a suitable level of precisiou and notes that

using double precision (64-bit fioating point) coordinates, "a whole world inventory can be

carried to the incredible precision of locating individual viruses”. Yet as Franklin (1984) points

out, limited precisiou of coordinates can lead to undesirable results when algebraic

manipulations are performed. As an example, he demonstrates a case in which an adjacent

point and line are each rotated by a common angle, with the result that the rotated point moves

to the opposite side of the rotated line. Thus, computer precisiou may play an important role in

GIS processing errors.

A final type of processing error is the compounding of error in map overlay. This

subject has intrigued a number of investigators. One of the earliest treatments of overlay error

was by McAlpine and Cook (1971), who first noted the problem of map overlays which resulted

in very large numbers of very small polygons which bore little or no agreement with the initial

map descriptions. Goodchild (1978) followed the problem of these “spurious" polygons, and

noted that the more vertices (points) used to define lines, the more spurious polygons were

created. This result implied that the more detail used to draw a line, the more problems it

would generate in a map overlay. MacDougall (1975) reported a pessimistic analysis of map

overlay accuracy, concluding "... some overlay maps may indeed differ little from random maps
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and contain more error than the compilers and users probably realize". Bailey (1988) seems

to concur, stating
“Map

overlays may be so inaccurate or unable to capture significant units of

productivity and ecological response as to be of questionable value for planning". Chrisman

(1987a) argues for a more positive outlook: “While map error should not be ignored in map

overlay, the estimates of MacDougall should be replaced by empirically derived test results.

Combining information from diverse sources can actually strengthen the value of the

information, not degrade it”.

The problem of accuracy analysis in the process of multiple map overlay has been

discussed from the perspective of a grid-based GIS by Newcomer and Szajgin (1984). They note

that the accuracy of a product of map overlay is a function of the spatial coincidence of errors in

the component maps. The highest accuracy that can be achieved in an overlay map is only as

accurate as the most erroneous input map source. This level of accuracy is achieved when all

the errors in all the component maps occur at the same places. The worst case of error occurs

when none of the errors in the source maps occurs at the same place; in this case the accuracy of

the overlay map is the mathematical product of the percentage accuracies of the component

maps. Newcomer and Szajgin’s analysis is very useful for grid-based GIS, but does not apply to

vector systems.

Burrough (1986) provides an example of the compounding of attribute error in map

overlay. Using the universal soil loss equation, which might be a typical application of GIS

overlay analysis, he examined the impact of realistic errors in predictor variables on the

variability in predicted soil loss and noted “95 percent of the cells having the climate/slope/soil

regime specified here would have a soil loss ranging between 3 and 21 cm". The conclusion

indicated here was that even moderate errors in single map layers may combine in an overlay
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analysis to yield an unacceptable error in the reulting map.

GIS operations such as map overlay may have a drastic impact on the locational and

attribute accuracy of maps produced in routine GIS analyse. Error propagation is a serious

topic, and one continually being studied. It has been examined in a raster context (Newcomer

and Szajgin, 1984), or with an emphasis on "sliver" or "spurious" polygons (Goodchild, 1980a),

or with a focus on attribute errors (Burrough, 1986). However, a statistical analysis of the

spatial errors reulting from map overlay in a vector system has not been reported. In any

analysis of errors in foretry GIS (where overlay is common), consideration must be given to this

subject. The closely related topic of detecting spurious polygons also merits further study.

When a map overlay produce numerous small "sliver" polygons, the quetion arises: "Are these

signiticant feature on the landscape or are they artifacts of the precision and accuracy of the

data and the computer algorithms used?" Some GIS software products (e.g., ESRI’s

ARC/INFO) provide an option for the analyst to specify a threhold parameter which prevents

such spurious polygons from being created. However, published discussion of such capabilitie

has been concerned primarily with producing aethetically pleasing map products, not reliable

information.

METHODS FOR DEPICFING AND ANALYZING A'I'I‘R.IBUTE ERRORS

Since the attribute recorded with spatial feature are an integral part of GIS systems,

some attention must be devoted to attribute errors. However, this is relatively easy, since

attribute take the form of numbers and labels which are familiar, and for which methods of

portraying uncertainty have been etablished. Attribute of spatial phenomena, like any
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measures, may take the form of nominal, ordinal, interval or ratio values. Numeric variables

(including interval and ratio data) may be dealt with in conventional statistical manners.

Variability may be expressed as estimates of standard deviation or variance, or as confidence

intervals. Derivation of these expressions of uncertainty are well explained in statistical texts

and need not be repeated here. Examples in forestry situations are easy to find, and may

include: estimates of timber volumes with accompanying variance figures, height measurements

"plus or minus” a contidence interval half-width, and ranges on numbers of organisms per xmit

area.

Nominal data are common in GIS systems in the form of “thematic maps", sometimes

referred to as “choropleth maps". These maps contain polygons that are labelled as belonging

to categories, such as timber types or soil units. Attribute errors in nominal data take the form

of misclassifications. While locational errors may also lead to misclassifications (as in instances

of faulty registration), misclassification error will be considered here to be primarily an attribute

error. This type of error has been commonly encountered in land cover mapping, and is

discussed at length in the remote sensing literature (Campbell, 1987; Congalton ct al., 1983;

Chrisman, 1980).

The conventional way to express misclassifications in thematic maps has been the

contingency table or error matrix. Cross-tabulation of pixels for which both the classification

and the reference ("truth") categories are known can provide a user with valuable indications of

the suitability of the map for different purpom (Chrisman, 1982a; Prisley and Smith, 1987).

Entries along the diagonal of an error matrix indicate the number of correctly classified pixels in

various categories. Off-diagonal entries represent misclassifications. A variety of expressions,

such as "producer’s accuracy" and “cousumer’s accuracy" (Story and Congalton, 1986) can be
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derived from contingency tablu.

Aronoff (1982b) proposed another technique to use contingency tables to communicate

misclassification ratu to map users. His perspective is one of accepting or rejecting maps as if

they were hypothuis tuts. While this may not commonly occur in practice, it does encourage a

statistical consideration of a map as an utimate. Aronotf ditferentiates between the concerns of

the map producer and the map user, deüning "producer’s risk" (that of incorrectly rejecting an

accurate map) and “consumer’s risk” (that of accepting a map of insufiicient accuracy); these

risk classiiications are analogous to Type I and Type H errors in hypothesis tuting. While the

accept/reject decision may not be applicable, AronotT's suggestions for communicating

information regarding map uncertainty to the map user are important. Most applications of

contingency tablu have been in conjunction with classifications of satellite imagery for land use

or land cover mapping or other raster·format data (Greenland and Socher, 1985). There is no

reason that contingency tablu cannot be produced for vector·based maps; the concept is

independent of any underlying structure to the data. However, in practice, reports including

contingency tablu have almost exclusively dealt with raster-format digital maps.

Attribute errors have been studied by Jenks and Caspall (1971) in the context of

choroplethic maps. Their concern was that choroplethic (categorized) maps are a generalization

of reality in that continuous spatial distributions are represented by discrete categoriu. In order

to evaluate the error involved in this generalization, they considered several techniques for

dividing a continuous variable (per-acre value of farm products in Illinois) into categories. A

three·dimensional map of the state of Illinois which portrayed value of farm products by county

was produced using each technique, and errors were calculated as the difference in the various

representations. Their analysis suggested appropriate methods for separating spatially-
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continuous phenomena into discrete categories; however, no attention was paid to errors in

location, only in attribute representation.

An analysis of attribute errors by MacEachren (1982) involved a similar treatment of

attribute errors. In this study, accuracy of a thematic map was related to the variability of the

data being categorized, the size of the enumeration units, and the compactness of these units.

Again, spatial location of enumeration unit boundaries were considered to be invariant, and only

attribute errors were evaluated.

METHODS FOR DEPICTING AND ANALYZING SPATIAL ERRORS

A number of models have been developed to portray and/or analyze spatial errors in

maps. A review of the more prominent and relevant ones is appropriate here.

Basis: müs};

Since the raster data structure has been applied for a longer time than the vector

structure, there have been more studies focussing on errors in a raster context. For example,

some work by Frolov and Maling (1969) was concerned with the accuracy of area estimates

based upon dot grid counts. Their results are directly applicable to raster-based GIS systems,

and have been further discussed by Muller (1977), Goodchild (1980a), and Burrough (1986).

Several of these authors have been interested in determining the variability of area estimates

using grid structures, and agree that this variability is dependent on the resolution (dimension)
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of the grid cells. Thompson (1981) related errors in area estimates not only to grid cell size,

but also to shape of regions; he employed a shape factor based upon a ratio of perimeter to the

square root of area. Switzer and Venetoulias (1987) also note that misclassification rates can be

related to grid cell size. Detailed results of these raster studies are not directly applicable to

vector data structures; however, some of the underlying concepts (such as the relationship of

error to resolution) can be carried into the vector domain.

Ih: Em Bumm Mszdsl

Some recent attempts at expressing the uncertainty of map information have utilized a

mathematical framework called fuzzy set theory. Fuzzy set theory acknowledges that some

concepts are "fuzzy" or indeterministic by nature, and cannot be dealt with appropriately by

common mathematical or statistical techniques. Bouille(1982) suggests that most phenomena

occurring in maps and spatial data bases fit this description, and would be suitable for

consideration in a fuzzy-set context. In a comprehensive paper on the subject, Leung (1987)

suggests "regional boundaries concern the degree of belongingness to regions and are thus fuzzy".

His treatment of spatial boundaries using fuzzy set theory involves first a linguistic proposition

that defines regions (e.g., the statement "timber stand X is pre—merchantable pine” may be a

linguistic proposition which defines a region based upon its predominant timber type and size).

The regions are characterized by a set of characteristics (e.g., species, age, stocking, etc.) and a

membership function. The membership function indicates the degree to which an area with a

set of characteristics corresponds to one of the defined regions. Next, Leung defines regional

cores, boundaries, and edgesas:CORE:

"The core of a region Z is the point or area in space whose

characteristics are most compatible to the linguistic proposition
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characterizing
Z.”

BOUNDARY: "A boundary is in fact a zone including all points in space whose

characteristics are more or less compatible to the regional characterization..”

EDGE: "The edge of a region consists of points in space which just fall short

, in having a positive degree of compatibility to the characterization.."

In an example of the above, Leung usa a classification of regions based upon climate.

Regions may be classified according to temperature and precipitation, into categoria whose

labels may include: hot, warm, cool, cold, and abundant, substantial, and adequate

precipitation. Ratber than using arbitrary thraholds for temperature and rainfall to delineate

tbae regions, a membership function was used to indicate the “degree of belongingness” to a

given category. For example, Figure 4 shows the membership for the fuzzy sets
“hot”,

"warm",

"cool”, and "cold", as a function of temperature. Areas in which the value of the membership

function is equal to one are deemed the core of the regions. Areas inlwhich the value of the

membership function is above some thrahold (Leung usa the notation “alpha level") are

considered boundary regions. Edga are then defined as areas in which the membership function

for all sets falls below the specified alpha level.

Fuzzy set theory provida an enlightening perspective on boundary imprecision. First, it

recogniza that boundaria may be quite indeterminate, and occupy a broad area on the ground.

In addition, the membership function shows the indeterminacy of the definitions of regions

(Robinson and Frank, 1985). This concept is important in determining how well boundaria can

be located. While Leung’s application demonstrated the potential utility of mapping with fuzzy
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Figure 4. Examples of membership functions for fuzzy sets (from Leung, 1987).



33

boundaries, it also required extensive data (temperature and precipitation), and involved

interpolation, which introduces another dimension of error which was not discussed. The use of

fuzzy set theory in the classification of land cover was discussed by Robinson and Strahler

(1984), and an application involving relational database has been preented by Buckle and

Petry (1982). Fuzzy set theory has been useful in these situations as a means of portraying the

inexactness of the data being used.

1112 Etääl Mszdsl

Some attempts at characterizing the variability of line have used the concept of

fractional dimensionality developed by Mandelbrot (1977). Most of these efforts have focused on

the relationship between line complexity or length and scale (Loehle, 1983). The fundamental

premise is that the length of a linedepends upon the scale at which it is measured. Plotting the

logarithm of measured length against the logarithm of the measurement precision indicates a

constant relationship. The slope of the plotted relationship is the fractional dimension.

Shelberg and Moellering (1983) have developed a computer program to measure the fractional

dimensionality of line. Goodchild (1980b) has shown that Switzer’s (1975) etimate of

mismatch areas in a raster structure can be rewritten such that the mismatch area is a function

of both the grid cell size and the fractal dimension D. However, no practical application has

been published which demonstrate the usefulnes of such a model to a map user intereted in

data reliability.

E Emilsm @21 sm! älläl Eumhud MQQI2

A number of authors have appreciated the fact that boundaries may be more
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appropriately represented by a band of a certain width than by an intinitely thin line. Peuker

(1976) postulates that a line can be characterized by:

a) a general direction,

b) a band width, and

c) a length.

This definition of a cartographic line has some utility in generalizing lines; that is,

reducing the number of coordinate pairs required to adequately define the line. It also may help

in determining line intersections, and in determining whether two diüerent representations of a

line are actually independent records of the same line. Peuker’s discussion does not directly

address error, but the concept he advances is useful in characterizing line errors.

Perkal (1966) originated the concept of an "epsilon band” which may be used to

represent the probable location of a line. The application he discussed was an attempt to

determine the length of a line while considering scale and generalization. Chrisman (1982b)

developed the epsilon model into a useful framework for error analysis. He suggested "Given a

cartographic line as a straight line approximation, it might be supposed that the true line lies

within a constant tolerance, epsilon, of the measured line". In an example application of the

epsilon band model, a U.S. Geological Survey Land Use/Land Cover map was noted to have

seven percent of the total area contained in epsilon bands of 20 meters. The epsilon model was

also used to develop bounds on area measurements for individual land use/land cover categories.

Chrisman noted that “These bounds should be interpreted as standard deviations, not absolute

limits". His treatment of bounds on area, and the epsilon model itself, was quantitative but not

probabilistic; no statement (such as a statistical confidence interval) was provided which would

indicate how often the true line could be expected to lie within the epsilon band, or how often

the true area would be expected to be contained within the "probable bounds”. Another
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potential drawback to Chrisman’s example is the assumption that the epsilon band is constant

in a given map, regardless of the boundary being drawn. A contrary situation can readily be

conceived; note that boundaries between similar features (such as a pine-hardwood timber stand

and a pure hardwood stand) may be more difficult to delineate accurately than boundaries

between quite distinct features (such as between a pine plantation and a water body). Such

situations favor-the use of different epsilon band widths for different boundary types. Thus,

while Chrisman has proposed a reasonable and useful model, greater üexibility in assumptions

and a more formal statistical treatment would be desirable enhancements.

Blakemore (1984) applied the epsilon model in an examination of the common "point·

in·polygon" analysis. In his study, industrial establishments in England were represented as

point data (coordinate pairs), and Employment Oüice Areas (EOA’s) were represented as

polygons in a vector database. The analysis was concerned with determining which industrial

establishments were located in which EOA’s. Using epsilon bands around the EOA boundaries,

the uncertainty of the lines were acknowledged. Points (industrial establishments) were

designated as being in one of the following categories:

a) possibly out (of an EOA),

b) possibly in,

c) unassignable,

d) ambiguous,

e) definitely in.

With an epsilon band width of 100 meters on the groimd, 7% of the 780 test points were

in areas of doubt. At an epsilon of 0.7 km, only 50% of the points were uniquely assignable to

only one area.
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Blakemore’s analysis provida an excellent example of how a model of spatial

uncertainty can be used in a GIS application to provide information about the reliability of the

rault. Note, however, that Blakemore’s categoria were qualitative and not related to specified

probabilitia. Also, the point locations were taken to be deterministic; variability was only

assumed for the EOA boundary lina. Again, a quantitative, probabilistic [treatment may

enhance the epsilon model.

Another analysis which usa an “error band" model of a cartographic line was praented

by Yoeli (1984). This application is interating in that it relata attribute error to spatial error

in a topographic data context. As noted earlier, an error in gridded elevation data is difficult to

categorize as being an attribute or locational error. Recognizing this, Yoeli used statements

concerning errors in elevation to depict possible locational errors. Figure 5 indicata how this is

done. Given an elevation mean square error of Mh, and the slope of a parcel of land, it is

possible to project the vertical mean square error to the groundsurface, and thence to a

planimetric surface. With a given vertical error, steep slopa will produce a smaller planimetric

(horizontal) error than will relatively flat slopa. Yoeli produced maps depicting a zone of error

around coritour lina using this procedure. Unlike epsilon bands, his error bands are not

necasarily symmetric about the estimated line, nor are they constant across a map. Rather,

they change with the topography. Yoeli’s analysis is intriguing, but it is not readily apparent

how such a procedure could be applied to non-surficial data.

The above analysa using "error bands” around a cartographic line present the bat

opportunity for a statistical treatment of spatial error in a vector GIS. Most of the authors

cited, apecially Chrisman, were very clou to the kind of model which has been needed by

foratry users of GIS. A more formal statistical treatment can greatly expand the utility of
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Figure 5. The determination of plauimetric contour error bands (from Yoeli, 1984).



38

these models, and strengthen the interpretation of results.

One component of digital map error that has attracted attention has been that of

digitizing error. It is interesting that numerous users of GIS wonder about how closely a person

digitizing a line can follow the map line, yet may never question how closely the original map

draftsman was able to delineate lines that may have been barely pereeptible in the first place.

Since the digitizing of maps is a process that closely mimies the original drafting procedure,

results from digitizing studies may contribute to an understanding of error processes involved in

map creation. Thompson (1981) studied errors in digitizing directly from a photographie

stereomodel. He reported an average digitizing error of 3.3 meters when digitizing from 1:80,000

scale photographs onto a map scale of 1:40,000. Chrisman (1982c) assumed that digitizing using

scanning devices produced normal errors with a standard deviation of 8.3 meters.

Baugh and Boreham (1976) simulated errors in digital lines representing the coastline of

Scotland. They noted that random errors in point eoordinates produced a systematic error in

length of lines. Keefer (1988) encountered this same result. Baugh and Boreham related this

phenomena to what is termed the "Steinhaus paradox”: the more accurately an empirieal line is

measured, the longer it gets. Baugh and Boreham’s study set a precedent for using simulation

of point errors to evaluate seeondary errors, such as errors in line length.

One frequently-cited study of digitizing error was performed by Traylor (1979). Traylor

measured and modeled digitizing error in an attempt to train digitizers to improve their
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accuracy. Traylor’s results helped utablish some guidelinu for modeling error by noting the

presence of systematic patterns and diüerences between latitudinal and Iongitudinal errors.

Jenks (1981) reviewed Traylor’s work and emphasized the human element in digitizing errors.

Chrisman (1987b) examined digitizing error, but was primarily concerned with

topological errors, such as missing or multiple labels for a polygon, polygons which did not close

or contained "loops", or dangling or unconnected chains. Thus, while he noted that consistency

between attributes (polygon or line labels) and the spatial features is critical, he did not examine

the digitizing errors relating to correct placement of lines and points.

Otawa (1987) evaluated the impact of digitizing errors on polygon area. Fourteen

students independently digitized the same square mile from a soils map, and Otawa reported

only generalized results, noting that "The majority fell within plus or minus 7 percent from the

mean regardless of polygon size”. No tuts were performed to detect differencu between

digitizers, and no attempt was made to relate the variability of polygon areas to either polygon

size or complexity.

Keefer (1988) carried the work of many of the above authors to the modeling of spatial

errors speciiically to support interpretations important to map users. In his study, coordinate

errors were simulated and the impact of these errors on line length and polygon area were

recorded. Keefer’s model included a provision for serial correlation between adjacent points. As

noted by Baugh and Boreham (1976), errors in points comprising a line produce a bias in line

length. However, no bias was noted in polygon area. Variation in length and area were related

to the accuracy standard employed in the simulations, which controlled the magnitude of the
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coordinate errors. Standard deviation of polygon area was noted to be related to polygon size,

and variation in line length was related to line length. Keefer’s work represents an important

contribution to the interpretation of the impact of digitizing errors on map variables (length and

area) of interest to a forestry GIS user.

Bauma Eng: Msaids

Two recent works have examined the effects of point location errors on areas of

polygons. Bondesson (1986) derived estimates of the standard error of areas obtained by

traversing compartments. He assumed normal errors in bearings and distances, and assumed

that errors at adjacent points were uncorrelated. Using these assumptions, and standard

surveying formulas for computing area, he obtained estimates for area variability. While

Bondesson’s work concerned points defined in a relative sense (bearings and distances from one

point to another), his procedure is very similar to that followed here.

In a more recent effort, Chrisman and Yandell (1988) developed a model to describe the

bias and precision of area estimates based upon X and Y coordinates. They assumed

independent and identically distributed coordinate errors at well—defined points representing the

vertices of a polygon. They reported that the resulting area estimates were unbiased, with

variance a function of the coordinates. While their results may be applicable to cadastral data,

the reliance on independent errors and well—defined points may limit the usefulness of their

model for natural resources data, which are less likely to exhibit the assumed characteristics.



Chapter 3 - PROCEDURE

ASSUMPTIONS REGARDING POINT LOCATION ERRORS

The arc-node data structure described earlier was used as the data model for this work.

Since point coordinates are the fundamental feature in the arc·node data structure, it is logical

to begin any derivations with assumptions regarding errors in point locations. The notation

introduced by Chrisman and Yandell (1988) will be used as a starting point. An X,Y coordinate

is considered a multivariate random variable; the observed location of a point (Xi,Yi) consists of

the unknown true coordinate and an error term:

X6 = X6 +
‘s Ya = Ya + 'is (3-1)

where: xi, yi = true location of point i

ci = error in location of x-coordinate of point i

qi = error in location of y-coordinate of point {

The concept of the coordinates of a point being random variables is not new.

Statements of map accuracy are typically based upon the recognition that points as represented

on a. map may be in error relative to their position on the earth. Thus, the coordinates of a

point on a map may be considered to be random variables centered on the true location of the

earth feature they represent, varying to some degree due to the errors accumulated in the

mapping process. We express this concept by considering the observed point location to be an

unbiased estimate of the true location:

E(X«) = xs E(Y:) = Ya

41
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The next assumption that must be made concerns the variability of the point

coordinates. A similar error in both X and Y dimensions is plausible. This can be expressed by

assigning an equivalent variance to both errors:

V*“'(‘6) = V*“('76) =
”?

In some specific casa, there may be reason to reject this assumption. For example, if it is

known that the use of a certain map projection has distorted coordinates more in one direction

than the other, unequal variances for X and Y errors may be more suitable. However, in

developing a model to dacribe the general expected situation, equal variances do not seem

unreasonable.

Next, we will assume that X and Y errors are uncorrelated:

E(‘s'Is) = 0

This assumption may also be arguable. For example, Traylor (1979) provided evidence that X

and Y digitizing errors are not independent, but rather are iniluenced by the direction that the

digitizer cursor was moving when the point was sampled. Traylor noticed a greater tendency for

longitudinal than latitudinal errors, which would imply that ag ;é dy and that pg, is a fimction

of digitizing direction (such that the major axis of an isodensity ellipa would follow the

direction in which the line was drafted or digitized). While Traylor’s suggation of dependence

between error directions is convincing, his work concentrated on digitizing errors, which represent

only one component of the overall coordinate error. Undoubtedly, some of the error components

will exhibit this type of correlation (particularly those involved with human line-following

processes), while others will not. The degree of correlation between X and Y errors at a point

will depend upon the relative importance of the error components which exhibit such a

dependency. If the model for point error were to include a correlation between X and Y errors,

then the direction of digitizing, drafting, scribing, etc. at each point would have to be known or
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arbitrarily assumed in order to determine the appropriate values for 0,, 0,, and p,i,. The

model would require a different value of p,, for every point; these values would presumably

derive from the angular direction from the previous point. In order to avoid arbitrary selection

of which adjacent point is to be deemed the previous point, a simpler model will be used here

and X and Y errors will be assumed to be independent.

Next, we need to consider correlation between errors at adjacent points. Several authors

(Traylor, 1979; Jenks, 1981; and Keefer, 1988) have indicated that digitizing produces correlated

errors at adjacent points. Keefer et al. (1988) reported that an autoregressive process of order 1

was exhibited by the majority of the data they studied. This means that the error at a

coordinate can be expressed as a function of the previous coordinate error and an independent

random error:

Cs = pci-1 + Qi,

where: ci = error at point i

ci_i
= error at point before point i

p = correlation coefficient

cio = independent random error

Many of the map-making processes (such as drafting and scribing) may be thought to

produce error patterns similar to those from digitizing. In addition, proc »: such as map

projection or coordinate rotation produce errors that are functions of the coordinates themselves,

with adjacent coordinates behaving similarly. Thus, the model used here will account for

correlation between errors at adjacent points by using a correlation coefficient, p. If pi is the

correlation between errors at points i and i+1,

pi
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Thus, we assume that X errors at adjacent points are correlated to the same extent as the Y

errors at those points, but that X errors are not correlated with Y errors.

The assumptions regarding errors in point locations can be summarized with the

following expressions of expectatiou:

E(€s) = 0 E('Is) = 0

E(‘6‘6+1) = Pi"i”i+1 E('la'Is+1) = PsV¢‘6+1

E(<?) = ¤? EM?) = vl
E(6161) = 0 for Ib-il > 1 0 for Ib-il > 1

E(¢a'h;) = 0 V U

POLYGON AREA ERRORS - DERIVATION

The area of a polygon in a vector GIS is calculated using some form of a standard

algorithm which expresses area as a function of cartesian coordinates (Maling, 1989):

- 1 "A„ — E,
·

(X1Y..1— xmv.)
l=

where: X1 = X„+1 Y1 = Y„_1_1

AN = area of a polygon composed of n unique points

The above formulation yields a positive result for area when coordinates are indexed in a

counter-clockwise manner; thus, when points are recorded in a clockwise direction, the absolute

value is taken. This expression is sometimes referred to as the herringbone method (Maling,

1989). An alternative formulation involves centering the coordinates about a local origin. For a
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polygon, a reasonable origin is the polygon centroid. If the coordinates of the polygon centroid

(XC,YC) are subtracted from all other coordinates, the resulting area is the same. This is

equivalent to a coordinate translation from the origin of the coordinate system to the polygon

centroid. In computer processing, this has the advantage of increasing the precision with which

coordinates are manipulated, and thereby reducing rounding errors. If centered coordinates

(X,,V,) are defined as:

(3-2)

then the alternate expression for polygon area is:

AN = ä *

'whichholds for arbitrary XC, YC. As will be noted, an approximate expression for polygon area

variance was derived which omitted minor covariance terms, and a dependency of area variance

upon the centroid location was noted. Thus, a consistent method for deiining the polygon

centroid was needed. Rather than arbitrarily selecting one of the variety of centroid definitions

in use (Monmonier, 1982), differential calculus was used to obtain the centroid location which

minimizes polygon area variance. This centroid will be termed the minimum-variance centroid

(MVC). It is hypothesized that inclusion of omitted covariance terms would obviate the

necessity for use of the MVC.

The derivation of mean polygon area and polygon area variance proceeded in steps from

the coordinates to the entire polygon. First, it was noted that each pair of points in the polygon

boundary formed a triangle with the MVC. The area of one of these triangles is obtained by

one element of the sum in (3.3):

Aiwhere:A, = area of the triangle formed by points i, i-{-1, and the MVC
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The sum of the areas of these triangles is then equivalent to the polygon area. Note that (3.4)

may yield negative values, depending on the direction in which coordinates are indexed. Some

triangles may eüectively deduct area from the polygon (Figure 6). However, the overall polygon

area will be positive if coordinates are indexed in a counter·clockwise direction.

The first step in deriving the mean and variance of polygon area was to obtain the mean

and variance of area of a single triangle. This was done using simple statistical techniques for

obtaining the expectation and variance of sums and products of random variables.

Next, it is apparent that adjacent triangles will have correlated areas. This is because

each point on the polygon boundary is shared by two triangles, and an error in the point

location will affect the area of both triangles. Thus, it was necessary to derive the covariance of

area for adjacent triangles. This was also done using the methods for finding the expectation of

a function of random variables, since, according to the definition of covariance:

C<>"(A«»^¤+1) = E(^«A6+1) · E(A«)E(^«+1)·

Now, the expectation and variance of polygon area is found simply by taking the

expectation and variance of the sum in (3.3). The expectation of polygon area is the sum of the

expected triangular areas. The variance of polygon area is the sum of the triangle variances plus

twice the sum of the triangle covariances:

Ew-„> = ;E<A.>

v„(A„) = f:Var(Ai) + 2icov(A,,A,„)
where: AM, = A1

hl l-
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Figure 6. Polygon area as a summation of triangle areas. The area of the shaded triangle is

deducted from polygon area.
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Note that in the above equation, only pairwise covariances between adjacent triangles

(Cov(Ai,Ai+1)) are considered. This represents a first approximation, and omits the covariance

between triangle Ai and all non—adjacent triangles within an arc. These additional covariance

terms would be functions of order p", n>1. Thus, while not an exact expression, it is believed

that this represents a sufficient approximation and enables significant simplification.

After obtaining an expression for polygon area variance, the covariance of area of

adjacent polygons was considered. Due to the simultaneous dependency of a pair of polygons

upon the arc which they share, there is a negative covariance of areas of adjacent polygons. Any

error in an arc between two polygons will increase the area of one polygon while decreasing the

area of the other. The covariance of polygon area is important for cartographic modeling

applications, an example of which will be discussed later. To obtain the needed covariances, we

begin again at the level of the triangles Now, we note that every pair of points in an arc

belongs to two triangles: one with the MVC of the polygon to its left, and one with the MVC of

the polygon to its right (ignoring for the moment arcs along the exterior map boundary). Thus,

every point along the arc is involved in four triangles; two to the left and two to the right

(Figure 7). This means that triangle Ai on the left of an arc will exhibit covariance of area with

triangles Ai_1, Ai+,, Bi_i, Bi, Bi+i (where A denotes triangles to the left of the arc and B

denotes triangles to the right of the arc). To obtain covariance between adjacent polygons, we

now must consider the covariances:

Cov(Ai,Bi_,), Cov(Ai,Bi), and Cov(Ai,Bi+l).

These terms will be derived as before, using common statistical methods for obtaining

expectations of sums and products.
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Figure 7. Diagram of the triangular areas involved in polygon covariance.
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Once these covariances have been obtained, we combine them in a sum along an arc:

Cov(A,B) = Z(C0V(A‘,Bi_1) + COV(Ai,Bi) + CÖV(Ai,Bi+1))
S:].

where: A = area of the polygon to the left of the arc

B = area of the polygon to the right of the arc

A, = area of triangle i in the polygon to the left of the arc

B, = area of triangle i in the polygon to the right of the arc

m = number of points in the arc

Cov(A1,B°) = Cov(A„,,B,„+1) = 0 by definition

(Here we assume the order of indexing of points is that which yields a positive area for the

polygon to the left of the arc). Once again, the derivation will allow for a different 0 and p for

each point, while a practical application would likely use a single 0 and p for the entire arc

separating the two polygons.

POLYGON AREA ERRORS - VALIDATION OF THE DISTRIBUTION

Knowledge of the mean and variance of polygon area errors can be more useful if they

can be shown to be parameters of some known distribution. Given a distribution for these

errors, the probability of occurrence of certain events could then be inferred. For example,

“sliver” polygons which arise from overlay and intersection of similar arcs present a problem in

interpretation. Do such polygons represent significant features on the ground, or are they

artifacts of the map overlay process? Generally, such polygons are small in size. In fact, some
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GIS software modules provide for the arbitrary elimination of polygons smaller than some

threshold area, on the assumption that they must be insigniiicant. If the distribution of polygon

area were known, a p-value could be obtained which would indicate the probability of getting a

sliver polygon of the observed size when, in fact, no such feature exists in the area being

mapped. Such a statement could be useful in the determination of which sliver polygons to

eliminate.

An assumption of normal errors in point location has been suggested by Chrisman

(1982a), and seems quite reasonable. This is expressed as:

<« ~ NUM?) m ~ NUM?)
Th¢¤» X; ~ N(¤<«¤?) Y« ~ N(y«»¤?)
and (xrxcl ^' N(X6•¢’f) (Ys‘Y¤) ^‘ N($'s¤°’f)

The formula for the area of a triangle (3.4) can be rewritten as a function of a random

determinant:
- .,(X6 · X¢) (XM — X=) X; XM

Ai = ä
=•¤

= ä =•=

YiIfwe assume that adjacent coordinates are independent and normally distributed, we can apply

the findings of Nicholson (1958), who noted that the distribution of a random normal

determinant could be approximated by a normal distribution. Indeed, if p=0, the expression for

variance of a triangle obtained here agrees with the variance of a 2x2 random normal

determinant described by Nicholson (1958). Thus, in the absence of correlation between

coordinate errors, the polygon area is a sum of nearly-normal random variables. Because these

triangles arc not independent, the Central Limit Theorem is not strictly applicable. However, it

appeared that a normal distribution would still be a reasonable approximation to the

distribution of area estimates.
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It was thought that as the number of vertices (and therefore triangles) in a polygon

increased, the more the distribution of errors would tend towards normality. To test this idea,

simulations of errors in polygon coordinates were performed. Six polygons were created by

sampling points at regular intervals on circles of dißerent radii such that the polygons all had

the same area. The area was arbitrarily set at 8000 square units. Polygons were created with 3,

5, 7, 9, 11, and 15 vertices. (The polygons were therefore an equilateral triangle, a regular

pentagon, heptagon, nonagon, etc.). The polygons were created with a single arc which closed

on itself. It was noted that when the standard deviation of location errors is large relative to

line segment length, pathological situations arise since adjacent points may actually reverse

order when errors are added to point coordinates. A regular polygon with 15 vertices and an

area of 8000 square units will have a boundary composed of 15 line segments which are each

21.29 units in length. The standard deviation for point errors was set at 2 units (roughly 10% of

the line segment length) so as to effectively eliminate the potential for simulated errors causing a

reversal of points in the polygon boundary. The correlation between adjacent X errors and

between adjacent Y errors was arbitrarily set at p=0.5. Using the IMSL (1987) Fortran

subroutine RNMVN, vectors of n correlated normal errors were created to represent X and Y

coordinate errors at each vertex of each polygon such that:

ci ~ N(0,4) fk ~ N(0,4) for i= 1..n

E(c,c,+,) = 2 E(r;;1;,+,) = 2 for i = 1..n-1

One iteration of a simulation on one polygon involved creating the vectors of correlated

X and Y errors, adding them to the coordinates, and recording the area of the resulting

perturbed polygon. A simulation consisted of 80 iterations for each polygon. (The sample size

was set at 80 because initially, the IMSL routine KSONE was used to obtain Kolmogorov-

Smirnov test statistics, and KSONE provides exact probabilities only for n S 80). These 80



53

polygon areas were then sorted, and the resulting empirical distribution function was compared

to the normal (generated by the IMSL program ANORDF). The Anderson-Darling A2 statistic

(Stephens, 1974) was calculated to tmt the null hypothmis of normality, with the normal

parameters of mean and variance as speciüed by the expressions derived herein. Twenty

simulations were performed, rmulting in 20 values of A2 for each of the six polygons.

POLYGON AREA ERRORS — EXAMPLE APPLICATION

An example application of the polygon area variance exprmsion was performed to

demonstrate its utility. The application consisted of an analysis of the variability of value of a

tract of formtcd land, due to the variability of area estimatm. As noted by Meyer (1963),

variability of area mtimatm is often ignored when total volume (or value) estimates are

calculated. The analysis conducted here was meant to demonstrate how area variability can be

accounted for in performing such routine tasks as volume or value summaries. The variability

of total volume (value) consists of two parts; that due to volume determination, and that due to

acreage determination. The former is commonly considered using a standard error estimated

from the sample of plot volumes, but will be ignored here in order to concentrate on the latter.

However, both components could be considered jointly.

This analysis was performed using data from a recent land acquisition by a southeastem

U.S. formt products company. The subject parcel will be referred to as the "Webster" tract.

The 218-acre tract consists of tive stands, which are comprised of 20 individual polygons (Figure

8). Two of the stands are non-forested. The remainder include a 110-acre stand of upland

hardwood, a 53-acre stand of bottomland hardwood, and a 26-acre stand of loblolly pine planted
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Figure 8. Timber stand map of the Webster tract. Labels inside the stands indicate stand
l

number/acres. Stand descriptions are given in Table 1.
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in 1961. These three stands were inventoried using a systematic sample of variable-radius plots

(BAF 10) on a 4-chain by 5-chain grid.

After obtaining a survey of the tract boundary, 70mm natural color aerial photographs

of the tract were interpreted to delineate stand boundaries. The photo scale was 1:15,840, or 1

inch to 20 chains. The map was digitized, and point coordinates were extracted for input into

Fortran programs which calculated polygon area variance and covariance. From the inventory

data, pine and hardwood pulpwood and sawtimber volumes were calculated using appropriate

tree volume equations. Using current stumpage prices as reported by Timber-Mart South

(1989), and volumes per acre from the inventory, a per-acre timber value was calculated for each

stand (Table 1). For simplicity, no "bare·land” values were assumed. Thus, the total tract

value is obtained from:

V = viai

where:

_

V = total tract value

vi = timber value per acre for stand i

ai = acres in stand i

n = number of stands in the tract _

The variance of tract value is:

Var(V) = ü vg * Var(ai) + 2* ZviviCov(aiai) (3.5)
6:1 6<5

The variance and covariance terms of (3.5) were obtained using the expressions

developed herein, under 9 different sets of assumptions about locational errors (three cr’s and

three
p’s).

The assumptions began with three cboices for p which were expected to encompass
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Table 1. Timber volumes and values for the Webster tract.

Pine Hardwood Value

Stand Description Acres tous/ac. tons/ac. S/ac.

1 Open-Scrub hardwood 2.3 0.0 0.0 0.00

2 Upland hardwood 110.3 5.3 74.3 341.46

3 Bottornland Hardwood 53.4 0.0 193.5 1248.08

4 Loblolly pine (1961) 25.6 87.6 8.3 528.26

5 Open~Abandoned field 26.4 0.0 0.0 0.00

Total (Average): 218.0 (13.0) (85.0) (540.52)



57

the range of realistic valua; these were 0.3, 0.6, and 0.9. A recent survey of the tract boundary

indicated a standard deviation of error in monument location of approximately 2 feet. Thus, all

arcs on the tract boundary were assigned a standard deviation for points of 2 feet. Even under

the best possible conditions, the accuracy of timber stand mapping cannot be expected to be

better than the width of the line with which stands are delineated; therefore, the lowest standard

deviation used for point location errors was 25 feet 0.5mm line at a scale of 1:15840

repraents a band 26 feet wide on the ground). A more realistic value was estimated to be about

50 feet, and an extreme value of 75 feet was included. ‘The nine sets of assumptions are
indicated in Table 2. Using the atimated values per acre for each stand and variances and

covarianca of polygon areas, variance of total tract value was obtained for each of the nine sets

of assumptions.

\

DISTANCE ERRORS - INTRODUCTION & ASSUMPTIONS l

Distances are calculated in GIS systems in two common forms: distance from one point

to another, and distance from a point to a line (arc). As will be seen, the former can be treated

as a special case of the latter; the distance from a point to a "degenerate" arc of zero length,

consisting only of a single node. Thus, this section will be concerned with obtaining exprasions

to describe the statistical behavior of the distance from a point to an arc when errors in point

location (of both the subject point and the points in the arc) are praent.

First, the concept of distance from a point to a line must be clarified. There are an

infinite number of such distances; the one treated here is the minimum distance from the subject

point to some location along the arc. In vector data structures, there are two casa to consider.
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Table 2. Nine sets of assumptions about point location errors for estimating polygon area

variances and covariances for the Webster tract.

Assumption 0 for boundary arcs 0 for internal arcs
¤

A 0.3

B 0.6

C 0.9

D 50.0 0.3

E 50.0 0.6

F 50.0 0.9

G 75.0 0.3

H 75.0 0.6

I 75.0 0.9
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First, the smallat distance may be from the subject point to a vertez or node of the arc ( Figure

9a). We may call this the vertez distance. This is quite distinct from the other case, in which

the shortat distance is from the subject point perpendicular to some line segment in the arc

(Figure 9b). We will call this the perpendicular distance. These casa require individual

attention. As mentioned, Case 1 includa the situation of distance from one isolated point to

another.

For both casa, we will adopt the same assumptions regarding point location errors as

were used when considering polygon area errors. That is, X and Y errors are independent, with

the same 6; X errors at adjacent points are correlated, as are Y errors at adjacent points; and

the mean errors are zero. In addition, we have the subject point (X,, Y,) which is similarly

represented as composed of the true location and an error:

X•=X•+€• Y•=y•+n•

where: E(6,) = 0 E(r;,) = 0

E(<?) = v? Ew?) = v?
E(€,17,) = 0

and the errors at the subject point are independent of any errors along the arc.

DISTANCE ERRORS - DER.IVATION

li Lxerte Distanz;

Let (X„,Y„) denote the coordinata of the vertex found to be the closat to the subject

point, and Cu and r)., the X and Y errors at that point (each with standard deviation 6,,). Then,
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(a) Subject
Point

Line Segment

Closest distance
is to a vertex

L"; Subjectgmcm Point

Closest distance
is perpendicular

Figure 9. Two casa of distance from a point to a line. Case 1 (a) shows the closest distance

being from the subject point to a vertex on the line. In Case 2 (b), the closest distance is along

a. perpendicnlar to the line segment from the subject point.
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if D is the distance from (X,,Y.) to (X„,Y„), we have:

12
=Itbecomes necessary at this point to adopt an assumption regarding the distribution of errors.

The location of a point on a map coming from a GIS is the result of a number of steps, such as

photointerpretation, transfer onto a map base, possible multiple plotting and redrafting of that

map, digitizing of the map, storage and manipulation of computerized coordinates, and a final

re-plotting of the map from the GIS. As discussed previously, each of these steps may

contribute to the final error in the point location. Because of the Central Limit Theorem, an

argument can be made that the distribution of the composite errors is normal. This argument

has precedent: the normal distribution was chosen by Chrisman (1982c) for modeling point

errors for the reason cited above. In addition, the symmetry and shape of the normal

distribution seem appropriate as a projection of the density of point locations onto a set of

coordinate axes. Thus, it might reasonably be expected that point errors will behave like

bivariate normal random variables. We can express this as:

Es ~ N(0,aZ) n. ~ N(0,af)

Cu ~ N(0,¢rä) 1).. ~ N(0,a?,) (3.6)

These assumptions allow the exact distribution function of D2 to be obtained. While it would

be desirable to know the distribution (or simply the mean and variance) of D, the derivation is

intractable. However, in many applications, knowledge of the distribution of D2 will provide

most of the information needed.
l

Bw 2; Bistum

The distance from a point to a line segment presents a more complex situation. While

the concept of a point varying randomly in two-dimensional space is relatively commonplace,



62

the case of a line segment whose endpoints are bivariate random variables was not discussed in

any of the literature reviewed. Certain treatments of random line in two-dimensioual space

have come close to modeling the situations described here (Solomon, 1978), but have not

provided results which are useful for this application.

If we were to attempt to derive the expectation, variance, and distribution of distance as

before, we would note that the perpendicular distance is a function of the three coordinate pairs:

(X,,Y,), (X,,Yi), and (Xi+1,Yi+1). A reasonably simple expression for this function derive

from noting that the distance we seek is the height (h) of a triangle whose base (b) is the length

of the line segment, and whose area is similar to that defined in (3.4). Noting that Ai = äbh, we

have:

h = D = ggg =
I(X« · X•)(YM · Yi — (XM Y•)I

(3-7)
](xi+1 ' Xi) + (Yi+1 ‘ Yi)

or:

D2 = = ((X6 · X·)(YM · Y·) · (XM · X•)(Y« · Y•))°
b (Xi+1 ' Xi) + (Yi+1 " Yi)

While the numerator of (3.7) can be shown to be approximately normally distributed, we

encounter a difficulty which will be discussed later in dealing with the distribution of distance in

the denominator. Therefore, it was decided to find a reasonable approximation for the

perpendicular distance using other methods.

Consider a line segment and a point with the properties assumed in the previous section.

For convenience in the following discussion, we will redefine the coordinate of the point and line

segment. Without loss of generality, we can establish a new coordinate system such that the

new X—axis coincides with the true line segment. If coordinates in the new system are referred to
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as (X', Y'), then let the endpoints of the line segment be at (xi, 0), (xi, 0), and the subject

point be at (xi, yi) (Figure 10). Let us denote the point of intersection of the perpendicular

with the line segment as (xi,, yi,). In the absence of any errors in the line segment or the subject

point, Xi,=xi,=xi and Yi,=yi,=0. The errors in the new coordinate system wiH have the same

means, variances, and correlations as before.

One useful expression which is more soluble than a direct derivation of the distribution

of D in (3.7) is the distribution of distance conditioned on xi. By conditioning on xi, we will

ignore ci, and assume Xi,=xi and we return to a univariate case of distance between (xi,Yi,) and

(xi,Yi); and we have Dlxi = Yi - Yi,.

In order to proceed further, we must consider the error at Yi, (ni,). Initially, it might

appear reasonable that ni would be distributed identically to ni and ni; this would create an

isodensity region around a line segment which would appear as in Figure 11a. In the common

epsilon-band models of line error, a constant width for the epsilon band implies exactly this.

However, it was believed that the errors in Y' at locations along the line segment between points

1 and 2 would have a lower variance than the errors at the line segment endpoints. The

reasoning for this is as follows. In order for a Y' error of a given magnitude (say, k) to be

observed at some point along the line segment, one of two events must occur. Either both

endpoints exhibit a Y' error at least as great as k 2 h} 0 {ni 2 lc}), or one endpoint has

a smaller error : u; in < k}) and the other endpoint has a sußiciently larger error >

I: + m(Xi ~ Xi,); where m is the slope of the line from one endpoint to the other}). Thus, the

probability of an error of magnitude I: at an intermediate point is a joint probability involving

errors at both endpoints. Consequently, Prob{r;i,>}:} < Prob{ni>k} and P1'0b{7];>k} <

Prob{ni>l:}. This, in turn, implies that Var(ni,) < Var(ni) and Var(ni,) < Var(r;i).
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Y!°"“ YS YS

X' axis

xn
1

Xvan
P

X' 2

Line Segment

Figure 10. Diagram of a point and a line segment in X', Y' coordinates.
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(a) Isodensity region is parallel about the line.

(Ü) Isodensity region is concave.

Figure 11. Isodensity regions indicating the “probable location” of a line segment. The first

diagram (a) shows a region for which 6}, is the same for all XQ, (comparable to the epsilon·ba„nd

model). Diagram (b) shows a modified region, in which 6; is a function of X},.
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Thus, it was hypothesized that the isodensity contours indicating the probable locations of a line

segment with variable endpoints would be a tigure which was circular at the endpoints but

concave between (Figure 11b). Noting that at the endpoints, the distribution of Y' errors was

normal, it was further assumed that along the line segment, the conditional distribution of Y'

errors (given x') was also normal:

r}}}x} ~ N(0,o·}) where 0*} = j(a*?,a§,p,X}) (3.8)

The rationale for this assumption comes from simple geometry. The slope of the line segment

from (X},Y}) to (X},Y}) is a ratio of two normal random variables:

Y' — Y'”· =
(YS- YS) ~ N(yS·vS»¤¥ + ¤S - Zwm)

(XS - Xi) ~ N(¤¤S-¤¤S,¤¥ + vä - Zpvm)
To obtain the Y' value at x}, we insert x} into the equation for the line segment:

Y}: m(x}, - X}) + b

where Y} = 1;} (since y} = 0)

b = the Y'—coordinate of the line segment at X' = X}

= ni
Thus, given x}, (x} - X}) is normal, m is a ratio of normals, and b is normal. This suggests

that Y} may be normal also.

The next step, therefore, was to obtain the expression which describes 0*} in terms of the

endpoint error variances, the correlation coefficient, and the location along the line segment.

This function was first evaluated graphically. A program was written to simulate line segments .
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with normal errors at endpoints (with specified 6 and p). For each line segment simulated, the

errors in Y' at different points along the line segment were calculated. The variance of these

errors was plotted against the location along the line at which they were observed (Figure 12).

By simulating different values of 61, 6,, and p, the effects of these variables on the function

were noted. Several expressions (quadratic and trigonometric) which were thought to provide

reasonable estimates of the observed function were tested. The curves of 6} versus X} obtained

through simulation were compared graphically with prospective estimates of the function until a

"best fit” was found. It was not felt that thorough examination of goodness-of-fit (through

regression analysis, for example) was called for, as the intention here was to develop a

reasonable approximation, not a definitive expression.

Now, given the conditional distribution hypothesized in (3.8) and the assumption of a

bivariate normal error at (XLYZ), we note that:

DIX2 = Yi - Y;

E(DlXi) = E(Yi) - E(Yi¤) = Yi - 0 = yi

Var(DIXi) = Var(Yi) + Var(Y}) - 2Cov(Yi,Y}) = 6i + 6}

so: DIXL ~ N(yi,0? + 6}) (3.9)

Thus, we have hypothesized that distance from a point to a line segment may be modeled by a

normal distribution with mean equal to the nominal distance and variance a function of the

individual point variances, the location of the intersection of the line segment and the

perpendicular, and the correlation coefficient.
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Figure 12. Example graph of 6, versus X,. The curves represent the standard deviation of Y,

versus X, for p=0.0, 0.2, 0.4, and 0.6. The data are from 1200 simulations of line segments

with 61 = 3.0, and 62:5.0.
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DISTANCE ERRORS - VALIDATION OF THE DISTRIBUTION

Since case 1 resulted in an exact solution for the distribution of D2, no validation was

necessary. Case 2, however, involved an approximation, and warranted some testing to

determine the validity of the approximation. _

To conduct a thorough test of the distribution hypothaized in (3.9), it would be

necessary to consider ranga of values for Xi, Xi, 02, ai, p, Xi, Yi, and 02. The purpose of
A

this phase of the study was not to prooe that the distribution of distance is normal, but rather

to examine whether a normal distribution is a reasonable model for distance errors in a few

limited situations. Of special interat are those casa in which a point is located close to a line

segment (close in the sense of a short distance relative to the length and the variability of the

line segment). Such casa might include sliver polygons (in which the sliver is triangular, and

the distance from the longat side to the opposite vertex is near zero), and situations in which

the location of a point with rapect to a boundary is in quation. Thus, for the purposes of this

study, a limited test involving only a few values of ai, p, Xi and Yi (with Xi, Xi, 02, and 02

fixed) was performed. The results from a restricted set of assumptions may be generalized to

numerous other casa by scaling and by symmetry.

The line segment simulation program used for invatigating 02 was extended to

calculate distances between a specified point and line segment with specified error varianca and

correlations. The line segment was fixed at:

(XLYS) = (·50»0) (XLYS) = (50»0)

and 02 and 0*2 were fixed at 3.0. Fifty-four combinations of Xi, Yi, ai, and p (3x3x3x2) were
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evaluated:

xi = {-25.0, 0.0, 25.0}

Yi = {2.0, 8.0, 32.0}

6; = {1.0, 3.0, 6.0}

p = {0.3, 0.7}

For each combination, 20 simulations of 80 iterations each were performed. Each iteration

consisted of generating errors (61, rh, 6,, 7;,, 6,, rp,) from the specified normal distributions

using the IMSL (1987) subroutines RNMVN and RNNOA. Errors were added to the specified

coordinates, and the distance from the subject point to the line segment was calculated. After

80 such iterations, the vector of distances was compared to the hypothesized distribution (3.9)

using the Anderson-Darling statistic (A2). The result (acceptance or rejection of the

hypothesized distribution) was recorded. Twenty such simulations were performed for each of

the 54 combinations of variables.

DISTANCE ERRORS · EXAMPLE APPLICATION

The most obvious use of a probablistic expression of distance from a point to a line is in

point-in-polygon analysis, such as that conducted by Blakemore (1984). An example of possible

interest in forest management is the determination of the probability that an inventory plot lies

in a specified timber stand. At least one southeastern forest products company is considering

digitizing plot locations in their GIS system in order to maintain a spatial identifier for the

inventory information associated with a plot. As stand lines change through silvicultural

manipulations and map updates, new polygons are created and the question will arise: "Which

stand is this plot in?" One approach would consist of simply overlaying the plot location with
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the timber stand data, resulting in a deterministic identification of the polygon containing the

point. However, when points are near polygon boundaries, and both the point locations and the

boundaries contain errors, the prudeut analyst would recognize the possibility that the digitized

point is not properly located with respect to the digitized stand line. A statement of probability

would be useful.

To demonstrate this capability, an analysis was performed using the Webster tract

described earlier. The purpose of the analysis was to determine the number of plots which could

be located with at least 80% certainty in a stand. Plot locations were simulated according to

the protocol described below. To perform the analysis, the closest stand line was determined for

each plot, and the distance d from the plot to the stand line was calculated. A p-value was then

calculated according to the situation; for vertex distances the value was P(D22d2ld=0), for

perpendicular distances the value was P(D2 d|d=0). These values represented the probability of

observing a distance at least as great as d, if in fact, the point was on the stand boundary

(d=0). Low probabilities (p<0.20) indicated that the point was not likely to be on the

boundary, and therefore could be assumed to be located inside a polygon with some reliability.

The number of plots with p·values over 20% represented the number of plots whose polygon

membership was not reliably defined; these plots are termed "ambiguous".

A grid of hypothetical plot locations at an exact 4-chain by 5-chain spacing was

generated by a computer algorithm and overlaid on the Webster tract stands at a random

orientation. The assumptions regarding point location errors were based on a subset of the nine

sets of assumptions used previously (B, E, and H in Table 2), and two assumptions regarding

variability of plot locations. When plot locations are established on a map or in a digital file

prior to their visitation in the field (as is often the case), the variability of location no longer
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depends upon mapping processes, but upon the process of locating mapped positions in the tield.

The best judgement of the most experienced inventory forester in the company providing the

example data suggested that 90% of the time, he was able to locate plots on the ground within

1.5 chains of their mapped position. This translates roughly into a standard deviation of error

in plot location of 60 feet. Thus, the two assumptions used to "bracket" this estimate were 6,

= 50 feet and 6, = 70 feet. For each set of assumptions, the number of plots of questionable

polygon membership were recorded.



Chapter 4 - RESULTS & DISCUSSION

POLYGON AREA ERRORS - DERIVATION

Jkrimiszn ef hlxzeu A62 Mem ami EQ1;cc

The first step in obtaining the mean and variance of polygon area is to obtain the

expectation of the area of a triangle. Recall from (3.4) that the area of the triangle formed by

points Xi,Y1 and XM1, YM1, and the MVC is given by:

Ai = i * (X6)-(6+1 ' X6+1?6)

Using the equalities in (3.1) and (3.2), this can be written as:

As = i * ((**6 + *6)(Y6+1 + *76+1) ' (**6+1 + *6+1)($'6 + *76))
As = i * ((**6$'6+1 ' **6+1$'6) + (**6*76+1 + $'6+1*6 ‘ **6+1*76 ' $*6*6+1) + (*6*76+1 ‘ *6+1*76)) (4-1)
Now, note that the nominal area of the triangle (assuming no errors) is equal to the first two

terms in (4.1):

as: iv * (**6$’6+1 ‘ **6+1$”'6)

We define the remaining six terms in (4.1) as follows:

tl = i(**6*7s+1) *4 = $(176*6+1)

t2 = i(Ü'6+1*s) *6 = i(*6*76+1)

*6 = $(**6+1*76) *6 = 'i(*6+1*76)

And We note:

E(*1) = i**6E(*76+1) = 0 E(*4) = 'i$'6E(*6+1) = 0

EG:) = §$'6+1E(¢6) = 0 E(*¤) = iE(<6v6+1) = 0

73
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E(i·s) = 'ii6+1E('76) = 0 EÜ6) = ‘iE(‘6+1'76) = 0

Thus, taking the expectation of (4.1) yields:

E(Ai) = 86 + (EÜ1) + E(t2l + E(ta) + EÜ4) + E(t¤) + E(t6)) = 86

Evidently, the mean area of a triangle with coordinate errors coincides with its nominal area. If

we are willing to assume that coordinate errors are zero, on average, then the estimated area
I

equals the true area, on average. However, an individual area estimate will deviate from the

true area, so a precision estimate is the next logical step. To get the variance of area of a

triangle, we can take the variance of (4.1), which can be expressed as the sum of the variances of

the individual terms plus twice the sum of the covariances:

Var(A,) = i: Var(t,) + 2 ¤• Cov(ti,tj) (4.2)
6:1 6<j

where:

So the sum of the variance terms is:

For the covariances we have:

Cov(t,,tj) = E(t,tj) - E(t,)»•-E(tj) = E(t,tj)

S0:

C°"(t1•t2) = %i6$'6+1E('I6+1‘6) = 0

C0v(l'1•t3) = ‘ii6i6+1E('i6+1'76) = ‘ii6i6+1"6"6+1P6

C°"(t1~t4) = 'ii6y6E('76+1‘6+1) = 0

C°"'(t·1•ts) = ii6E('ls+1'l6+1‘6) = ii6°’?+1E(‘6) = 0

C¤v(¤6•¤6) = -%i6E(m+1m<.+1) = -%ä6<n<n+1ß6E(<:+6) = 0
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0

C°V(t2•t4) = ‘%Ü'sÜs+1E(‘s€s+1) = ‘%Ü'6Ü's+1°'s°'s+1Ps

0

0

0 _

C°"(ta•ts) = '%is+1E('ls'l6+1‘s) = 'ä'is+1'6°'s+1PsE(‘s) = 0

0

C°"(t4•ts) = ‘%Ü'6E(‘s‘a+1'l6+1) = 'ä$'a"6‘6+1PsE(’7s+1) = 0

C°V(t4«'·6) = i'$'6E(‘6+1‘s+1'76) = iÜ'6°'?+1E('76) = 0

C<>v(¤5»t6) = ·%E(<.<.+m.m„) = ·%E(<.<.+1)E(mm+i) = ·%¤?¤?„p?
And twice the sum of the covariances is:

2 -é -•= ((R«R.+1 + Y.Y.+1)¤.¤«+w« + ¤?¤?+w?) (4—4)

Thus, substituting (4.4) and (4.3) into (4.2);

V*“’(M)
= ä * (*°?”?+1 + "?+1°’? ' 2(isia-+1 + $'6Ü'6+1)"s°6+1P6 + 2(1‘P?)"?¢’?+1) (4-5)

Wh•=r¢= r? = R? + S'? Md r?+1 = R?+« + 9?+1
Equation (4.5) gives the variance of area of a triangle formed by any pair of adjacent points in a

polygon boundary. The area of a polygon is simply the sum of the areas of the n individual

triaxiglesz

AN = QM = * (Xs?6+1 ‘ Xu-1?6))

where the sum is "circula1·", i.e.,

Xn+1 = X1 Yun = ?1

This expression yields a positive area when the coordinates are indexed in a counter-clockwise
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direction. Individual triangles may be positive or negative in area, but the sum should be

positive. The mean polygon area is:

ai

which is the nominal polygon area. Because errors in area of triangles are not independent,

covariance terms will be required for triangles in order to derive the variance of AN. Ignoring

covariance of non—adjacent triangles, the variance of AN can be expressed as the variance of a

sum:
fl fl 66+1

Var(AN) = Var(Z Ai) = Var(Ai) + 2=•=2:Cov(Ai_,,Ai) (4.6)
6:1 6:1 6:2

Where: A„+1 = A1

The variance of the Ai is given in (4.5). To derive Cov(Ai_1,Ai) we begin by noting:

C°"(A6-1·A6) Z E(A6-1A6) ‘ E(A6-1)*E(A6) Z E(-46-1-46) ‘ 86-1**6 (4-7)

A¤d6 A6-1A6 Z i * ((X6-176 ‘ X6Y6-1) * (X676+1 ‘ X6+1?6))

=
ä-=Takingthese terms one by one, we define:

(11 Z X6-1X67676+1 Z (7%-1 + %-1)(7(6 + €i)(yi + */6)(Ü6+1 + */6+1)

Z (>(6-17(6 + ii—1€i + $(6%-1 + %-1%)($'6$’6+1 + 76*/6+1 + $’6+1*/6 + */6*/6+1)

Z ’(6-1’(6$’6$’6+1 + ii-1iiyi7]i+1 + ii—1iiyi+1ni+ R6-17(6'/6'76+1 +

$(6-1%$’6$’6+1 + ii—l€iyi7/{+1 + ii—1€iyi+17/i+ 76-1%*/6*/6+1 +

’(6%-1$’6$’6+1 + 7%%-176*/6+1 + 26%-1$’6+1'/6 + 76%-1*/6*/6+1 +

%-1%$’6$'6+1 + %-1%$’6'/6+1 + %-1%$’6+1'/6 + fi-lcinini-+1

Similarly,

(12 Z Xi—1Xi+1Y? Z (7%-1 + €i—1)(ii+1 + %+1)($’6 + ni)2

Z (*76-17%+1 + 7(6-1%+1 + ii+1€i—1 + €i—1€i+1)(y7 + 2$’6*/6 + */i)
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= **6-1;*6+15% + is-1i6+12$'6'76 + :*6-1i6+1*7? + **6-1‘6+1$'? +

1*6-1‘6+12$'6*76 + **6-1*6+1*7i + ii-!-lei-IS'? + **6+1*6-12$'6*76 +

i6+1*6-1*7? + *6-1*6+1% + *6-1‘6+12$'6*76 + *6-1‘6+1'7?

*13 = X??6-1?6+1 = (**6 + *:6)2($'6-1 + *76-1)(Y6+1 + *76+1)

= (R? + 2:*6*6 + €?)($'6-1Ü'6+1 + ii-1,7i+i + yi+1ni-1 + *76..1*76+;)

= **56-1$'6+1 + *.*56-1*76+1 + 1*25%+1*76-1 + i?*76-1*76+1 +

2i*6¢6$'6-1Ü'6+1 + 2**6‘6$'6-1*76+1 + 21*6*65%+1*76-1 + 2;*6*6*76-1*76+1 +

fii'6-1$’6+1 + *56-1*76+1 + *?$’6+1*76-1 + ¢i*76-1*76+1

*14 = XiXi+1?i-IYE = (:*6 + ‘6)(i6+1 + ‘6+1)($'6-1 + *76-1)($’6 + *76)

= (:*6**6+1 + 1.*6*6+1 + ii+1€i + ‘6‘6+1)($'6-1Y6 + yi—1')i + $*6*76-1 + *76-1*76)

= i6i6+1Ü6-1Ü’6 + f*6**6+1Ü'6-1*76 + **6:*6+-1$'6*76-1 + **9*6+1*76-1*76 +

:*6*6+13*6-1$’6 + i6‘6+1$'6-1*76 + :*6*6+1$'6*76-1 + **6*6+1*76-1*76 +

ii-•»1€iyi—1yi + i6+1‘6$'6-1*76 + i6+1‘6$'6*76-1 + i6+1‘6*76-1*76 +

*6*6-+1$’6-J6 + *6*6+15%-1*76 + *6*6+15%*76-1 + *6*6+1*76-1*76
V

S°: *12 ‘ *13 + *14)

(4-8)

Again going term by term:

E(*11) = 1*6-1i6$'6$'6+1 + :*6-1i6$’6E(*76+1) + :*6-1i6Ü'6+1E(*76) + :*6-1i6E(*76*76+1) +

**6-1$'6$'6+1E(*6) + **6-1$'6E(‘6*76+1) + :*6-1$'6+1E(€6*76) + :.*6-1E(‘6*’76*76+1) +

i6Ü'6$'6+1E(€6-1) + *.*6$'6E(€6-1*76+1) + i6Ü'6+1E(‘6-1*76) + i6E(¢6-1*76*76+1) +

$'6Ü'6+1E(€6-1*6) + Y6E(‘6-1*6*76+1) + $'6+1E(‘6-1*6*76) + E(‘6-1*6*76*76+1)

E('~11) = :*6-1i6$'6$'6+1 + X6-1i6°’6"6+1P6 + :*6-1E(*6)E(*76*76+1) +

i6E(€6-1)E(*76*76+1) + Y6$'6+1°’6-1”6P6-1 + Y6E(‘6-1*6)E(*76+1) +
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Ü's+1E(‘s-1‘6)E('Is) + E(‘s-1€6)E('76'76+1)

E(‘l1) = i€—1iiyiyi+1 + ii—1i6aiai+1p£ + $'s$'6+1•’6-1"sPs-1 + V6-1”?°’6+1Ps-1Ps (4-9)

i¢+1Ü?E(‘s-1) + is+12Ü6E(€s-1'I6) + ii-4>1E(€i—1„?) +
$'?E(‘6-1‘s+1)

+ 2$';E(¢s-1‘s«•-1'la) + E(‘6-1‘s4-1'I?)

E(Q2) = ii-1ii+1y? + is-1i6+1°'? + ia-1E(‘s+1)E('I?) +

is+1E(€s—1)E('I?) + 2Y6E(‘s-1‘6+1)E('76) + E(¢6-1‘6+1)E('l?)

E(q2) = ii-1ii+1y? + ii-1ii+1J? (4-19)

E(¢la) = igyi-1yi+1 + i?$’6-1E('h+1) + i?$’s+1E('7s-1) + i?E('7s-1*76+1) +

Ya-1$’s+1E(‘?) + Ya-1E(‘?'7s+1) + Yu-1E(‘?'I6-1) + E(¢'?'Is—1'Is+1)

E(qa) = X5';-1Ys+1 + 2i6E(‘a)E('ls-1'76+1) + ii-1yi+16? +

Ya-1E(‘?)E('I6+1) + $'6+1E(‘?)E('7s-1) + E(‘?)E('I6-106+1)

E(<1a) = i?yi—1yi+1 + Ya-1$'6+1"? (4-11)

iss';-1$'aE(‘6+1) + Reg':-1E(‘¢+1'Is) + i6Ü'sE(‘¢+1'i6-1) + isE(‘6+1'7a-1'I6) +

i6+1Ys-1$'6E(‘s) + is+1Ys-1E(‘s'l6) + is+1Ü'¢E(‘s'Is-1) + ii+1E(€ini-Inf) +

E(q4) = iiii+1yi·-lyi + isis+1"s-1¢’6P6-1 + i6E(‘s+1)E('I6-1*76) +
i6+1E(€s)E('l6-1'is) + $'¢-1Ys"s°’s+1P6 + Ya-1E(‘s‘s+1)E('I6) +

Y;E(€s‘a+1)E('I6-1) + E(‘s‘6+1)E('I6-1*76)
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E(q«) = + iiiüpldi-laipi-1 + ii-iyiaiaia-lpi + °'6-1"?"6+1Ps-1P: (4-12)

Substituting the exprcssions in (4.9), (4.10), (4.11), and (4.12) into (4.8) wc have:

E(A6-1-46) = i*(is-1i6$'6Ü'6+1 + ii—1ii0iai+1pi + Ü6Ü6+1°’s-1°’sP6-1 + (4-13)

ai-1a?di+1pi-lpi ‘ ii-1ii+1y? ‘
is-1i6+1°f ‘

iiya-1$'6+1 ' Ü':-1$'s+1”i + iiii+1yi-lyi +

iiii-bidi-1aipi·1 + Ü';-1$’s"6"6+1Ps + °'s-1°’?"s+1Ps-196)
Note that:

= ä*(if—1iiyiyi+1 ‘ ii-1ii+1y? ' i?yi—lyi+I + iiii+1yi—1yi) (4-14)

Substituting (4.13) and (4.14) into (4.7) gives:

C°"(As-1•A6) = %*(ii-1i6diai+lpi + yiyi+1Ui-1aipi—1 +

ai-16?ai+1pi-lpi ' ii-1ii+1a? ‘ yi—1yi+1a? +

iiii+1ai—1aipi-1 + Ya-1$'s°s°'s+1Pa + ai·1a?0i+1pi·-lpi)

Combining terms we get:

C°V(As-1=As) = i*((is-ii: + yi-1yi)ai6i+1p{ + (Ü-'s$'6+1 + iiii+1)o·i—1Uipi·—1 +

2ai-ldgaié-1pi·1pi ' (ia-1116+1 + Ya-1Ü's+1)¢'?)

This, then, is the expression for covariance between areas of adjacent triangles. Substituting

into (4.6), we are now ready to complete the summation:
fl

{:1

n+1

+ §* Z((i6-1i; + yi-1yi)aiai+1p{ + (YsÜ's+1 + xixi+1)d£-1Uipi—1 +
{:2

2di-1a?ai+1pi—·1p£ ‘ (ii-1ii+1 + y€—1yi+1)U?)

To simplify this expression, we can deüne the following:

Wa = ii}-éi+1 + yiyi+1

za = ii·1ii+1 + yi—1yi+1
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S6 = "6"6+1P6

which yields:

Var(AN)

(4.15)

Using the fact that this sum is “circular”, we can rewrite this as:

S. + $1+1) + 2¤?¤?+1 ·

2s?Notethat this expression for variance of area of a polygon, in terms of the coordinates,

the point variances (01’s) and the correlations between errors at adjacent points (p1’s), does not

explicitly include representation of the arcs which comprise the polygon. Instead, individual

points which make the polygon boundary are used. The identification of arcs is not necessary;

the results are the same. However, in a computer implementation of this formulation, some

efficiencies will be noted if arcs are considered.

Derivation Q @ Minimum-Yariance Qentroid

At this point, we may consider the problem of consistently defining what is meant by

the polygon centroid. It was noted that the location of the centroid used to center the

coordinates prior to variance calculations affects the value of the variance obtained, possibly due

to the omission of covariance of non-adjacent triangles. Therefore, it became necessary to

establish a consistent method for determining the location of the centroid. (Here we are

concerned with a centroid for use in variance calculations only; this centroid need not be in a

polygon interior, and should not affect any other processing steps). For the purposes of

estimating polygon area variance, a useful approach is to select the centroid location which

minimizes the variance, such as Bondesson (1986) used when evaluating the variance of area

obtained from traversing.
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To determine the location of the minimum-variance centroid (MVC), the formula for

polygon variance is written as a function of the arc variances (ai’s), the correlations associated

with the arcs (pi’s), the point coordinates
(xi’s

and
yi’s),

and the centroid coordinates (X, and

Y,). Taking the derivative of variance with respect to X, and Y,, and solving for X, and Y,

will yield the centroid coordinates which will minimize or maximize variance. Rewriting the

formula for the variance of a polygon made of n points (4.15),

Vi

* (4"s—1"?°'s+1Ps-1Ps + 2aiai+1pi(ii—1ii + Vs-ii';) +
2¢«¢:-1P«-1(X¤X«+1 + 9:5*;+1) · 2¤?(X«-1X:+1 + 9:-15*6+1)) (4·16)

Now, replacing the centered coordinates in equation 4.16 (ii and L) with the original

coordinates xi and yi, where ii = xi — X, and L = yi - Y,; we obtain the following:

V =ä+

2*%-1"aP6-1((X6‘X¤)(Xs+1'x¢) + (Ys‘Y¢)(Y6+1'Y¤))

‘ 2"?((X6-1‘X¤)(Xs+1‘X<=) + (Y6—1'Y¤)(Ys+1‘Y<=)))

This can be expressed in three parts: '

v = ¢„ + ¢•„ + ¢

where:

¢· X?) + ¤?(¤<?+1 — 2¤<«+1X= + X?)
*6X¤ ‘ xs+1X¤ + X?)

X?)

+ 2Ji—1dipi-1(xixi+1 ' X6X•= ‘ xs+1X¢ + X?)
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¢6 = «?„„<y? - wm + Yä> + «?<y?„ — 2Y6+1Y¤ + Y%>
‘ 2aiai+1pi(yiyi+1 ' y€Y¢ ‘ Y6+1Y¢ + YZ)

+ 2Jiai+1pi(y6—1y6' yiY¢ ' Y6-1Y•= + YZ)

+ 2di-laipi-1(yiyi+1 ' Y6Y•= ‘ Y6+1Y<=+¢

= 2"?¢’?+1(1‘P?) + 4**6-1"?°'6+1P6-1P6

Note that by separating terms,

= M md M = M

Thus,

av "gi; = i * E "?+1(‘2*6 + 2X¢) + "?(‘2*6+1 + 2Xc)
i=1

+ 2"6”6+1P6(*6 + *6+1 ' 2X<=) ‘ 2”6¢’6+1P6(*6 + *6-1 * 2X·=)
‘ 2*76-1"6P6-1(*6 + *6+1 ‘ 2X¢) + 2”?(*6-1 + *6+1 ' 2X<=) (4-17)

II= ä -•= E (-2¤?+1==6 + 2¤?+1X¢ - 2¤?¤¤6+6 + 2¤?X·= + 2¤6¤6+1p6><6
i=1

+ 2aidi+1pix£+1 ‘ 4°'6"6+1P6X¢ ‘ 2¢’6"6+1P6*6 ‘ 26idi+1Pixi-1

+ 4¢’6"6+1P6X¤ ' 2ai-ldipi-lxi ' 2ai-1dipi—1xi+1 + 4°'6-1”6P6-1X¤

+ 2o·?x,_, + 2¢r?x,+, -4a?X„And,

combining terms:

öV _ 1
”

2 2 X 2 2X
··· 2 * 'di+1xi + 6i+l •= + **6*6-1 ' ai •= + "6"6+1P6*6+1

i=l

' "6°'6+1P6*6-1 ' °'6-1"6P6-1*6 ' °'6-1"6P6-1*6+1+ 2'6-1"6P6-1X=)
Setting the derivative equal to zero and moving the terms involving XC to the left side of the

equation wc get:
”

2 2 1 ° 22*2; X¢('”6+1+‘6‘2”6-1”6P6-1) = 2*Z;*6("’6+1"’6-1”6P6-1)
I= l=
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1
n

2+ YZ *6-1(% * %%+1/*6)
{:1

1
fl

+ ä*Z*6+1(%%+1P6 * a{—1a{p{—1)
{:1

Next, we multiply both sides by two. Then, we note that the sums are "circular" (i.e., xa =
x„

and 1:,,+, = x,) and we can make the following substitutions:
n

2
n

2
E *6-1% = E *6%+1
{:1 {:1

fl fl

2x{—16{°’{+1p{ = X:*6%+1%+2/*6+1
{:1 {:1

fl II

2*6+1%%+1/-*6 = 2:*6%-1%P6-1
{:1 {:1

fl PI

2*6+1%-1%/*6-1 = 2:*6%-2%-1/'6-2
{:1 {:1

And we get:
II 2 fl 2 II

Xc
* 2*%+1 + 2% * Z2J{-·16{p{-1 =

{:1 {:1 {:1

TI 2 fl fl 2 fl
2:**6%+1 + Z'x{a{·-1a{p{-1 + 2*6%+1 + 2**6%+1%+2/*6+1
{:1 {:1 {:1 {:1

fl II

+ 2*6%-1%/*6-1 + 2:**6%-2%-1P6-2
{:1 {:1

Now, we note that ou the left side of the equation,
fl 2 ll 2Z*"6+1 = * Ev6

{:1 {:1

And 011 the right side of the equation, the first and third terms cancel and the second and fifth

terms cancel, leaving:
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7l ll
X•=

26:1 6:1

Thus, we have:

Y1

ZXs( d6—2a6•1p6—2 + a6+1U6+2p6+1)
X6 = (4.18)

Z(2 6666+1pi)
6:1

The procedure for ¢, follows identically, yielding:

Il

Zy6(a6-266-lpi-2 + "s+1°'6+2Ps+1)
Ye = (4.19)

Z:(2"s°'6+1P6)
6:1

To verify that this indeed is a minimum, we can take the second derivative of equation (4.17):
2 fl II

°
6:1 6:1

It is reasonable to believe that p will usually assume positive values. Positive p implies

that errors at adjacent points are more likely to be in the same direction than in opposite

directions; this seems to be the case for most mapping processes which produce errors. When

p>0, the above expression (and the similar one for the Y terms) is positive, indicating that the

solution is a minimum. Thus, the coordinates which minimize the estimated variance of a

polygon are weighted averages of the polygon coordinates, in which the weights are the products

of a’s and
p’s

associated with adjacent coordinates.

Mimiszu szf $;r.¤;<>v¤ia ¤ Elüßéll Rszlxzgga

After the derivation of polygon variance, the next step is to obtain an expression for the
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covariance of area between polygons which share an arc. We will proceed to derive polygon

covariance as we did for polygon variance, beginning with covariance between triangla.

First, consider polygon A as a polygon with centroid (X,, Y,). It shares an arc with

polygon B, whose centroid is at (Xi,Yi) (Figure 7). We will consider the triangla involved in a

sequence of four points on the arc: (Xi_i,Yi_i), (Xi,Yi), (Xi+1,Yi,i_i), (Xi+2,Yi_,_2). Since the

sequence of indexing depends on the direction (relative to a centroid), assume the direction of

indexing is that which will yield positive areas for polygon A (note direction of arrows in Figure

7). Thus, for polygon A, triangle i, the area is:

-46 = ä * ((*6 — *e)(Y6+i · Ye) · (*6+6 — Xe)(Y6 — Ye)) (4-20)
This implia that for polygon B, the direction is reversed; i.e. for polygon B, triangle i, the area

is:

Bi = i * ((X6+1 ' xb)(Y6 ' Yi) ‘ (X6 ' X•)(Y6+1 ‘ Ys))·

There are three casa to consider: thae involve the covariance between triangle i in A

and the three triangla in B with which there is a dependency: triangles Bi+1, Bi, and Bi_,.

Thus, individual exprasions are derived for:

C°"(A6»B6-1)• C°"(A6•B6)• and C°"(A6•B6+1)

Case 1: Cou(Ai,Bi_1)

By definition, Cov(Ai,Bi_,) = E(AiBi_1) - E(Ai)E(Bi_1) (4.21)

We start by obtaining the appropriate expectations. To begin with, equation (4.20) expands to:

Ai = i * ((*6 + ‘6 ' X¤)(Y6+1 + 'l6+1 ' Ye)- (*6+1 + ‘6+1 ' X¤)(Y6 + ni ' Ye))
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Ai = Q * (*65%+1 + *6%+1 ‘ xiY° + yi+1€i + ‘6%+1 ‘ Y°€i ' X¤Y6+1 ' X¤%+1 + x¤Y¤
‘ *6+1Y6 ' *6+1% ' *6+1Y¤ ‘ yi€i+1 ‘ €6+1% + Y¤€6+1 + Yaxe + XM): · X,¤Y¤)

Riearranging, we get:

A; XgYa ° Xdyj+1 +xaY¤+

yi+l.€i + *56%+1 ‘ Y°€i ' X¤%+1 ' *6+1% ' yi£i+1 ‘ ‘i+1ni + Y¤‘6+1 + X¤%)

Substituting ai = Q » ((xi - X,)(yi+1 - Y,) - (xiil - X,)(yi - Y,))i wc ge;

Ai = ai + %*(*6%+1 + yi+1€i + €ini+1 ‘ Y¤‘6
' X¤%+1 ' *6+1%

‘ y£€i+1 ' ‘6+1% + Y¤‘6+1 + X¤%) (422)

Now, define:

sl: the second term in (4.22)

= i*(*6%+1 + yi+1€i + €i"i·•·1 ' Y¤‘6 ‘ X¤%+1 ' *6+1% ' yit-6+1

' €i+1ni +
Y¤‘6+1

+ X¤%)

Then: E(Ai) = E(ai + sl) = ai + E(sl)

A¤d= E(¤1) = ä ·· E(¤<6m+6 + mm + €i„i+1
· Y·<: - X·m+6 - xmv: - y:<:+6

‘ ‘6+1% + Y¤‘6+1 + X¤%)

= Q * (*6E(%+1) + Y6+1E(‘6) + E(‘6%+1) ' Y¤E(‘6) ' X¤E(%+1) ‘ *6+1E(%)
‘ Y6E(‘6+1) ' E(‘6+1%) + Y¤E(‘6+1) + x¤E(%))

= 0

So E(Ai) = ai

For Bi_l we use:

B6-1 = i * ((Xi ' XU(Y6-1 ' Y1)· (X6-1 ' XU(Y6 ' YU)

B6-1 = 4 * ((*6 + ‘6 ' XU(Y6·1 + %-1 ' YU ‘ (*6-1 + ¢6-1 ‘ XU(Y6 + 'I6 ' YU)

= ä =•= (xm-6 + xm:-6 · x:Y• + v6-6<6 + wu-6 · Ym — Xm-6 - Xm:-6 + X6Y6
‘ *6-1Y6 ' *6-1% + *6-1Y• • Y6€6-1 ' ‘6-1% + Ybci-1 + X6}'6 + X»% ‘ X6Y•)

Rearranging terms:
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B:-1 = %*(x:Y:-1 ' ¥:Y6 ‘ X6}':-1 + x6Y6 ‘ 2:-1Y: + 8:-1Y6 + yixb ‘ X6Y6) + i*(x:0:-1

+ Y:-1€: + eini-1 ' Y6€: ‘ X60:-1 ' *:-10: ' Y:¢:-1 ‘ 8:-10: + Yb€i—1 + X60:)

And substituting b,_, = § v ((1:, - X,)(y,_1 - Y,) - (x,_, - X,)(y, - Y,)), we get:

B:-1 = b:-1 + 2*(x:0:—1 + Y:.-1‘: + 8:0:-1 ' Y6‘: ' X60:-1 ‘ X:-10: · Y:¢:-1 ‘ 8:-10:

+ Yb‘i•1 + Xßni) U (4-23)

Now, we will deüne:

sz = the second term in (4.23)

= i*(x:0:-1 + Y:—1¢: + 8:0:-1 ' Y6‘: ' Xlni-1 ' x:-10: ‘ Y:‘:-1

X60:)

Th·=¤= E(B:-.) = E(b.-. + S:) = b.-:

Y6€: ' X60i—1 ° xi•1ni ' yici-1

' ci-lni +
Y6‘:-1

+ X60:)

= ä * (x:E(0:-1) + Y:-1E(‘:) + E(€:0:-1) ' Y6E(‘:) ' X6E(0:-1) ' x:-1E(0:)

' Y:E(‘:—1) ‘ E(‘:-10:) + Y6E(€:-1) + X6E(0:))

= 0

S°* E(B:-1) = b:-1

Th°¤~ A:B:-1 = 8:b:-1 + 8:82 + b:-181 + 8182

888 E(A:B:-1) = 8:b:-1 + 8:E(82) + bs-1E(81) + E(8182) = 8:b:-1 + E(8182) (4-24)

Now, we substitute (4.24) into (4.21) and get:

C°"(A:»B:-1) = E(-4:B:-1) ' E(A:)E(B:-1) = 8:b:-1 + E(8182) ' 8:b:-1 = E(8182)

So, solving E(s,s2):

xi+ln€
_

yÜ€Ü+l

'
€g+1nj

+
Y6€j+1

+ xdni )*(xini-1 + yi—1€i +
€in€·-1

· YÜQ · XÖUÜ-1

' *:-10: ' Y:‘:-1 ' ‘:-10: + Y6‘:-1 + 2460:)) (4-25)
Equation (4.25) expands to 100 terms. When passing the expectation through, the only terms
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which remain are those involving the following products, whose expectation is non-zero:

‘a€s+1•
eici-19 'I6'Is+1• 06776-1»

A

<?» <?.1» ¤?+„

nä vip ##+1-
Any term involving the product of three of the random variables (cfs or nfs) will be zero. (For

example, 0)- Thum (425) r•=d¤¢¤¤ ¢<>=
E(¤1¤¤) = ä‘

YsYa+1E(¢s-1%) + YsYs+1E(‘s-1%)* E(‘s-1¢6'I6'I6+1) · Y¤Y6-1E(‘?)

And taking the expectations:

E(°1°2) = ä * (**6-1X6¢’6¢’s+1Ps + Xlxididi+1pi + yi—1yi+16?' Ybyi+1a?

· YaY;+1¢;-Naß;-1 + Ybyi+1ai-1dipi—1 ‘ ai—10?di+1pi—1pi

+ Xbxi+1vi—1aipi—1 + xi-·1xi+1a? ' Xbxi+1a? ‘ yi—1yiaiai+1pi

+ X¤Xs¢’s-1*7sPs-1 ‘ X¤X•°’6-1*7sPs-1 ' x¤Xs-Ni +
X¤X»°’?)

Combining terms, we have:

E(¤1¤¤) = ä =•= (¤?(y«-m+1 - Yum · Yu:-} + Y·Y•)

+¢i(Xs-1*6+1 ‘ X•x6+1 ' Xda-1 + X¤X•)

· V6-Naß:-1(YsYs+1 ' Y•Y6+1 ‘ Y¤Ys + Y·Y•)
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' *-*6-1"6P6-1(*6*6+1 ' X6*6+1 ' X¤*6 + X¤XJ

° "6”6+1P6(*6-1*6 · X51; - X«X;-; + X«X5)

' aiai+1pi(yi•1yi ' Y5}'; • Ya)';-1 + Y«Y5)

'2"6-1"i"6+1P6-1P6)

Therefore,

C°V(A6•B6-1) = i * (°’i((Y6+1 ' Y¤)(Y6-1 ' Yu) + (*6+1 ' X¤)(*6-1 ‘ XJ)

' ai-1aipi—1((yi+1 ‘ Y¤)(Y6 · Ys) + (*6+1 ' X¤)(*6 ' XJ)
‘ °'6V6+1P6((Y6 ‘ Y¤)(Y6-1 ' YJ + (*6 ° X¤)(*6—1 ' XJ)

' 2**6-1"?"6+1P6-1P6) (4-26)

Case 2: C0v(Ai,Bi)

By definition, Cov(Ai,Bi) = E(AiBi) - E(Ai)E(Bi) (4.27)

Equation (4.22) gives us an expression for Ai. To get Bi, we with:

Bi = ä * ((*6+1 · X»)(Y6 - Yt) · (*6 - *»)(Y6+1 - Y»))

= i * ((*6+1 + €6+1 ‘ XJ(Y6 + nä ' YJ ‘ (*6 +
€6 ' Xs)(Y6+1 + 1,i+l ‘ YJ)

= i * (*6+15% + xi-1·1„i° *6+1Ys + yi€i+1 + ‘6+1'I6 ‘ Y•‘6+1 ' Xbyi ' Xbni + Xz•Y•

‘ *6Y6+1 ' *6'76+1 + xiYb ' yi+1€i ‘ ‘6'I6+1 +
‘6Y1•

+ x•Y6+1 + X6'76+1 ' xbY»)

Riearranging terms,

Bi = i*(*6+1Y6 ' *6+1Ys ' Xbyi + X6Y• ‘ *6Y6+1 + *6Ya + Y6+1X• ' X6Y6) + i*(*6+1'76

+ yi€i+1 + ‘6+1'l6 ‘ Y6‘6+1 ' Xbni ' *6'76+1 ' yi+1€i ' (ini-•·1 + YN6 + Xbni+1)

A¤d Subsütvtivs b; = ä * ((16+1 · X6)(¥6 - Yi) — (16 — *•)(Y6+1 — Y»))»
We get:

Bi = bs + i>*(*6+1'76 + yici-+1 + ‘6+1'I6 ' Y6‘6+1 ‘ Xbni ‘ xi„i+1 ' yi+1€i ' ¢6'76+1

+
Y•‘6 + Xbni+1) (4-28) ‘
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Now, let us deüne:

ss = the second term in (4.28)

= %*(**6+1*76 + yi€i+1 + *6+1*76 * Y6*6+1 ‘ X•*76 ' **6*76+1 ‘ yi+l€i

' *6*76+1 + Ybci + X6*76+1)
Then, E(Bl) = E(bl + ss) = bl + E(ss)

And E(s:6) = ä * E(**6+1*76 + yi€i+1 + *6+1*76 ' Y•*6+1 ' X»*76 ' **6*76+1 ' yi+1‘i

' *6*76+1 + Yßfi + **6*76+1)

= ä * (**6+1E(*76) + Y6E(*6+1) + E(*6+1*76) ' Y•E(*6+1) ' X•E(*76) * **6E(*76+1)

· Y6+1E(*6) ‘ E(*6*76+1) + Y6E(*6) + X6E(*76+1))

= 0

S0 E(Bl) = bi

Then, AlBl =a.lbl + alss + blsl + slss

nnd E(A6B6) = aibi + n6E(*a) + n6E(*1) + E(°1*a) = aibi + E(*1*s) (4-29)

Now we substitute (4.29) into (4.27) and get:

C°‘*(A6•B6) = E(A6B6) ‘ E(A6)E(B6) = aibi + E(°1*s) ‘ aibi = E(°1*:6)

A¤d• E(**1S:6) = ä * E((**6'76+1 + yi+1€i + *6*76+1 ' Ynci ‘ X¤*76+1 ' **6+1*76 ' Y6*6+1
‘ *6+1*76 + Y¤*6+1 + X¤*76 )*(**6+1*76 + Y6*6+1 + *6+1*76 ' Y6*6+1 ' X6*76

' **6*76+1 ‘ yi+1€i ' *6*76+1 + Y6*6 + **6*76+1)) (4-30)
Equation (4.30) expands to 100 terms. As before, passing the expectation through eliminates all

terms except those whose expectation is non-zero:

*6*6+1• *6*6-1• *76*76+1• *76*761

Thus, (4.30) simplifies to:

E(¤1¤3) = ä =•= (¤¤6><6+1E(-1606+1) - X6¤6E(m'16+1)- X?E(v?+1) + **6==6E(v?+1)
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Taking the expectation:

· E(S1$s) = i * (xixi-|>1aiai+1Pi ‘ X6xi"iVi+1Pi ' Xi'?-+1 + X•K6"?+1

+ yiyi+10iai+1pi ' Y»Y6+1°’6"s+1P6 · y?+1a? + Y»Ya+1°'?

+ ¤?¤LM? · ¤?¤Li - Y·>'MM:+M« + Y·YMM«+M:
+ Y··v:+M? · Y·YM? · K«¤«+MM«+M: + K·KMM:+M«
+ K·-XML1 - K··KML1 · KLM? + K»¤¤«+M?
+ KsK6+1"6"s+1P¢ ‘ X5xi+1di0i+1pi ‘ Yi'?-+1 + Ybyiv?-P1

+ vm+MM:+M« · Y•vMM:+M: - ¤LM? + ¤?¤L1p?
+ Y·vMLr - Y·YML1 - Y··v:+MM:+M: + Y·YMM:+M«
+ X¤xs+1”? ' x•x„¤? ‘ X¤Ka°’a"6+1Pa + X¤X•'6°6+1Ps)

Combining terms, we have:

E(S18s) = i * ("?(* Y?+1 + Y6Ys+1 + Y¤Y6+1 ' Y·Y» ' X?+1

Xdxß Yßyi + Y¤Ys ° Y‘Yß)

+*’6°’
s+1P6(KsKs+1' XF: ‘ X¤xs+1 + X¤X• + KsKa+1 ' XbXÜ+1 ' Xda + X¤X•)

+"s¢s+1P6(Y6Ys+1‘ Y•Y6+1‘ Y¤Y6 + Y¤Y• + YaYa+1 ‘ YW: ‘ Y¤Y6+1 + Y·Y»)

' "?+1"? + "?"?+1P? + a?6?·O-lp? ' "?°’?+1 )

And simplifying, this becomes:
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C°V(A6•B6) = i * (‘°'?(( Y6+1 ' Yb)(Y6+1 ' Y¤) + (*6+1 ' X•)(*6+1 ' X¤))

' "?+1((*6 ‘ X•)(*6 ' X¤) + (Y6 ' Yb)(yi ‘ Y¤))

+°'6"6+1P6((*6 ' x¤)(*6+1‘ X6) + (*6 ‘ X•)(*6+1 ' X¤))

+”6°'6+1P6((Y6' Y•)(Y6+1' Y¤) + (Y6+1 ' YÖ)(yi ‘ Y¤))

· 2¤?+1¢?(1 · ß?)) (4-31)

Case 3: Cov(A1,BH1)

BY d¢n1nt1°n• C°"(A6-B6+1) = E(A6B6+1) ' E(A6)E(B6+1) (4·32)
Again, equation (4.22) provides an expression for A1. To get BH1 we use:

B6+1 = 2 * ((X6+2 ' Xb)(Y6+1' Ya) ‘ (*6+1 ' X»)(Y6+2 ' Y6))

= i * ((*6+2 + ‘6+2 ' X1•)(Y6+1 + 76+1 ' Ya) ‘ (*6+1 + ‘6+1 ' X»)(Y6+2 + 76+2 ‘ Y6))

= 2 * (*6+2Y6+1 + *6+276+1 ‘ *6+2Ys + yi-•·1‘i+2 + ‘6+276+1 ‘ Y6‘6+2 ' X»Y6+1
‘ Xb"i+1 + X»Y• ' *6+1Y6+2 ‘ *6+176+2 + *6+1Y• ‘ yi+2€i+1 ‘ ‘6+176+2

+ Y6‘6+1 + X6Y6+2 + xbni+2 ‘ X•Y»)

Rearranging terms, we get:

B6+1 = i*(*6+2Y6+1 ‘ *6+2Ya ‘ X»Y6+1 + X•Y» ‘ *6+1Y6+2 + *6+1Ys + Y6+2Xs ' X6Y6)

+ i*(*6+276+1 + yi+i€i+2 + ¢6-+276+1 ' Y6‘6+2 ‘ xb"i+1 ' *6+176+2

' yi+2‘i+1 ‘ ‘6+176+2 +
Y•‘6+1 + Xb"i+2)

And Snbstitntinß b6+1 ((*6+2 ' X6)(Y6+1 ' Ya) ‘ (*6+1 ' X1•)(Y6+2 ' Y»))•

We have

B6+1 = n6+1 + %*(*6+276+1 + yi+1€6+2 + ‘6+276+1 ' Ys‘6+2 ‘ *676+1 ' *6+176+2
‘ yi+2€i+1 ‘ ‘6+176+2 + Ys‘6+1 + Xb')i+2) (4-33)

Now, let us define:
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s, = the second term in (4.33):

= %*(x6+206+1 + yi+1€i+2 + ¢6+206+1 ' Y6‘6+2 ' X•06+1 '
Xi+1„i+2

‘ yi+2€i+1 ‘ *}+106+2 + Y•‘6+1 + X•06+2)

Th°¤• E(B6+1) = E(b6+1 + 84) = 56+1 + E(84)

8**3 E(84) = i * E(xi+2ni+1 + yi+1€i+2 + ‘6+206+1 ' Y•‘6+2
' X606+1 ‘ *6+106+2

' yi+2‘i+1 ‘ 86+106+2 + Ys‘6+1 + X•06+2)

= é * (*6+2E(06+1) + Y6+1E(‘6+2) + E(‘6+206+1) ‘ YbE(‘6+2) ‘ x•E(06+1)

' *6+1E(06+2) · yi+2E(‘-6+1) · E(‘6+106+2) + Y6E(‘6+1) + X•E(06-+2))

= 0

S° E(B6+1) = b6+1
Th°“· A6B6+1 = 86)*6+1 + 8684 + bi+1s1 + 8184

md E(A6B6+1) = a6b6+1 + 86E(84) + b6+1E(81) + E(8184) = *656+1 + E(8184) (4-34)

Now, we substitute (4.34) into (4.32) and get:

C°"(A6•B6+1) = E(A6B6+1) ' E(A6)E(B6+1) = 86)*6+1 + E(8184) ‘ 8656+1 = E(8184)

A¤d• E(8184) = ä * E((*¢606+1 + yi+1€i + 8606+1 ' Yßfi ' X¤06+1
‘

*6+106 ‘ yiei-+1

' 66+106 + Y¤‘6+1 + x¤06 )*(*‘6+206+1 + yi+1€i+2 + Ci-!-2Ui+1 ‘ Y»‘6+2

' X606+1 ' *;+106+2 ' yi+2€i+1 ' 86+106+2 +
Y•‘6+1

+ 34606+2)) (4-35)

Equation (4.35) expands to 100 terms. Passing the expectation through as before leaves only

the terms which involving the following products, whose expectation is non-zero:

€6‘6+1• ¢6‘6-1· 0606+1« 0606-1•

<?» ¢?.1» <?+1»
vw?. vip n?+1·

Any term involving the product of three of the random variables (cfs or nfs) will be zero.

Thus, (4.35) simpliües to:

E(8184) = ä * (X6x6+2E(0?+1) ‘ *¢6X6E(0?+1) ' X6X6+1E(06+106+2) + x6X6E(06+106+2)
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‘ yi+1yi+2E(€i€i+1) + Y6+1Y»E(‘6‘6+1) · E(¢6‘6+1'I6+1'I6+2)

+ Y·¤Y6+2E(‘6€6+1) ‘ Y¤Y•E(‘6‘6-+1) · X¤*6+2E('I?+1) + X¤X•E('7?+1)

+ X··x6+6E(m+m6+6) · X·X•E(m+m6+¤) · =6+1¤=6+6E(mm+6)
+ *6+1X»E('I6'I6+1) • Y6Y6+1E(€6+1‘6+2) + Y6Y6E(‘6+1‘6+2)

+ Y6Y6+2E(€i+1) ' Y6Y•E(‘?+1) · E(¢6+1‘6+2'I6'I6+1) + Y¤Y6+1E(‘6+1‘6+2)
‘ Y¤Y6E(‘6+1€6+2) ' Y¤Y6+2E(¢i+1) + Y¤Y•E(‘i+U + X¤*6+zE('76'I6+1)

' X¤XsE('76'l6+1))

Which is:

E(s1s4) = i * (*6*6+2*%+1 ' *6X6”?+1 ' *6*6+-1”6+1”6+2P6+1 + xiXb6i+10i+2Pi+1

' yi+1yi+2aidi+1pi + Y6+1Y•°'6°6+1P6 ' °6"i+1'6+2P6P6+1

+ Y¤Y6+2°'6"6+1P6 ‘
Y¤Y6”6”6+1P6 ' X¤*6+2"?+1 + X¤X6"i+1

+ X¤*6+1°’6+1°’6+zP6+1 ' x¤X»"6+1'6+2P6+1 ' *6+1*6+2°’6°’6+1P6

+ xi+1Xbaiai+1pi * yiyi+1ai+1ai+2pi+1 + Y6Y•°’6+1”6+2P6+1

+ yiyi+20,?+1 ' Y6Y•"?+1 ' *’6”i+1'6+2P6P6+1 + Y¤Y6+1”6+1°'6+2P6+1
‘ Y¤Y6"6+1”6+2P6+1 ' Y¤Y6+2”i+1 + Y¤Y•”?+1 + X¤*6+2”6”6+1P6

' X¤X6"6"6+1P6)

Combiuiug terms, we have:

E(S184) = ä * (°?+1(*6*6+2' *6*1 • X¤*6+g+ Xex; + Y6Y6+2' Y6Y• ‘ Y¤Y6+2 + Y¤YU

”diai+1p£(yi+1yi+2” Y6+1Y•' Y¤Y6+2+ Y¤Y6+ *6+1*6+2' *6+1XV X¤*6+2+ X¤XU

"'6+1"6+2P6+1(*6*6+1' *6Xr X¤*6+1+ X¤X1+ Y6Y6+1' yiYb° Y¤Y6+1+ Y¤YU

' 2°’6”?+1"6+2P6/*6+1)

Which simplifies to:

C°"'(A6•B6+1) = i * (Vi-+1((*6 ' X¤)(*6+2‘ XU + (Y6 ' Y¤)(Y6+2 ' YU)

"’6"6+1P6((Y6+1 ' Y¤)(Y6+2 ‘ YU + (*6+1 ‘ X¤)(*6+2' XU)

"’6+1°'6+2P6+1((*6 ‘ X¤)(*6+1' XU + (Y6 ' Y¤)(Y6+1' YU)
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‘ 2"s”?+1°'s+2PaPu-1)) (4-36)

Qomgining jfrianglcsAlongWe

have developed expressions for the three casa of covariance between a triangle in

one polygon and the connected triangles in an adjacent polygon. The next step is to sum the

covariances for all triangla formed by an arc. Assume that an arc which separates polygons A

and B has m+1 points. There will be m triangles in the arc-sector in polygon A (Ai, i=1..m)

and m triangles in the arc-sector in polygon B (Bi, j=1...m). Then, the covariance between

polygons A and B is the sum of all appropriate triangle covariances:

Cov(A,B) = Cov(A1,Bi) + Cov(A1,B2) +

C°"(A2•B1) + C°"(A2•B2) + C°"(A2»Ba) +

Cov(A3,B;) + Cov(A3,B3) + C0v(A3,B4) +

C0v(A„,,B„,_1) + Cov(A„,,B,„).

or, if we define Cov(A1,B0) = 0 and Cov(A„,,B„i+1) = 0, we can use the summation:

Cov(A,B) = ä(Cov(Ai,Bi__,) + Cov(Ai,Bi) + Cov(Ai,Bi_i,1))
i=1

Now, we substitute the expressions we have derived for these individual triangle covarianca

(4.26, 4.31, and 4.36), and obtain:

i=1
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ÜN))

— ¤«-b(i··.+i<b„ + $'¤.„.,$'b,) - ¤b+b(>?·bäbm + yßiybi

S. + ¤b.-1)+ ¤?¤?„) (4-37)
where:

_

iq-; = xi-1 ‘ X¤ iN_1 = xs-1 ' X•

i4i = Xi · X4 i" = Xi • X;

Üw-; = yi—l ' Y¤ Übi_1 = Ya-1 ' Y1

Üni =)';·Y¤ ÜN =Üs'Y5

etc...

and where s, is as in (4.15).

DISCUSSION · DETERMINING MODEL PARAMETERS

The expressions for polygon variance and covariance depend upon the coordinates and

the
0’s

and
p’s

which indicate the variability and correlation of points in an arc. Several

possibilites exist for selecting values of 0. In Chrisman’s (1982c) work in this area, clom
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examination of the steps involved in producing a USGS land cover map (scale 1:250,000)

provided deductive estimates of individual error components, which were combined to arrive at

an overall estimate of positional accuracy. Chrisman considered three components: line width,

digitizing (by scanning), and rounding errors, under two assumptions he termed “conservative"

and “less conservative". For example, under conservative assumptions, the standard deviation

of errors caused by line width was assumed to be 14.4 meters, that of scanning errors was

assumed to be 16.6 meters, and rounding errors exhibited a standard deviation of 5.8 meters.

Adding the variances of these errors resulted in an overall standard deviation of 22.8 meters.

This approach for estimating overall positional error has been endorsed in the Proposed Digital

Cartographic Data Standard (Morrison, 1988).

An alternative for estimating the variance parameter is based upon map accuracy

statements. As discussed by Keefer (1988), typical map accuracy statements include a band

width and an alpha level. For example, the National Map Accuracy Standard quoted earlier

states:

"For maps on publication scales larger than 1:20,000, not more than 10% of the

points tested shall be in error by more than 1/30th inch, measured on the

publication scale...”

In the above statement, the error-band half-width ia 1/30th inch, and the alpha level is 0.10.

Keefer (1988) describes how these statements may be used to select a variance for a normal

distribution that meets the specification. The estimate for 6 is denoted by:

·* = %
where:

W = é the error band width

K = 1-% quantile of the standard normal distribution
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A more costly alternative procedure is to evaluate the variability of points in repeated

sampling involving mapping the same area a number of times. In this case, a point coordinate

represents a random variable which is observed in repeated samples and for which the standard

deviation can be calculated.

In some instanca, obtaining an estimate of arc variability may be straightforward. For

example, in many GIS applications, polygons are formed by proximity analysis, in which a

computer algorithm delineata those areas within a given distance of some feature. A typical

case in foratry GIS is the creation of road polygous to extract acreage from the timber stands

through which a road passes (thereby obtaining net forcstcd acres). Another example is creation

of “buffer strips” around streams or drainaga. In thae casa, the arcs surrounding the feature

of interat (e.g., the road or stream) are established by the GIS at a fixed distance from that

feature. However, on the ground, the width of the road or buffer strip is likely to vary

somewhat. If we measure the variability of width via sampling, we could assign one·half of the

standard deviation of width to the arcs on each side of the road or stream.

The choice of the correlation coefficent, p, may be more diüicult. In an analysis of

digitizing errors, Keefer ct aL (1988) used time series analysis to detect serial correlation of

errors. After fitting an autoregrasive model to data digitized in stream mode, he encountered

correlation coefficients between 0.3 and 0.9, with an average of about 0.7. It is likely that

mapping processes such as digitizing technique will have a signiticant impact on the serial

correlation of coordinate errors, but more study is obviously needed to obtain reliable atimata

of the correlation coefticient under varying conditions. Even without firm knowledge of the
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amount of correlation of errors in a map, the model may be quite useful: one advantage of an

algorithm for calculating polygon variance is the capacity for performing sensitivity analysa in

order to determine the impact of different levels of correlation on the raulting variance.

The derivations performed to obtain an expression for polygon area variance allowed a

different 6 and p to be assigned to each coordinate pair in the map. A more realistic

assumption might be that all points in an arc exhibit the same variance and correlation with

their neighbors. In some casa, a single 6 and p may even sufiice for all arcs in a map. Often,

however, knowledge about the ability to locate various boundaria may suggest the use of

different parameters for different arcs. For example, in maps derived from interpretation of

color-infrared photographs, some boundaria (such as those between water and land) may be

discernible with much greater precision than other boundaria (such as those between vegetation

types with similar spectral signatures). In these instances, assumption of different
6’s

for the

different arcs may be justiiied. In any case, it is logical to consider the valua for 6 and p to be

attributes of an arc, and to be maintained as such when overlaying polygons. Then, the valua

may be made available to computer programs which could calculate polygon varianca for the

raulting overlay map. When all points in an arc are assumed to have the same parameters (6

and p), simpliiication of the variance and covariance equations is possible, and an opportunity

for computational efficiencies arisa. Thus, the equations for polygon area variance (4.15) and

covariance (4.37) as written are not in the most eüicient computational form. Matrix notation

may also be used to express the variance and covariance formulas, but calculation of thae

quantities by matrix algebra may not be more etiicient than use of simple sums.

One issue which is encountered in implementation of the variance and covariance

expressions is the selection of an estimate of 6 for nodes. If the arcs which are incident at a
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node have different assumed variabilitie, there may not be a single obvious choice for which

variability to assign to the node in area variance calculations. It would seem reasonable to

assign the variance of the points in the least variable incident arc to a node as the variability of

that node. For example, if a node is at the intersectiou of an ownership boundary, a timber

stand boundary, and a soils unit boundary, the location of the node is known to be on the

ownership boundary, and hence is known at the highet of the three precisions. This is

epecially true when data sets are digitized and overlaid with a priority given to the most precise

layers, which is possible when GIS software allows a user to "snap" an arc to an existing (and

usually more precise) arc or node.

A final consideration in the identification of point variability is the average distance

between points along an arc. The simulation programs which were used to tet the equations

derived above performed very poorly when 6 was large relative to the distance between points in

an arc. When 6 approached value of' § to ä of the distance between points, simulated errors

occasionally caused points on an arc to reverse order, creating "loops" in the arc. The leson to

be learned from this is that it may be unrealistic to assign a value of 6 which doe not reflect

the distance between digitized points. Actua.lly, the inconsistency lie in digitizing points at a

higher reolution than the map and data call for. However, when analyzing data that has

already been digitized, it make sense to use a 6 which is compatible with the density of the

data.

POLYGON AREA ERRORS — VALIDATION OF THE DISTRIBUTION

The suitability of the normal distribution to model polygon area errors was examined in
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a limited tet involving simulations of a few contrived polygons. It was suggeted that areas of

polygons with few vertice would be les likely the normal distribution than areas of polygons

with more vertices. To tet this, the Anderson~Darling A2 statistic was calculated for each of

twenty simulations (80 iterations each) of the six polygons created from sampling a circle.

Thee value are tabulated in Table 3. A null hypotheis of normal errors (with mean and

variance specified by the expressions previously developed) at 0:0.10 would be rejected for a

sample of size 80 if A2 > 1.933. Even for a polygon of only three vertice, the null hypothesis

was rejected in only 15% of the simulations. Even data known to be from a normal distribution

may be expected to be rejected an average of two time out of 20 when tested at 0 = 0.10.

Though inconclusive, there appeared to be a trend toward fewer rejections of a hypothesis of

normality as the number of vertice in the polygon increased. While this was only a limited

evaluation of errors in single artificial polygons, it appears that an assumption of normality for

area errors seems appropriate. Simulation of different sizes and shape of sliver polygons, at

varying value for 6 and p, would be deirable before making inference using the normal

distribution to model areas of sliver polygons.

POLYGON AR.EA ERRORS - EXAMPLE APPLICATION

Polygon area variance and covariance were calculated for the Webster tract using the

nine sets of assumptions depicted in Table 2. Thee variable, and the per·acre value from

Table 1, were entered into equation 3.5 to obtain nine etimate for variance of total tract value.

Coefiicients of variation of total tract value were calculated for each of the nine assumptions,

and are given in Table 4. Figure 13 shows the coefficent of variation as a function of the value

used for 6 and p. It is readily apparent that increasing 6 or p will increase variability in a
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Table 3. A11derson·Darli¤g A2 statisticsl for 20 simulations each of six polygons with varying

numbers of vertices.

Number of Vertices in Polygon

N=3 N=5 N=7 N=9 N=11 N=15

2.31608 Reject HD

3.22710 4.56917 2.24194
2.76724 2.36631 1.98364 2.88770
2.03021 1.94432 1.95903 2.12643 2.41514 1.96851
1.73295 1.32892 1.72841 1.73555 1.72182 1.63094
1.67825 1.28616 1.39735 1.35096 1.24803 1.54893
1.37749 1.24127 1.20659 1.29623 1.17020 1.26306
1.25466 1.10529 1.18011 1.28882 1.02360 1.01745
1.05587 1.09097 0.96616 1.00782 0.87936 0.96420
0.98085 0.93748 0.94840 0.98653 0.86596 0.90264
0.92962 0.78622 0.87671 0.95864 0.79844 0.79936
0.86852 0.76338 0.84288 0.95382 0.75302 0.77579
0.75689 0.72450 0.82498 0.92506 0.65272 0.76962
0.73806 0.61611 0.71898 0.87453 0.64449 0.60908
0.71356 0.60953 0.69086 0.83841 0.55401 0.57480
0.65800 0.59430 0.63707 0.81243 0.49825 0.57464
0.65350 0.53202 0.52043 0.78192 0.47489 0.55566
0.47606 0.39913 0.50621 0.58696 0.47460 0.51931
0.46569 0.36320 0.47999 0.57171 0.45585 0.39865
0.43224 0.35265 0.16157 0.49050 0.35425 0.35004
0.36627 0.26125 0.45313 0.27800 0.34501

0.32093 0.16953 0.28715

0.13584 0.23950
Average = 1.10300 1.04153 1.05654 1.01181 0.74133 0.76640

# Rcjected= 3 3 4 2 1 1

1The critical value of A2 for a test at cx = 0.10 is 1.933.
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Table 4. Variability of total timber value estimatesz for the Webster tract under nine

assumptions of 6 and p for point location errors.

Standard Coefficient
6 used for Deviation of Variation

Assumption internal area of Value ($) of Value (%)
A 0.3 3402.59 2.89

B 0.6 4791.32 4.07

C 0.9 5860.13 4.98
50.0 0.3 6823.42 5.79
50.0 0.6 9594.85 8.15
50.0 0.9 11732.27 9.96

G 75.0 0.3 10297.48 8.74
H 75.0 0.6 14446.12 12.27
I 75.0 0.9 17656.80 14.99

2Total timber value was estimated to be $117,834.
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Figure 13. Coefiicient of variatiou of value as a function of assumed values for 0 and p.
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seemingly linear fashion. The choice of 6 appears to have a greater influence on the reulting

variability of value than doe the choice of p. Under the set of assumptions which seem most

realistic (6:50, p:0.6), the standard deviation of value was 8% of the mean tract value.

The influence of the degree of correlation ou area variability may not be intuitively

obvious. One might correctly point out that given a polygon composed of a single arc, point

errors with the maximum correlation (p=l) would result in a shift in polygon location, but

would produce no errors in area. Very highly correlated errors tend to shift an entire arc in one

direction. When a polygon is composed of more than one arc, and the individual arcs are

shifted independently of each other, a higher variability will result. Part of the explanation

might be that independent errors may tend to offset each other; an error at one point may

increase polygon area by the same amount that another point error decrease it. When errors

are highly correlated, this offsetting effect may be reduced or eliminated.

While this analysis was only a cursory demonstration of an application of the variance

formulas, it indicate that variability of summary etirnate due to imprecision in spatial data

can be signilicant. The assumptions used here were meant to be only approximations; more

intensive analysis of the mapping process would produce more reliable etimate of 6 and p.

However, even such approximations as used herein can be useful for comparative purpose. For

example, suppose two tracts of land are being considered for acquisition, and only one will be

purchased. If the two are mapped and inventoried in similar manners, comparisons of

variability can be made under a variety of assumptions. If the value of the tracts are similar,

yet have widely different variance, the tract with lower variance of value would appear to

present less risk, and would be the deirable choice. Precise and accurate knowledge of 6 and p

is not necesary in such circumstance.
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An interesting extension of the analysis presented here would be to consider both

components of variability: that due to variance of inventory estimates, and that due to spatial

imprecision. As presented by Schumacher and Bull (1932), the standard error of total volume

can be seen as consisting-of two terms:

sE§,,, = szi, * A' + SE; * v'

where: SETV = standard error of total volume estimate

SEV = standard error of volume per acre estimate

A = area in acres

SEA = standard error of area estimate

V = volume per acre

This equation can also be expressed in terms of relative standard errors:

SETV, = SEV, + SEA,

where: SEX, = = CVX (coeüicient of variation of X)

While this example only considered area variability, the above expressions could be used to

account for both variance components. Knowledge of the relative contribution of per·acre

volume variance and area variance toward total variance might suggest where effort might best

be directed to increase precision. More samples might be taken to reduce per-acre volume

variability, or more detailed mapping (through better equipment, larger—scale photography, or

better ground control) would likely reduce area variability, Consequently, inventory resources

could be directed where they would be most efficient in terms of variance reduction.
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DISTANCE ERRORS - DERIVATION

Slg J.; hits; Hmmm

Since the assumption of normality has been adopted for this case, we can state:

x. ~ N(x.,«Z) Y. ~ N(y,,«Z)

X9 ^* N(x9,Ü?;) Yu

"Vwhichimplies:

so

x,-x., __N( X.-X., 1)
ld? + dä ld? + dä

and

Ya ' Yu
~ N

yl ' Yv 1
ld? + dä ld? + dä ·

By squaring and applying the definition of a non-central chi-square random variablea (Johnson

and Kotz, 1970) we obtain:

+ ,3 * 6.* + 6%

Y Y
2 (y y

)’
a ' u I2

•
' V

~ x Ä = (4.39)(1.2 + az) «·’
+ «% )

3 A non-central chi—square is denoted by x':(«\) where v is the degrees of freedom and

,\ is the non-centrality parameter. By definition, (N(;1,1))2 ~ x'?(«\ = pa)
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Adding the left sides of (4.38) and (4.39) yields:

2 2
2 2xa * Xu Ya * Yu _ (X' ° X") + (Y' ° Y")

I 2 2 +
I 2 2 - 2 E7•+7v 7•+7•1 a‘+a°

= (4.40)

where D2 is the square of the measured distance from the point to the vertex. Since non-central

chi-squares are additive we can add the right sides

of (4.38) and (4.39) to obtain the distribution of (4.40):

D2
~

XI2 Ä =
d2

7•
+ 711 2 7a + 70

where d2 is the square of the true distance: (x, · x„)2 + (y, - y„)2. This expression can be

useful in making statements about the probability of observing certain distances. For example,

if wc wish to know the probability that a point is at least a distance k from a vertex, when the

error variance of the point and the line are known, we can state:

Prob{D2 1;} = P;¤b{1>“ 2 P}

D' P= P b gif > jl!ro {7•+7•1 —
71+7:1

= P b I2 A =
d2

>
k2

ro {X 2( 7•+7v -71+711

A special case of this would be a test to determine if a point is on a line, or two points are in

essentially the same location. Assume we calculate the distance between the points to be I:
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units. If the points were, in fact, coincident, we would have:

Prob D} k d2:0
= Pl‘0b

,2
Ä = Ü>{—¤1 {~»< >—.«—=...„

But X'§(«\ = 0) = Xä, so we can use oommonly available tables of the percentage points of the

X2 distribution. We would then calculate If the area under the tail of a X;
6. Uv

distribution to the right of this point were suüiciently small, we would conclude that the points

were distinctly different. The above development follows along the lines of a prevalent

application of distance between two bivariate normals: the probability of hitting a target when

the target location and the point of impact are bivariate normal random variables (Grad and

Solomon, 1955). In such targeting applications, the desired probability is the probability that

the distance between the target and the point of impact of the projectile is less than the eüective

"kill" radius of the weapon.

It would probably be useful to know the mean and variance of D. However, deriving

the distribution of:

D
~ I

I2X „('\)
Vs + Uv

in order to obtain them has proven to be intractable. Note that the situation we are evaluating,

that of the distance between two independent bivariate normal random variables, is a common

one in multivariate statistics (Tatsuoka, 1971). Yet most of the multivariate statistical tools

(such as Hotelling’s T2 or Mahalanobis’s D2, as well as the targeting applications just

mentioned) for detecting differences between groups utilize measures of squared distances. Thus,

it appears that in other eiforts, the distribution of distance between multivariate normal random

variables has been elusive, while inferences using squared distance measures have sufficed.
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The distribution sought in this section is the conditional distribution of distance given

the position along the line segment (X} = XL). We have hypothesized (3.9):

Dlxi ~ N(yS, dg + 6})

Where 6} = f(6§, 6ä, p, X2). The expression for 6} yielding the best graphical fit to variances

observed in simulations was:

vi- = ViP; + vip? + Ypvmpivz (4-41)
where: pl = proportion of the line segment from point 1 to point X}

= E—§;S is?
pg = proportion of the line segment from point X} to point 2

= (1 ‘ P1)

(X3 - Xi)

Part of the evidence that led to this formulation was noting the location of the value of X} at

which 6} was lowest. Simulations indicated that when p=0, this point was found at:

plmln or,

equivalently:Incorporatinga nonzero correlation coeßicient yielded slightly different locations. It was soon

discovered that the X} which evidenced the lowest 6} was such that:
2

or, PMR = vi · ßvm W1) (M3)V1 + V2 ‘ 2pa1a2 J1 + V2 ' 2pd1U2
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In fact, taking the derivative of (4.41) with rapect to p1 or pa and solving for p1 or pg will yield

the above equations.

An interesting result of these expressions is the value of 0; at the minimum:

(V1 + V2 ' 2PV1V2l

”_

«2«:(«:¤-p=> + am-p=> -

2p«1«.<1-p*>)'_Table5 shows the formulas for p1„,1„ and 0;,,1,,1 for the general case, and for the specific casa

when 01:02:0, and when p = -1, 0, or 1. If we assign similar variances to all points in an arc,

then most often, 01 will equal 02, the exceptions being if point 1 or 2 is a node with a variance

different from the rest of the arc. Thus, we will usually have p1„,1„ : 0.5, and a simpler

expression for 0;,,,,,,. The exprasions shown in the table have a degree of intuitive appeal. For

example, when p:1 and 01:02, the errors at each endpoint are identical. Therefore, every line

segment with errors will be parallel to the nominal line segment (without errors). This would

imply that since p1„11„ is undefined, there is no single point along the line at which variance is

minimized; the variance is the same for all locations along the segment. Conversely, if p: -1,

then the errors at point 2 will be equal but opposite in direction from the errors at point 1. This

would imply that every erroneous line segment would intersect the nominal line segment at its’

midpoint, and that the variance of errors at that point would be 0. If 01 = 02, the equations

simplify considerably, and we note a linear effect of p on 0;,,,,,,.
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Table 5. Formulas for
p1„_1„

and 0*%,,1-1,1.

General
Case

0*1(01—p02) 01 01 0 if 01<01U1 7/: Jg 01 + 02 0.17 .1. ,2 1 if 01>a1

1 1 1

2 2 2 2 2 2 2°1"2(1‘P) ¢1°'2 2¢’1"2
· 2 20* )61 #62

°'1+"2'2P"1'2 (a1+a2) °'1+”2 1, 2

¤“(1
+ P)
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The behavior of the function in (4.41) was noted graphically to be very consistent with

simulations, over a wide range of the parameters ai, 02, p, and XL. Other functions tested

included a parabola and a cosine curve which were fit to duplicate the noted results at the

endpoints and the point (pimiii) at which variance of
Y,

errors were smallest. Neither of these

curves performed well at other points, or were consistent across ranges of the parameters.

Equation (4.41) therefore provides a parameter which allows us to specify completely

the hypothesized normal distribution of perpendicular distance from a point to a line (3.9). The

translation of (X,Y) to (X',Y') was performed to simplify notation, and has no effect upon the

results. Given any point (X,,Y,) and its variability 62, and any line segment from Xi,Yi to

Xi_,_i,Yi+1 and its error structure (ai, a?+i, pi), we can first calculate the point of intersection

of the perpendicular from the subject point to the line segment, and then calculate the

parameters of the hypothesized distribution.

DISTANCE ERRORS - VALIDATION OF THE DISTRIBUTION

The normal distribution was hypothesized for perpendicular distance from a point to a

line. To evaluate the validity of this assumption in an admittedly restricted test, twenty

simulations of 80 iterations each were performed using 54 sets of assumptions. The Anderson-

Darling statistic was used to compare the empirical distributions resulting from the simulations

to the hypothesized distribution. At 01:0.10, and n=80, the rejection region for this statistic is

A2>1.933. At this Type I error rate, data from a normal distribution might be expected to

result in a rejection about two times out of 20. Table 6 shows the number of rejections (out of

20 simulations) for each of the 54 sets of assumptions.
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Table 6. Number of rejections of a null hypothesis‘ of normal distance errors in 54 sets of

simulations.

xi:-26 xi:0 xi:26 xi:-26 xi:0 xi:26
Yi:32 2 3 2 4 2 1

J; : 1 Yi: 6 2 2 2 2 1 2
Yi: 2 1 3 1 3 1 6
Yi:32 2 3 3 3 2 2
Yi: 6 2 1 1 2 2 3
Yi: 2 1 4 2 1 4 2
Yi:32 0 2 1 2 2 1
Yi: 6 3 3 1 1 1 1
Yi: 2 3 1 2 2 · 0 1

4Testing at 0:10%, the null hypothesis is rejected if A2) 1.933.
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The average number of rejections for the 54 sets of simulations was 1.96. While not

conßrming the normal distribution as the best model, this data certainly provides no evidence

for rejecting it. Inspection of the relationship between frequency of rejections and the

parameters shows no discernible pattern; none of the parameters used seems to lead to an undue

number of rejections or acceptances.

Therefore, under restricted circumstances, the normal distribution seems adequate for

modeling errors in perpendicular distance from a point to a line. The mean of these errors wiH

be zero, and the variance will be dependent upon the variances and correlations of the points

involved, as well as the position of the intersection of the perpendicular.

DISTANCE ERRORS - EXAMPLE APPLICATION

The 4-chain by 5-chain grid of plots laid over the Webster tract resulted in 107 plots

being located within the tract (Figure 14). The distances between the plots and the nearest

stand boundary line were calculated in a Fortran program. Ten of the 107 plots were nearest to

a vertex, while the distance from the remaining 97 plots to the nearest stand line was a

perpendicular distance. For each plot, under each of the six sets of assumptions, a p-value was

recorded which indicated the probability of observing the measured distance if the plot were

on the stand boundary (d=0). Recall that large p-values are associated with ambiguous plots;

for plots that are not on the stand boundary, one wishes to obtain a small p-value, thereby

leading to the correct rejection of the hypothesis: d=0. The relative frequency of these p-values

is shown in Figure 15.



ä
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For the most generous of the six sets of assumptions (0,:50.0, 0,,:25.0, p=0.6), only

42% of the plots were indicated as being separate from the stand lines with probability 90%.

Slightly more than half of the plots could be located within a stand with 80% probability. At

the most extreme of assumptions (0,:70.0, 0,,:75.0, p=0.6), 22% were contirmed to be within

a given stand at 90% probability, and only 38% at 80% probability.

Thue iigures at first appear to be alarming. It dou not seem credible that half of the

inventory plots are ambiguously located; indeed, that is not the case. Several factors are

unaccounted for in this brief example. When locating plots in the field, a foruter typically uses

a compass and pacing to determine location. However, there are often landmarks (such as stand

boundariu themselvu) which supplement simple bearings and distancu to aid in location.

When a plot is indicated on the map to be within a pine stand but adjacent to a lake, the plot

will almost certainly be taken in the pine stand, even if strict adherence to bearings and

distancu might lead to a location in the lake. The point is that discernible boundariu will

influence the ability to locate nearby points. However, if the boundary were more indeterminate

(or even invisible, such as a county line or unmarked property boundary), thue ruults are more

believable. As a comparison, Blakemore (1984) reported that only half of the 780 situ he

studied were uniquely assignable to one administrative polygon in his epsilon band analysis.

Figure 16 indicatu which plots could and could not be judged to be signiücantly distant

from the stand linu with 80% probability (using the most generous of the assumptions). It was

noted that some plots identilied as ambiguous (p > 0.20) were farther from the boundariu than

others which were not deemed ambiguous. For example, plot 24 was 55 feet from a stand line

and was not considered ambiguous, while plot 4 was 88 feet from a line and was considered

ambiguous. The difference is that plot 4 was closut to a vertex, while the distance from plot
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24 to the stand line was a perpendicular distance. The concavity of the isodensity lines about

the line segment create a narrower “zone of uncertainty”, allowing closer points to remain

unambiguously defined. This observation leads to a paradox which will be discussed in the

following section.

The findings of this admittedly superficial example reinforce warnings made by several

authors that
“use

of a GIS . . . could lead to false perceptions about the quality of the results”

(Bailey, 1988). The precision with which lines and points are drawn by a digital plotter lends

undue credence to the precision of the data being mapped. The plots and stands in this example

exhibit far more variability in location than is evident in Figure 14.

DISCUSSION OF MODEL STRENGTHS AND WEAKNESSES

The models developed here offer an opportunity to examine the impacts of spatial

location errors on measurements such as area and distance calculated in a GIS. The models

appear to behave well in simulations, and are based upon fairly weak assumptions regarding

point errors. However, there are some drawbacks which merit discussion.

First, it was noted that the definition of the centroid location influenced the variance of

polygon area. This may have been due to the approximation method used; covariances between

non-adjacent triangles were omitted in the derivation of the variance of polygon area. It is

hypothesized that complete specification of polygon area variance, including covariances of non-

adjacent polygons would result in a variance formula independent of centroid location.
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However, this dependence upon the centroid does not appear to be a serious shortcoming since

the simulations performed to test the normality of errors did not indicate that the variance

estimate was in error. Further simulations of polygon area errors could support the validity of

this model, or indicate the need for a centroid-insensitive formulation.

Second, the results obtained depend on some arguable assumptions. Notably, the

polygon variance expressions require assumptions that X and Y errors are not correlated, and

that serial correlation is of order 1 (based upon results from Keefer, 1988). The distance

distributions involved assumptions of normality, which, while reasonable, cannot be proven to

be valid. Viewed as an initial effort, these results might be improved upon in future work by

relaxing the assumptions. However, by including such terms as the correlation between X and Y

errors in the mode], additional variables must be specified in order to use the model. So little is

currently known about correlation of errors in GIS systems that further parameterization may

not be called for at this point.

Third, the models presented here considered only one aspect of location errors: errors of

commission. That is, we considered what errors occur at points which have been digitized into a

spatial database. Errors of omission have been ignored. Since mapping by definition involves

generalization, there may be significant features (such as meander loops in streams or

convexities in boundary lines) which are lost in the mapping process. Such errors are difficult to

model in any situation, since there is little basis for knowing when and where generalization has

resulted in omissions. Some automated mapping and drafting systems include the ability to

"un-generalize” by adding detail to map features. An example is “smoothing” lines by fitting

spline curves to digitized points. Such endeavors are generally practiced by cartographers

seeking to improve the appearance of map products, who are not overly concerned with the
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integrity of the coordinate data therein.

The paradox referred to in the previous section is that according to the models

developed here, the precision of line location (6},) improve; with increased distance from a

sampled point. The lower variances towards the middle of line segments suggests that the fewer

points are used to represent a line, the better. Following such a line of thinking to an extreme

would lead to tremendous omission errors, which are not being modeled. If we were to assume

that some degree of omission (generalization) errors are inevitable between the points sampled

on a line, then reverting back from the concave isodensity region in Figure 11b to the parallel

isodensity region in Figure 11a might be advised. It might also be argued that the complexity

involved in obtaining the estimate of 6; based on pl (proportional distance from a vertex)

represents an over-quantitication. The epsilon band model, wherein the band of uncertainty

about a line has a constant width, may be more suitable for the applications considered here.

Certainly, such a model would obviate the paradoxical results obtained, and provide more

consistency in application than the two-case model for distances developed here.

Other situations may indicate that the concave isodensity region is appropriate. For

example, land ownership in a majority of the United States follows rectangular patterns

established by the Public Land Survey system of townships and square-mile sections. Many

polygons (representing ownership, land cover, road networks, etc.) in these areas are square or

rectangular, with long distances between vertices, and errors at corners are more likely to be

independent. In such cases, ommission errors are less likely, and boundaries may truly be more

precisely located at a distance from polygon corners.
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The modeling approach followed herein has several advantages over current applications

of models such as the epsilon·band. First, a constant error-band width is not assumed for all

arcs in a map. This feature provides for more realistic modeling of errors accumulated in an

overlay map, wherein arcs can be traced back to different source maps, and may have diüerent

error structures. Second, variances and covariances are statistically defined and approximate

distributions are suggested; previous models avoided probabilistic statements. Finally, errors in

both points and line segments were considered. This represents an extension of the qualitative

point·in-polygon analysis cited in the literature review.

The models for area and distance errors should have a variety of beneficial applications.

By obtaining variance estimates for a variety of polygons, more could be learned about the

influence of such factors as polygon size, shape, and complexity on the variance of area. The

effect of varying assumptions (or map accuracy standards) could be tested on a case—by·case

basis. As mentioned in the polygon area application example, the relative importance of spatial

and attribute errors in a cartographic modeling situation can be estimated. If nothing else,

applications of models such as are developed here might lead to a wider recognition of the

indeterminacy of spatial phenomena in GIS systems.

DISCUSSION OF A MODEL FOR. LINE LENGTH

When intially proposing the work described here, the derivation of mean and variance of

line lengths was considered also. The derivation was soon found to be very problematic,‘ and

further work in this area was abandoned. A brief discussion of the problems involved might

provide an interesting contrast to the models developed for distance and area.
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Obviously, line length derives from distances between points. In a GIS, length along a

line or arc is calculated as the sum of distances between successive points in a digitized line:
n·1L„ = Z .I<x4-X...>' + <Y.—Y...>“ (4-44)
i=1

where: LN = length of a line composed of n segments

X,,Y‘ = coordinates of point i along the line

The first difiiculty encountered is attempting to evaluate E(LN). In order to do this, one must

obtain the expectation of a function involving a square root for which the joint distribution of

X; and Y, must be known. If we assume the normal distribution (as seems most realistic), we

are faced with the same situation as in considering the distance between two bivariate normal

random variables. The squared distance is known to be distributed as
x’§,

but the distribution

of distance is unknown and intractable.

Next, evidence from several authors (Baugh and Boreham, 1976; Keefer, 1988) suggests

that contrary to the situation encountered with area, errors in line length result in a bias when

length is measured using the conventional expression (4.44). A similar bias is noted when using

D2 to estimate d2:

= E I2 A: dz 2 2(X v=2( ggg;) (Uv + Ur)

= (A + v)(¢% + v?)

= d' + 2(aä + af)
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If D were unbiased for d, then by applying the above equation, and using the fact that Var(D)

= E(D2) ~ [E(D)]2, we would obtain Var(D) = 2(aä + 6}).

Finally, to further complicate matters, obtaining the distribution of distance would not

be sufiicient. It is readily noted that the distances between successive pairs of points on a line

are correlated, as was the case with adjacent triangles in the derivation of polygon area. Thus,

pairwise covariances would be required to obtain the variance of line length:
n—1 n-2

|= I=

where: D, = distance between points {and i+1: „1(X;·X,_,_,)2
+ (Y,~Y„,)“

Once again, these pairwise dependencies interfere with the strict application of the Central Limit

Theorem in obtaining the distribution of LN. All these complications suggest that modeling

errors in line length will require a different approach than those followed in this work.



Chapter 5 - SUMMARY

Geographic Information Systems are becoming commonplace in forest resource

management organizations. They have progressed from being little more than automated

drafting machines to being requisite tools for managing and manipulating large spatial

databases. While the technological capabilites of these systems have rapidly improved, the

reliability of results has often come into question. The need for estimates of accuracy and

precision of derived variables such as area, length, and distance has been stated repeatedly in the

literature.

The objective of the work described here was to develop a procedure for incorporating

information or assumptions about the locational variability of points in arc-node databases into

the analyses common in forest management applications of GIS. First, assumptions regarding

the variability of points were presented in statistical expressions. Then, using the algebra of

expectations of functions of random variables, the mean and variance of polygon area were

derived. The derivation was based upon triangles formed by line segments in the polygon

boundary and a centroid location. Note that the derivation of the variance expression was an

approximation, which may have resulted in a dependency of area variance on centroid location.

Therefore, in order to obtain consistent estimates of variance, a minimum·variance centroid was

defined. Next, the covariance of area of adjacent polygons was derived. It was thought that the

distribution of polygon areas was approximately normal; some simulations of polygon area

errors revealed no reason to believe otherwise. The centroid definition and expressions of

polygon area variance and covariance provided the necessary tools to evaluate the variability of

estimates obtained by multiplying per·unit-area figures by area estimates.

126
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Next, by extending the assumptions about point location errors to include normality, it

was possible to obtain the distribution of distance between two points. An approximate

distribution of perpendicular distance from a point to a line segment was also described. The

hypothesized distributions withstood testing of simulated distance errors using a variety of

parameters. An application of the use of distributional information about distances was

demonstrated: a point-in-polygon analysis revealed that many points which are located

deterministically within polygons cannot be shown to be distinguishable from the polygon

boundaries at high confidence levels.

The models of error assumed and derived herein have several drawbacks. First, there is

currently very little known about some of the parameters (notably the correlation between

adjacent point errors) which are required for application of the variance expr mions. Second, the

variance and covariance of polygon area depended upon the location of the centroids of the

polygons. A model which is not dependent on either centroid locations or coordinate axis scale

or orientation might be preferable. Finally, the models considered only errors at digitized points

in a spatial database, neglecting potential generalization errors which occur between such points.

However, it would be difficult at this point in time to account for such omission errors, as they

tend to be even more elusive than the errors committed at recorded coordinates.

The advantages of the models developed here include the allowance for error structures

which differ among arcs, the probabilistic statements which can be made with distributional

assumptions, and the expansion of previous methods to incorporate variability in both points

and arcs. Obviously, more research is needed in several areas. Sensitivity analysis would

indicate the effect of varying parameter values on the estimates of variability that are obtained.

Regressing polygon area variability against measures of polygon shape, complexity, and size may
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provide insights into the effects of these variable on area precision. More efforts are also needed

to improve ways of obtaining etimate of the parameters used in the models: variability and

correlation of point location errors. Finally, no satisfactory expression for the accuracy or

precision of line length estimate has yet been developed.

The ultimate goal of studies of error in forestry GIS systems is to provide resource

managers with some indication of the reliability of results of GIS analyse. As GIS systems,

users, and database become more prolific, more caution must be exercised in the interpretation

of the products derived from GIS. Only with some understanding of the reliability of these

products can reource managers prudently apply the information developed, and reap the

benefits that GIS advocates have promised.
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