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ABSTRACT 
 
To aid in forest management, various approaches using Geographic Information 

Systems (GIS) have been used to identify the spatial distributions of relative slope 
instability. This study presents a systematic evaluation of three common slope instability 
modeling approaches applied in the Blue Ridge Mountains of Virginia. The modeling 
approaches include the Qualitative Map Combination, Bivariate Statistical Analysis, and 
the Shallow Landsliding Stability (SHALSTAB) model. Historically, the qualitative 
nature of the first model has led to the use of more quantitative statistical models and 
more deterministic physically-based models such as SHALSTAB. Although numerous 
studies have been performed utilizing each approach in various regions of the world, only 
a few comparisons of these approaches have been done in order to assess whether the 
quantitative and deterministic models result in better identification of instability.  

The goal of this study is to provide an assessment of relative model behavior and 
error potential in order to ascertain which model may be the most effective at identifying 
slope instability in a forest management context. The models are developed using both 
10-meter and 30-meter elevation data and outputs are standardized and classified into 
instability classes (e.g. low instability → high instability). The outputs are compared with 
cross-tabulation tables based on the area (m2) assigned to each instability class and 
validated using known locations of debris flows. In addition, an assessment of the effects 
of varying source data (i.e. 10-meter vs. 30-meter) is performed. Among all models and 
using either resolution data, the Qualitative Map Combination correctly identifies the 
most debris flows. In addition, the Qualitative Map Combination is the best model in 
terms of correctly identifying debris flows while minimizing the classification of high 
instability in areas not affected by debris flows. The statistical model only performs well 
when using 10-meter data while SHALSTAB only performs well using 30-meter data. 
Overall, 30-meter elevation data predicts the location of debris flows better than 10-meter 
data due to the inclusion of more area into higher instability classes. Of the models, the 
statistical approach is the least sensitive to variations in source elevation data.  
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CHAPTER 1. INTRODUCTION 
 

Geographical Information Systems (GIS), defined as a “set of tools for collecting, 
storing, retrieving at will, transforming, and displaying spatial data”, have become a 
valuable tool for planners across a wide array of disciplines (Burrough, 1986). GIS 
applications in forestry were some of the first and have since become an integral part of 
many forestry operations. Because everything on the surface of the earth has a spatial 
position, the ability of GIS to perform spatial analyses has great applications in other 
fields such as hydrology and community planning. Over the past few decades, the field of 
natural hazards has found particular use of GIS in its analyses of where hazards might 
occur. This multidisciplinary approach highlights the power of GIS as a tool that 
complements other disciplines such as landslide hazard zonation. Landslide hazard 
zonation refers to the “division of the land surface into areas and the ranking of these 
areas according to degrees of actual or potential hazard from landslides or other mass 
movements on slopes” (Varnes, 1984). 

Landslides are natural landscape-shaping phenomena, occurring particularly in 
mountain environments. However, human activities such as timber harvesting and road-
building can increase the likelihood of landslides. Nonetheless, forest management 
continues in many mountain regions throughout the world. Today, active forest 
management in mountainous terrain is often constrained by the possibility of landslides. 
Therefore, attempts to define zones of landslide susceptibility (i.e. landslide hazard 
zonation) have been made throughout the world. Landslide hazard zonation has become a 
subject of much international interest as evidenced by the large amount of comprehensive 
work done recently (Brunsden and Prior, 1984; Carrara and Guzzetti, 1995; Crozier, 
1986; Schuster and Krizek, 1978; Turner and Schuster, 1996; Varnes, 1984; Zaruba and 
Mencl, 1982). Moreover, the global interest in this subject is highlighted in the dedication 
of the 1990’s as the International Decade for Natural Disaster Reduction (IDNDR, 1987).  

Landslides in mountainous terrain only become problems when social or cultural 
components (e.g. people, property and livelihoods) are threatened (Crozier, 1986). 
Unfortunately, as both the world population and the need for natural resources continue 
to grow, people are forced to live in and/or utilize the marginal environments where 
landslides commonly occur. Moreover, advances in technical capability that allow 
humans to modify the natural environment will likely lead to an increased frequency of 
landslides and the associated damages (Crozier, 1986).  

Damage from individual landslides is typically not as catastrophic as earthquakes, 
floods or hurricanes yet they are more widespread, often reoccur and may cause more 
cumulative long-term damage than other disasters (Hansen, 1984; Varnes, 1984).  The 
resulting damages from slope movements are classed as either personal, economic and/or 
environmental and are seen in both developed and developing nations (Crozier, 1986). 
The most obvious of personal damage of any natural disaster is the loss of life. Since the 
late 1960’s there have been an average 1,650 fatalities from landslides and almost 
140,000 people affected by landslides per year (IFRCRCS, 1993; 1994). Most of these 
occur in developing countries due to a lack of investment in preventative measures such 
as proper road construction, poor land management strategies, higher population growth 
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rates and increased marginalization1 (Alexander, 1995; Guzzetti et al., 1999; Harrison 
and Pearce, 2000). In addition, many of the fatalities associated with other hazards such 
as earthquakes and hurricanes are actually due to subsequent landsliding. Other personal 
damage may include psychological distress due to displacement and the loss of loved 
ones. 

Direct and indirect economic costs include the loss of property, buildings, disruption 
of transportation routes and the associated costs of recovery and injury. It is estimated 
that the United States has annual direct and indirect costs associated with landslides in the 
range of $1.6 – $3.2 billion (Schuster, 1996; Schuster and Highland, 2001; Smith, 1991). 
In the Blue Ridge of Virginia, two separate storm events caused a total of over $216 
million (Gao, 1992; Wieczorek et al., 2004). While the majority of fatalities occur in 
developing countries, the majority of financial losses occur in the developed countries. 
Hansen (1984) estimates that of all disaster-related fatalities, 95% occur in developing 
countries while 75% of financial losses occur in industrialized nations. However, while 
the largest financial losses occur in wealthy countries, developing countries may have 
greater losses as a percent of their GNP, up to 20 times greater (Alexander, 1995). Hence, 
there is incentive to predict and thereby prevent landslides. 

The environmental costs associated with landslides include the loss of soil and 
vegetation, changes in stream morphometry and sedimentation.  Landslides, which 
obviously displace rock, soil and vegetation, further disrupt the pedogenesis of soils and 
damage the habitats of both belowground and aboveground inhabitants. However, the 
erosive nature of a landslide has comparable benefits as well. For example, in Nepal 
landslide deposits are often considered beneficial in the development of agricultural 
terraces because the loose soil is easier to manage and can provide increased soil fertility 
(Ives and Messerli, 1989) while in Chile the native Nothofagus genus requires disturbed 
sites for reproduction and landslides are often the necessary disturbance (Veblen, 1982). 
Stream morphometry changes naturally over time, yet when large deposits dam channels, 
a subsequent breach of the dam can lead to flash flooding, such as has happened several 
times in south-central Chile (Davis and Karzulovic, 1963; Veblen, 1982). The increased 
sedimentation of streams from human activities is another concern that researchers across 
a wide array of disciplines have extensively studied. Land managers in many countries 
are regulated in their activities because of the known impacts of sedimentation such as 
damaged aquatic habitat and reduced water quality.  

The related costs of landslides, whether personal, economic or environmental, are 
substantial and affect many communities throughout the world. Landslides are complex 
phenomena and are caused by a large and diverse set of factors. However, because 
landslides affect discrete units of land, an areal zonation of landslide susceptibility is 
made more feasible than certain other natural hazards such as hurricanes, tsunamis or 
drought (Hansen, 1984; Varnes, 1984). Moreover, with improved technologies such as 
desktop PC’s, GIS, satellite imagery and Global Positioning Systems (GPS), the handling 
and processing of data are made much more efficient. In developed countries where 
financial investments and engineering skills needed to control erosion are abundant, 
emphasis is on installation of safety controls to prevent landslides from causing damage 

                                                 
1 When vulnerability to hazards is disproportionate within a country due to military or economic repression, 
political and social polarization, and/or ethnic or religious dominance, people are forced onto marginal 
lands where hazards normally occur  
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whereas developing countries lack the money to implement these controls and must 
therefore rely on proper planning.  

Because areas of potential landsliding can be delineated, forest planners can 
effectively match management activities with the abilities of the land to support such 
activities. This is the general purpose behind landslide hazard zonation today and, 
although it is recognized that the prediction of landslides is an inexact science and only 
the first step in preventative planning (Varnes, 1984), much progress is being made. 
Currently, various approaches using Geographic Information Systems (GIS) have been 
used to identify spatial distributions of relative landslide susceptibility and then classify 
areas into instability classes (e.g. low → high). However, the decision as to which 
approach is most appropriate for a site remains somewhat arbitrary. Regardless of the 
approach, forest managers can use these GIS models to aid in planning activities from 
timber harvesting to road-building.  

Although the use of GIS technology in landslide hazard zonation is more widespread 
than ever, there are some concerns about the limitations of using GIS (Carrara et al., 
1995a). In the transformation from 4-dimensional reality into a 1-dimensional computer 
file, errors and uncertainties such as generalization and simplification are introduced into 
the hazard model. In addition, various model approaches produce different outputs 
resulting in uncertainty among the models. The concepts of error and uncertainty in GIS 
have been studied extensively by GIS professionals (Bolstad and Smith, 1992); however, 
in the field of natural hazards, that concept is rarely considered.  

Although many models are tested for accuracy against locations known to have been 
subject to landsliding, error and uncertainty still receive only minor attention. As a result, 
what may look like reliable output may actually be of little use in forest management. 
Moreover, most hazard model outputs are considered independently of other model 
outputs.  For example, statistical and deterministic modeling approaches have been 
developed that are more quantitative and physically-based, respectively, than the earlier 
qualitative models. Often, these quantitative/deterministic models are assumed to provide 
better results than qualitative models. The major goal of this study is to provide an 
assessment of relative model behavior and error potential in a forest management context 
to determine whether certain modeling approaches are actually better than others at 
predicting instability. To achieve this goal, the following objectives have been defined: 

1) Develop and evaluate the model classifications of three of the most 
common medium-scale GIS methods for modeling landslide 
susceptibility; 

2) Validate each output with existing landslide inventories in the Blue 
Ridge, and; 

3) Assess the relative sensitivity of each method to variations in source 
data. 

The methodology used will be designed to provide a standardized technique for model 
comparisons and to provide maximum benefit to individuals from different regions by 
using the most transportable methods and data requirements. The outputs of this research 
will be the determination of the most suitable modeling approach for predicting hazard in 
the Blue Ridge, production of hazard maps for the Blue Ridge and automation of the 
various models. 
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CHAPTER 2. LITERATURE REVIEW 
 

Fundamental to the determination of landslide susceptibility is the clarification of 
definitions and terminologies. Although the zonation of landslide susceptibility has been 
attempted in numerous countries including China (Dai and Lee, 2002a; 2002b; Wu et al., 
2001), Taiwan (Lin and Tung, 2003; Lin et al., 2002), Italy (Carrara et al., 1991; Carrara 
et al., 1995a; Carro et al., 2003; Clerici et al., 2002; Guzzetti et al., 1999; Turrini and 
Visintainer, 1998), Colombia (Chung et al., 1995; Leroi et al., 1992; van Westen, 1994; 
van Westen et al., 1997), the United States (Chen, 1990; Dietrich et al., 2001; Gritzner et 
al., 2001; Ohlmacher and Davis, 2003) and several countries in the Himalayas 
(Anbalagan, 1992; Anbalagan and Singh, 1996; Saha et al., 2002), there still remains 
some disagreement concerning terminology. Moreover, terms that relate to landslides in 
one language may lose some clarity in translation to another language. The following 
section reviews some of the leading definitions and presents a classification scheme by 
Cruden and Varnes (1996) that has been accepted throughout the literature. 

2.1 TERMINOLOGY 
 

The first important distinction to be made is the difference between slope instability 
and a movement of the earth. Many authors use the phrase slope instability to describe an 
active process of movement; however, the phrase slope instability more appropriately 
refers to the predisposition or propensity of a slope to an active movement (i.e. the 
conditions leading to the event) (Crozier, 1984; 1986). One phrase used frequently as a 
general heading for movement is mass movement. This is defined as the “outward or 
downward gravitational movement of earth material without the aid of running water as a 
transportational agent” (Crozier, 1986). This heading includes acts of subsidence 
(Crozier, 1986) and will therefore not be used here to define hazard zonation. A more apt 
heading might be the use of slope movement as a general category because, as Varnes 
(1978) notes, it implies an exclusion of subsidence and other ground sinkage.  

One of the most common terms, landslide, is probably the most ambiguous. The 
majority of works have used the term landslide as a general classification for almost all 
movements regardless of the presence of actual sliding. The leading definitions of the 
term landslide are: 

 
1. The perceptible downward sliding or falling of a relatively dry mass 

of earth, rock, or mixture of the two (Sharpe, 1938). 

2. Downward and outward movement of slope-forming materials 
composed of natural rock, soils, artificial fills, or combinations of 
these materials (Varnes, 1958). 

3. Rapid movements of sliding rocks, separated from the underlying 
stationary part of the slope by a definite plane of separation (Zaruba 
and Mencl, 1982). 
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4. The movement of a mass of rock, debris or earth down a slope 
(Cruden, 1991). 

Although likely to be used for years to come, the term is a bit misleading in that 
landslides can refer to an individual process as well as a broad classification that may 
include some events that include little or no sliding actions (Crozier, 1986; Varnes, 1978; 
1984). In the definitions listed above, only Zaruba and Mencl (1982) require the strict 
sliding of materials over a plane. Reference has also been made to the additional 
confusion that exists when referring to the movement of slope material versus the actual 
landslide deposit (Cruden, 1991). Attempts at clarifications of this term have been made 
(Varnes, 1978); however, the term has a strong presence when referring to all 
movements. There is, however, some general agreement among some of the leading 
authors about what constitutes a landslide. In 1977, Coates summarized these primary 
points as shown below:  
 

1. Landslides represent one category of phenomena included under the 
general heading of mass movements. 

2. Gravity is the principal force involved. 

3. Movement must be moderately rapid, because creep is too slow to be 
included as landsliding. 

4. Movement may include falling, sliding and flowing. 

5. The plane or zone of movement is not identical with a fault. 

6. Movement should be down and out with a free face, thus excluding 
subsidence. 

7. The displaced material has well-defined boundaries and usually 
involves only limited portions of the hillside. 

8. The displaced material may include parts of the regolith and (or) 
bedrock. 

9. Frozen ground phenomena are usually excluded as landslides 
(Hutchinson, 1968; Varnes, 1958), although Zaruba and Mencl (1982) 
devoted nearly a page to discussion of solifluction. 

 

Based on the above principles, this paper will use the term landslide as a general heading 
for all movements as well as a specific process.  

The classification presented in Table 1 is a widely accepted scheme suggested in 
Cruden and Varnes (1996) which is a slightly modified version of the scheme presented 
by Varnes in the 1978 Transportation Research Board’s Special Report 176: Slope 
Movement Types and Processes. The classification is based primarily on the type of 
movement and secondarily on the type of material. Five main groups including falls, 
topples, slides, lateral spreads and flows constitute the types of movements. Type of 
material is divided into rock, debris and earth while movements of snow and ice are 
excluded from the classification. For a detailed description of the types and processes, the 
reader is referred to Cruden and Varnes (1996). 
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Table 1. Abbreviated classification of slope movements  

TYPE OF MATERIAL 
ENGINEERING SOILS TYPE OF MOVEMENT 

BEDROCK 
Predominantly coarse Predominantly fine 

FALLS Rock fall Debris fall Earth fall 
TOPPLES Rock topple Debris topple Earth topple 
SLIDES Rock slide Debris slide Earth slide 
LATERAL SPREADS Rock spread Debris spread Earth spread 
FLOWS Rock flow Debris flow Earth flow 
Reprinted with permission from “Landslides: Investigation and Mitigation” by the National Academy of  
Sciences, courtesy of the National Academy Press, Washington, D.C. (see Cruden and Varnes, 1996) 

 

When referring to natural hazards, an active process such as a landslide becomes a 
hazard when people, properties or social well-beings are endangered. Landslide hazard is 
defined as the “probability of occurrence within a specified period of time and within a 
given area of a potentially damaging phenomenon” (Varnes, 1984). This definition 
incorporates both a spatial and a temporal scale. The zonation of this hazard refers to the 
“division of the land surface into areas and the ranking of these areas according to 
degrees of actual or potential hazard from landslides or other mass movements on slopes” 
(Varnes, 1984). Because landslides, on a regional scale, are triggered by the recurrence of 
external factors (e.g. earthquakes, antecedent rainfall) whose timings are difficult to relate 
to the spatial geomorphic or geologic features causing landslides, most hazard studies 
have focused on the areal zonation of relative hazard degree (Carrara et al., 1995a; 
Soeters and van Westen, 1996). There are, however, some attempts to develop a complete 
landslide hazard map which include a temporal component (Glade, 2001). This approach 
necessitates the need for historical landslide data as well as recurrence intervals for 
seismic events and antecedent rainfall conditions. 

The final map of landslide hazard zonation shows the spatial distribution of relative 
landslide hazard and is often termed a susceptibility map (Brabb, 1984; Hansen, 1984). 
Susceptibility maps essentially indicate those areas that contain conditions that are more 
or less likely to lead to landslides. In light of this, and because landslide hazard zonation 
incorporates a temporal scale, the term slope instability zonation is proposed here to refer 
to delineation of the spatial distribution of those slopes with a propensity to landsliding 
without regard to a prediction of recurrence. The use of this final product can aid in the 
strategic planning phase of forest harvesting. 

2.2 CAUSAL FACTORS 
 

In any slope instability analysis, it is essential to have a good knowledge of the 
mechanisms of landslides in order to identify the main factors for the analysis. The 
initiation of landslides is due to a wide and diverse set of factors interacting in complex 
ways. Because the processes involved happen in a continuous manner from cause to 
effect (Varnes, 1978), it is likely that no one cause is the single factor in landsliding. 
There is, however, a distinction between the inherent conditions that affect the stability of 
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a slope (causal factors) and the processes that act upon those conditions (triggering 
factors).  

Following this approach, Varnes (1984) lists four factors or conditions that affect 
stability: geologic, geomorphic, hydrologic and vegetation (Figure 1). Some authors 
include other factors such as soil properties and seismicity (Sidle et al., 1985). 
Seismicity, however, is more appropriately grouped as a triggering factor as described 
later.  As noted before, these factors interact in various complex ways and to give distinct 
groupings is often difficult. A complete review of the conditions and causes of landslides 
is beyond the scope of this paper; therefore, only a brief discussion is presented below to 
identify the main factors needed for slope instability zonation and the processes that may 
alter them.  

 

 
Figure 1. Overview of the various factors influencing landslide initiation including 
subclasses of each causal or triggering factor (Varnes, 1984; Wieczorek, 1996). 

 
Landslides occur when the inherent conditions of a slope are changed by certain 

processes or forces. These processes are grouped into two basic categories: those that 
increase the shearing stress and those that reduce the shearing strength (Crozier, 1986; 
Cruden and Varnes, 1996; Hansen, 1984; Varnes, 1978; 1984).  These have been 
described by Terzaghi (1950) as external and internal controls, respectively. When the 
shearing stresses equal or exceed the shearing strength, a landslide occurs (Bolt et al., 
1975; Crozier, 1986). This approach to instability assessment is called “limiting 
equilibrium analysis” and is generally expressed as 
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stressshear
 strengthshearFS =  

 
where the higher the Factor of Safety (FS) the more stable the slope (Crozier, 1986).  
Shearing stresses can be increased through the removal of the lateral or underlying 
support, imposition of surcharges (e.g. excessive loads), transitory stresses or uplift and 
tilting (Cruden and Varnes, 1996; Varnes, 1978).  

Shearing strengths can be regarded as initially low or reduced by certain processes. 
Those factors that lead to an initially low strength are the inherent conditions such as the 
lithology and structure as described below (Cruden and Varnes, 1996; Varnes, 1978). 
Shearing strength can be reduced through the removal of root reinforcement (Sidle et al., 
1985), weathering of the materials and by the increase in pore pressures (Bolt et al., 
1975; Cruden and Varnes, 1996). When pore pressures are raised, frictional resistance 
within the soil or rock decreases.  

2.2.1 Geologic 
 

Geologic conditions are divided into lithology and structure, both of which are 
critically important components of a regional zonation of slope instability. Because 
geology influences the formation of soils, the types of vegetation and the hydrologic 
conditions, it is an important factor for slope instability. Lithology refers to the 
composition of the underlying rock and the characteristics that influence the 
decomposition of those rocks (Varnes, 1984). Weathering has a large effect on the soil 
physical properties that control landsliding such as texture, porosity and shrink-swell 
properties. Weathering processes that decompose the rock act as internal controls that 
decrease the rock’s shearing strength and contribute to a low and/or reduced strength.  
Structure refers to the “inhomogeneity and discontinuity” of the rocks and soils such as 
faults and folds (Varnes, 1984). The existence of bedding planes, faults, folds and the 
attitude of the underlying rocks may give rise to instabilities by creating a weakness in 
the rock or soil, thereby contributing to a low strength.  

2.2.2 Geomorphic 
 

Geology is an important factor in slope instabilities; however, because most 
landslides are shallow (Varnes, 1984), other variables such as geomorphology might be 
more important in a forest management context.  Geomorphic factors include slope 
shape, aspect, gradient and the existence of previous landslides. The major driving force 
that affects the shearing stresses in a slope, gravity, is highly correlated to slope gradient. 
When the slope gradient increases, the gravity and shearing stresses increase as well. 
Shearing strength can also be affected by the geomorphologic conditions when water 
collects in the valley bottoms. This creates higher pore water pressures, as described 
above, and can reduce strength. As discussed in the section on GIS and landslides, these 
factors are becoming increasingly more accessible and, therefore, are prime factors for 
slope instability zonation. 
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2.2.3 Hydrologic 
 

Regional climate conditions and the associated hydrologic conditions are often 
underrepresented as a factor in the zonation of slope instabilities. Because the conditions 
are often not well documented in rainfall records or because the spatial distribution of 
hydrologic conditions is unknown, these factors are often omitted in landslide studies. 
However, they play an important role in the processes involved in initiating landslides. 
Hydrologic processes can act upon the other factors by both reducing shearing strength 
(e.g. increased pore water pressure and weathering) and increasing shearing stress (e.g. 
freeze-thaw and shrink-swell).  

More and more studies are examining the role of hydrology and incorporating that 
factor into zonation models.  Some studies have used past rainfall records in the zonation 
of instability (Guzzetti et al., 1999) while others use hydrologic models in individual 
slope stability analyses (Gritzner et al., 2001).  The latter are most often associated with 
deterministic methods as discussed later. In Virginia, Wieczorek et al. (2000) developed 
a rainfall threshold for triggering debris flows in Central Virginia. Although the rainfall 
events that trigger debris flows in a single area (at least in the Blue Ridge of Virginia) 
may have a long recurrence interval, the same magnitude event can occur elsewhere in a 
region every few years. This is important because it may be possible to predict the 
locations of debris flows in areas not yet affected. 

2.2.4 Vegetation 
 

The presence or absence of vegetation on a slope has a number of effects on slope 
stability. The primary ways vegetation affects stability is through the modification of the 
soil moisture regime by evapotranspiration and by adding cohesion through root 
reinforcement (Sidle et al., 1985; Sidle and Wu, 2001). Both of these effects increase the 
shearing strength of the soil. Other ways vegetation can affect the stability of a slope is 
through the effects of forest cover. Examples include the interception of climatic agents 
such as wind and rain that may induce instability, reducing the amount of water hitting 
the slope surface and contributing to the immobilization of water through the forest floor 
(Kleim and Skaugset, 2003; Prandini et al., 1977). However, not all vegetation effects are 
positive. Large trees can apply an enormous amount of surficial weight to a slope and, 
therefore, increase shearing stresses. In addition, tree roots often penetrate rocks, 
resulting in fragmented rock pieces that can detach from a slope. To adequately address 
the issue of slope instability zonation, a comprehensive list of all the factors needs to be 
utilized; however, rarely are the needed data available at all scales for all locations. 
Where studies use less than the optimal amount of data, the limitations should be noted 
and, as always, should be followed by field investigations.  

Humans have a profound impact on some of the inherent conditions and processes 
involved in landslides. In the context of forest management, the primary impacts are 
timber harvesting and road building. Both of these activities affect each of the inherent 
conditions in variable ways changing those conditions to increase shearing stresses or 
reducing shearing strength. Because of their importance, the effects of forest management 
and landslides are discussed later in this paper. 
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2.3 TRIGGERING FACTORS  
 

The number of causes and processes affecting slope stability is large; however, there 
is usually only one triggering factor. A triggering factor is an “external stimulus…that 
causes near-immediate response in the form of a landslide by rapidly increasing the 
stresses or by reducing the strength of slope materials” (Wieczorek, 1996). These may 
include such natural phenomena as earthquakes, volcanic eruptions, intense rainfall or 
rapid snowmelt and human activities such as excavation for roads (Figure 1). The 
intensity of a triggering factor is dependent upon how close the processes acting upon the 
inherent conditions have brought the slope to a state of instability. A small earthquake 
may trigger a landslide on ‘unstable’ ground just as easily as a large earthquake triggers a 
landslide on ‘stable’ ground. Sometimes, a triggering factor is not needed for a landslide 
to occur (Wieczorek, 1996). 

2.4 FOREST MANAGEMENT AND SLOPE INSTABILITY 
 

Land management activities have been studied widely in the past for their impacts on 
slope stability in many areas of the world (Glade, 2003; Guthrie, 2002; Jakob, 2000; 
Montgomery et al., 2000; Sidle, 1992; Sidle and Wu, 2001; Tang et al., 1997; Veblen, 
1982). Land management affects slope stability through vegetation conversion, 
residential development, mining activities, road construction, prescribed fire and timber 
harvesting (Sidle et al., 1985).  Forest management, however, affects slope stability 
primarily through timber harvesting and road-building. The effects of these activities are 
usually not seen immediately and are therefore not considered triggering mechanisms; 
however, they can affect the inherent conditions and bring a stable slope to instability. 

Shallow debris slide-avalanche-flow combinations associated with high precipitation 
are the most frequent landslide types in most steep forested terrains throughout the world 
(Guthrie, 2002; Jakob, 2000; Montgomery and Dietrich, 1994; Sidle et al., 1985; Sidle, 
1992; Sidle and Wu, 2001). Because the focus here is on forest management and its 
effects, attention will be paid primarily to the shallow landslides that are induced by 
heavy rainfall and affected by the construction of roads and the removal of vegetation. In 
south-central Chile, however, seismic vibrations and volcanoes are also frequent causes 
of more deep-seated landslides (Wright and Mella, 1963).  

2.4.1 Roads 
 

Roads and their construction, believed to be the major source of sedimentation from 
erosion in forest management, are primary factors in the instability of forested terrain. 
Sidle et al. (1985) describes how road construction in forested terrain changes the 
shearing stresses and strengths associated with instability by “1) adding weight to the 
slope in the embankment fill, 2) steepening the slope on both cut and fill surfaces, 3) 
removing support of the cutslope, and 4) rerouting and concentrating road drainage 
water”.  

Several studies have noted an increased frequency of landslides related to roads, 
particularly in the Pacific Northwest of the U.S. On Vancouver Island, Guthrie (2002) 
found that the relative concentration of road-related landslides increased from 12 to 94 
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percent for three watersheds over about forty years. Jakob (2000) found that the area 
affected by road-related debris flows was four times as high as debris flows in natural 
terrain and six times as high for debris slides. For large transportation routes, engineering 
techniques can be applied to prevent landslides from occurring; however, these 
techniques are expensive and may not be feasible for forest managers (Sidle et al., 1985) 
Therefore, identifying the spatial location of probable failure sites before construction is 
extremely important to forest managers.  

2.4.2 Timber Harvesting 
 

As discussed previously, the primary influences of the removal of vegetation from 
hillslopes is through the modification of the moisture regime and through the loss of root 
reinforcement. When vegetation is removed, evapotranspiration is reduced and soil 
moisture is increased. This is important in dry seasons because the increase in pore water 
pressures can drastically reduce the shearing strength of the soil; however, during wet 
seasons this effect in minimized and the primary influence is through the removal of root 
reinforcement (Sidle and Wu, 2001).  

2.5 SLOPE INSTABILITY ZONATION 
 

As noted earlier, there are several approaches to modeling slope instability using GIS 
that differ in a variety of ways. However, the applications of these modeling approaches 
are based on fundamental principles that are widely accepted.  Moreover, each approach 
considers some basic modeling issues that are common to all approaches. This section 
introduces the basic principles and considerations involved in slope instability zonation 
as well as the various GIS modeling approaches. 

2.5.1 Principles 
 

Varnes (1984) has identified at least three principles that are the basis for slope 
instability studies today. It should be noted that these principles are assumptions based on 
previous work or taken from other fields such as geology. The first principle is that “the 
past and present are the keys to the future”. Under this assumption, landslides in the 
future are likely to be in the same geologic, geomorphic and hydrologic conditions as 
those that led to landslides in the past.  Varnes (1984) cautions that this assumption may 
not be applicable if human activities change the landscape and increase the occurrence of 
landslides, conditions are not identifiable or if the conditions in the future change and 
their effects cannot be evaluated.  It is also important to recognize that the conditions that 
lead to landsliding in one locale may be completely different from conditions in another 
locale. 

The second principle stems from the first and states that those conditions that lead to 
landsliding are relatively well known and can be identified and most can be mapped.  
These conditions can then be used to determine the likelihood of future landslide 
occurrence.  The conditions are varied and related in different ways; however, if the 
processes involved can be understood, then extrapolation from point/site information is 
possible to wider regions. 
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The final principle states that the degrees of hazard can be estimated or given some 
qualitative or semi-quantitative measure and weighted according to relative contribution.  
This allows for the zonation of slope instability through different heuristic, statistic or 
deterministic methods into varying probabilities (Guzzetti et al., 1999).  It is important to 
note again that these principles are merely assumptions that have gained acceptance in 
the field of slope instability zonation. As several authors have noted, a major shortcoming 
in this field is the lack of accuracy evaluation (Brabb, 1984; Carrara et al., 1995a; 1995b; 
Varnes, 1984) and, as such, the final zonation is always only a preliminary assessment of 
landsliding and further field investigation should be pursued.  

2.5.2 General Considerations 
 

In any slope instability zonation, a few broad aspects must be considered before any 
analysis of instability is to begin. Consideration of these aspects will influence the area to 
be studied as well as the methods to be utilized. The first consideration is the scale of the 
analysis. Generally, three scales are recognized for slope instability analyses: regional, 
medium and large scales. A review of these scales and their appropriate usage can be 
found in Soeters and van Westen (1996) and van Westen (1994). Regional scales (i.e. 
maps at scales < 1:100,000) are used primarily for reconnaissance investigations 
preceding further study and cover large areas of 1000 km2 or more. Medium scales 
(1:25,000 – 1:50,000) cover a few hundred square kilometers or more. They are 
particularly suited for large engineering works that require some detail about the 
likelihood of landsliding. Large-scale studies (1:5,000 – 1:15,000) are aimed at site-
specific investigations that include the design phase of engineering works and may cover 
up to tens of square kilometers. 

The second general consideration is that of the mapping or sampling unit. The 
mapping unit is the basis of evaluation and is somewhat dependent upon the method to be 
utilized. Hansen (1984) defines the mapping unit as a set of ground conditions that differ 
from the adjacent units across definable boundaries. Mapping units are ideally 
homogenous within the unit and heterogeneous between units. Guzzetti et al. (1999) 
review the five main groups of mapping units: grid cells, terrain units, unique-condition 
units (UCU), slope units and topographic units.  

Grid cells are squares of predefined size and are the typical unit in a raster-based 
analysis environment. For each grid cell a value is assigned based upon the various input 
factors. The terrain unit is the geomorphological approach that separates the land into 
areas of similar material, form or process. The unique-condition unit, described in Chung 
et al. (1995), is an approach that is aimed at minimizing the number of mapping units 
used in many statistical analyses. UCU’s utilize the overlay functions of a GIS to assign a 
unique combination of factors to a single grid cell. Each UCU is a homogenous domain 
of several different input factors. Slope units are hydrological regions between drainage 
and divide lines. The sub-basins of an area are determined from the divides of the area 
with two slope units per sub-basin (right and left side of sub-basin). Slope units are 
subdivided into topographic units based on the intersection of contour lines and flow tube 
boundaries orthogonal to the contours. The advantage of the topographic unit is that the 
contributing area of upslope elements can be calculated.  
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One of the most important considerations in the assessment of slope instability is the 
availability of data such as elevation, soils or vegetation for a particular study area. The 
amount of data needed can vary drastically ranging from a simple map of landslides to 
several input factors with several subclasses per factor.  Data can be found through 
previous studies of similar sites, existing maps, remote sensing, field surveys and 
laboratory tests (Hansen, 1984). While the analysis of slope instability is data-driven, 
much of the data needed may be too costly for field collection, depending on the amount 
of time and money available. Moreover, some data parameters, such as soil depth, have 
such a high spatial variability that collection for any sizable area is essentially impossible. 
Hence, the availability of existing data is likely the dominant factor in determining the 
appropriate approach to be used in a slope instability zonation.  

2.5.3 GIS Modeling Methods 
 
A number of GIS methods to modeling slope instability have been employed by different 
investigators throughout the world, all reviewed by a number of comprehensive works 
outlining the methods (Brabb, 1984; Carrara and Guzzetti, 1995; Guzzetti et al., 1999; 
Hansen, 1984; Soeters and van Westen, 1996; van Westen, 1994; Varnes, 1984). This 
section presents a review of the major GIS approaches (Figure 2) and the specific 
methodologies used throughout the world for slope instability zonation. Each method has 
its own distinct benefits as well as drawbacks and none have been shown to be the ideal 
method for all situations; however, the final output for all methods is a map showing 
relative slope instability as instability classes (e.g. low → high). The type of application 
as well as the considerations listed before determines the method to be used. Hansen 
(1984) describes two general approaches to slope instability zonation:  geomorphologic 
and engineering.  

2.5.3.1 Geomorphological Approach 
 

The geomorphological approach is an overall approach to mapping instability that 
displays the spatial variability of slope instability through either direct or indirect 
mapping. Direct mapping methods are those that identify the spatial distribution of 
instability directly from existing landslides and/or specific knowledge of areas of 
potential instability.  Indirect mapping methods are those that use factors relevant to 
landsliding to estimate potential instability. The geomorphological approach may use any 
of several different mapping methods that include distribution analyses, heuristic 
analyses or statistical analyses. The specific geomorphological mapping methods, 
whether direct or indirect, can be either qualitative or quantitative in nature.  

 
A. DISTRIBUTION ANALYSES  
 

Distribution analyses provide information only for those locations that have been 
subjected to previous landsliding. A landslide inventory/distribution map provides spatial 
information on instability directly from the mapping of previous landslides. The analysis 
of this distribution can lead to the extrapolation to other areas of possible future 
instabilities and classification into a final instability map (Guzzetti et al., 1999). The 
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locations of the landslides are usually determined through the interpretation of aerial 
photographs and/or field surveys, and then digitized directly into an instability map using 
a GIS. In a GIS, landslide inventories can be accompanied by a table showing different 
attributes of the landslide such as type of movement, type of material, activity, depth 
(Soeters and van Westen, 1996) as well as the certainty of identification and direction of 
movement (Wieczorek, 1984). Most often, inventory maps are an additional piece of 
information used as input factors and/or validation assessments for the other methods 
described later. As straightforward as it is to develop, an inventory map is an invaluable 
component of any slope instability zonation.  

 

 
Figure 2. Overview of GIS modeling approaches to slope instability zonation. 
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An inventory map can also be useful for the development of a landslide density map 
which depicts the number or percentage of landslides in an area (i.e. the mapping unit). 
With this method, GIS utilizes overlay functions to allow for rapid calculation of 
landslide densities within each mapping unit. A special type of landslide density map is 
the isopleth map in which contours of equal landslide densities are displayed (van 
Westen, 1994). Another type of inventory map is the landslide activity map. This map is 
developed with the use of multi-temporal aerial photographs that allow for the analysis of 
such time-sensitive variables as land use (van Westen, 1994). All of these maps can be 
used to create instability maps. Because landslide inventories can be time-consuming to 
conduct and difficult to obtain for large areas, the inventory map is best for medium and 
large scale projects.   

 
B. HEURISTIC ANALYSES  

 
Heuristic analysis of slope instability can be a direct or indirect qualitative mapping 

method in which expert opinions, whether the mapper is the expert or the mapper 
references an expert, are used to develop estimates of slope instability. Heuristic analyses 
rely heavily on the a priori knowledge of landslides and their processes in a region; they 
can be carried out with either the direct geomorphologic mapping method or the indirect 
qualitative map combination method.  

A highly qualitative, direct mapping method, geomorphologic mapping uses the 
expert opinion of the mapper to relate landslide occurrences with landslide processes and 
associated landforms to evaluate the slope instability.  A leader in the development of this 
method was Kienholz who worked with his colleagues mainly in the Nepal Himalayas. 
The use of “silent witnesses” (Stumme Zeugen), indications of prior morpho-dynamic 
processes, are used to assess current instabilities (Kienholz, 1977; Kienholz et al., 1984). 
The method is essentially a site-by-site investigation where the mapper evaluates the 
potential instability for each site based upon previous experience and various decision 
rules. The final instability map can be drawn directly in the field or with the display 
functions of a GIS. 

The qualitative map combination (QMC) is a very common indirect method in which 
the combination of various factor maps is used to obtain one map of slope instability. 
Each of the factor maps is weighted and then divided into subclasses and weightings are 
assigned to each subclass. The overlay of the different weighted factor maps and subclass 
weightings allows for the summation of a relative instability score for each map unit that 
can then be assigned into different instability classes. In Tasmania, Stevenson (1977) 
developed an empirical rating system based on his knowledge of the causal factors of 
landslides. Other rating systems have also been developed in other regions (Saha et al., 
2002; Sarkar and Kanungo, 2004). The qualitative map combination has become a very 
popular method of slope instability zonation due to its ease of use and lack of fieldwork 
needed to develop a required landslide inventory. The distinction of this method is that a 
landslide inventory is not needed because the weightings are assigned based on the field 
knowledge of an experienced geomorphologist. The drawback is that the assignment of 
weightings is often based upon insufficient field knowledge (van Westen, 1994). The use 
of GIS for the weighting assignments and overlays has made this method fast and easy to 
use provided the needed data are available.  

 15



Many of the early examples of this method are from the Himalayas where geology 
and tectonic activity are such that landslides are large, destructive and common. In the 
Kathgodam-Nainital area of India, Anbalagan (1992) used what is called the landslide 
hazard evaluation factor (LHEF) to assign weightings to factor subclasses. The LHEF 
weights each subclass with a value, in this case either 0 to 1, or 0 to 2, which 
automatically weights each factor map as well as the subclass. In the Kumaun Himalaya 
of India, Anbalagan and Singh (1996) adjusted their model to incorporate a risk 
assessment matrix into their map combination to show potential damage if a landslide 
does occur. This concept of risk is difficult because of the many indirect and often non-
monetary damages associated with landslides. However, the model can provide valuable 
information in land-use planning. Other studies have also used this concept of risk in 
slope instability zonation (Carrara et al., 1991; Espizua and Bengochea, 2002). 

 
C. STATISTICAL ANALYSES 

 
Statistical approaches attempt to use quantitative relationships between past 

landslides and the environmental conditions that led to them to indirectly predict future 
landslides in areas with similar environmental conditions under the assumption that the 
“past and present are the keys to the future” (Soeters and van Westen, 1996). This 
indirect, quantitative method provides a probability for landslide occurrence, although 
time is still a factor often omitted. Statistical analyses are popular because they provide a 
more quantitative analysis of slope instability and have the ability to examine the various 
effects of each factor on an individual basis. Statistical analyses of slope instability can 
include bivariate and multivariate methods.  

The bivariate methods, as termed by van Westen (1994), are a modified form of the 
qualitative map combination with the exception that weightings are assigned based upon 
statistical relationships between past landslides and various factor maps; alternatively, 
those statistics can be used to develop decision rules (van Westen, 1994). Individual 
factor maps (independent variable) or combinations of factor maps (e.g. unique-condition 
unit) are overlaid with a landslide map (dependent variable) to develop cross tabulations 
for each factor and subclass. From this data, weights or decision rules are developed to be 
applied to each factor subclass. To use weights, normalized values are calculated and 
summed for a relative instability score that can then be classified much like the QMC. To 
use decision rules, specific combinations of factors are classified using a matrix of 
instability classes. An example of the use of decision rules is the Slope Morphology 
Model (SMORPH) which uses only two factors, slope gradient and slope form, to 
determine instability risks (Shaw and Johnson, 1995). This model was developed to help 
foresters in the Pacific Northwest develop timber sales on state-trust lands using a single 
Digital Elevation Model (DEM) as the input.  

The main difference among the specific bivariate methods is the manner in which the 
weights are produced. Conditional analysis, based on Bayes theorem (Morgan, 1968), 
allows the use of landslide frequency or density data for specific combinations of factors 
(i.e. unique-condition unit) to establish weights. The formal probability is given by  

 
LF = P (L|UCU) = landslide area/UCU area 
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where the landslide frequency (LF) within a UCU is equal to the probability of the 
occurrence of a landslide within that unit. Comparing these probabilities with the average 
probability within the entire study area allows for the classification of the area into 
instability classes (Carrara et al., 1995a). Bonham-Carter et al. (1990) used conditional 
analysis to develop the ‘weights of evidence’ method for use in mineral exploration. 
Weights are assigned to the factor subclasses using conditional analysis and “added to the 
log of the odds of the prior probability, giving the log of the odds of the posterior 
probability” (van Westen, 1994). The output is once again a relative instability map that 
can be classified. Clerici et al. (2002) used conditional analysis to write a shell script in 
the GIS GRASS (Geographical Research Analysis Support System) for the quick and 
repeatable analysis of slope instability. This ability to quickly repeat instability analyses 
is of particular use in evaluating a variety of factor combinations.  

Similar to these methods are the ‘information value method’ (Jade and Sarkar, 1993; 
Yin and Yan, 1988) and ‘landslide index method’ (van Westen, 1997b) which use 
logarithms of the landslide density per factor subclass divided by the landslide density of 
the entire map as the weight. The weights are then added sequentially for a total hazard 
score. Gupta and Joshi (1990) also used density data to develop a landslide nominal risk 
factor (LNRF) to define subclass weightings for each of four factors for a catchment in 
northern India: lithology, land-use, slope aspect and distance from major shear zones. 
The LNRF was calculated as the ratio of landslide incidences in a subclass to the average 
incidence in the factor map. Similar numeric weighting factors have been used for other 
parts of the Himalayas. Other studies simply use the frequency of landslide events per 
factor subclass to assign a relative weight (Temesgen et al., 2001) while others have used 
regression and frequency of landslides to assign weightings (Pachauri and Pant, 1992; 
Pachauri et al., 1998).  

Most of the early examples of slope instability zonation using multivariate statistical 
methods come from Italia, where Carrara and his team used examples from mineral and 
oil explorations as a template for zonation (Carrara, 1983). Carrara (1983) used both 
discriminant and regression analysis techniques for the evaluation of stable and unstable 
grid cells. Subsequent work introduced GIS techniques and, using slope units as the 
mapping unit, reduced the number of mapping units for a more meaningful inference 
(Carrara et al., 1991).  For each sample unit, whether grid cell, slope unit or the later used 
unique-condition unit, the environmental conditions at that location are crossed with 
landslide occurrences through the use of GIS then exported to an outside statistical 
package where the regression is performed. Bringing in the developed equations from the 
regression to the GIS allows for the calculation of relative instability at each sample unit 
and the classification into instability classes. 

Because a model always fits the sample from which it was developed better than the 
population, a “learning” set was divided from the population to estimate the model, while 
a “target” set was used for testing and validation purposes (Carrara et al., 1991). 
Obviously, for this statistical approach to be effective, enough data on the relevant factors 
and landslide occurrences needs to be available. This statistical approach is often 
considered a data-driven method and for the model to work in other regions requires 
similar geologic and geomorphologic characteristics. Similar studies have used these 
same techniques in other parts of the world such as the Himalayas (Jade and Sarkar, 
1993; Rowbotham and Dudycha, 1998), Spain (Baeza and Corominas, 2001), China (Dai 
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and Lee, 2002a; 2002b), the United States (Ohlmacher and Davis, 2003) and parts of 
Italy (Luzi and Pergalani, 1996). 

2.5.3.2 Engineering Approach 
 

The second general approach is deterministic and based on the use of “limiting 
equilibrium analysis” to develop models that determine the distribution of factors of 
safety, piezometric levels and pore pressures for a given region (Terlien et al., 1995). 
This is often done by coupling hydrologic models with the various geotechnical 
parameters necessary to determine the factor of safety (i.e. bulk density, soil depth, etc.). 
Within a GIS, the model calculates for a certain mapping unit a factor of safety or, in 
some cases, a threshold needed to reach a factor of safety equal to one (i.e. the point at 
which a landslide occurs). The output can again be interpreted as a relative indication of 
instability. Ideally, the geomorphologic approach is done on a regional scale that is then 
followed up by a detailed engineering approach. Neither of these general approaches is a 
final assessment of the stability of a slope, rather an indication of the relative instability 
for use in prioritizing areas for further field study. 

Deterministic models calculate slope instability in one, two or three dimensions 
(Terlien et al., 1995). In one-dimensional models, the infinite slope model (Bolt et al., 
1975) is used to calculate instability at individual pixels. Slope profiles are analyzed in 
two-dimensional models and the entire landslide body is analyzed in three-dimensional 
models. Hydrological models can also be one, two or three dimension models; however, 
problems exist for both slope instability and hydrological models when using three 
dimensions in the conventional two-dimensional GIS (Terlien et al., 1995). For two and 
three-dimensional instability models, the problem is often the complexity of the 
calculations whereas the hydrological models have problems converting three-
dimensional output maps into forms usable in GIS calculations.  

As noted in some studies (Gao, 1993; Shaw and Johnson, 1995) the dominant 
controls on shallow landsliding in most of the U.S are topographic factors such as slope 
gradient and slope form (i.e. concave, convex and planar). Based upon this knowledge, 
Montgomery and Dietrich (1994) developed a model that combined a hydrologic model 
(O'Loughlin, 1986) with an infinite slope stability equation, the Mohr-Coulomb failure 
law (Bolt et al., 1975), for the prediction of slope instabilities based upon the minimum 
amount of steady-state rainfall required to trigger landsliding. With this model, referred 
to as Shallow Landsliding Stability Model (SHALSTAB), the required inputs are obtained 
from a Digital Elevation Model (DEM) that is widely available within the U.S. and a few 
representative values of geotechnical parameters such as soil bulk density, internal angle 
of friction and water table depth. This model calculates pore pressures for steady-state 
saturated water flow parallel to the slope plane. Another model based upon these same 
principles is the Stability Index Mapping (SINMAP) model developed by Pack et al. 
(1998). The main difference between these two models is that SHALSTAB assumes zero 
soil cohesion because of the spatial and temporal heterogeneity of soil cohesion (and 
therefore the difficulty in obtaining values) and because assuming a zero cohesion value 
results in the most conservative estimate of slope instability (Dietrich et al., 2001). 
However, new versions of the model do allow for the inclusion of soil cohesion. 
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Other existing models include the Transient Response Model developed by Iverson 
(2000) that uses unsaturated flow to calculate pore pressures for vertical flow. The 
International Institute for Aerospace Survey and Earth Sciences (ITC) has developed a 
GIS called the Integrated Land and Water Information System (ILWIS) that has modules 
incorporated in the GIS for deterministic instability zonation (van Westen, 1997a). The 
Level I Stability Analysis (LISA) prepared for the U.S. Forest Service by Hammond et al. 
(1992) uses average estimates for geotechnical parameters in their model; however, this 
model is not spatially explicit.  

The previous models were developed in existing GIS packages (i.e. ESRI’s ArcView 
or ILWIS); however, many users may still develop their own zonation models based upon 
whatever equations or parameters they feel are necessary. For example, van Westen 
(1994) performed a study in Columbia that utilized the mentioned theories and practices 
for that specific locale. Here, the equations and parameters are manually input into the 
GIS to develop instability maps, whereas the existing packages have user-friendly 
interfaces that automatically develop the maps with only minor input from the user. 
Either manual or automatic determination of instability with these models will work; 
however, automation enables more users to access the models. 

Some possibilities for the future application of these approaches, whether 
geomorphological or deterministic, are to use GIS along with a Decision Support System 
(DSS) to automatically make a decision regarding some aspect of mountain harvesting. In 
the Northeastern part of the U.S., Davis and Reisinger (1990) developed a model using 
GIS to evaluate the ability of forest terrain to support harvesting equipment. They 
incorporated slope angle, soil strength and surface roughness to assign a terrain 
classification to an area of land. They then used equipment operability criteria to 
delineate areas appropriate for each harvesting system. This map was then integrated with 
a DSS to help allocate resources. Decision Support Systems incorporated with GIS are 
becoming widely used because of the objectivity of automated decisions and the ability to 
automatically document the entire decision process. 

Similar to this model, Visser and Adams (2002) developed a model using GIS to 
support a DSS in deciding on optimal harvesting equipment allocations when considering 
debris slide hazard (Shaw and Johnson, 1995), soil compaction and soil erosion hazard. 
The model, called Steep Terrain Harvesting Risk Assessment Model (STHRAM), uses the 
State Soil Geographic Database (STATSGO) or the Soil Survey Geographic Database 
(SSURGO) along with DEMs. STHRAM is programmed within the Visual Basic 
environment of ArcMap with a user-friendly interface to make model use as easy as 
possible. Another GIS/DSS in development is the CONES model conceptualized in 
Europe. This model uses factors such as harvesting productivity, residual stand damage 
and stability of the residual stand to decide upon a certain combination of decision 
alternatives, namely type of harvesting system, location of trails, and silvicultural 
prescription (Stampfer et al., 2001). 

2.6 ERROR AND UNCERTAINTY IN SLOPE INSTABILITY 
ZONATION 
 

Although many models exist for the zonation of slope instability and studies have 
been performed throughout the world, little literature exists on the validation of these 
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studies in terms of the effects of potential GIS uncertainty and error. A GIS is often 
viewed as a tool that, because of its automation, must be more accurate and better overall 
as an absolute measure of defining spatial distributions than manual work. Although 
more consistent, GIS always have uncertainty and error associated with them that make 
any output prone to a variety of errors. Because GIS deal with the transformation of 
reality into computer models, uncertainty and error is inherent. The most extensive 
validation studies have been for the SHALSTAB model (Dietrich et al., 2001; 
Montgomery et al., 1998) in which accuracy and input data uncertainties are a primary 
focus. These studies have examined the model for verification of its ability primarily in 
the Northwest. However, none of these studies has focused on other GIS uncertainties 
such as algorithm and/or model errors. Studies of algorithmic and modeling errors have 
compared models of the same method (Carrara et al., 1995a; Morrissey et al., 2001a) or 
between two different methods (Vaugeois and Shaw, 2000), respectively, for evaluation 
of accuracy in identifying mountain risk. However, despite these exceptions there have 
been no other examinations of GIS uncertainty and error for slope instability models.  

In the world of academia (particularly in GIS), uncertainty is a common field of 
study; however, there is a gap between academic research and the application of models 
to real-world situations. Despite the few acknowledgements of potential error in the 
previous validation studies, there remains a lack of sensitivity analyses for the models. 
These sensitivity analyses differ from validation studies in that they focus on “what-if” 
scenarios of potential GIS error and not just output accuracy. The concept of data models 
(i.e. the reduction in dimensionality) introduces issues of classification error, varying 
spatial resolution and geometric representation that typical mountain risk models fail to 
recognize. Most GIS model users will specify that the output of the model is intended 
only for preliminary planning and that field work is essential; however, the combination 
of GIS academic research and forestry field applications have yet to meet in the same 
arena.  

For any mountain harvesting risk assessment there is the great potential for the use of 
GIS as a preliminary decision-support planning tool. Although the validation studies have 
included mention of potential error in there analyses, a more in-depth look at the actual 
error should accompany the model outputs. The goal of any of these models is to assist in 
real-world applications and, although that goal is ideal, consideration of the potential 
effects of a wrong decision (i.e. risk) should be included with the models. Aside from 
including “what-if” scenarios, these models should also be evaluated against other 
potentially useful models that use differing approaches. Although some general 
comparisons have been made regarding overall aspects of different approaches, little has 
been done regarding the output comparison of different approaches. This current study is 
an attempt at a systematic comparison of the model output from various zonation 
methods and a general examination of the effects of potential GIS uncertainty and error. 

 20



CHAPTER 3. METHODS AND MATERIALS 
 

The main objective of this study is to evaluate the effectiveness of various slope 
instability zonation methods for use in forest management in the central Appalachian 
Mountains. The overall procedure is to develop topographically-driven slope instability 
models using three different methods (Qualitative Map Combination, Bivariate Statistical 
Analysis and a Deterministic Analysis) for a study area in Madison County, Virginia 
followed by validation step for a location in Nelson County, Virginia. A subsequent 
comparison of the three models and their outputs (i.e. instability maps) will be made and 
analyzed for use in other areas of the Blue Ridge Mountains in Virginia. The first two 
models will be manually developed in ESRI’s2 ArcGIS 8.3 environment while the third 
will use the existing automated approach of SHALSTAB (ArcView 3.2). The key issue is 
the development of a standardized method of comparison for the various models. 
Sensitivity analyses will also be performed that examine the effects of varying source 
data on model output. 

3.1 STUDY AREA 
 

Virginia has historically been subjected to numerous landslides, in particular debris 
slides and flows, from the Blue Ridge Mountains to the Alleghenies. Debris flows have 
occurred in western Virginia (Hack and Goodlett, 1960) and throughout the Blue Ridge 
including debris flows in Nelson County (Williams and Guy, 1973), Madison County and 
within the Shenandoah National Park (Morgan and Wieczorek, 1996). On June 27, 1995, 
a severe storm swept across a portion of Madison County, Virginia, initiating widespread 
debris flows and floods which caused one fatality and damaged property and the 
environment (Morgan et al., 1997; Wieczorek et al., 1996).  Similarly, Nelson County, 
Virginia was affected by Hurricane Camille in 1969 that also caused widespread damage 
and the loss of 150 lives (Wieczorek et al., 2004). A recent assessment of the regional 
debris flow distribution throughout Virginia and North Carolina shows the most severe 
event occurring in Nelson County (Wieczorek et al., 2004). These Virginia areas are 
representative of the type and location of landslides prevalent in the state of Virginia (i.e. 
shallow debris flows occurring mainly in steep “hollows”).  

The area of study for the development of the models, about 270 km2, is situated in 
the northwest portion of Madison and Greene Counties, Virginia (Figure 3). The area is 
characteristic of the Blue Ridge of Central Virginia with steep, dissected ridges ranging 
from 0 to 150 percent in slope and with elevations ranging from about 149 to 1174 meters 
above mean sea level. The area is primarily rural with most of the landcover consisting of 
mixed hardwood forest stands. Although the area includes many broad alluvial valleys 
where farms are situated, the region was logged extensively from 1880 to around 1920 
(Wieczorek et al., 2000). This site has also been the focus of extensive fieldwork in 
recent years and landslide inventories have been developed and used in the development 
of slope instability zonation maps (Campbell and Chirico, 1999; Morgan et al., 1999b; 
Morrissey et al., 2001a). However, these evaluations have used only a single method (e.g. 

                                                 
2 Environmental Systems Research Institute, Redlands, CA 
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deterministic) to assess instability. Therefore, the Madison County area affected (Figure 
3) is used as a study area to develop and evaluate various slope instability zonation 
methods that can be evaluated for application in other areas of similar geomorphologic 
characteristics. The validation site will be the area in Nelson County affected by 
Hurricane Camille (Figure 3). This site is similar to the Madison County site in terms of 
topographic features.  

 
Figure 3. Location of study areas within Madison and Nelson Counties, Virginia (shown 
with shaded relief maps) 
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3.2 DATA 
For this project, the data used were selected based on three key attributes: relevance, 

availability and scale. If land managers are to efficiently develop management plans that 
include attention to slope instability, relevant factors that are readily available are 
necessary to minimize the time and effort required to develop a slope instability map. 
Moreover, the scale of analysis needed to identify specific areas for further investigation 
is an important consideration. The data used in this study are the debris flow inventory 
prepared by Morgan et al. (1999c), the geotechnical data obtained from Morrissey et al. 
(2001b), elevation, soils and roads maps that can be easily downloaded from the Internet 
or obtained through local agencies. Derivatives from the elevation layer include a slope 
gradient map, an aspect map and a planform curvature (concave, convex, planar) map. 

The analyses are performed in a raster environment (i.e. grid cells) because of the 
simplicity and ease of use of grid cells in a functional analysis such as overlay. In 
addition, the comparison of models is made easier with evenly sized grid cells. Moreover, 
the elevation derivatives are all already in a raster data structure and form a bulk of the 
factors. Therefore, all vector data will be rasterized to a resolution of 10 meters, the 
highest resolution of the raster layers. One common factor often used in slope instability 
analyses, vegetation, will not be used in these models primarily because of the small scale 
of most common vegetation data. However, the use of vegetation could easily be 
incorporated into the models as an additional factor with the knowledge that 
interpretations would be limited to the smallest scale. A primary goal of this study is the 
creation of medium-scale models and using data at such a small scale as most vegetation 
data limits the interpretation of the models to that scale. 

3.2.1 Elevation Data 
 

Both 10- and 30-meter elevation data are used for this study. The 10-meter elevation 
layer was compiled from six U.S. Geological Survey (USGS) Digital Elevation Model 
(DEM) 7.5-minute quadrangles: Big Meadows, Old Rag Mountain, Fletcher, Madison, 
Stanardsville and Rochelle. These layers are mapped at a scale of 1:24,000. The 30-meter 
data for Madison County come from the USGS National Elevation Data (NED) also 
mapped at a scale of 1:24,000. For the purpose of this project, both resolutions will be 
used to show the effects of uncertainty in digital data representation. All elevation layers 
are in the Universal Transverse Mercator (UTM) projection using the North American 
Datum 1927 (NAD27). The six quadrangles were mosaicked together to form one 
elevation layer. For the validation site in Nelson County, the 10-meter elevation data is 
comprised of two 7.5-minute quadrangles, Horseshoe Mountain and Lovingston. The 30-
meter data for Nelson County is also from NED like the Madison County site. 

3.2.2 Soils Data 
 

The decision to use soils data instead of geologic data to model slope instability is 
largely due to the availability of digital data and the scale of the analysis. For the site in 
Madison County, digital geologic data at a scale of 1:24,000 exist for only one of six 
quadrangles encompassing the area (Bailey et al., 2003). Another source of geologic data 
is a recent publication completed by Morgan et al. (2003) characterizing the geology of 
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the Blue Ridge region of Shenandoah National Park. This report consists of digital 
geologic data of the entire study area; however, the scale of this data is 1:100,000 and 
would be inappropriate for a medium scale analysis. Therefore, because of data 
availability and scale issues, the analyses presented here will be based upon soils data.  

There are two primary digital soils databases for states and counties in the U.S.: 
STATSGO and SSURGO. These two databases are maintained by what is now known as 
the U.S. Department of Agriculture’s Natural Resources Conservation Service, formerly 
the Soil Conservation Service. The State Soil Geographic (STATSGO) database covers 
the entire state but has a scale similar to the geology data by Morgan et al. (2003). The 
Soil Survey Geographic (SSURGO) database contains digital representations of county 
soil survey maps. The paper survey for Madison County was created in 1975 and mapped 
at an initial scale of 1:15,840. Madison County SSURGO data were digitized at a scale of 
1:24,000. The SSURGO database is available for most counties in a state, including 
Nelson County, and has varying scales dependent upon the initial mapping of the soil 
survey. The data for the two counties contain differing soil series and will therefore only 
be used for the Qualitative Map Combination. This is caused by the problems inherent in 
the statistical analyses in which statistical relationships for use in instability zonation are 
dependent upon the existence of the same data existing in both the development and 
testing areas. 

However, because of its almost complete coverage of U.S. counties and its large 
scale, the SSURGO database will be utilized in the analyses for both Madison and Nelson 
Counties for the Qualitative Map Combination. Unfortunately, SSURGO data for Greene 
County is not available and the analyses will not include the part of Greene County where 
SSURGO is not available. The Nelson County study site is covered entirely by SSURGO 
data. The data are in ESRI’s shapefile format and come in the Albers Conical Equal Area 
NAD27 projection. They were subsequently re-projected to the UTM NAD27 projection 
to match the previous datasets. In addition to the shapefiles, the SSURGO database is 
contained in a Microsoft Access file consisting of the various tables of information 
associated with the soils. 

3.2.3 Roads Data 
 

The road layers for this study come from the USGS Digital Line Graphs (DLG) 
containing transportation and are mapped at a scale of 1:24,000. The roads in Madison 
were compiled from the same six 7.5-minute quadrangles as the elevation layer. These 
layers were developed from the corresponding topographic quadrangles and come in the 
UTM NAD27 projection. The six quadrangles were first converted from ArcInfo export 
files (.e00) to ESRI’s coverage format then merged together and converted to shapefile 
format. Finally, to approximate the actual width of a road, the layer was buffered with a 
distance of 2.5 meters on either side of the line for a total road width of 5 meters. The 
same procedure is used for the two Nelson County quadrangles. 

3.2.4 Debris Flow Inventory 
 

The inventory by Morgan et al. (1997; 1999c) was created as an ArcInfo export file 
(.e00) showing the locations of debris flows and their run-out paths as well as flood 
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effects from the storm event of 1995 (Figure 4). An additional layer showing the points of 
debris flow origin was also included. Over 600 debris flow origins have been identified 
by the highest point of a debris flow polygon. These layers were developed at a scale of 
1:24,000 by interpretation of aerial photographs taken approximately 2 months after the 
storm with subsequent field checks for verification (Morgan et al., 1997; Wieczorek et 
al., 1996). Both of these layers were converted to ArcInfo coverage format with their 
original UTM Clarke 18663 projections.  

The layer showing debris flows and flood effects was queried to identify only debris 
flows and subsequently exported to a new ESRI shapefile with a UTM NAD27 
projection. The point coverage was also exported as an ESRI shapefile with a UTM NAD 
27 projection. The result is one layer showing only debris flow polygons and one layer 
showing debris flow origins.  

The inventory for Nelson County (Figure 4) was also created as two export files 
(.e00) (Morgan et al., 1999a) but came with an existing UTM NAD27 projection so re-
projection was unnecessary. They were developed from interpretation of aerial 
photographs taken in August of 1969 and April of 1971. The two study areas were 
mapped for debris flows in two different manners. Whereas the Madison County 
inventory came as one polygon and one point file, the Nelson County inventory consists 
of a polygon file and an arc file. The polygon file displays the entire debris flow source, 
path and accumulation zone as one polygon for both counties. The arc file depicts debris 
flow tracks on the aerial photo too narrow to delineate with an area measurement such as 
a polygon. 

3.2.5 Geotechnical Data 
 

The geotechnical data from Morrissey et al. (2001b) that were used in this study 
include soil properties such as cohesion (N/m2), internal angle of friction (o), depth to 
failure plane (m) and bulk density (kg/m3). These properties were approximated from two 
colluvial samples located at debris flow origins in the Madison County area and are 
shown in Table 2 along with the default SHALSTAB values (Morrissey et al., 2001b). 
Properties for Nelson County are comparable to Madison County as indicated by 
Morrissey et al. (2001b) and Auer (1989) and will therefore be used for both sites. 
Because geotechnical properties may not be available for all locations, SHALSTAB will 
also be run with default parameters. SHALSTAB uses these properties along with an 
elevation layer in its analysis.  

 

Table 2. Soil properties for use in SHALSTAB. 

 
Madison/Nelson 
County values 

SHALSTAB 
default values 

Friction angle (o) 35 35 
Bulk Density (kg/m3) 1200 1700 
Cohesion (N/m2) 1300 2000 
Depth (m) 2 1 

                                                 
3 Clarke 1866 is the ellipsoid upon which the NAD27 is based. 
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Figure 4. Debris flows and flooding in Madison and Nelson Counties (debris flows in red 
and flooding in orange). 
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3.2.6 Hydrography 
 

Water features such as lakes, ponds and large rivers were obtained for this study for 
the creation of a mask so that certain cells can be excluded from the analyses. Because 
debris flows do not occur within these large, flat water features they are excluded to 
avoid any mapping errors such as a debris flow origins being located within a river or 
lake. The hydrography of both Madison and Nelson Counties were obtained from Digital 
Line Graphs (DLG) for the same quadrangles as the elevation and roads layers. The 
format and projection of the hydrography layers are the same as the roads layers. Large 
streams and other smaller intermittent streams are not included with the hydrography 
layers, only the large flat features such as lakes and ponds. 

3.3 MODEL DEVELOPMENT 
 

This section will outline the procedures used to develop the models, standardize the 
model outputs and develop management classifications of instability. The primary goal of 
model development in Madison County is to derive the thresholds that define instability 
classifications. In addition, weightings for the Bivariate Statistical model are developed 
for use in Nelson County as well as other areas. All of the models will be developed at a 
scale of 1:24,000 and will use the grid cell as the mapping unit. 

3.3.1 Development of factor maps 
 

The various factors and factor maps used as input to the models are shown in Table 
3. The Qualitative Map Combination (QMC) uses elevation, soil and road data to create 
the factor maps. The Bivariate Statistical Analysis (BVS) will use the elevation and road 
datasets as well as the landslide inventory. SHALSTAB uses only one input dataset and 
is discussed separately from the first two models. From four to five factor maps and the 
landslide inventory are created (three from the elevation layer) for use in the QMC and 
BVS overlays.  

Table 3. Factor maps used as input to the various model runs. 
 Model Run 

Input factors QMC Run 1 QMC Run2 QMC Run3 BVS Run 1 
SHALSTAB 

Run 1 
SHALSTAB 

Run 2 
Slope 9 9 9 9 9 9 

Aspect 9 9 9 9     

Curvature 9 9 9 9     

Distance to roads 9 9 9 9     

Soils 9 9        
Upslope 

Contributing 
Area 

     9 9 

Geotechnical 
Data         9 9 
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Using the ArcGIS Spatial Analyst extension, slope gradient, slope aspect and slope 
planform curvature are created from the elevation layer. While slope and aspect are 
programmed functions in ArcGIS, planform curvature is created using the Raster 
Calculator and the following syntax: curvature([elevation], #, plancurv). Two of these 
factors are perhaps the most important layers in the analyses because of the many 
published reports suggesting that slope gradient and curvature are the primary factors 
involved in rainfall-induced landsliding in this region (Sidle et al., 1985). The importance 
of aspect in slope instability may be linked to the increased soil moisture levels on certain 
slopes (Gao, 1993).  

Because these layers consist of continuous data, they will need to be reclassified into 
discrete subclasses. These subclasses are somewhat subjective but are based upon 
previous studies in the area and are shown in Table 4. The subjectivity of subclass 
division is always present and will continue to be the most subjective aspect of most 
slope instability zonation projects. However, using some consistency in different study 
areas may help reduce the effects of subjectivity. Both the QMC and BVS analyses will 
use the same subclasses for consistency. Slope output is measured in degrees and divided 
into five subclasses while slope curvature is measured in 1/100 z units and divided into 
three subclasses. The slope subclasses used for this analysis follow the subclasses used by 
Campbell and Chirico (1999) in Madison County. According to ESRI, a positive 
curvature output indicates an upwardly convex slope and a negative output indicates 
concavity. A curvature of zero is interpreted as planar. Aspect is also measured in degrees 
and divided into eight default ESRI subclasses with an additional subclass for flat areas. 

Table 4. Subclass breakdowns for DEM derivatives. 

Slope  
(degrees) 

Slope Subclass 
and number Aspect degree 

Aspect Subclass 
and number Curvature  

Curvature 
Subclass  

and number 
0 - 14 Flat (1) -1 Flat (1) < 0 Concave (1) 

14.01 - 26 Gentle (2) 337.5 - 22.5 N (2) 0 Planar (2) 
26.01 – 34 Moderate (3) 22.5 - 67.5 NE (3) > 0 Convex (3) 
34.01 - 45 Steep (4) 67.5 - 112.5 E (4)     

> 45.01 Very Steep (5) 112.5 - 157.5 SE (5)     
    157.5 - 202.5 S (6)     
    202.5 - 247.5 SW (7)     
    247.5 - 292.5 W (8)     
    292.5 - 337.5 NW (9)     

Because debris flows often originate from or near roads, a raster layer containing the 
Euclidian distance to each road was created using the SA extension with the same cell 
size as the elevation (10m). This fourth factor map was reclassified into two discrete 
subclasses, less than or equal to 50 meters and greater than 50 meters. Again, it should be 
noted that the subdivision of factor maps is subjective and the subclass designations can 
be altered. An automated version of the QMC is being developed that allows for the 
manipulation of factor subclasses.  

The fifth factor map, soil type, is derived from the SSURGO shapefiles which show 
the spatial distribution of individual phases of a soil series. Each phase is represented as a 
set of polygon features referred to as map units and accompanied by an attribute table. 
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The table contains each map unit’s identifying code and symbol named ‘MUKEY’ and 
‘MUSYM’, respectively. The SSURGO data was first clipped to the boundary of the 
study area (which is only the Madison County portion) and then dissolved into new map 
units based upon the first two letters of the ‘MUSYM’ code. This essentially aggregates 
map units that have the same phase but different slope classes into one new map unit. For 
example, the ‘Elioak loam, 2 to 7 percent slopes, eroded’ map unit and ‘Elioak loam, 7 to 
15 percent slopes, eroded’ map unit have symbols ‘EmB2’ and ‘EmC2’, respectively.  By 
aggregating the map unit based upon the first two letters of the ‘MUSYM’, the result is a 
grouping of all the map units of an ‘Elioak loam’ soil into one new map unit (i.e. ‘Elioak 
loam’ or ‘Em”). This new map unit contains all the slope classes of a particular phase. 
The purpose of this step is to eliminate the use of a slope factor twice in the models. 
These five factor maps along with the landslide inventory discussed below will be the 
input to the models.  

The major issue concerning the use of the landslide inventory is the style in which 
the mapping was done. For example, one polygon in the coverage represents a debris 
flow source area, run-out path and depositional area as being grouped together. Because 
the inventory is the only such dataset for the area this issue cannot be avoided. Therefore, 
since there is no way to separate the source area from the rest of the debris flow tract and 
depositional area, the point coverage of origins will be used to represent debris flow 
source areas for the analysis. However, because points are being used to represent a 
source ‘area’ (typically the highest elevation in a debris flow polygon), the analysis will 
use a raster layer showing all cells within a specified distance of the point (15 meters) to 
account for using points to represent polygons.  

There are two potential methods for including cells within a specified distance of the 
points. The first method involves creating a buffer with a specified radius around the 
points and then converting the vector circle to a raster layer (Figure 5). The second 
method would be to run a distance function using the points as a source and then 
reclassifying all resulting raster cells within the specified distance to a unique value 
(Figure 5).  The two methods will produce different results concerning the number of 
cells affected by debris flow activity and, thus, different validation results. When 
converting the buffer layer (15m) to a raster layer, the number of cells affected by a 
debris flow point ranges from 4 to 9 with an average of about 7 (7 10-meter grid cells = 
.173 acres). When running the distance function and reclassifying the result, the number 
of cells affected by a debris flow point is 9 (9 10-meter grid cells = .222 acres). 
Therefore, to most closely approximate the actual area within 15 m. of a point (≈ .17 
acres), the first method will be used.  

Unfortunately, the Nelson county debris flow inventory does not consist of a point 
layer that can be used to represent source areas. Therefore, the validation of the models in 
Nelson County will use the polygon layer and a buffered arc layer. The buffer will use 
the same distance as the Madison County point layer. The use of the polygon layer and 
buffered arc layer for validation of the models is a limitation to any interpretation of the 
models but is the best available data. Until standard methods of mapping debris flows are 
used universally, these limitations will continue to exist.  

Finally, a mask layer is created to identify the study area to be included in the 
analyses. This layer is essentially a raster layer of the study area with the exclusion of 
hydrography cells that are large, flat expanses of water. In addition, the study area for 
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Madison County encompasses a portion of Greene County that is not included in the 
SSURGO data. Therefore, the Madison County study area will only include the portion 
that contains SSURGO data for use in the Qualitative Map Combination. The Bivariate 
Statistical Analysis and SHALSTAB could use the entire Madison/Greene study area but, 
for consistency, will only use the Madison County portion. For Nelson County, the mask 
will include the entire study area of both quadrangles. The study area is simply the 
boundary of the quadrangles. The mask for Nelson County is created in the same manner 
as that for Madison County. 

 
Figure 5. Buffer conversion of debris flow origins. 

 
First, the study areas are converted to raster layers with a 10-meter resolution. This 

layer shows a value of ‘1’ within the boundaries and a value of ‘NoData’ outside the 
boundaries. The hydrography DLGs are then converted to a raster layer with a 10-meter 
resolution. This layer shows a value of ‘1’ where a water feature occurs and a value of 
‘NoData’ elsewhere. The values were subsequently reversed to show a ‘NoData’ value 
where these water features occur.  This new layer is then crossed with the study area for a 
final mask. 

3.3.2 Qualitative Map Combination (QMC) 
 

Once the factor maps are created, the method for qualitative map combination is very 
straightforward and can be applied easily to anywhere in the state as long as a good 
knowledge of the influence of the various factors are known. The mapping unit for this 
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method will be the grid cell. The basic steps of this model are 1) classification of each 
factor map into discrete categorical subclasses (already done), 2) weight each factor 
subclass (e.g. on as scale of 1 to 10), 3) weight the overall factors, and 4) overlay the 
various weighted maps using addition for a numeric map of instability (van Westen, 
1994). The final product will have, for each grid cell, a score that will have a range based 
upon the weights assigned. An overview of the procedure is given in Figure 6. An 
important note about this model is that no debris flow inventory is needed for analysis. 
The inventory will, however, be used for development of instability classifications.  

 

Figure 6. Overview of the Qualitative Map Combination analysis (factors shown in 
yellow boxes). 
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For this method, research on the various factors comprises the bulk of the work for 
the assignment of weights to the various subclasses. The weights used for the slope, 
aspect, curvature, SSURGO and roads factor maps are shown in Table 5. The basis for 
these weights is from a study done using the Nelson County 1969 landslide event (Gao, 
1993), studies of road effects on debris flow initiation (Guthrie, 2002; Jakob, 2000) and 
basic knowledge of debris flow initiation in forested landscapes. An important aspect of 
this analysis is that these weights, although based upon previous studies that may have 
developed statistics for the debris flows, are subjective in nature because they are derived 
from empirical studies of the causal factors.  
 

Table 5. Weights for the qualitative map combination (Weights in parenthesis were used 
in a second run of the model). 

Factor Map Subclasses Factor Weight Subclass Weight 

Slope 1. 0o - 14o 2 2 
 2. 14.01o - 26o  4 
 3. 26.01o - 34o  10 (6) 
 4. 34.01o - 45o  8 (10) 
  5. > 45.01o   6 (8) 

Curvature 1. Concave 2 10 
 2. Planar  5 (4) 
  3. Convex   4 (5) 

Aspect 1. Flat 1 0 
 2. North  7 
 3. Northeast  8 
 4. East  2 
 5. Southeast  3 
 6. South  4 
 7. Southwest  2 
 8. West  8 
  9. Northwest   10 

Dist. To Road 1. < 50 m 1 5 
  2. > 50 m   1 

SSURGOa 1. GW, GP, GM, SW, SP, SM 1 10 
 2. SC-SM, GC-GM  7 
 3. GC, SC, ML, OH, OL, Pt  5 
 4. CL-ML  3 
  5. MH, CL, CH   1 

aWeights for individual soils are shown in Appendices A and B; also see Table 6 for explanation of groups. 

There are two important concepts concerning the weighting of the slope and aspect 
factor subclasses. First, the fifth slope class has been assigned a lower weight than the 
fourth subclass. This is due to the fact that on such steep slopes there is often little soil 
material and therefore there is little to no debris flow material. Second, aspect in this 
region influences soil moisture and subsequently pore pressures such that wetter slopes 
have higher instability. On south and southwestern slopes there is more solar heat and 
therefore less soil moisture. However, the fact that the Blue Ridge Mountains have a 
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general NE-SW ridgeline may influence the importance of these aspect classes in such a 
way as to indicate more instability on western and eastern slopes because there are fewer 
northern and southern slopes. 

The weighting for SSURGO data involves querying the MS Access databases for the 
Unified Classification Group (UCG) used to represent the lowest soil horizon above 
bedrock. The Unified Soil Classification system is a system used to classify mineral and 
organo-mineral soils for engineering purposes based on particle-size distribution, liquid 
limit and plasticity index (ASTM, 2001; U.S. Dept of Agriculture, 2003). The use of this 
system to weight soil map units in this study is due to the lack of information in the 
SSURGO database relating to landslide initiation. Mobilization of debris flows occur in 
loose, contractive soils such as coarse-grained colluvial soils with low clay content (Ellen 
and Fleming, 1987; Wieczorek et al., 2000). Based upon this knowledge, those soil map 
units having a more coarse-grained texture and a low liquid limit (i.e. the moisture 
content when a soil flows like a liquid) in the soil horizon just above bedrock are 
assumed to be more susceptible to debris flow initiation. The Unified groups are shown 
in Table 6. Those Unified groups that contain two different groups (e.g. SC-SM) consist 
of soils with properties of both groups. 

This model will be performed three times using various combinations of weights in 
Madison County. An overview of the model runs are given later in Chapter 3.3.5. The 
factor weights will be the same on all three runs; however, the second run will use 
different subclass weights and the third run will use the subclass weights of Run 2 with 
the exclusion of SSURGO data. The raw instability scores range from 14 to 65 for the 
first two model runs and from 13 to 55 for the third run. These factors will also be used in 
the same three model runs using 30-meter elevation data in Madison County. However, 
only the elevation data will consist of 30-meter data because the roads and soil vector 
maps are rasterized with the highest resolution. The 30-meter elevation data is the actual 
source data and will, therefore, create only the slope, aspect and curvature factor maps 
with that resolution. There will be a total of six model runs using the QMC approach. 

The query for the Unified Classification Group for SSURGO weighting involves 
joining various tables from the database to acquire a representative value of the UCG. 
The SSURGO spatial features are in the form of map units as described earlier. These 
map units are composed of one or more ‘components’ that are then made up of several 
‘layers’ corresponding to soil horizons. Several UCGs are assigned to each ‘layer’; 
however, one UCG is considered representative of the layer. In order to assign one 
representative value to each map unit it is necessary to work from the layer up to the map 
unit. First, the bottom horizon is identified and the representative value for that layer is 
obtained. If no value for the bottom horizon is identified then the horizon directly above 
bedrock is used. The value for this horizon is assigned to the component to which it 
belongs and subsequently weighted based upon Table 5.  

Since there can be multiple components in a map unit, the most conservative 
estimate is given by assigning the most susceptible value from the various components to 
an individual map unit. Once this is complete, a manual check of the weights compared 
to the description of each map unit is performed to eliminate unrealistic weights. For 
instance, many of the soils occurring in stream bottoms or terraces have very coarse 
textures deep in the soil profile. These soils are often assigned a coarse-textured Unified 
Group (e.g. GW). However, assuming that debris flows will not occur in valley bottoms 
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(because of flat slopes) the weights given to stream bottom soils are adjusted to a lower 
weight (i.e. ‘1’). The weightings assigned to each soil map unit are given in Appendices 
A and B. 

Table 6. Unified Classification Groups (ASTM, 2001; U.S. Dept of Agriculture, 2003) 
Criteria Soil Classification 

Major Divisions   Group Symbol 
and Weight Group Name 

Well graded GW (10) Well-graded 
gravel Clean gravel; less 

than 5% fines 
Poorly graded GP (10) Poorly graded 

gravel 

Dirty gravel; more 
than  12% fines Non-plastic fines GM (10) Silty gravel 

Gravel; more 
than 50% of 

coarse fraction 
retained on No. 

4 sieve 

More than 12% 
fines Plastic fines GC (5) Clayey gravel 

Well graded SW (10) Well-graded sand
Clean sands; less 

than 5% fines 
Poorly graded SP (10) Poorly graded 

sand 

Non-plastic fines SM (10) Silty sand 

Coarse-grained 
soils; more than 
50% retained on 

No. 200 sieve 

Sands; 50% or 
more of coarse 
fraction passes 
thru No. 4 sieve

Dirty sands; more 
than 12% fines 

Plastic fines SC (5) Clayey sands 

Medium Plasticity CL (1) Lean clay 
Inorganic 

Low plasticity ML (5) Silt 
Silts and clays; 
Liquid Limit 
less than 50% 

Organic Low plasticity OL (5) Organic silts and 
clays 

High plasticity CH (1) Fat clay 

Inorganic 

Medium Plasticity MH (1) Elastic silt 

Fine-grained 
soils; 50% or 

more passes the 
No. 200 sieve 

Silts and clays; 
Liquid Limit 

greater than or 
equal to 50% 

Organic Medium to high 
plasticity OH (5) Organic silts and 

clays 

Highly organic soils PT (5) Peat 

   
Once the weights have been identified, the data layers are reclassified into new 

layers based upon the subclass weight to which each grid cell belongs. For SSURGO 
data, this involves converting the vector maps to raster maps based upon the weighting. 
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Finally, using the Raster Calculator, the reclassified data layers will be crossed using 
arithmetic overlays and the raw instability score, Y, will be calculated for each grid cell. 
For each grid cell, k, having a particular combination of factor subclasses, the instability 
score, Yijk, at that cell is calculated as  

 

∑
=

×=
i

i
ijiijk  weightsubclassweight factory

0

 

 
where i is a factor map and ij is a subclass of factor i. 

3.3.3 Bivariate Statistical Analysis (BVS) 
 

This analysis will use the ‘landslide index method’ as described by van Westen 
(1997b). The bivariate analysis follows the same basic steps as the qualitative map 
combination with the exception that subclass weightings are assigned through statistical 
relationships with previous debris flows and factors are equally weighted with a value of 
‘1’. The major assumption for this model is that debris flows are most likely to occur 
where debris flows have occurred in the past (Principle #1). The debris flow densities 
within certain factor subclasses are related to the overall debris flow density of the study 
area. Taking a logarithm of the ratio allows for the negative weighting of densities lower 
than normal and positive weightings where densities are above normal. The formal 
weightings for each factor subclass are defined by the following equation 
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where Wi is the weight given to a certain factor subclass, Densclas is the landslide density 
of a certain subclass, Densmap is the landslide density of the entire map, Npix(Si) is the 
number of pixels containing debris flow origins in a subclass and Npix(Ni) is the total 
number of pixels in a subclass. This method is essentially the same as the ‘information 
value method’ proposed by Yin and Yan (1988) with the exception that the formula uses 
a natural logarithm as opposed to the base 10 logarithm. Once each subclass has a 
weighting assigned, the factor subclasses are reclassified based upon the weight and 
added sequentially for a total instability score as in the qualitative map combination. A 
general overview of the procedure is given in Figure 7.  

To perform this analysis within the ArcGIS environment, the buffered debris flow 
origins (raster) are first reclassified with a value of ‘1’ where debris flows occur and a 
value of ‘NoData’ elsewhere. Once the four factor maps (SSURGO excluded) are 
classified into subclasses the debris flow raster is multiplied by the reclassified factor 
maps. This results in a new debris flow map with values of the factor subclasses at each 
debris flow grid cell and ‘NoData’ values elsewhere. The attribute tables, containing the 
count of cells in each subclass, of each of the factor maps as well as the overlain debris 
flow/subclass maps are exported to a spreadsheet where the densities can be calculated. 
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In the situation where no debris flow cell occurs within a subclass, the 
‘densclas’/’densmap’ ratio is given a value just lower than the lowest ratio value (van 
Westen, 1997b). This is due to the fact that a logarithm cannot be taken of a zero value. 
The new weightings can then be used to reclassify the factor maps which are then 
overlain, using addition, for a raw instability score, Y. 
 

 
Figure 7. Overview of the Landslide Index Method (factors shown in yellow boxes). 

 
This procedure is done for the Madison County site using both 10-meter and 30-

meter elevation data for a total of two model runs. However, the debris flow origins will 
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remain at a resolution of 10-meters because it would be unjustifiable to increase the area 
affected by debris flows simply because of a variation in other source data. Therefore, 
weightings for both 10-meter and 30-meter data are developed from the Madison County 
debris flows and will be applied to the Nelson County site. 

3.3.4 Shallow Landsliding Stability Model (SHALSTAB) 
 

As previously mentioned, the SHALSTAB model estimates the minimum amount of 
steady-state rainfall necessary to trigger debris flows. It couples a hydrologic model 
(O'Loughlin, 1986) with an infinite slope form of the Mohr-Coulomb failure law (Bolt et 
al., 1975; Dietrich et al., 2001) for the spatial prediction of relative slope instability. The 
model is topographically driven and makes several simplifications that make the model 
more transportable. Key assumptions of the model used in this study include the lack of 
lateral root support along a failure surface, steady-state rainfall, parallel subsurface flow 
and spatially constant soil properties (Dietrich et al., 2001). The combined hydrologic-
instability equation at slope failure takes the form 
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where Qc is the critical steady-state rainfall necessary to initiate failure, T is the 
transmissivity of the soil, θ is surface slope, φ is the internal angle of friction, C’ is 
cohesion, ρw and ρs are the density of water and soil bulk density, respectively, g is 
gravitational acceleration, a is the upslope contributing area and b is the length of the 
outflow boundary (Dietrich et al., 2001; Montgomery et al., 1998). This same model has 
been applied to the Madison County study area by Morrissey et al. (2001a) in a 
comparison of deterministic models.  

The use of this model in this study is due to its portability and ease of use (Dietrich 
et al., 2001) as well as the nature of its output4. The output of SHALSTAB is given as the 
logarithm of the hydrologic ratio, Qc/T, where Qc is the effective precipitation at failure 
and T is the transmissivity, or the subsurface ability to convey water downslope (Dietrich 
et al., 2001). The output ranges from unconditionally unstable (value = -10) to 
unconditionally stable (value = 10); a grid cell gets an unconditionally stable value at 
slopes under approximately 20 degrees (dependent upon input parameters) whereas a grid 
cell gets an unconditionally unstable value at slopes over approximately 45 degrees 
(dependent upon input parameters).  

Unconditionally stable cells are essentially those areas where the height of the water 
table can become greater than the thickness of the soil. Likewise, unconditionally 
unstable cells are those areas where the water table can become zero, usually 
corresponding to bedrock outcrops (Dietrich et al., 2001). The values of ‘-10’ and ‘10’ do 
not represent actual values. Rather, they simply represent a class of instability. For a 
more detailed explanation of the unconditionally unstable and unconditionally stable 
values, please see Montgomery and Dietrich (1994). Between these two values, the 
                                                 
4 The SHALSTAB model is automated within ESRI’s ArcView 3.2 software environment and is available 
at http://socrates.berkeley.edu/~geomorph/shalstab/ 
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SHALSTAB output represents a relative indication of potential instability where the 
lower the log (Q/T) value, the higher the chance of landsliding (i.e. the lower the amount 
of rainfall needed to induce landsliding) (Dietrich et al., 2001). This value equates to the 
relative instability score, Y, of the QMC and BVS models. Because this output is not pre-
classified into instability classes (e.g. SINMAP), the standardization of SHALSTAB 
values with the values of the other models becomes possible.  

The primary input factor needed for this model is the elevation layer. In addition, the 
geotechnical parameters already mentioned, soil cohesion, internal angle of friction, soil 
depth and soil bulk density will be used. As discovered by Morrissey et al. (2001a), the 
geotechnical parameters necessary for this evaluation are similar to the parameters 
measured in debris flow areas in Nelson County (Auer, 1989). Subsequent field studies 
have given representative values of these parameters for Madison County (Morrissey et 
al., 2001b). The values are similar (Table 2) and will be used for SHALSTAB runs in 
Madison County using both 10-meter and 30-meter elevation data. The SHALSTAB 
model will also be run with default values (Table 2) using 10-meter and 30-meter 
elevation data for a total of four model runs. Factor maps are not created for input into the 
SHALSTAB model because the model automates the creation of a slope factor. In 
addition to the slope factor, SHALSTAB creates a ‘contributing area’ factor map 
indicating the upslope area contributing to a grid cell’s water flow. These two maps are 
then used in the equation along with the geotechnical parameters to derive the logarithm 
of the Qc/T ratio. An important note about this model is that the elevation layer used does 
not have its sinks5 filled, contrary to the authors’ recommendations. This is due to the 
presence of lakes in the Madison County area. The effects of not filling the sinks, 
however, are probably minimal when comparing relative model performances. 

3.3.5 Standardization of Model Output 
 

Once all of the models, shown in Table 7, have been run in Madison County (12 
total), the outputs need to be standardized to the same scale. This standardization allows 
for a better comparison among the models. The raw instability scores, Y, are transformed 
into standardized scores, Ys, where the new scale ranges from a minimum of ‘0’ to a 
maximum of ‘1’. To achieve this, a linear scaling will be applied to the raw instability 
scores of each of the models: 

 
( ) ( )minmaxminis Y-YYYY /−=  

 
This will divide the difference between the raw instability score (Yi) at a given cell 

and the minimum raw instability score by the range of raw instability scores, giving a 
standardized instability score (Ys). Because the models indicate relative slope instability, 
this standardization is possible as it relates a grid cell’s score to other grid cells 
surrounding it. Grid cells of the same value are assumed to be of equal instability. 

                                                 
5 Sinks are cells of an elevation layer where all surrounding cells are higher in elevation and there is no 
outflow. Sinks can be natural, such as large lakes, or they can be errors in mapping.  
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Table 7. Overview of the various model runs. 
Model Run Model Description 

QMC Run 1 & 
2 

Model runs with slope and curvature weighted double the rest of the factors and subclass 
weights that vary only in slope subclasses 3-5 and curvature subclasses 2-3. 

QMC Run 3 Model run using QMC Run 2 subclass weighting but without the use of SSURGO data. 

BVS Run 1 Equally weighted factors and statistically developed subclass weights without the use of 
SSURGO data. 

SHALSTAB 
Run 1 

Model run using site-specific geotechnical parameters from Madison and Nelson 
Counties. 

SHALSTAB 
Run 2 Model run using default geotechnical parameters provided by SHALSTAB. 

 
The standardization procedure for the QMC and BVS models are identical in which 

the equation above is applied directly to the raw instability outputs; however, the 
procedure used to develop the SHALSTAB standardization is quite different. Because the 
unconditionally stable and unconditionally unstable values that SHALSTAB uses do not 
represent an actual instability value (they are more of a cutoff), the linear standardization 
equation used on the QMC and BVS models is not valid on the raw output. Although 
SHALSTAB uses the same standardization equation, the raw output from the model 
requires a number of processing steps before it can be input into the equation. In addition, 
the relative indication of instability is reversed in SHALSTAB. Instead of the maximum 
output value representing the highest potential for instability, SHALSTAB’s minimum 
value represents the highest potential for instability. In the absence of a developed 
method to standardize SHALSTAB output, the following method was developed and 
applied. 

 The method has a 6-step reclassification process that takes the raw instability map 
from SHALSTAB and creates a new raw instability map. The goal of this process is to 
assign the minimum and maximum values of the raw SHALSTAB output (excluding the 
unconditional values) to the classes of unconditionally unstable and unconditionally 
stable, respectively. Assuming that the unconditionally unstable/stable grid cells are the 
most unstable/stable areas, respectively, these areas will be reclassified to the lowest or 
highest actual Qc/T values. Once the unconditional values are reclassified with the 
minimums and maximums, the SHALSTAB output can be input to the standardization 
equation with one minor change. Because of the reversal of instability values, the 
equation for SHALSTAB takes a new form: 

 
( ) ( )( )minmaxminis Y-YYYY /1 −−=  

 
where Ys is the standardized instability score, Yi is the raw instability score at a given cell, 
Ymax and Ymin are the maximum and minimum instability scores in the map, respectively.  

The steps to this process involve several reclassifications (Table 8) and overlay steps. 
The steps are as follows: 

1) Reclassify raw SHALSTAB output using reclassification #1 

2) Reclassify the result from step 1 using reclassification #2 

3) Multiply the result from step 2 by the raw SHALSTAB output (this 
step provides the minimum and maximum values) 
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4) Reclassify the result from step 1 using reclassification #3  

5) Divide the raw SHALSTAB output by the result of step 1 

6) Multiply the result from step 5 by the result from step 4 

 

Table 8. Reclassification steps used to standardize the SHALSTAB output. 
   Reclassification #1 

Old Value -10 Qc/T value 10 
New Value -10 1 10 

    
  Reclassification #2 (from Reclass 1) 

Old Value -10 1 10 
New Value NoData 1 NoData 

    
  Reclassification #3 (from Reclass 1) 

Old Value -10 1 10 

New Value SHALSTAB 
min 1 SHALSTAB 

max 
 

The final step in this standardization produces a map with Qc/T values at all grid 
cells including those unconditional grid cells. The values at grid cells other than the 
unconditional cells are the same as the original values. This new map can then be 
standardized using the modified linear equation given above. All scaled values will be 
masked with the hydrography mask developed earlier.  

3.3.6 Development of Instability Classifications 
 

With all of the model runs (12 total) being standardized to the same scale, the 
outputs will be overlain with the debris flow origins of Madison County to determine the 
threshold values to be used in classifying the maps into instability classes (e.g. very low 
→ very high). These classes are identified with a value of ‘1’ for ‘Very Low’ to ‘5’ for 
‘Very High’. The approach used for this follows the recommendations of the 
SHALSTAB authors in interpreting model output for management purposes (Dietrich et 
al., 2001). None of the model outputs, although standardized to the same scale, give an 
indication of how to interpret the output in terms of what is ‘very high’ instability, ‘high’ 
instability, etc. Therefore, each debris flow origin buffer from Madison County will be 
assigned an instability value between ‘0’ and ‘1’ based on the zonal statistics of the 
buffer and summarized through a frequency table. The frequency table is then used to 
develop the threshold values that will be used to reclassify the standardized model 
outputs into final instability maps. 

The assignment of an instability value to each debris flow buffer follows 
recommendations by Dietrich et al. (2001) and uses the most unstable value/score within 
the buffer. The use of a single instability value to characterize a buffer polygon may 
underestimate the area of high instability because many debris flow buffers may contain 
instability scores that are more stable than the score assigned to the buffer (Dietrich et al., 
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2001). This use of the most unstable score does create some bias in the results because 
the debris flow values are skewed to the unstable side where a debris flow may contain a 
lower average or median score. Dietrich et al. (2001) explain that this may negate the 
effects of excluding the steeper and more convergent topography of the actual terrain that 
is often omitted when using digital elevation data. Therefore, the use of the single, most 
unstable score may present a balanced manner in which to view slope instability, a 
positive aspect for forest management and hazard studies in general. 

When assigning instability scores from the 30-meter data to the debris flows some 
instability scores that fall within the zone of a debris flow are not accounted for because 
of the large grid cell size. When ArcGIS takes zonal statistics, if a grid cell’s center point 
does not fall within the zone the value is not reflected in the output even though a large 
portion of the grid cell does fall within the zone. To more accurately depict the actual 
areas of each value that fall within a debris flow the 30-meter instability scores are 
converted into 10-meter data. This process does not change the values of the grid cells 
but allows a better comparison of the debris flow instability scores. The use of 30-meter 
data in this study is to show the effects of source elevation data variations in the creation 
of instability values; this process highlights those effects rather than the effects of the 
way ArcGIS computes zonal statistics. 
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Figure 8. Generic example of the thresholds for instability classifications. 

 
Once the debris flow buffers have been assigned an instability score and a frequency 

table has been created, the cumulative percent of debris flows assigned an instability 
score or higher is calculated. The percentage at a specific instability score represents the 
fraction of debris flows with an instability score equal to or greater than that instability 
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score (Figure 8). Ideally, the models should capture most of the debris flows at a high 
instability score. For the purpose of this study, four arbitrary threshold percentages 
representing the fraction of debris flows assigned an instability score or higher will be 
used to identify five instability classes. These percentages are 60, 80, 95 and 100 for 
‘Very High’, ‘High’, ‘Moderate’ and ‘Low’ classes, respectively. In other words, sixty 
percent of the debris flows should be in the ‘Very High’ class, the next twenty percent 
should fall in the ‘High’ class, the next fifteen percent should be in the ‘Moderate’ class 
and only five percent of the debris flows should be in the ‘Low’ class. There should be no 
debris flows classified into the ‘Very Low’ class (i.e. 100% of the debris flows are 
classified into a class higher than ‘Very Low’). These numbers may be adjusted based 
upon specific circumstances; however, the majority of debris flows should always be 
classified into the ‘Very High’ class. Once the instability scores at the given threshold 
percentages are identified, the standardized instability maps are then reclassified based 
upon those scores for final instability classifications.  

3.4 MODEL VALIDATION 
 

To assess model performance, the models that have been developed in Madison 
County using certain weighting schemes and instability threshold scores for classification 
are applied to the area in Nelson County. The Nelson county model runs (12 total) will 
use the same methods applied to the Madison County models applying both 10-meter and 
30-meter elevation data. The instability scores for each of the given threshold percentages 
developed in Madison County will be used to develop final instability maps for the 
Nelson county site. In addition, the BVS weightings developed in Madison County will 
be applied to the Nelson County BVS model. Although the QMC and SHALSTAB 
models can be altered to fit the Nelson County area best no changes are needed for this 
study. This allows for a more systematic comparison among models. Moreover, the 
physiographic and geotechnical characteristics of both areas are very similar.  

The Nelson County models will be evaluated for both Type I and Type II errors 
using the final reclassified instability maps where Type I errors are assumed the worst 
type of error. Type I errors are “omission errors” in which areas classified into low 
instability categories have had debris flows occur. These errors may lead to management 
activities in a hazardous area. Type I errors (i.e. incorrectly classified debris flows) will 
be identified as those debris flow polygons (including buffered arcs) that consist of 
entirely ‘Very Low’ and ‘Low’ grid cells. Correctly classified debris flows are those 
polygons/arc buffers containing at least one grid cell of ‘Moderate’, ‘High’ or ‘Very 
High’ instability. This follows the approach used by Vaugeois and Shaw (2000) in 
assessing model performances. Type I errors will be expressed as the percentage of 
incorrectly classified debris flows compared to the total number of debris flows.  

Type II errors are “false positives” where areas classified into high instability 
categories have not had debris flows occur. These types of errors can lead to over-caution 
in management decisions but does not necessarily imply that there is no instability in an 
area; rather the area may be of concern for future instability. Type II errors will be 
identified as those grid cells having an instability class of ‘Moderate’, ‘High’ or ‘Very 
High’ that do not occur within an existing debris flow. All other cells will be assumed as 
classified correctly. To assess Type II errors the debris flow arcs/polygons (not origins) 
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are converted to a raster format with values of ‘1’ at grid cells overlapping debris flows 
and values of ‘0’ elsewhere. These values are then reclassified to show ‘-1’ values at 
debris flows and values of ‘1’ elsewhere. This new map is then overlaid with the final 
instability maps to determine the number of grid cells classified into each instability class 
at areas that have not been subjected to landsliding. The evaluation of Type I and Type II 
errors will be performed for both 10- and 30-meter model runs. As in the assignment of 
instability scores to debris flows in Section 3.3.6, using 30-meter data in this overlay with 
10-meter data necessitates the increase in resolution of the 30-meter data to more 
accurately depict the actual areas of various instability classes. This overlay will therefore 
use the grid cell size of the debris flow raster but does not change the instability scores of 
the grid cells. This step allows a more systematic comparison between 10- and 30-meter 
Type II errors.  

Type II errors will be expressed as the percentage of grid cells classified as 
‘Moderate’, ‘High’ or ‘Very High’ instability falling outside the extent of landsliding 
compared to the total number of grid cells in the same three classes. The use of the ‘-1’ 
value to represent the debris flows will all the comparison of Type II errors of individual 
instability classes. The percentages of correct and incorrectly classified cells can then be 
compared across models and between resolutions. 

3.5 DEVELOPMENT OF CONTINGENCY TABLES 
 

To assess the sensitivity of resolution on the individual grid cell classifications, a 
contingency table is used that shows the percentages of grid cells that did not differ in 
instability class from the 10-meter elevation data to the 30-meter elevation data. This 
table is created by overlaying the final instability maps from both resolutions and, using 
the minimum resolution, obtaining the classifications of both resolutions. Essentially, a 
30-meter grid cell is divided into nine grid cells that overlay exactly with the 10-meter 
data. Using the Raster Calculator, the 10-meter values (i.e. 1 to 5) are multiplied by a 
factor of ten and added to the 30-meter value. This allows for the assessment of the 
percentage of grid cells classified the same, with a one-class difference and with a two-
class difference. 
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CHAPTER 4. RESULTS 

4.1 DEBRIS FLOW ORIGINS 
 

In an effort to characterize the debris flow origins, first summary descriptive 
statistics were computed for each of the factors at the debris flow origins. These statistics 
(Table 9) give an indication of the typical geomorphology found at the location of 
initiation. Debris flows were initiated on a wide variety of slopes including somewhat flat 
slopes. The average slope gradient at debris flow origins was 26.9% while the average 
slope shape was a bit concave with a curvature of -.54. Debris flows occurred 
preferentially on slopes facing SSE (150º) and at distances of almost 300 meters from the 
nearest road. The average elevation of debris flow initiation was about 460 meters above 
mean sea level. Statistics were not computed for the SSURGO data because of the 
categorical nature of the data. However, for the typical soil at a debris flow origin, the 
vast majority of debris flows (~46%) started in the ‘Porters very stony loam’ series. The 
soil with the next highest percentage was “Rock land, Porters and Hazel materials’ with 
about 25% of the debris flows originating on that soil and approximately 10% occurring 
on ‘Rock land, acidic’ soils. 

Table 9. Descriptive statistics of the various factors at debris flow origins. 
 Input Factor 

Statistic Slope (deg) Dist. To Roads 
(m) 

Curvature  
(1/100 z units) Aspect (deg) Elevation (m) 

Min 4.045 0 -7.353 184 
Max 45.784 1179.915 2.911 916 

Range 41.739 1179.915 10.264 732 
Mean 26.853 293.479 -0.542 460.893 

St. Dev. 6.613 230.025 1.395 

The majority 
(≈45%) of debris 

flow origins 
occurred on East 
and Southeastern 

slopes 122.287 

4.2 BVS WEIGHTINGS 
 

The results of the Landslide Index Method are shown in Table 10. These weightings, 
developed from the Madison County data were applied to the factor maps in Nelson 
County for development of instability maps. The range of weighting values from the 
Landslide Index Method is much smaller than the QMC weightings (see Table 5, p.55) 
with a minimum of -2.467 and a maximum of 1.805 for the 10-meter elevation data and a 
minimum of -2.880 and a maximum of 1.483 for the 30-meter data. Of particular interest 
are the ‘distance to roads’ weights where higher weights are given to those areas farther 
away from roads for both 10-meter and 30-meter elevation data. This is the opposite of 
the QMC weighting scheme. Also, the weightings for the fifth slope subclass are 
consistently lower than the third and fourth slope subclasses. East-facing slopes also 
receive high weightings. 

The likely reason for the lower weightings of slope subclass five is that slopes with 
such a steep gradient usually do not have a lot of soil that can develop into debris flows. 
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These areas are typically bedrock outcrops. However, these steep slopes may be more 
inclined to other types of landslides such as rock falls. As for the weights for the distance 
to roads, the 50-meter threshold may not be high enough to capture an adequate amount 
of debris flows. As shown in Table 9, the average distance of a debris flow to the nearest 
road is almost 300 meters. A better factor map using roads may be road density where the 
higher the number of roads per unit area may indicate more unstable areas. 

Table 10. Weighting for the Landslide Index Method using both 10-meter and 30-meter 
elevation data. 

10-meter elevation data 

Factor Map Subclasses Factor Weight Subclass Weight
Slope 1. 0o - 14o 1 -2.467 

 2. 14.01o - 26o  -0.052 
 3. 26.01o - 34o  1.193 
 4. 34.01o - 45o  1.805 
  5. > 45.01o   1.010 

Curvature 1. Concave 1 0.450 
 2. Planar  -1.074 
  3. Convex   -0.153 

Aspect 1. Flat 1 -1.832 
 2. North  -0.038 
 3. Northeast  -0.056 
 4. East  0.418 
 5. Southeast  0.378 
 6. South  -0.127 
 7. Southwest  -0.801 
 8. West  -0.380 
  9. Northwest   0.119 

Distance To Road 1. < 50 m 1 -0.431 
  2. > 50 m   0.067 

30-meter elevation data 
Factor Map Subclasses Factor Weight Subclass Weight

Slope 1. 0o - 14o 1 -2.077 
 2. 14.01o - 26o  0.405 
 3. 26.01o - 34o  1.483 
 4. 34.01o - 45o  1.265 
  5. > 45.01o   -2.880 

Curvature 1. Concave 1 0.197 
 2. Planar  -0.577 
  3. Convex   -0.224 

Aspect 1. Flat 1 -1.088 
 2. North  -0.161 
 3. Northeast  0.078 
 4. East  0.373 
 5. Southeast  0.287 
 6. South  -0.330 
 7. Southwest  -0.984 
 8. West  -0.397 
  9. Northwest   0.384 

Distance To Road 1. < 50 m 1 -0.431 
  2. > 50 m   0.067 
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4.3 RAW INSTABILITY SCORES 
 

The raw instability scores, Y, shown in Table 11 vary in their minimums and 
maximums as well as their ranges. The range of the QMC model scores is the highest 
with a minimum and maximum of 13 and 65, respectively, while the BVS and 
SHALSTAB models have much smaller ranges that include negative values as well as 
positive values. However, considering the fact that the SHALSTAB raw instability scores 
indicate instability in a manner that is opposite the other models (i.e. lower scores 
indicate higher instability), the raw instability scores of the models cannot be directly 
compared. Moreover, the SHALSTAB model statistics include the unconditional classes 
with the minimums and maximums and therefore have average standardized values lower 
than the other models (much of the areas are classified into the unconditional stable 
class).  

The differences between the average raw and standardized instability scores as well 
as the inverse nature of the SHALSTAB scores illustrate the necessity to have a 
standardized scale. Once standardized, the BVS model has a consistently higher average 
score than does the QMC models; in contrast, the average raw instability score of the 
QMC models is much higher than the BVS. In addition, the mean raw instability scores 
of the BVS and SHALSTAB models may indicate that the models behave in a similar 
fashion where these two models are actually the most different in terms of average 
standardized score.  

Table 11. Raw instability scores for 10- and 30-meter model runs in Madison County. 

10 meter 
  Raw Instability Standardized Instability 

Model Run Min Max Range Stdev Mean Stdev Mean 

QMC1 14 65 51 9.9084 35.1615 0.1943 0.4149 
QMC2 13 65 52 8.8523 34.5334 0.1702 0.4141 
QMC3 13 55 42 7.4016 26.6747 0.1762 0.3256 
BVS -5.8 2.74 8.54 1.853 -1.1305 0.217 0.5468 

SHALSTAB1a -6.5224 -1.6313 4.8911 0.7071 -2.4397 0.1446 0.1653 
SHALSTAB2 a -6.6766 -1.4045 5.2721 0.5231 -1.6722 0.0992 0.0508 

 
30 meter 

  Raw Instability Standardized Instability 

Model Run Min Max Range Stdev Mean Stdev Mean 

QMC1 15 65 50 8.7734 34.9185 0.1755 0.3984 
QMC2 15 63 48 7.3881 35.441 0.1539 0.4259 
QMC3 15 53 38 6.3512 27.5831 0.1671 0.3311 
BVS -4.07 2.13 6.2 1.4646 -0.9043 0.2362 0.5106 

SHALSTAB1 a -5.9054 -2.1593 3.7461 0.5603 -2.7311 0.1496 0.1526 
SHALSTAB2 a -4.7653 -1.9319 2.8334 0.2845 -2.038 0.1004 0.0375 

aSHALSTAB statistics include the cutoff values classified with the minimums and maximums.  
Values are for entire study area 
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4.4 INSTABILITY CLASSIFICATION THRESHOLDS 
 

The instability score thresholds (i.e. upper limit of instability class) developed in 
Madison County used for classification of the standardized maps in Nelson County vary 
widely in their ranges (Table 12). However, the threshold scores are consistent among the 
various model runs using both resolutions of elevation data. The BVS model captures 
most debris flows with the highest instability scores followed by the QMC models and 
then SHALSTAB. The instability scores for the ‘Very High’, ‘High’, ‘Moderate’, ‘Low’, 
and ‘Very Low’ classes using 10-meter data range from .2375 to .88, .1875 to .8125, 
.0375 to .725, .0375 to .725, and .025 to .425, respectively. Instability scores for the same 
classes using 30-meter data range from .15 to .82, .0375 to .75, .03 to .6375, and .025 to 
.25. These ranges vary consistently between the 10-meter and 30-meter model runs with 
the 30-meter runs capturing the debris flows at lower instability scores.  

 

Table 12. Instability score thresholds used to classify the standardized maps into 
instability classes. 

Instability Class Cutoff Score 
10-meter elevation data 

 Percent of debris flows desirable for instability class 
 0 5 15 20 60 

Model Run Very Low Low Moderate High Very High 
QMC1 0.325 0.56 0.66 0.7875 1 
QMC2 0.35 0.525 0.625 0.675 1 
QMC3 0.2 0.46 0.53 0.58 1 
BVS1 0.425 0.725 0.8125 0.88 1 

SHALSTAB1 0.025 0.18 0.25 0.295 1 
SHALSTAB2 0.025 0.0375 0.1875 0.2375 1 

Instability Class Cutoff Score  
30-meter elevation data 

 Percent of debris flows desirable for instability class 
 0 5 15 20 60 

Model Run Very Low Low Moderate High Very High 
QMC1 0.2 0.318 0.525 0.5675 1 
QMC2 0.25 0.38 0.4875 0.575 1 
QMC3 0.075 0.21 0.3375 0.46 1 
BVS1 0.25 0.6375 0.75 0.82 1 

SHALSTAB1 0.025 0.12 0.1725 0.217 1 
SHALSTAB2 0.025 0.03 0.0375 0.15 1 

Threshold scores indicate the upper limit to a instability class 
 
 

 47



0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

0.
02

5
0.

05
0.

07
5

0.
10

0.
12

5
0.

15
0.

17
5

0.
20

0.
22

5
0.

25
0.

27
5

0.
30

0.
32

5
0.

35
0.

37
5

0.
40

0.
42

5
0.

45
0.

47
5

0.
50

0.
52

5
0.

55
0.

57
5

0.
60

0.
62

5
0.

65
0.

67
5

0.
70

0.
72

5
0.

75
0.

77
5

0.
80

0.
82

5
0.

85
0.

87
5

0.
90

0.
92

5
0.

95
0.

97
5

1.
00

Instability Score

C
um

ul
at

iv
e 

pe
rc

en
t o

f d
eb

ri
s f

lo
w

s
cl

as
si

fie
d 

at
 o

r 
hi

gh
er

 th
an

 in
st

ab
ili

ty
 sc

or
e

SHALSTAB1
SHALSTAB2
BVS run 1
QMC run 1
QMC run 2
QMC run 3

Very High 
Instability

High 
Instability

Moderate 
Instability

Low Instability

Very Low Instability

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

0.
02

5
0.

05
0.

07
5

0.
10

0.
12

5
0.

15
0.

17
5

0.
20

0.
22

5
0.

25
0.

27
5

0.
30

0.
32

5
0.

35
0.

37
5

0.
40

0.
42

5
0.

45
0.

47
5

0.
50

0.
52

5
0.

55
0.

57
5

0.
60

0.
62

5
0.

65
0.

67
5

0.
70

0.
72

5
0.

75
0.

77
5

0.
80

0.
82

5
0.

85
0.

87
5

0.
90

0.
92

5
0.

95
0.

97
5

1.
00

Instability Score

C
um

ul
at

iv
e 

pe
rc

en
t o

f d
eb

ri
s f

lo
w

s
cl

as
si

fie
d 

at
 o

r 
hi

gh
er

 th
an

 in
st

ab
ili

ty
 sc

or
e

SHALSTAB1
SHALSTAB2
BVS run 1
QMC run 1
QMC run 2
QMC run 3

Very High 
Instability

High 
Instability

Moderate 
Instability

Low Instability

Very Low Instability

 
Figure 9. Threshold curves used to classify the standardized instability maps into 
instability classes using 10-meter (top) and 30-meter (bottom) elevation data. 
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For the QMC and BVS models, the instability thresholds drop drastically near the 
threshold score between ‘Low’ and ‘Moderate’ classes (Figure 9). The SHALSTAB 
model follows an inverse S-curve with the threshold score dropping rapidly between the 
‘Low’ and ‘Moderate’ classes and leveling out around .4 to .5 (Figure 9). The 
SHALSTAB model captures most debris flows with very low instability scores. The 
QMC model runs 1 and 2 have threshold curves that are intertwined throughout the range 
of instability classes. QMC model run 1 captures most debris flows at a higher instability 
score than the second model run using 10-meter data; however, the second QMC model 
run captures most debris flows at a higher instability score using 30-meter data. The 
QMC model run 3 captures the majority of debris flows at instability scores lower than 
both QMC model runs 1 and 2 but higher than both SHALSTAB model runs. Overall, the 
differences between the threshold values of 10-meter and 30-meter resolutions are 
consistent in that the 10-meter thresholds are higher than the 30-meter thresholds.  

These scores are related to the average instability scores of the entire study area 
shown in Table 11. The distribution of instability scores within an area are therefore the 
driving force for the development of instability thresholds used to capture the debris 
flows in Madison County. Using these threshold values, the standardized instability maps 
in Nelson County are classified into instability classes. Because the Madison County site 
is the development area for the models, the validation procedure for Type I and Type II 
errors are described only for the Nelson County site.  

4.5 INSTABILITY CLASS DISTRIBUTIONS 
 

The distribution of instability within Nelson County is skewed mostly to the lower 
instability classes for the 10-meter meter elevation runs on all models with decreasing 
amounts of unstable land area in the ‘Moderate’, ‘High’ and ‘Very High’ classes (Figure 
10). Both SHALSTAB runs using 10-meter data classify about 80% of the grid cells into 
the ‘Very Low’ class while the second SHALSTAB run classifies 0% of the grid cells 
into the ‘Low class. SHALSTAB Run 2 classifies approximately 5% of the area into 
‘Moderate’, ‘High’ and ‘Very High’ classes while SHALSTAB Run 1 puts about 7% into 
the ‘Moderate’ class and 2-3% into the ‘High’ and ‘Very High’ classes. The QMC 
models 1 and 2 classify about 45% of the total area into the ‘Very Low’ class and about 
35% of the area into the ‘Low’ class. These two models classify about 10% into the 
‘Moderate’ class and about 4-5% into both the ‘High’ and ‘Very High’ classes. Both the 
QMC run 3 and BVS run 1 classify more area into the ‘Low’ class, about 54% and 47%, 
respectively, than the ‘Very Low’ class, about 20% and 28%.   

The 30-meter data gives a much more evenly distributed classification of instability 
among the five classes with the exception of the second run of SHALSTAB which puts 
almost 85% of the grid cells into the ‘Very Low’ class. This second run of SHALSTAB 
puts the remainder of grid cells into the ‘Very High’ class with 0% in the middle three 
classes. Of particular interest is the increasing amount of grid cells classified into higher 
instability classes using the third run of the QMC. The remaining model runs classify a 
slightly decreasing amount of the land area into progressively higher instability classes. 
Figure 11  through Figure 16 shows the distribution of instability within Nelson County 
at a scale of 1:24,000 while small-scale instability maps are shown in Appendix C.  
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Figure 10. Distribution of total land area into instability classes for Nelson County with 
10-meter (top) and 30-meter (bottom) elevation data. 
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Figure 11.  Instability maps created using the Bivariate Statistical Analysis in Nelson 
County using 10-meter (top) and 30-meter (bottom) elevation data. 
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Figure 12. Instability maps created using Qualitative Map Combination Run 1 in Nelson 
County with 10-meter (top) and 30-meter (bottom) elevation data. 
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Figure 13. Instability maps created using Qualitative Map Combination Run 2 in Nelson 
County with 10-meter (top) and 30-meter (bottom) elevation data. 
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Figure 14. Instability maps created using Qualitative Map Combination Run 3 in Nelson 
County with 10-meter (top) and 30-meter (bottom) elevation data. 

 54



 

 
Figure 15. Instability maps created using SHALSTAB Run 1 in Nelson County with 10-
meter (top) and 30-meter (bottom) elevation data. 
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Figure 16. Instability maps created using SHALSTAB Run 2 in Nelson County with 10-
meter (top) and 30-meter (bottom) elevation data. 
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4.6 TYPE I AND TYPE II ERRORS 
 

The numbers of Type I errors (i.e. prediction of low instability where there have 
been debris flows) in Nelson County for both 10-meter and 30-meter elevation data are 
shown in Table 13. Overall, the Type I error percentage using 30-meter data is lower, 
9.9%, than the Type I error percentage using 10-meter data, 15%. However, two 
individual model runs using 10-meter data have lower percentages than the same model 
runs using 30-meter data. These two model runs, BVS and SHALSTAB Run 2, 
misidentified 8% and 24% of the debris flows using 10-meter data and 11% and 35% of 
the debris flows using 30-meter data. The QMC model runs using 30-meter data 
misidentified fewer debris flows than the same model runs using 10-meter data. The most 
significant difference of these three model runs was in the first run where the 10-meter 
data misidentified 14% of the debris flows while the 30-meter data misidentified less than 
2% of the debris flows. Both of the SHALSTAB model runs produced the highest 
percentage of misidentified debris flows with the exception of the first 30-meter run in 
which SHALSTAB misidentified only 6% of the debris flows.  

Table 13. Type I error percentages for model runs in Nelson County. 
 10 meter 

    # of debris 
flows 

# of incorrectly identified 
debris flows Type I error 

BVS Run 1 4502 375 0.083 
QMC Run 1 4502 645 0.143 
QMC Run2 4502 493 0.110 
QMC Run3 4502 238 0.053 

SHALSTAB Run 1 4502 1233 0.274 M
od

el
 R

un
 

SHALSTAB Run 2 4502 1084 0.241 
   Average 0.1506 
     
 30 meter 

    # of debris 
flows 

# of incorrectly identified 
debris flows Type I error 

BVS Run 1 4502 488 0.108 
QMC Run 1 4502 87 0.019 
QMC Run2 4502 227 0.050 
QMC Run3 4502 41 0.009 

SHALSTAB Run 1 4502 272 0.060 M
od

el
 R

un
 

SHALSTAB Run 2 4502 1578 0.351 
   Average 0.0997 
 
Within the 10-meter model runs the SHALSTAB Run 1 produced the highest 

number of errors (27%) followed by the second SHALSTAB run (24%), then the QMC 
run 1 (14%), then QMC run 2 (11%), followed by the BVS run (8%) and the QMC Run 3 
(5%) had the lowest errors. Of the 30-meter model runs, the second SHALSTAB run had 
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the highest number of errors (35%) followed by the BVS model (11%), then the first 
SHALSTAB run (6%), the second QMC run (5%), the first QMC run (2%) and again the 
third QMC run had the lowest number of errors (.01%). The two consistent model runs 
are the second SHALSTAB run and the third QMC model run. 

The frequency of debris flows within each instability class also gives an indication of 
the predictive capacity of the models. The histogram of debris flow frequencies within 
each instability class (Figure 17) shows that most of the debris flows are captured within 
the ‘Very High’ instability class, a positive indication for the models. However, as 
discussed above concerning Type I error percentages using SHALSTAB, Figure 17 
shows that a large percentage of debris flows fall in the ‘Very Low’ and ‘Low’ instability 
classes. These graphs also show how one large error percentage (SHALSTAB run 2), can 
increase the overall error percentage of the 10-meter data to greater than that of the 30-
meter model runs. Looking at these graphs indicates that the 10-meter model runs may 
actually give fewer Type I errors.  

Type II errors for Nelson County are numerous and encompass large portions of the 
Nelson County area. These errors, described in Table 14 and Table 15, show the overall 
percentages of Type II errors for each model run with both resolutions of elevation data. 
In addition, the percentage of Type II errors within the ‘Moderate’, ‘High’ and ‘Very 
High’ classes are shown.  

The overall Type II error percentage using 10-meter elevation data is about 88.4%. 
This means that about 88% of the grid cells in the ‘Moderate’ to ‘Very High’ instability 
classes are outside the extent of any debris flows. The QMC model Run 2 has the least 
Type II error percentage with 86.7%, followed by the QMC model Run 1 with 87.2%, the 
SHALSTAB Run 1 (87.4%), the BVS (88.8%), the QMC Run 3 (89.6%) and 
SHALSTAB Run 2 with the highest percentage of 90.5%. Within the ‘Moderate’ 
instability class, SHALSTAB Run 2 has the highest error percentage of all classes and all 
models with 96%. The ‘High’ instability class has a maximum error percentage of 92% 
using SHALSTAB Run 2 and the ‘Very High’ class has a maximum percentage of 88% 
using the QMC Run 3. In general, the ‘Very High’ instability class has the least amount 
of Type II errors among all the models with increasing amounts of Type II errors in the 
lower instability classes. 

Using 30-meter data, the overall Type II error percentage is about 90.2%. As with 
the 10-meter data, the least amount of Type II model error is using the second QMC 
model run, 88.5%. The next highest error percentage is using the first model run of 
SHALSTAB (89.3%), followed by the first QMC run and the second SHALSTAB run 
(90.1%), the third QMC run (91.2%) and the BVS with the highest Type II error 
percentage of 91.9%. The highest Type II error percentage among all models and within 
all classes is 96.7% in the ‘High’ instability class using the second SHALSTAB run. The 
remaining instability classes and model runs have varying degrees of Type II errors that 
range from 79% in the ‘Very High’ instability class of SHALSTAB Run 1 to 95% in the 
‘Moderate’ classes of the BVS Run 1 and SHALSTAB Run 1. In general, the 10-meter 
model runs have a more consistent variation in the Type II error percentages. 

 

 58



0

500

1000

1500

2000

2500

3000

3500

Very Low Low Moderate High Very High

Instability Class

N
um

be
r 

of
 d

eb
ri

s f
lo

w
s

BVS Run 1
QMC Run 1
QMC Run 2
QMC Run 3
SHALSTAB Run 1
SHALSTAB Run 2

0

500

1000

1500

2000

2500

3000

3500

Very Low Low Moderate High Very High

Instability Class

N
um

be
r 

of
 d

eb
ri

s f
lo

w
s

BVS Run 1
QMC Run 1
QMC Run 2
QMC Run 3
SHALSTAB Run 1
SHALSTAB Run 2

 
Figure 17. Debris flow frequencies for each model run in Nelson County using 10-meter 
(top) and 30-meter (bottom) elevation data. 
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Table 14. Type II error percentages for overall model runs and individual instability 
classes in Nelson County using 10-meter elevation data. 

 BVS Run 1  QMC Run 1 

   
Total cell 

count 

Type II 
cell 

count 
Type II 
error     

Total 
cell 

count 

Type II 
cell 

count 
Type II 
error  

Very Low 867210 830190 N/A Very Low 1418816 1372552 N/A 

Low 1461161 1386702 N/A Low 1098465 1020302 N/A 

Moderate 399364 359178 0.899 Moderate 258069 228411 0.88507725 

High 187726 167548 0.893 High 164970 142535 0.86400558 

In
st

ab
ili

ty
 C

la
ss

 

Very High 132509 112046 0.846 In
st

ab
ili

ty
 C

la
ss

 

Very High 107650 91864 0.8533581 
   Total 0.888    Total 0.8720927 
 QMC Run 2  QMC Run 3 

   
Total cell 

count 

Type II 
cell 

count 
Type II 
error     

Total 
cell 

count 

Type II 
cell 

count 
Type II 
error  

Very Low 1326379 1282497 N/A Very Low 608336 589817 N/A 

Low 1065363 1004108 N/A Low 1610352 1522732 N/A 

Moderate 352325 309188 0.8775647 Moderate 323132 293544 0.90843371 

High 141613 121876 0.8606272 High 243362 217863 0.89522193 

In
st

ab
ili

ty
 C

la
ss

 

Very High 162290 137995 0.8502988 

In
st

ab
ili

ty
 C

la
ss

 

Very High 262788 231708 0.88172976 
   Total 0.867167    Total 0.8960945 
 SHALSTAB Run 1  SHALSTAB Run 2 

   
Total cell 

count 

Type II 
cell 

count 
Type II 
error     

Total 
cell 

count 

Type II 
cell 

count 
Type II 
error  

Very Low 2454186 2318475 N/A Very Low 2454186 2318475 N/A 

Low 196976 190423 N/A Low 216 215 N/A 

Moderate 247887 226659 0.9143642 Moderate 225254 217039 0.964 

High 83824 70513 0.841203 High 183452 168225 0.917 

In
st

ab
ili

ty
 C

la
ss

 

Very High 65097 49594 0.7618477 

In
st

ab
ili

ty
 C

la
ss

 

Very High 184862 151710 0.821 
   Total 0.873889    Total 0.905 
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Table 15. Type II error percentages for overall model runs and individual instability 
classes in Nelson County using 30-meter elevation data. 

 BVS Run 1  QMC Run 1 

   
Total cell 

count 

Type II 
cell 

count 
Type II 
error     

Total 
cell 

count 

Type II 
cell 

count 
Type II 
error  

Very Low 689972 663788 N/A Very Low 750111 738060 N/A 

Low 1236545 1161096 N/A Low 710543 686990 N/A 

Moderate 610554 581912 0.9530885 Moderate 1041092 963480 0.92545135 

High 276676 242696 0.8771849 High 156427 132990 0.85017292 

In
st

ab
ili

ty
 C

la
ss

 

Very High 229768 201797 0.8782642 In
st

ab
ili

ty
 C

la
ss

 

Very High 385342 329769 0.85578266 
   Total 0.918896    Total 0.9010513 
 QMC Run 2  QMC Run 3 

   
Total cell 

count 

Type II 
cell 

count 
Type II 
error     

Total 
cell 

count 

Type II 
cell 

count 
Type II 
error  

Very Low 1054809 1033741 N/A Very Low 197445 194296 N/A 

Low 817392 780548 N/A Low 871771 855552 N/A 

Moderate 517600 479774 0.9269204 Moderate 680762 646314 0.94939788 

High 364337 317256 0.8707762 High 761851 692124 0.90847685 

In
st

ab
ili

ty
 C

la
ss

 

Very High 289377 239970 0.8292642 

In
st

ab
ili

ty
 C

la
ss

 

Very High 531686 463003 0.87082037 
   Total 0.88533    Total 0.9124459 
 SHALSTAB Run 1  SHALSTAB Run 2 

   
Total cell 

count 

Type II 
cell 

count 
Type II 
error     

Total 
cell 

count 

Type II 
cell 

count 
Type II 
error  

Very Low 1107109 1045505 N/A Very Low 2553784 2410209 N/A 

Low 841294 827883 N/A Low 72 67 N/A 

Moderate 515616 490835 0.951939 Moderate 216 192 0.889 

High 247717 223835 0.9035916 High 77649 75089 0.967 

In
st

ab
ili

ty
 C

la
ss

 

Very High 331779 263231 0.7933926 

In
st

ab
ili

ty
 C

la
ss

 

Very High 411794 365732 0.888 
   Total 0.892969    Total 0.901 

4.7 RESOLUTION SENSITIVITY 
 

The previous measures of model performance using various elevation resolutions 
were aimed at assessing prediction accuracy. In an additional attempt to assess the effects 
of resolution variability, contingency tables were created to evaluate each model’s 
sensitivity to variations in source data. The contingency tables compare the percentages 
of grid cells that are classified into the same instability classes. The higher the percentage 
of cells that are in agreement between the two elevation resolutions the less sensitive the 
individual models are to variable source resolutions.  A summary of the percentages of 
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cells that are in agreement, have a one class difference, and a two class difference are 
shown in Table 16.  

Table 16. Summary of sensitivity analysis results on the effect of varying resolutions of 
input elevation data. 

Model Run Percentage of cells in 
agreement 

Percentage of cells with 
one class difference 

Percentage of cells with two 
class difference 

BVS 1 51.4 41.6 6.0 
QMC 1 32.7 46.4 16.6 
QMC 2 46.3 39.6 10.6 
QMC 3 29.0 40.7 21.6 

SHALSTAB 1 49.5 26.2 11.5 
SHALSTAB 2 84.4 7.0 5.2 

 
The results of the sensitivity analysis indicate that the most sensitive model to 

variable resolutions is the QMC model run 3 with only 29% of the grid cells classified 
with the same instability classes in both resolution runs. The least sensitive model is the 
second SHALSTAB run; however, this is likely due to the fact that most of the grid cells 
are classified into only two classes overall. The remaining models, in increasing order of 
sensitivity, are the BVS model (51.4%), SHALSTAB run 1 (49.5%), QMC run 2 (46.3%) 
and the QMC run 1 (32.7%). The complete contingency tables are listed in Appendix D. 
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CHAPTER 5. DISCUSSION 
 

The predictive capacity of the instability models is directly dependent upon the 
physiographic region and distribution of instability within the model development area, 
Madison County. Therefore, the models developed for this study are only useful in the 
same topographic settings as Blue Ridge Mountains of Virginia. However, the 
methodology proposed here allows a means by which a land manager may develop a 
suitable model. It is important to note that the models used in this study have not been 
proven to succeed nor fail because no hypothesis has been subjected to testing. However, 
the SHALSTAB authors have developed a rejectable hypothesis in which random debris 
flow polygons are compared with actual debris flow polygons. The test was not used in 
this study because of the inconsistent nature of debris flow mapping standards. This study 
was more of a comparison of modeling approaches and, as such, focused more on model 
behavior relative to one another.  

 The instability thresholds developed are not necessarily indicative of the model’s 
ability to predict debris flows but rather an indication of instability distribution within 
Madison County.  The statistical analysis with the highest instability thresholds was 
developed from the debris flow inventory and therefore is likely to capture most 
instability at high values. The distribution of land area with instability scores within the 
BVS is somewhat bimodal. The SHALSTAB model, on the other hand, assumes that 
debris flows do not typically occur where there is overland water flow (i.e. water table 
being higher than the soil depth) and therefore places much of the grid cells into an 
unconditionally stable class. Because of the large majority of grid cells being classified 
into the unconditional class, SHALSTAB pushes the instability distribution to the left 
with lower standardized scores. The SHALSTAB distribution, however, is not typical of 
a left-skewed curve because there is a large drop-off in instability scores following this 
large percent to the left. The skew to the left therefore reduces the threshold values so 
that debris flows can be identified. The distribution of instability scores using the 
Qualitative Map Combination is the most bell-shaped curve and, as seen in the instability 
thresholds, falls in the middle between the statistical analysis and SHALSTAB.  

Because of the large number of debris flows being captured in the SHALSTAB 
model at low instability scores the model creates the inverse S-curve where a large drop-
off of debris flows occurs low in the scores with few debris flows occurring with high 
scores. This is the reason for the large amount of Type I errors in both 10- and 30-meter 
model runs. The threshold curves for both the QMC and the BVS have low numbers of 
debris flows occurring with low instability scores followed by a large number at higher 
instability scores, ideal for the purpose of instability zonation. A positive indication that 
the QMC was designed well is in the strong correlation between the subclass weightings 
of the QMC and the BVS.  

However, the subclass weightings used for the roads factor showed opposite values 
of instability suggesting that the use of distance to roads may not be a great indication of 
instability. A better use of a roads layer may be to use road density where the more roads 
in an area, the more unstable. Moreover, the construction of roads is done with the 
assumption that roads should be located away from highly unstable areas. Therefore, the 
use of current road locations may be misleading when assigning weights because roads 
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are initially located in the safest areas. Despite the roads discrepancies, these two models 
are very similar in results because of the similarity in other weightings.  

The threshold curves developed for these models are dependent upon the desired 
percentages of debris flows for each instability class. Although this method of assigning 
threshold values forces the models to act in a similar fashion it does allow a good 
comparison of model behavior. It is important to note that the percentages used to 
develop the curves can be altered to fit management objectives. The manipulation of 
these percentages can help minimize the Type II errors by assigning less area into high 
instability classes. Adjusting the low instability percentages, though, will result in higher 
Type I errors. Adjustment of these percentages essentially redistributes the areas assigned 
to each class. It does not adjust the actual instability values, only the class assignment. 
However, through various trial runs, the manipulation of threshold percentages can help 
find the optimal balance between the two types of errors. In addition to the adjustment of 
threshold percentages, the adjustment of factor subclass designations may have a large 
effect on the output of the models. Only through many trial runs can these designations 
be optimized, though and the designations will give varying results depending upon the 
distribution of factor subclasses within a study area. Therefore, the factor subclass 
designations used in this study are recommended for future use.  

As an alternative to the various factor subclass designations and instability threshold 
values, an automated form of the QMC and BVS models has been developed using the 
same factors as this study (excluding SSURGO data) in which the factor subclasses can 
be manipulated to show the effects of various designations. This essentially equates to the 
third QMC model run and the only BVS model run. In addition, the weighting system of 
the QMC may be adjusted for all of the factor subclasses. The BVS automated model 
uses the factor subclass designations and weightings used in this study for a quick 
assessment of instability; however, the instability thresholds can be adjusted. The model 
interface, shown in Figure 18, uses either a 1-step process (BVS) or a 6-step process 
(QMC) that allows forest managers to quickly assess instability like the SHALSTAB 
model without spending years on developing the models. The automated model was 
developed within ArcGIS’s Visual Basic for Applications environment. 

The distribution of instability classes within Nelson County using 10-meter data 
gives a clear indication of the relative model behaviors. Both SHALSTAB models tend to 
classify most of the area into low instability classes. The first and second QMC model 
runs behave very similarly as do the third QMC model run and the BVS. The similarities 
between these two pairs of model runs are due to the input factors used in the analyses. 
The third QMC model run and the BVS both exclude the SSURGO data.  With these two 
model runs placing the most area into the high instability classes, they will be the least 
likely to have Type I errors. Using 30-meter data, the SHALSTAB default run (#2) tends 
to classify instability into the extreme classes. This extreme nature of the default 
SHALSTAB run indicates that the availability of geotechnical data is extremely 
important in applying SHALSTAB to the Blue Ridge Mountains of Virginia with reduced 
resolution elevation data. With 30-meter data, the first two QMC model runs are again 
very similar; however, the BVS Run 1 and the QMC Run 3 give much different results.  
The QMC run 3 places the most amount of land area into the high instability classes. This 
result has a pronounced effect on the number of Type I errors. It is clear from the 
distribution of land area in instability classes that the third QMC run and the BVS run 
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have the best capability to capture instability because of the percent area assigned to the 
high classes. 

 

 
Figure 18. User interface of the automated QMC and BVS models. 

 
When looking at the spatial distribution of instability classes an interesting feature of 

the first SHALSTAB model is that most of the instability in the area is found in the 
drainages rather than the slope shoulders. All of the other models predict instability high 
on the slope including the second SHALSTAB run. One reason for this may be due to the 
importance that SHALSTAB places on increased pore pressures from water accumulation 
in drainages. The reason for the second SHALSTAB run placing instability high on the 
slopes may also be due to the soil depth factor. The first SHALSTAB run uses a constant 
soil depth that is twice that of the second run. Because of the much more shallow soils in 
the second run, the model may tend to place instability higher on the slopes where 
shallow soils have a high chance of mobilizing into debris flows. 

The effect of excluding SSURGO data from the third QMC run and the BVS model 
is that large-scale topographic features of a particular watershed become more 
pronounced. This is because the weighting system used for the SSURGO data classifies 
entire mountain regions with high instability weights. This may reduce the importance of 
local slope and curvature features. By removing the generally high instability weights of 
entire mountainsides may give more weight to the local topographic features. Without a 
better weighting scheme for the SSURGO data, the exclusion of soils may give a better 
indication of instability. This may give more credit to the automated model using only the 
four remaining factors. The effect of excluding vegetation data is minimal because the 
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vegetation data for Madison County puts the majority of the mountainsides into forest 
cover. This is essentially the same effect of the exclusion of SSURGO data except that 
the vegetation data is at a much smaller scale and can only be interpreted at that scale. 
Thus, the models become more of a regional analysis as opposed to a medium scale 
analysis. 

The evaluation of Type I and Type II errors gives another indication of relative 
model behavior; however, because of the nature of debris flow mapping the errors cannot 
be interpreted as an absolute value. Rather, the errors give only a relative indication of 
model behavior against one another. The result of the Type I error analysis with 10-meter 
data clearly indicates the performance of the third QMC run and the BVS run as the best 
of the six models. As discussed previously, this is due to the distribution of instability 
classes within the county which is dependent upon the instability thresholds. If a model 
classifies more area into high instability classes the likelihood of a single grid cell with a 
high instability class occurring within a debris flow becomes much greater.  This may be 
the cause of the lower Type I error percentages using 30-meter data because the 30-meter 
model runs classify a consistently higher percentage of land area into high instability 
classes.  

The Type II errors, although numerous, also give relative indications of model 
behavior. The performance of the models using 30-meter data compared to using 10-
meter data reflects the number of Type I errors. Because the 30-meter classifies more 
area into the high instability classes there are less Type I errors; however, for this same 
reason, there are more Type II errors using 30-meter data. For individual model runs, 
both resolutions yield the least amount of Type II errors in the second QMC run. The 
remainder of the model runs yields little differences in the amounts of Type II errors. 
Type II error interpretations can be misleading because of the time frame of 
interpretation. The extent of instability in an area can be misrepresented because of the 
use of a debris flow inventory from a single event. The actual area of instability is likely 
to be more than what is represented which would result in fewer Type II errors.  Simply 
because there are many Type II errors does not necessarily imply that there is poor model 
performance. In fact, these ‘errors’ may not be actual errors as they simply indicate 
unstable areas that have yet to fail. Rather, a better interpretation of the Type II errors is 
that these areas are the likely sources of instability in the future given a certain storm 
event. Therefore, areas with Type II errors need to be watched carefully in terms of forest 
management. 

As the Type I errors are the more serious of the two errors because they may lead to 
management activities within a hazardous area, the evaluation of the performance of the 
models is based primarily on the Type I errors rather than the Type II errors. However, to 
assess the most ‘efficient’ or ‘optimal’ model, the goal would be to minimize both types 
of errors. Therefore, the ideal model is the one that captures the most debris flows with 
the least amount of high instability. To better assess this ‘efficiency’, a summary of the 
error percentages for each model at both resolutions is presented in Table 17 with the 
models being sorted from the lowest Type I error percentages to the highest Type I error 
percentage.  

With the concept of ‘efficiency’ in mind the best performing models using 10-meter 
data are the third QMC model run, the BVS and QMC Run 2. Of these models, the 
second QMC run has a relatively low Type I error percentage and the lowest Type II 
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error percentage. However, both of these models, the second QMC run and the BVS run, 
are still the most efficient. The first QMC model run performs the next best and both 
SHALSTAB models perform the worst with the first model run being the worse than the 
second.  

Table 17. Summary of Type I and II errors for comparison of model 'efficiency'. 
  Resolution 

 10-meter elevation data  30-meter elevation data 

Model Run Type I error 
percent 

Type II error 
percent Model Run Type I error 

percent 
Type II error 

percent 
QMC Run 3 5.3 89.6 QMC Run 3 0.9 91.2 
BVS Run 1 8.3 88.8 QMC Run 1 1.9 90.1 
QMC Run 2 11.0 86.7 QMC Run 2 5.0 88.5 
QMC Run 1 14.3 87.2 SHALSTAB Run 1 6.0 89.3 

SHALSTAB Run 2 24.1 90.5 BVS Run 1 10.8 91.9 
SHALSTAB Run 1 27.4 87.4 SHALSTAB Run 2 35.1 90.1 

Average 15.06 88.40 Average 9.97 90.20 
 

Using the 30-meter data the QMC models have the lowest Type I error percentages 
while the first SHALSTAB run performs much better than the second. Although the third 
QMC run and the first QMC run have the lowest Type I error percentages, the most 
efficient model would be the second QMC run with the lowest Type II error percentage a 
relatively low Type I error percent. The first SHALSTAB run and the second QMC run 
both perform about the same with the QMC Run 2 performing slightly better. Although 
the 30-meter model runs produce less Type I errors, the interpretation of their 
performances is simply that the models tend to over generalize the area into the higher 
instability classes (as seen in the higher Type II error percentages) therefore producing 
less Type I errors. However, the 30-meter runs tend to miss the local topographic features 
apparent in the 10-meter data. Therefore, as an overall generalization of model 
performance, the 10-meter model runs using the second QMC model and the BVS model 
seem to best capture the actual instability of the area. When using 30-meter data, 
however, the first SHALSTAB run seems to be equally capable of capturing instability as 
the second QMC run while the BVS run decreases dramatically in its performance. 

The sensitivities of these models to resolution variability indicate that the 
SHALSTAB Run 2 is the least sensitive to variations. However, due to the poor 
predictive capacity of this model the sensitivity makes little difference. The most 
sensitive model, the QMC Run 3, although more sensitive to variations still has the 
predictive power to be a useful model. Overall, the second QMC model, with its 
relatively low sensitivity and high efficiency seems to be the best available model for 
assessing instability given the option of various resolutions of source data. 
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CHAPTER 6. CONCLUSIONS 
 

Although the indications of predictive capacities among the various slope instability 
models do not represent absolute values of the potential for debris flows to occur, the 
methods and results presented in this study do give a valuable means by which to 
compare model behaviors. The largest indication of performance is that the use of default 
values in the Shallow Landsliding Stability (SHALSTAB) model does not yield good 
results in this area of the country. However, if good geotechnical data are available, the 
SHALSTAB model can be useful in predicting instability. Generally, among the models 
the three Qualitative Map Combination (QMC) models all have a high capacity for 
identifying instability. However, when assessing the best models in terms of efficiency 
the second QMC model run has the best predictive capabilities when using either 10-
meter or 30-meter data. When using only high resolution data, the Bivariate Statistical 
Analysis (BVS) is an efficient model at predicting instability. However, the BVS is not 
very good when using 30-meter data. When high resolution elevation data are not 
available, the SHALSTAB run with site-specific parameters has good predictive abilities 
for assessing instability and is very efficient. From these findings, it is clear that 
quantitative and deterministic models are not necessarily indicative of better results. 

These models may be used in other parts of the Blue Ridge Mountains without 
having to develop new weightings or instability classification thresholds. The use of a 
debris flow inventory is not necessary unless the models are applied to areas outside the 
Blue Ridge Mountains. In the case of applying these models elsewhere, the debris flow 
inventory is essential for the BVS model in order to develop new weightings. This is the 
shortcoming of the statistical approach and the benefit of the other approaches. When 
applying the heuristic and/or deterministic approaches, such as the QMC and 
SHALSTAB, respectively, to other areas without the use of a debris flow inventory it 
necessitates the need to develop another approach to instability classification. One 
possible method would be to assign individual instability classes based upon the 
standardized instability distributions. For instance, classifying into the ‘Very High’ class 
the top 5% of instability scores and into the ‘High’ class the next 10% and so on. 
Research on this approach may be the next logical step to the comparison of slope 
instability models. 

Various issues have been identified in this study that address methods of debris flow 
inventory mapping. While inventory methods are becoming more of a subject of interest, 
there needs to be more effort in accurately identifying the various components of debris 
flows and landslides in general. Identification of source areas, run-out paths and 
depositional areas can become increasingly more accurate with the new technologies 
used to obtain aerial photographs. For example, the Virginia Base Mapping Project 
(VBMP) has been able to create aerial photographs with resolutions of less than one foot. 
This type of aerial photography can be invaluable in identifying debris flow outlines 
therefore allowing better assessments of accuracy. Moreover, the development of better 
elevation data such as laser altimetry, although not available in many regions, will prove 
very useful in the accuracies of these models. 

Other potentially valuable assessments include the identification of the size and 
shape of debris flows that initiate from unstable areas as well as the run-out paths of the 
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debris flow. This could be accomplished by using the amount and type of soil material in 
areas of high instability to estimate the volumes of future debris flows. Knowing the size 
of potential debris flows and the location of initiation, the prediction of debris flow 
depositional areas can be identified. Forest managers and community planners could 
benefit greatly from this knowledge.  

The methods developed for this study have allowed a systematic comparison of 
various modeling approaches and their behaviors. These various GIS techniques for 
assessing slope instability have been applied in many regions worldwide; however, the 
decision as to which model to use seems to still be very subjective for many areas. The 
standardization techniques used in this study may be applied to almost any instability 
zonation project allowing a worldwide comparison of instability for certain landslide 
types. However, the various instability zonation projects still need to be developed for 
each region and for each landslide type. The standardization techniques proposed in this 
study simply allow various model outputs to be directly compared. In addition, these 
techniques have allowed an assessment of the appropriate modeling approach to use in 
the absence of high resolution data.  

For forest management, the use of these modeling approaches can prove useful for 
initial planning phases for which land owners need to identify the acreage of specific 
stands susceptible to instability as well as the spatial distribution of instability. This 
information can then be used to further assess instability in a more detailed fashion with 
field visits. The automated models (SHALSTAB and the models developed in this study) 
are especially useful for this because managers can obtain this information quickly 
instead of spending large amounts of money and time developing the instability maps. 
This knowledge can be applied to various forestry activities such as timber harvesting, 
road-building and trail-building.  In addition, these models can prove very useful in 
development projects in which communities need to locate the best locations for building 
houses, roads and trails. This is extremely important in developing countries where the 
landscape is such that people are forced to live in marginal lands (i.e. marginalization). 
Furthermore, developing countries are gaining more access to these technologies and new 
datasets are being developed for remote parts of the world each year. Other potential 
benefits from this research could include the use of the instability maps for use in 
insurance assessments by local agencies as well as by the Federal Emergency 
Management Agency (FEMA).  

Future evaluations of slope instability and modeling comparisons should include 
differing input factors such as vegetation, road density and geology. However, it is 
essential that researchers understand the limitations of using various scales of data and 
the implications for interpreting the outputs. The models described in this study are 
topographically driven and require a minimum amount of data, an important aspect in 
developing countries where the availability of data is limited. 
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APPENDICES 

APPENDIX A. MADISON UNIFIED WEIGHTS 

Soil Description MUSYM Unified Group Weight 
Alluvial land, cobbly Ad SC-SM 1 
Alluvial land, mixed Ac SM 1 
Altavista loam, clayey subsoil variant Al SC 5 
Appling fine sandy loam, very deep Ar ML 5 
Augusta silt loam, clayey subsoil variant Au CL 1 
Baile stony silt loam Ba CL 1 
Braddock-Thurmont loams Bc SC 5 
Brandywine fine gravelly loam Bd GM 10 
Brandywine loam, very deep Be GM 10 
Brandywine stony loam, very deep Bn GM 10 
Chester-Brandywine loams, very deep Ck GM 10 
Chewacla silt loam Cm SC 5 
Codorus loam, cobbly subsoil variant Cn GM 1 
Colluvial land, extremely stony Cu 10 
Colluvial land, very stony Cr 10 
Congaree fine sandy loam Cv CL 1 
Congaree loam Cw CL 1 
Dyke loam Dk CL 1 
Elioak fine sandy loam El SC 5 
Elioak loam Em SC 5 
Elioak silty clay loam En SC 5 
Eubanks loam, very deep Et SC 5 
Eubanks-Lloyd clay loams Eu SC 5 
Eubanks-Lloyd loams Ey SC 5 
Glenelg loam Gl CL 1 
Hazel loam Ha SM 10 
Hiwassee loam Hs CL 1 
Iredell silt loam Ir CL 1 
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APPENDIX A CONTINUED 
 
Soil Description MUSYM Unified Group Weight 
Lloyd loam Ll CL 1 
Lloyd loam, thin solum variant Lm CL 1 
Made land Ma 5 
Manor silt loam Mo SC-SM 7 
Meadowville loam Mv SC 5 
Myersville-Catoctin very stony silt loam My GC 5 
Porters very stony loam Po SM 10 
Riverwash Rh 1 
Rock land, acidic Rn 10 
Rock land, basic Ro 7 
Rock land, myersville and catoctin materials Rr 7 
Rock land, porters and hazel materials Rt 10 
Rock outcrop Ru 5 
Starr silt loam Sr SC 5 
Trego loam Tr GC 5 
Tusquitee stony loam Tu SC-SM 7 
Unison loam Un CL 1 
Unison very stony silt loam Us CL 1 
Water W 0 
Wehadkee silt loam We SC 5 
Wickham loam, clayey subsoil variant Wh CL 1 
Worsham loam Wm CL 1
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APPENDIX B. NELSON UNIFIED WEIGHTS 

Soil Description Unified Group Weight 
Belvoir sandy loam CL 1 
Chatuge loam SM 10 
Codorus silt loam SM 10 
Colleen gravelly loam GC 5 
Colvard fine sandy loam SM 10 
Craigsville very cobbly loam SC-SM 7 
Delanco loam CL 1 
Edneytown loam SM 10 
Edneytown-Peaks complex SM 10 
Elioak clay loam CL 1 
Elioak loam CL 1 
Fauquier loam CH 1 
Glenelg silt loam CL 1 
Hatboro loam SC 5 
Hayesville clay loam CL 1 
Hayesville loam CL 1 
Hazel channery loam GC 5 
Hazel loam GC 5 
Minnieville loam CL 1 
Myersville-Catoctin complex GC 5 
Occoquan loam SC 5 
Peaks-Rock outcrop complex GC-GM 7 
Pineywoods silt loam CL 1 
Pits 1 
Saunook loam SM 10 
Sketerville silt loam CL 1 
Spriggs loam SC 5 
Suches loam SC 5 
Sylco-Sylvatus complex GC 5 
Thurmont loam SC 5 
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APPENDIX B CONTINUED 
 
Soil Description Unified Group Weight 
Unison loam CL 1 
Water 0 
Wintergreen clay loam CH 1 
Wintergreen loam CH 1
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APPENDIX C. SMALL-SCALE INSTABILITY MAPS 
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APPENDIX D. CONTINGENCY TABLES FOR SENSITIVITY 
ANALYSES 

   30 meter 

   Very Low Low Moderate High Very High Total  

Very Low 1102483 637308 326565 147951 235699 2450006 
Low  4504 159272 24337 4154 4654 196921 

Moderate 95 44394 148136 37207 17927 247759 
High 21 209 15564 45582 22388 83764 

Very High 6 111 1014 12823 51111 65065 
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Total 1107109 841294 515616 247717 331779 3043515 
         
   30 meter 

   Very Low Low Moderate High Very High Total  

Very Low 2411621 20 54 8979 29332 2450006 
Low  184 0 2 30 0 216 

Moderate 79846 51 152 65701 79439 225189 
High 33321 1 2 2702 147331 183357 

Very High 28812 0 6 237 155692 184747 
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Total 2553784 72 216 77649 411794 3043515 
         
   30 meter 

   Very Low Low Moderate High Very High Total  

Very Low 124908 299802 93072 77723 11752 607257 
Low  64230 486572 455255 435440 166627 1608124 

Moderate 6613 59329 52815 129948 73814 322519 
High 1482 21166 52448 54118 113791 243005 

Very High 212 4902 27172 64622 165702 262610 Q
M
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un
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Total 197445 871771 680762 761851 531686 3043515 
         
   30 meter 

   Very Low Low Moderate High Very High Total  

Very Low 833103 351964 94831 40117 3956 1323971 
Low  207465 379132 302439 117376 57305 1063717 

Moderate 12616 69026 64116 147391 58875 352024 
High 1261 13064 30258 30191 66781 141555 

Very High 364 4206 25956 29262 102460 162248 Q
M

C
 R

un
 2

 

10
 m

et
er

 

Total 1054809 817392 517600 364337 289377 3043515 
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APPENDIX D CONTINUED 
   30 meter 
   Very Low Low Moderate High Very High Total  

Very Low 617977 487706 278624 23365 8741 1416413 
Low  129521 192499 603752 75925 94952 1096649 

Moderate 1728 15582 88266 34171 118188 257935 
High 854 12707 51183 15945 84200 164889 

Very High 31 2049 19267 7021 79261 107629 Q
M

C
 R

un
 1

 

10
 m

et
er

 

Total 750111 710543 1041092 156427 385342 3043515 
         
   30 meter 
   Very Low Low Moderate High Very High Total  

Very Low 514174 322720 25431 2515 63 864903 
Low  168611 804417 385928 78289 22081 1459326 

Moderate 6097 93351 127354 130734 41609 399145 
High 851 13414 54246 36205 82956 187672 

Very High 239 2643 17595 28933 83059 132469 B
V

S 
R

un
 1

 

10
 m

et
er

 

Total 689972 1236545 610554 276676 229768 3043515 
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