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Abstract

We investigate spatially inhomogeneous versions of the stochastic Lotka–Volter-

ra model for predator-prey competition and coexistence by means of Monte

Carlo simulations on a two-dimensional lattice with periodic boundary condi-

tions. To study boundary effects for this paradigmatic population dynamics

system, we employ a simulation domain split into two patches: Upon setting

the predation rates at two distinct values, one half of the system resides in an ab-

sorbing state where only the prey survives, while the other half attains a stable

coexistence state wherein both species remain active. At the domain bound-

ary, we observe a marked enhancement of the predator population density. The

predator correlation length displays a minimum at the boundary, before reach-

ing its asymptotic constant value deep in the active region. The frequency of the

population oscillations appears only very weakly affected by the existence of two

distinct domains, in contrast to their attenuation rate, which assumes its largest

value there. We also observe that boundary effects become less prominent as the

system is successively divided into subdomains in a checkerboard pattern, with

two different reaction rates assigned to neighboring patches. When the domain

size becomes reduced to the scale of the correlation length, the mean population

densities attain values that are very similar to those in a disordered system with

randomly assigned reaction rates drawn from a bimodal distribution.
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1. Introduction

Due to its wide range of applications and relative simplicity, variants of the

Lotka–Volterra predator-prey competition model represent paradigmatic sys-

tems to study the emergence of biodiversity in ecology, noise-induced pattern

formation in population dynamics and (bio-)chemical reactions, and phase tran-

sitions in far-from-equilibrium systems. In the classical deterministic Lotka–

Volterra model [1, 2], two coupled mean-field rate equations describe the popu-

lation dynamics of a two-species predator-prey system, whose solutions display

periodic non-linear oscillations fully determined by the system’s initial state. Yet

the original mean-field Lotka–Volterra rate equations do not incorporate demo-

graphic fluctuations and internal noise induced by the stochastic reproduction

and predation reactions in coupled ecosystems encountered in nature. In a se-

ries of analytical [3]–[6] and numerical simulation studies [7]–[18], the population

dynamics of several stochastic spatially extended lattice Lotka–Volterra model

variants was found to substantially differ from the mean-field rate equation

predictions due to stochasticity and the emergence of strong spatio-temporal

correlations: Both predator and prey populations oscillate erratically, and do

not return to their initial densities; the oscillations are moreover damped and

asymptotically reach a quasi-stationary state with both population densities fi-

nite and constant on one- or two-dimensional square lattices [7], whereas damp-

ing appears absent or is very weak in three dimensions [9]. Very similar dynam-

ical properties are observed in other two-dimensional model variants, includ-

ing a predator-prey system with added prey food supply and cover [12], and

implementations on a triangular lattice [14]. In a non-spatial setting, the per-

sistent non-linear oscillations can be understood through resonantly amplified

demographic fluctuations [19]. Local carrying capacity restrictions, representing

limited resources in nature, can be implemented in lattice simulations by con-
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straining the number of particles on each site [8, 10, 11, 15, 16, 17]. These local

occupation number restrictions cause the emergence of a predator extinction

threshold and an absorbing phase, wherein the predator species ultimately dis-

appears while the prey proliferate through the entire system. Upon tuning the

reaction rates, one thus encounters a continuous active-to-absorbing state non-

equilibrium phase transition whose universal features turn out to be governed

by the directed percolation universality class [4, 5, 10, 11, 12, 15, 16, 18].

Biologically more relevant models should include spatial rate variability to

account for environmental disorder. The population dynamics in a patch sur-

rounded by a hostile foe [20, 21, 22] is well represented by Fisher’s model [23],

which includes diffusive spreading as well as a reaction term capturing interac-

tions between individuals and with the environment. For the stochastic Lotka–

Volterra model, the influence of environmental rate variability on the population

densities, transient oscillations, spatial correlations, and invasion fronts was in-

vestigated by assigning random reaction rates to different lattice sites [24, 25].

Spatial variability in the predation rate results in more localized activity patches,

a remarkable increase in the asymptotic population densities, and accelerated

front propagation. These studies assumed full environmental disorder, as there

was no correlation at all between the reaction rates on neighboring sites.

In a more realistic setting, the system should consist of several domains

with the environment fairly uniform within each patch, but differing markedly

between the domains, e.g., representing different topographies or vegetation

states. In our simulations, we split the system into several patches and assign

different reaction rates to neighboring regions. By tuning the rate parameters,

we can force some domains to be in an absorbing state, where the predators

go extinct, or alternatively in an active state for which both species coexist at

non-zero densities. One would expect the influence of the boundary between the

active and absorbing regions to only extend over a distance on the scale of the

characteristic correlation length in the system. In this work, we study the local

population densities, correlation length, as well as the local oscillation frequency

and attenuation, as functions of the distance from the domain boundary. As we
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successively divide the system further in a checkerboard pattern so that each

patch decreases in size, the population dynamics features quantitatively tend

towards those of a randomly disordered model with reaction rates assigned to

the lattice sites from a bimodal distribution.

2. Model Description and Background

The deterministic classical Lotka–Volterra model [1, 2] is a set of two coupled

non-linear dynamical rate equations that on a mean-field approximation level

capture the following kinetic reactions of two species, respectively identified with

predators A and prey B:

A
µ→ ∅ , A+B

λ→ A+A , B
σ→ B +B . (1)

In these stochastic processes, µ corresponds to the spontaneous predator death

rate, while σ denotes the prey reproduction rate. Finally, λ is the predation rate

which describes the non-linear reaction through which the predator and prey

species interact with each other. The simplified Lotka–Volterra model thus as-

sumes that the prey population grows exponentially in the absence of predators,

but becomes diminished with growing predator population. In the presence of

the prey, the predator population will increase with the prey population, but

is subject to exponential decay once all prey are gone. The configuration with

vanishing predator number represents an absorbing state for this system, since

there exists no stochastic reaction process that would allow recovery from it. For

completeness, we mention that the total population extinction state of course

represents another absorbing state. We also remark that one could add inde-

pendent predator reproduction A→ A+A (with rate σ′) and prey death B → ∅

(rate µ′) processes to the standard Lotka–Volterra kinetics (1). Yet this would

induce no qualitative changes as long as σ′ < µ and σ > µ′; one then simply

needs to replace µ with the rate difference µ− σ′, and σ with σ − µ′.

The associated rate equations, subject to mean-field mass action factoriza-

tion for the non-linear predation process, and valid under well-mixed conditions
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for spatially homogeneous time-dependent particle densities a(t) and b(t), read

ȧ(t) = λ′a(t)b(t)− µ′a(t) , ḃ(t) = −λ′a(t)b(t) + σ′b(t) , (2)

with continuum reaction rates λ′, µ′, and σ′. Since there exists a conserved

first integral (Lyapunov function) K = λ′(a + b) − σ′ ln a − µ′ ln b = const. for

this deterministic dynamics, the solutions to eqs. (2) are strictly periodic non-

linear oscillations that precisely return to the system’s initial state. Although

popular in the fields of ecology and biology, the Lotka–Volterra model is also

often criticized for being too simplistic and mathematically unstable. This is due

to several simplifying and likely unrealistic assumptions: First, the prey always

have a sufficient amount of food available, whence its depletion is neglected,

and the prey’s nourishment source is not explicitly represented in the model.

Second, the only source of food for the predator species is the prey, and its

consumption is a necessary requirement for the predators’ reproduction. Third,

there is no specified limit on the prey intake for the predators. Fourth, the rate

of change of either population is directly proportional to its size. Finally, during

the temporal evolution any environmental influence is assumed fixed in time,

and crucial concepts such as trait inheritance, mutations, or natural selection

play no role.

In our research, we use Monte Carlo simulations for the stochastic Lotka–

Volterra model based on the reactions (1) performed on a two-dimensional

square lattice with 512 × 512 sites and periodic boundary conditions to fully

account for emerging spatial structures and internal reaction noise. We note

that we have also performed simulations on two-dimensional square lattices

with 256×256 and 128×128 sites; aside from overall noisier data, as one would

expect, we obtain no noticeable quantitative differences. Given that the cor-

relation lengths ξ measured below are much smaller than these system sizes,

this is not surprising. Due to our limited computational resources, we have not

attempted runs on even larger systems. In the following, all listed Monte Carlo

data and extracted quantitative results refer to 512× 512 square lattices. Also,

for the reaction processes, we only consider the four nearest-neighbor sites, and
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have not extended interactions to larger distances. In our model, we imple-

ment occupation number limitations or finite local carrying capacities; i.e., the

number of particles on any lattice site is restricted to be either 0, if the site

is empty, or 1, if it is occupied by a predator or a prey individual. We shall

examine the population densities of each species, given by their total particle

number divided by the number of lattice sites, and aim to quantify the ensuing

oscillations and through characteristic observables that include their frequency

and attenuation, as well as typical population cluster sizes as determined by

their spatial correlation length.

The simulation algorithm for the death, reproduction, and mutual interac-

tions of the prey and predator particles proceeds as follows [26, 7, 9]: For each

iteration, an occupied site is randomly selected and then one of its four adja-

cent sites is picked at random. If the two selected sites contain a predator and

a prey particle, a random number x1 ∈ [0, 1] is generated; if x1 < λ, the prey

individual is removed and a newly generated predator takes its place. Similarly,

if the occupant is a predator, a random number x2 ∈ [0, 1] is generated, and

the particle is removed if x2 < µ. Yet if the initially selected occupant is a prey

particle and the chosen neighbor site empty, a random number x3 ∈ [0, 1] is

generated; if x3 < σ a new prey individual is added to this site. One Monte

Carlo Step (MCS) is considered completed when on average all particles have

participated in the reactions once.

The variables that can be tuned in our simulations are: the system size L,

the initial predator density ρA(0), the initial prey density ρB(0), the predator

death rate µ, the prey reproduction rate σ, the predation rate λ, and the number

of Monte Carlo steps. We chose the linear system size L = 512. Naturally one

must avoid starting the simulations from one of the absorbing states. For any

non-zero initial predator and prey density, the population numbers and particle

distribution at the outset of the simulation runs influence the system merely

for a limited time, and the final (quasi-)stationary state of the system is only

determined by the three reaction rates [18]. In our simulations, the rates µ and

σ are kept constant for simplicity, while λ is considered to be the only relevant
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Figure 1: Monte Carlo simulation trajectories for a stochastic Lotka–Volterra model on a

512×512 square lattice with periodic boundary conditions and restricted site occupancy shown

in the predator ρA(t) versus prey density ρB(t) phase plane (ρA(t) + ρB(t) ≤ 1) with initial

values ρA(0) = 0.3 = ρB(0), fixed reaction probabilities µ = 0.125, σ = 1.0, and different

predation efficiencies: (i) λ = 0.1 (black dots): predator extinction phase; (ii) λ = 0.18 (green

stars): direct exponential relaxation to the quasi-stationary state just above the extinction

threshold in the predator-prey coexistence phase; (iii) λ = 0.4 (red triangles): the trajectory

spirals into a stable fixed point, signifying damped oscillations deep in the coexistence phase.

control parameter. The dynamical properties are generically determined by the

ratio of the reaction rates; the subsequent results apply also for different sets

of µ and σ with appropriately altered predation rate λ. Since we only have

two species, predators and prey, 0 ≤ ρA + ρB ≤ 1 due to the site occupation

resctrictions. For each parameter set we use a suitable number of independent

simulation runs and use the average of these repeats in the data analysis to

reduce statistical errors.

In the case of very low predation rates λ, the predators will gradually starve

to death, and the remaining prey will finally occupy the whole system. On the

other hand, when λ is large, there is a finite probability (in any finite lattice) that

all prey individuals would be devoured; subsequently the predators would die

out as well because of starvation. In fact, the absorbing extinction state is the

only truly stable state in a finite population with the stochastic dynamics (1).
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However, in sufficiently large systems, quasi-stable states in which both species

survive with relatively constant population densities during the entire simulation

duration are indeed observed in certain regions of parameter space. Fig. 1 shows

three single-run simulation results, plotting the prey population density ρB(t)

versus that of the predators ρA(t) with the reaction probabilities µ = 0.125

and σ = 1.0 held fixed; we thus select the non-linear predation reaction rate

λ as the only control parameter. We chose the initial population densities as

ρA(0) = 0.3 = ρB(0) with the particles randomly distributed among the lattice

sites. With λ = 0.1 (black dots), the predators have low predation efficiency and

thus gradually go extinct; the system then reaches an absorbing state with only

prey particles remaining and ultimately filling the entire lattice (ρB → 1). If we

increase the value of λ to 0.18 (green stars), just above the predator extinction

threshold, the system relaxes exponentially to a quasi-stationary state with

non-zero densities for both species. For λ = 0.4 (red triangles), the system

resides deep in this coexistence phase and the simulation trajectory spirals into

a stable fixed point, indicating damped oscillatory kinetics. According to our

investigations, we estimate the critical predation rate of the predator extinction

phase transition point at λc = 0.12± 0.01.

3. Boundary Effects at a Coexistence / Predator Extinction Interface

Natural environments vary in space and boundaries are formed between dif-

ferent regions, yielding often quite sharp interfaces, e.g., between river and land,

desert and forest, etc. At the boundaries of such spatially inhomogeneous sys-

tems, interesting phenomena may arise. In order to study boundary effects

on simple predator-prey population dynamics, we split our simulation domain

into two equally large pieces with one half residing in the predator extinction

state, and the other half in the two-species coexistence phase. We use a two-

dimensional lattice with 512× 512 sites with periodic boundary conditions, and

index the columns with integers in the interval [0, 511]. Whereas the predator

death and prey reproducation rates are uniformly set as µ = 0.125 and σ = 1.0
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(a) (b) (c)

Figure 2: Snapshots of the spatial particle distribution on a 512 × 512 lattice (with periodic

boundary conditions) that is split into equally large predator extinction (left) and species

coexistence (right) regions: prey are indicated in green, predators in red, white spaces in

white. (a) Random initial distribution with densities ρA = 0.3 = ρB ; (b) state of the system

after 1000 MCS, when it has reached a quasi-stationary state with uniform rates µ = 0.125

and σ = 1.0, while λl = 0.1 on columns [0, 255], λr = 0.8 on columns [256, 511]; (c) close-up

of a local 100× 50 area at the boundary.

on all sites, we assign λl = 0.1 < λc on columns [0, 255] to enforce predator

extinction on the “left” side, and λr = 0.8 > λc for the columns on the “right”

half with indices [256, 511], which is thus held in the predator-prey coexistence

state. Fig. 2(a) depicts the initial random particle distribution with equal pop-

ulation densities ρA = 0.3 = ρB . After the system has evolved for 1000 MCS,

a quasi-steady state is obtained as shown in Fig. 2(b), and the close-up near

the boundary (c). The predators are able to penetrate into the “left” absorbing

region by less than 10 columns, and no predator individuals are encountered

far away from the active-absorbing interface. On the right half, we observe

a predator-prey coexistence state with the prey particles forming clusters sur-

rounded by predators and predation reactions occurring at their perimeters.

Since only the predator species is subject to the extinction transition into

an absorbing state, while the prey can survive throughout the entire simulation

domain, we concentrate on boundary effects affecting the predator population.

We measure the column densities of predators ρA(n), defined as the number of
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predators on column n divided by L = 512, and record their averages from 1000

independent simulation runs as a function of column index n. As shown in the

inset of Fig. 3(a), ρA(n) decreases to 0 deep inside the absorbing half of the

system, and reaches a positive constant 0.195± 0.001 within the active region.

The main graph focuses on the boundary region, where we observe a marked

predator density peak right at the interface (column 256). The predator density

enhancement at the boundary is obviously due to the net intrusion flow of

species A from the active subdomain with high predation rate into the predator

extinction region with abundant food in the form of the near uniformly spread

prey population. We also ran simulations for other predation rate pairs such as

λl = 0.1 and λr = 0.2 (still in the coexistence phase), and observed very similar

behavior (except that the peak of ρA appeared on column 257 in that situation

instead of at n = 256).

Fig. 3(b) shows the exponential decay of the predator column density ρA(n)

as function of the distance |255 − n| from the boundary (located at n = 255)

towards the “left”, absorbing side. A simple linear regression gives the inverse

characteristic decay length k = −0.286. However, on the “right” active half

of the system, ρA(n) neither fits exponential nor algebraic decay. Instead, ρA

reaches the asymptotic constant value 0.195 ± 0.001 deep in the coexistence

region through an apparent stretched exponential form ρA(n) ∼ e−(n−256)
l

+

0.195 with stretching exponent l ≈ 0.348, as demonstrated in Fig. 3(c).

On the “right” semidomain set in the predator-prey coexistence phase, the

particle reproduction processes induce clustering of individuals from each species.

The cluster size may vary with the distance from the boundary. We uti-

lize the correlation length ξ, obtained from the equal-time correlation func-

tion C(x), to characterize the spatial extent of these clusters. For species

α, β = A,B, the (connected) correlation functions are defined as Cαβ(x) =

〈nα(x)nβ(0)〉−〈nα(x)〉 〈nβ(0)〉, where nα(x) = 0, 1 denotes the local occupation

number of species α at site x [17]. For x = 0 and α = β, in a spatially homoge-

neous system it is simply given by the density 〈nA〉: Cαα(0) = 〈nA〉(1− 〈nA〉).

For |x| > 0, 〈nα(x)nβ(0)〉 is computed as follows: First choose a site, and then
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Figure 3: After the split system with rates µ = 0.125, σ = 1.0 and λl = 0.1 on columns [0, 255],

λr = 0.8 on columns [256, 511] evolves for 1000 MCS, it arrives at a quasi-stationary state:

(a) the main plot shows the column densities of the predator population ρA(n) as function

of column index n ∈ [251, 270] with the error bars indicating the standard deviation, and the

inset on all L = 512 columns (data averaged over 1000 independent runs); (b) exponential

decay of ρA(n) from the boundary (located at n = 255) into the absorbing region with

n ∈ [235, 255]: The blue dots depict our simulation results, while the black straight line

represents a linear regression of the data with slope k = −0.286; (c) the column density ρA

decays to a positive constant value 0.195 ± 0.001 deep in the right coexistence region. The

blue dots display log10(− ln(ρA − 0.195)) versus log10(n− 256), while the black straight line

with slope l = 0.348 is obtained from linear data regression.

a second site at distance x away from the first one. nα(x)nβ(0) equals 1 only if

the first site is occupied by an individual of species β, and the second one by an

particle of species α, otherwise the result is 0. One then averages over all sites.

Here, we compute the predator correlations CAA(x, n) on a given column

n, i.e., we only take the mean in the above procedure over the L = 512 sites

on that column. The main panel in Fig. 4(a) shows the predator correlation

function CAA(x) on column n = 274 with x ∈ [0, 9], where the CAA(x) gradually

decreases to zero. The inset presents the same data in a logarithmic scale,

demonstrating exponential decay according to C(x, n) ∼ e−x/ξ(n). Since the

statistical errors grow at large distances x, we only use the initial data points

up to x = 6 for the analysis. Linear regression of ln(CAA(x, n = 274)) over
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Figure 4: (a) Main panel: the predator correlation function CAA(x, n) on column n = 274

(data averaged over 1000 independent simulation runs). Inset: ln(CAA(x, n)); the red straight

line indicates a simple linear regression of the data points with x ∈ [1, 6], and yields the char-

acteristic decay length ξ(n = 274) ≈ 3.2; the error bars indicate the standard deviation. (b)

Correlation length ξ(n) versus column number n, with ξ(n) defined as the negative reciprocal

of the slope of ln(CAA(x, n)).

x ∈ [1, 6] gives ξ(n = 274) ≈ 3.2, indicated as red square in Fig. 4(b). In

the same manner, we obtain the characteristic correlation lengths ξ(n) for each

column n as shown in Fig. 4(b), starting at the interface at n = 256. We

observe ξ(n) to increase by about a factor of four within the first ten columns

away from the boundary, and then saturate at the bulk value ξ ≈ 3.2. Near the

absorbing region, the predator clusters are thus much smaller, owing to the net

flux of predators across the boundary into the extinction domain. These values

of ξ are measured after the entire system has reached its (quasi-)steady state

after 1000 MCS, and would not change for longer simulations run times. We

note that the relationship between the correlation length ξ and the predation

rate λ is manifestly not linear, i.e., a very large value of λ does not imply huge

predator clusters. We surmise that the cluster size remains finite even in that

scenario, and the predators would penetrate into the “left” absorbing region for

a finite number of columns only. For sufficiently large domain size, the system

should thus remain spatially inhomogeneous even for very high predation rates
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Figure 5: The temporal evolution of the average predator column densities ρA(t, n) (averaged

over 1000 independent runs) on columns n = 256 (blue dots) and n = 274 (red plus marks),

with initial predator density ρA(0) = 0.3 and rates µ = 0.125, σ = 1.0, λl = 0.1 on columns

n ∈ [0, 255], and λr = 0.8 for n ∈ [256, 511].

λ. Finally, the dependence of the typical cluster size ξ(n) on column index

n correlates inversely with the column density plotted in Fig. 3: High local

density corresponds to small cluster size and vice versa. We note that the

product ρA(n) ξ(n) is however not simply constant across different columns;

rather it is minimal near the boundary (at n = 256), then increases away from

the interface, and ultimately reaches a fixed value within 10 columns inside the

active region.

Spatially homogeneous stochastic Lotka–Volterra systems display damped

population oscillations in the predator-prey coexistence phase after being ini-

tialized with random species distribution, see, for example, the (red triangle)

trajectory in Fig. 1 for predation rate λ = 0.4. We next explore the boundary

effects on these population oscillations near the active-absorbing interface. We

prepare the system with the same parameters as mentioned above so that its

“left” half is in the absorbing state while the “right” side sustains species coex-

istence. The initial population densities are again set to ρA(0) = 0.3 = ρB(0),

with the particles randomly distributed on the lattice. We then measure the col-

umn predator densities as a function of time (MCS). Fig. 5 displays the temporal

evolution of ρA(t, n) on columns n = 256 and n = 274. We observe the oscil-

13



0.000 0.628 1.256

ω[MCS−1 ]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

f(
ω
)

(a) 256
258
262
266
270
274

256 264 272 280 288

n

3

4

5

6

7

8

9

10

11

12

t c

(b)

Figure 6: (a) Fourier transform amplitude fA(ω, n) of the predator column density time

evolution on columns n = 256 (blue dots), 258 (green triangles up), 262 (red triangles down),

266 (cyan squares), 270 (magenta stars), and 274 (black plus marks), with rates µ = 0.125,

σ = 1.0, and λl = 0.1 for n ∈ [0, 255], λr = 0.8 for n ∈ [256, 511]; (b) measured characteristic

decay time tc(n) on columns near the active-absorbing boundary, inferred from the peak

widths in (a), with the error bars representing the standard deviation.

lations on the column closest to the interface to be strongly damped, whereas

deeper inside the active region the population oscillations are more persistent

and subject to much weaker attenuation. Both column densities asymptotically

reach the expected quasi-steady state values.

In order to determine the dependence of the local oscillation frequencies

on the distance from the active-absorbing interface, we compute the Fourier

transform amplitude fA(ω, n) = |
∫
e−iωt ρA(t, n) dt| of the column density time

series data by means of the fast Fourier transform algorithm for n ∈ [256, 274],

as shown in Fig. 6(a). Assuming the approximate functional form ρA(t, n) ∼

e−t/tc(n) cos(2πt/T (n)), we may then identify the peak position of fA(ω, n)

with the characteristic oscillation frequency 2π/T (n), and the peak half-width

at half maximum with the attenuation rate or inverse relaxation time 1/tc(n).

We find that the oscillation frequencies are constant except for the column at

the boundary (n = 256), which shows a very slight enhancement. We conclude

that the presence of the extinction region does not markedly affect the frequency
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(a) (b) (c)

Figure 7: Snapshots of the distribution of predator (red) and prey (green) particles after the

system has evolved for 1000 MCS with rates µ = 0.125, σ = 1.0, and λ switched alternatingly

between the values 0.1 (predator extinction) and 0.8 (species coexistence) on neighboring

subdomains, as the full 512 × 512 system is periodically divided into successively smaller

square patches with lengths 256 (a), 64 (b), and 16 (c), respectively. The square subdomains

dominantly colored in green reside in the extinction state (λ = 0.1), whereas predator-prey

coexistence pertains to the other patches (λ = 0.8).

of the population oscillations in the active regime. In contrast, the attenuation

rate increases by a factor of three within about 20 columns in the vicinity of

the interface, as demonstrated in Fig. 6(b). Beyond n ≈ 278 in the coexistence

region, the relaxation time assumes its constant bulk value.

4. Checkerboard Division of the System

To further explore boundary (and finite-size) effects in spatially inhomoge-

neous Lotka–Volterra systems, we proceed by successively dividing the simula-

tion domain into subdomains in a checkerboard pattern, setting the predation

rate to two distinct values in neighboring patches, and thus preparing them

alternatingly in either the active coexistence or absorbing predator extinction

states. Fig. 7(a) shows a case when the system is split into four subregions with

σ = 1.0 and µ = 0.125, and with two distinct values for the predation rate

λ = 0.1 and 0.8 assigned to alternating patches of the 2× 2 checkerboard struc-

ture. Note that the low predation rate value posits the corresponding patches in

the predator extinction state, whereas the subdomains with the high predation
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rate reside in the species coexistence phase. Figures 7(b) and (c) depict the

situations when the total simulation domain with 512× 512 sites is respectively

split into 8 × 8 and 32 × 32 square patches: If for a given box λ is set to 0.1,

then the adjacent square subdomains above, below, to its right, and to its left

are given a value λ = 0.8.

1000 simulations were performed for each setting, and the averages over

these independent runs were used to analyze the data. We also generated and

inspected simulation videos: snapshots are depicted in Fig. 7. As we split the

system into successively smaller and more pieces in the checkerboard-patterned

fashion with λ switching between 0.1 and 0.8 on neighboring subregions, we

find the boundaries to have less of an impact on the population densities. We

observe that in this sequence the prey density decreases on the patches with

lower predation rate 0.1, but stays roughly the same on the subdomains where

λ = 0.8. The predator density in contrast increases in both the active and

absorbing regions as the subdivision proceeds. We have also confirmed that

these changes in the total population densities naturally become less significant

if the two different predation rate values are chosen closer to each other.

In Fig. 8, we plot the total (summed over all subdomains) predator and prey

population densities ρ in the simulation domain split into N ×N checkerboard

patches, as functions of log10N . Here, N = 1 corresponds to the situation stud-

ied in section 3, where the system was divided into two rectangular subdomains.

The other values ofN = 512, 256, 128, 64, 32, 16, 8, 2 refer to checkerboard square

patches with lengths 512/N . The mean population density ρ shown for each

data point represents an average of 1000 independent simulation runs; the asso-

ciated statistical error was very small, with a standard deviation of order 10−3.

As apparent in the data, the overall population predator density ρA monotoni-

cally increases with growing number N of subdivisions, while the prey density

ρB decreases.

We also performed the analogous sequence of measurements for other pairs

of predation rate values. For instance, with checkerboard subdomains with

λ = 0.1 and 0.2 (also just within the species coexistence range, see Fig. 1),
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Figure 8: Total population densities for predators (red triangles) and prey (green squares)

versus number of checkerboard-patterned subdivisions N of the simulation domain, after the

system has evolved for 1000 MCS and reached a quasi-stationary state, with reaction rates

µ = 0.125, σ = 1.0, and λ alternatingly switched between 0.1 and 0.8. For comparison,

the graph also shows the total quasi-steady state population densities for predators (black

plus) and prey (blue star) in a system with randomly assigned predation, drawn with equal

probability from a bimodal distribution with values λ = 0.1 and 0.8.

the population density changes with increasing N are less pronounced than in

Fig. 8, and ρA, ρB acquire maximum and minimum values at N = 256 rather

than 512. The origin of this slight shift can be traced to the fact that the

predator correlation length is of order one lattice constant at the boundary of

the λ = 0.1/0.8 system, but extends over about two sites for the 0.1/0.2 case.

For comparison, we also measured the overall population predator and prey

densities in a Lotka–Volterra system with quenched spatial disorder in the pre-

dation rates, where either of the two values λ = 0.1 and 0.8 are assigned at

random to each lattice site with equal probability. The resulting net popula-

tion density values are also shown in Fig. 8; they are close, but not identical

to those obtained for the N = 512 system, for which these two predation rates

are alternatingly assigned to the lattice sites in a periodic regular manner. We

would expect the population densities in these two distinct systems to reach

equal values if the associated correlation lengths at the boundaries were large

compared to the lattice constant, which is however not the case here.
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5. Conclusion

In this work, we have focused on studying boundary effects in a stochastic

Lotka–Volterra predator-prey competition model on a two-dimensional lattice,

by means of detailed Monte Carlo simulations. We first considered a system

split into two equally large parts with distinct non-linear predation rates, such

that one domain is set to be in the predator extinction state, while the other one

resides in the two-species coexistence phase. We have primarily addressed the

influence of such an absorbing-active separation on both populations’ density

oscillations as function of the distance from the boundary.

We find a remarkable peak in the column density oscillation amplitude of

the predator population, as shown in Fig. 3(a), which reflects its net steady

influx towards the absorbing region. Correspondingly, the predator correlation

length that characterizes the typical cluster size reaches a minimum value at the

boundary, see Fig. 4(b). The population oscillation frequency there shows only

small deviations from its bulk value, while the attenuation rate is locally strongly

enhanced, see Fig. 6(b), inducing overdamped relaxation kinetics. Overall, the

ecosystem remains stable.

Furthermore, upon splitting the system successively into more pieces in a

checkerboard fashion, the observed boundary effects become less significant,

and as demonstrated in Fig. 8, the overall population densities acquire values

that are close to those in a disordered system with randomly assigned predation

rates drawn from a bimodal distribution.
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