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ABSTRACT 
 

An effective silicon debug technique uses a trace buffer to monitor and capture a portion 

of the circuit response during its functional, post-silicon operation. Due to the limited 

space of the available trace buffer, selection of the critical trace signals plays an 

important role in both minimizing the number of signals traced and maximizing the 

observability/restorability of other untraced signals during post-silicon validation. In this 

thesis, a new method is proposed for trace buffer signal selection for the purpose of post-

silicon debug. The selection is performed by favoring those signals with the most number 

of implications that are not implied by other signals.  Then, based on the values of the 

traced signals during silicon debug, an algorithm which uses a SAT-based multi-node 

implication engine is introduced to restore the values of untraced signals across multiple 

time-frames. A new multiplexer-based trace signal interconnection scheme and a new 

heuristic for trace signal selection based on implication-based correlation are also 

described. By this approach, we can effectively trace twice as many signals with the same 

trace buffer width. A SAT-based greedy heuristic is also proposed to prune the selected 

trace signal list further to take into account those multi-node implications. A state 

restoration algorithm is developed for the multiplexer-based trace signal interconnection 

scheme. Experimental results show that the proposed approaches select the trace signals 

effectively, giving a high restoration percentage compared with other techniques. We 

finally propose a lossless compression technique to increase the capacity of the trace 

buffer. We propose real-time compression of the trace data using Frequency-Directed 

Run-Length (FDR) code.  In addition, we also propose source transformation functions, 

namely difference vector computation, efficient ordering of trace flip-flops and alternate 

vector reversal that reduces the entropy of the trace data, making them more amenable for 

compression. The order of the trace flip-flops is computed off-chip using a probabilistic 

algorithm. The difference vector computation and alternate vector reversal are 

implemented on-chip and incurs negligible hardware overhead. Experimental results for 
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sequential benchmark circuits shows that this method gives a better compression 

percentage compared to dictionary-based techniques and yields up to 3X improvement in 

the diagnostic capability. We also observe that the area overhead of the proposed 

approach is less compared to dictionary-based compression techniques. 
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Chapter 1 

Introduction 

Pre-silicon verification and post-silicon manufacturing test play an important role in 

guaranteeing the integrated circuit (IC) product quality. Pre-silicon verification 

techniques like formal verification and simulation-based functional validation are 

commonly used to verify if the design implementation matches the specification. 

Manufacturing test is used to screen out the fabrication defects that affect the IC 

behavior. With the growing complexity of system-on-chip (SOC) designs, pre-silicon 

verification and manufacturing test are becoming more challenging than ever. Many 

functional bugs may remain undetected after pre-silicon verification and several defects 

may escape the manufacturing test. The increasing demand for shorter time-to-market has 

made the discovery of these undetected bugs and defects even more critical. In-system 

silicon debug techniques using design for debug (DFD) hardware are employed to 

identify the root cause of first silicon failures. 

 

 There are several working groups who are involved in the standardization of on-chip 

debug processes and instruments [52]. Two existing types of silicon debug techniques 

are: scan-based and trace buffer-based. In the scan-based approach, the design’s existing 

test structure comprising of JTAG and scan chains are re-used. The captured data from 

the internal state elements corresponding to specific triggering events are off-loaded (or 

dumped) through the scan chains. In [6] and [7], the authors discuss the identification of 

failing state elements from the scan dump data using post-processing algorithms. In [5], 

the backward and forward logic implications of the scan-dump values are used to restore 

more circuit gate values. However, many complex, non repeatable bugs may only 

manifest themselves after long period of operations, making repeated scan dump-based 

debug approach costly and cumbersome for silicon debug. A trace buffer-based technique 

is employed to acquire continuous data wherein an embedded logic analyzer (ELA) [8] is 

used to sample internal signal data into on-chip trace buffers. Then, state restoration 

software [9] reconstructs the internal signal values from the off-loaded trace data. 
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The amount of data which can be acquired by the trace buffer is limited by the 

buffer’s depth and width. The buffer’s depth limits the number of samples that can be 

stored and the width limits the number of trace signals which can be sampled and 

recorded in each clock cycle [3]. Methods for ELA design improvement were proposed in 

[4], [8] and [10]-[12]. The area of the trace buffer memory is limited. Thus it is highly 

desirable to select the best trace signals which can maximize the restoration of missing 

signal values. In [1], [2] and [3], trace selection and state restoration algorithms were 

proposed which uses restorability metrics that consider both the topology and behavior of 

logic gates. In [25] an interconnection fabric design for tracing signals was proposed 

which comprised of a multiplexer network and a non-blocking concentration network. 

The motivation in [25] was that it is not necessary to observe uncorrelated signals 

concurrently. However, in many cases it is essential to observe uncorrelated signals 

concurrently since these uncorrelated signals do not imply each other. On the other hand, 

it may not be necessary to trace highly correlated signals concurrently since one signal 

might restore (imply) the other. Another disadvantage of [25] is the area overhead of the 

multiplexer tree and the crossbar switches.  

 

Trace compression techniques can be used to increase the storage efficiency of the 

trace buffer. Such techniques were proposed in [13]-[15] to increase the number of trace 

signal samples. In [14], dictionary-based algorithms such as Lempel-Ziv (LZ77) and its 

variants LZ78, LZW and word-based dynamic Lempel-Ziv (WDLZW) are used. In [39], 

a LZ-based data compression algorithm was used for program trace compression. A 

drawback of using a complete dictionary is that the size of the dictionary can become 

very large, resulting in too much overhead for the on-chip compressor.    

   

Contributions of this thesis: 

Our main objectives are to maximize the restoration of missing internal signals using a 

minimum number of trace signals and to increase the storage efficiency of the trace 

buffer. The first contribution of this thesis is a new algorithm using a logic implication-

based [16] learning approach to intelligently select the trace signals. We favor selecting 
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those signals which contain more implications that are not implied by other signals. We 

show that our trace selection method is efficient and is able to achieve better restoration 

than other techniques. Then, based on the values of the traced signals during silicon 

debug, we introduce an algorithm which uses a SAT-based multi-node implication engine 

to restore the values of untraced signals across multiple time-frames. Experimental results 

for sequential benchmark circuits showed that the proposed approach selects the trace 

signals effectively, giving a high restoration percentage compared with other techniques. 

Our second contribution is another algorithm which uses the correlation between the 

forward and backward implications of flip-flops (trace signals) across two consecutive 

time-frames as a parameter to intelligently select two sets of trace signals. The two sets 

of trace signals are then multiplexed such that the first set is traced during even time-

frames and the second set is traced during odd time-frames. Our primary motivation is 

that the signal pairs with high implication-based correlation between them need not be 

traced concurrently. As a result, we can effectively trace twice as many signals with the 

same trace buffer width. We show that our new trace selection method is efficient and 

gives a better restoration percentage compared to previous techniques. We also propose a 

SAT-based greedy heuristic to prune the selected trace signal list, thus considering some 

corner cases where multi-node implications play a major role during state restoration. 

This further improves the restoration percentage for a few circuits. 

Trace compression techniques [13-15] are used to increase the storage efficiency of 

the trace buffer. Golomb code [31] and FDR code [32] belong to the variable-to-variable 

category of lossless data compression codes. To obtain a high compression percentage 

with minimal hardware overhead, we propose enhancements for FDR codes that can be 

implemented with minimal hardware overhead. We implement source transformation 

functions on the captured data before encoding the data using the FDR codes. Source 

transformation functions convert the captured data into reduced entropy data-set and 

hence improve the achievable compression percentage. We show that our approach 

achieves better compression percentage compared to dictionary-based techniques. 

Moreover, the area overhead of our trace compressor is less compared to dictionary-

based codes and yields up to 3X improvement in the diagnostic capability. This is our 

third contribution. 
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Organization of this thesis: 

The rest of the thesis is organized as follows: 

• Chapter 2: This chapter describes various silicon debug techniques used currently 

in the industry to identify the root cause of first silicon failures. It surveys the 

various trace selection, trace compression and state restoration schemes proposed 

in literature. This chapter also gives an overview of static logic implications and 

various compression techniques and defines parameters used to evaluate the 

quality of trace selection and trace compression.  

• Chapter 3: This chapter discusses the proposed approach for non-multiplexed 

trace buffer signal selection and introduces a SAT-based heuristic for state 

restoration. 

• Chapter 4: This chapter discusses the proposed approach for multiplexer-based 

trace signal selection and introduces a SAT-based greedy heuristic for pruning the 

selected trace signal list further. It also explains the state restoration algorithm for 

the new multiplexer-based scheme. 

• Chapter 5: This chapter discusses the proposed source transformation functions 

for Frequency-Directed Run-Length (FDR) codes. It also presents hardware 

implementation scheme for the proposed trace data compression scheme. 

• Chapter 6: This chapter concludes the thesis. 

 

 

 

 

 

 

 

 

 

 



5 

 

Chapter 2 

Background 

This chapter introduces the various steps involved in the development of a digital 

integrated circuit (IC). It also gives an overview of the various silicon debug techniques 

used currently in the industry and briefly introduces the trace selection, trace compression 

and state restoration schemes proposed in literature. Finally, it describes concepts such as 

static logic implications, SAT-based Boolean constraint propagation, dictionary and 

adaptive/dynamic code-based compression techniques, entropy, hamming distance and 

Burrows-Wheeler source transformation that we use in this thesis. 

 

2.1 Digital Integrated Circuit (IC) Development Process 

Figure 2.1 shows the steps involved in the development of a digital integrated circuit (IC) 

[33]. We explain each of these steps below: 

Design Specification: Design specification is defined as the formulation of a VLSI device 

requirement in the form of a design documentation or behavioral reference model based 

on a customer or project need. 

Design Implementation: Design implementation is a process of transforming a higher 

level description of a design into a lower level description. Figure 2.2 shows the steps 

involved in the design implementation. Starting from a design specification, a behavioral 

(architecture) level description is developed in a hardware description language (HDL) or 

as a C program. The design is then described at the register-transfer level (RTL). The 

RTL is then synthesized to produce the gate-level design of the circuit. Finally, the gate-

level design is transformed to a physical-level description in order to obtain the physical 

placement and interconnection of the transistors in the VLSI device prior to fabrication. 

Verification is important at each stage of the design implementation to ensure that the 

functionality of the final design meets the design specifications including the timing and 

operating frequency specifications. 

Design Verification: Design verification, also known as pre-silicon verification is a 

predictive analysis to check the correctness of the design implementation against its 
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specification. When a design error is found, modifications to the design are necessary and 

design verification must be repeated. Two commonly used verification techniques are: 1) 

formal verification and 2) simulation.  

Design Fabrication: Design fabrication is a multiple-step sequence of photographic and 

chemical processing steps during which electronic circuits are gradually created on a 

wafer made of pure semiconducting material. 

Manufacturing Test: Manufacturing test is a test which is applied to each fabricated 

circuit to detect physical defects such as shorts and opens and timing defects. The test 

procedure is based on the design specification and fault models associated with the 

implementation technology. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Digital IC development process 

 

 

 

 

 

 

 

Figure 2.2: Design implementation hierarchy 
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2.2 Need for Silicon Debug 

The time required for design verification in the pre-silicon stage is increasing with the 

growing complexity of integrated circuits. Insufficient verification may fail to detect 

design errors. Moreover, the accuracy of circuit models is inadequate to ensure the first 

silicon to be error free. Therefore, design verification has a definite impact on time-to-

market and hence is economically significant, and it is important that the undetected 

design bugs are fixed as soon as the first silicon is available. In recent years, silicon 

debug has emerged as a key technique to detect and locate design errors in silicon.  Even 

when the design is correct, defects may be introduced during the fabrication due to 

impurities.  In other words, not all chips manufactured from the same design may be 

defect-free.  Manufacturing test attempts to capture those defective parts.  However, the 

defect may be located in a corner-case region for which there are few or no tests.  In such 

cases, the chip may pass the manufacturing test and be shipped as if it was good.  When 

put into a system, the chip may malfunction whenever the defect is exercised.  In this 

case, silicon debug is likewise necessary to detect and locate the source of the problem. 

 

2.3 Silicon Debug 

In-system silicon debug techniques are employed to identify the root cause of first silicon 

failures. Silicon debug can be defined as the process of finding, locating and identifying 

design bugs in the post-silicon phase [18]. Three techniques used for silicon debug are: 1) 

physical probing, 2) scan-based and 3) trace buffer-based. Silicon debug can be divided 

into two main steps: data acquisition and analysis. A type of physical probing technique 

which uses time-resolved photo emission [20] is widely used to acquire circuit data for 

failure analysis. However, the decreasing feature size and growing complexity of designs 

make this technique cumbersome for data acquisition. The debug methods based on 

internal scan chains have been used extensively for debugging complex digital ICs [19].  

Scan-based debug concepts have emerged from the manufacturing test research. In the 

scan-based approach, the internal scan chains are reused wherein the captured data from 

the internal state elements corresponding to specific triggering events are off-loaded (or 

dumped) through the scan chains. In [6-7], the authors discuss post-processing algorithms 
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which can be used to identify the failing state elements from the scan dump data. In [5] a 

method was proposed which utilizes backward and forward logic implications of the 

scan-dump values to restore more circuit gate values. However, many complex, non 

repeatable bugs may only manifest themselves after a long period of operations. 

Moreover, to complete a scan dump while continuing the real-time execution, it is 

necessary to double buffer the state elements in the scan chain, thus leading to 

unacceptable area penalty. This makes repeated scan dump-based debug approach costly 

and cumbersome for silicon debug. The trace buffer-based approach is a complementary 

technique which can be used to acquire continuous data. This debug technique has been 

influenced by software debugging used in embedded systems [22]. An embedded logic 

analyzer (ELA) [8] is used for sampling internal signal data into on-chip trace buffers. 

This is followed by a post processing stage [9] wherein the sampled data is off-loaded for 

analysis to reconstruct internal signal values and identify functional bugs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Trace buffer-based silicon debug architecture 

 

Figure 2.3 shows an example of trace buffer-based debug architecture. The trace signal 

interface shown in the figure is used to transfer the trace signals to on-chip trace buffers 

and/or off-chip trace ports for diagnosis. A trace control unit controls the start and stop of 
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the tracing, in which the control mechanism can be configured through JTAG interface. 

The trace buffer-based debug methods can be broadly classified as: special-purpose or 

generic. The special-purpose method [23-24] is applicable to embedded processors. The 

generic method is applicable to any type of custom SOCs [11, 17]. Another classification 

is based on centralized tracing or distributed sampling. In centralized tracing, one trace 

buffer is used per SOC (with different interconnect topologies between the embedded 

cores and the trace buffer) [17, 23, 24].  In distributed sampling the trace buffers are 

allocated to individual cores [11]. Regardless of the above classification, the primary 

benefit of the trace buffer-based method is that it provides real-time visibility to the 

circuit under debug (CUD) and enables in-field at-speed debug. The amount of data 

which can be acquired by the trace buffer is limited by two parameters: the buffer’s depth 

and width. The former limits the number of samples that can be stored and the latter 

limits the number of trace signals which can be sampled and recorded in each clock cycle 

[3]. The space of the available trace buffer memory is normally very limited and hence 

only a small number of internal signals can be observed together real-time. 

The selection of the critical trace signals which can maximize the restoration of the 

missing signal values is highly desirable. In [1-3], algorithms were proposed for trace 

signal selection and state restoration using restorability metrics that consider both the 

topology and behavior of logic gates. Ko et al. [3] used the state restoration concept to 

select the best signals that can eventually restore maximum number of other signals and 

hence improve the observability of the circuit under debug (CUD). Liu et al. [1] proposed 

refinements to take care of a few limitations in [3]. The restorability formulation in [1] 

and [3] is probabilistic in nature. The restorability calculation is computationally 

intensive since the restorability for all flip-flops is recomputed for every iteration.  

The interconnection fabric used to interconnect trace signals to the trace buffers and/or 

trace ports involves non-trivial area overhead. The existing solutions [26-28] use 

pipelined multiplexer (MUX) trees for the interconnection fabric design. However, these 

ad-hoc techniques limits the visibility to the circuit under debug (CUD) since any signal 

going through the same multiplexer cannot be observed concurrently. In [25], an 

interconnection fabric design was proposed to take care of the above problem. It 

consisted of two main parts: 1) a MUX network that connects those mutually-exclusive 
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tapped signals, which can be designated by designers and/or extracted automatically 

based on structural analysis; 2) a non-blocking concentration network that is able to 

transfer any m out of n inputs (m≤n) to the trace buffers/ports. The motivation in [25] 

was that it is not necessary to observe uncorrelated signals concurrently. However, in 

many cases it is essential to observe uncorrelated signals concurrently since these 

uncorrelated signals do not imply each other. On the other hand, it may not be necessary 

to trace highly correlated signals concurrently since one signal might restore (imply) the 

other. Another disadvantage of [25] is the area overhead of the multiplexer tree and the 

crossbar switches. 

Trace compression [13-15] is another sought-after method to increase the number of trace 

signal samples, thus increasing the storage efficiency of the trace buffer. In [14] 

dictionary-based algorithms (LZ77 and its variants) were used. A dedicated fast parallel 

search engine called content addressable memory (CAM) was used in [14] in order to 

perform fast search in hardware between the incoming symbol and the dictionary entries. 

The main limitation of dictionary-based method proposed in [6] was the large area 

overhead due to different content-addressable memory (CAM) sizes. A LZ-based data 

compression algorithm was used in [39] for program trace compression, however the area 

overhead was large. 

 

In the subsequent sections, we define and explain a few concepts that we use in this 

thesis. 

 

2.4 Static Logic Implications 

Let us consider a circuit with n gates. Logic implications determine the effect of 

assigning logic values (0 or 1) to one or more gates in the circuit. The implications are 

stored using a directed implication graph G (V, E) where V (vertices) є the set of 2n nodes 

corresponding to both value assignments (0 and 1) and E (edges) є single-node 

implications. For sequential circuits, each edge is annotated with an integer weight w that 

indicates the number of time frames that this implication spans. For example, consider an 

AND gate and its implication graph, shown in Figure 2.4. The AND gate has three 

signals, a, b, and c and the associated implication graph has six nodes. An edge in the 
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implication graph indicates the implication relationship and the annotated weight 

indicates the number of time-frames spanned by the implication. From Figure 2.4, clearly 

c=1 has two implications: b=1 and a=1 and the edge weight is 0.  

Static logic implications can be sub-divided into direct, indirect and extended backward 

implications [16, 33]. Indirect and extended backward implications use logic simulation 

as well as the contra-positive and transitive laws extensively. These learned implications 

are thus non-trivial. 

 

 

 

 

 

 

 

 

Figure 2.4: Implication graph example 

 

We define a few terms and concepts for single-node implications which we use for the 

discussion: 

a) [N,v,t]: Assign logic value v to gate N in time frame t. 

b) [N,v,t1]→[M,w,t2]: Assigning logic value v to gate N in time frame t1 would imply 

a logic value w to gate M in time frame t2. 

c) DI[N,v,t]: Set of direct implications resulting from assigning node N in time 

frame t to value v. For t=0, DI[N,v,t] is simply represented as DI[N,v] or DI[N=v]. 

d) IND[N,v,t]: Set of indirect implications resulting from assigning node N in time 

frame t to value v. For t=0, IND[N,v,t] is simply represented as IND[N,v] or 

IND[N=v]. 

e) EB[N,v,t]: Set of extended backward implications resulting from assigning node 

N in time frame t to value v. For t=0, EB[N,v,t] is simply represented as EB[N,v] 

or EB[N=v]. 
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f) Impl[N,v,t]: Set of single-node implications resulting from assigning node N in 

time frame t to value v. For t=0, Impl[N,v,t] is simply represented as Impl[N,v] or 

Impl[N=v]. Note that Impl[N,v,t]= DI[N,v,t]∪ IND[N,v,t]∪ EB[N,v,t]. 

g) Transitive law: If [M,w]→[N,v,t1] AND [N,v]→[L,y,t2], then [M,w]→[L,y,t1+t2]. 

In set notation, if [N,v,t1]∈Impl[M,w] and [L,y,t2]∈Impl[N,v], then 

[L,y,t1+t2]∈Impl[M,w]. 

h) Contrapositive law: If [M,w]→[N,v,t], then [N,v’]→[M,w’,-t]. In set notation, if 

[N,v,t]∈Impl[M,w], then [M,w’,-t]∈Impl[N,v’]. 

i) Conflicting assignments: If [M,w]→[N,v,t] AND [M,w]→[N,v’,t], then [M,w] is 

an impossible setting. This means that M is a constant node holding the value w’ 

permanently. 

 

 

 

 

 

 

 

 

Figure 2.5: Sequential circuit fragment 

 

We illustrate the direct, indirect and extended backward implications using the following 

example. Consider gate f=1 in the sequential circuit fragment shown in Figure 2.5. Let 

Impl[f=1]=� initially: 

1. Direct Implications: In Figure 2.5, g and k are directly connected to gate f. 

Clearly, f=1 would directly imply g=k=1. Moreover, f=1 has two implications: 

d=1 and e=1. Let DI[f=1] denote the set containing direct implications for f=1. 

Thus, DI[f=1]={(f,1,0), (g,1,0), (k,1,0),(d,1,0),(e,1,0)}. Similarly, the direct 
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implications for g=1, DI[g=1]={(g,1,0),(j,1,0),(f,1,0)}. These implications are 

stored in the form of a graph, where each node represents a gate (with a logic 

value).  A directed edge between two nodes represents an implication, and a 

weight along an edge represents the relative time frame associated with the 

implication. The graph shown in Figure 2.6 represents a portion of direct 

implications for f=1 in this example. The complete set of implications resulting 

from setting f=1 can be obtained by applying transitive law and traversing the 

graph rooted at node f=1. Computing the set of all nodes reachable from this root 

node (f=1) (transitive closure on f=1) would return the set DI[f=1]. Thus, the 

complete set of direct implications using the implication graph shown in the 

figure for f=1 is DI[f=1]={(f,1,0),(d,1,0),(e,1,0),(g,1,0),(k,1,0),(j,1,0),(c,1,-1)}. 

After learning direct implications, Impl[f=1]=Impl[f=1]∪DI[f=1].  

2. Indirect implications: Note that neither j=1 nor k=1 implies a logic value on gate 

x individually. However, if they are taken collectively, they imply x=1. Thus, 

indirectly, f=1 would imply x=1. This is an indirect implication of f=1, and it can 

be computed by performing a logic simulation on the current set of implications 

of the root node on the circuit. In this example, by inserting the implications of 

f=1 into the circuit, followed by a run of logic simulation, x=1 would be obtained 

as a result. Thus, IND[f=1]={(x,1,0)} and Impl[f=1]=Impl[f=1]∪IND[f=1]. This 

new implication is then added as an additional outgoing dashed edge from f=1 in 

the implication graph as shown in Figure 2.7. Another nontrivial implication that 

can be inferred from each indirect implication is based on the contrapositive law. 

Since [f,1]→[x,1,0],  by contrapositive law, [x,0]→[f,0,0]. 

3. Extended backward (EB) implications: The unjustified implied nodes in the 

implication list can be used to learn more implications, known as extended 

backward implications for any single node. Using the same circuit shown in 

Figure 1 again, in the implication list of f=1, d=1 is an unjustified gate because 

none of d’s inputs has been implied to a logic value of 1. Thus, d is a candidate 

for the application of EB implications. To obtain EB implications on d, a 

transitive closure is first performed for each of its unspecified inputs. In this case, 

Impl[a=1] and Impl[b=1] are first computed. The implications of f=1 are logic 



14 

 

simulated together with each of d’s unspecified input’s implication sets in turn, 

creating a set of newly found logic assignments for each input of the chosen 

unjustified gate. For this example, when the implications of (a=1) and (f=1) are 

simulated, the new assignments (seta) found include (w,0,0) and (z,0,0). Similarly, 

for the combined implication set of (b=1) and (f=1), the new assignments (setb) 

found include (y,0,0) and (z,0,0). All logic assignments that are not already in 

Impl[f=1] which are common to seta and setb are the EB implications. These new 

implications are added as new edges to the original node f=1. Thus, 

EB[f=1]={(z,0,0)} and Impl[f=1]=Impl[f=1]∪EB[f=1]. In this running example, 

because (z,0,0) is common in seta and setb, it is a new implication. The 

corresponding new implication graph is illustrated in Figure 2.8, where the new 

implication is shown as a dotted edge. 

 

 

 

 

 

 

Figure 2.6: Direct implications for f=1 

 

 

 

 

 

 

Figure 2.7: Adding indirect implications for f=1 
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Figure 2.8: Adding extended backward implications for f=1 

 

2.5 SAT-based Boolean Constraint Propagation (BCP) 

The implication graph stores only the single node implications, i.e., one node implying 

another node. For determining multi-node implications, i.e., a set of nodes together 

implying a single node, we use a SAT-based approach. We illustrate this method using 

an example. Every Boolean formula can be expressed in conjunctive normal form (CNF). 

For the circuit shown in Figure 2.9 the CNF formula can be expressed as: 

(¬a ∨ b∨ c) ∧ (a ∨ ¬c) ∧ (¬b ∨ ¬c) ∧ (¬a ∨ d) ∧ (¬b ∨ d) ∧ (a ∨ b ∨ ¬d) 

Suppose we wish to determine the multi-node implications of the signal assignments b=0 

and d=1. We use Boolean Constraint Propagation (BCP) to quickly identify the multi-

node implications. First, set b=0 and d=1 in the above CNF formula. It gets simplified to: 

(¬a ∨ c) ∧ (a ∨ ¬c) ∧ (1) ∧ (1) ∧ (1) ∧ (a) 

The sixth clause has become a unit clause (a clause with one unassigned/free literal). 

Therefore a=1 is an implication. Next, set a=1 in the simplified CNF formula. It gets 

simplified to: 

(c) ∧ (1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) 

The first clause is now a unit clause, hence c=1 is an implication. Since all the other 

clauses are satisfied (clause evaluates to 1), we stop and conclude that {a=1, c=1} are the 

multi-node implications of b=0 and d=1. In other words, if S is the set containing the 

signal assignments b=0 and d=1, i.e. S= {b=0, d=1}, then BCP(S) = {a=1, c=1} Note that 

 

    

  

f=1 

d=1 g=1 k=1 e=1 

j=1 c=1 

0 
0 

0 
0 

0 

0 

-1 

 

0 

x=1 

 z=0 

0 



16 

 

if any clause evaluates to 0 (i.e. unsatisfied) we conclude that a conflict has occurred and 

hence the given set of signal assignments S do not have any multi-node implications, i.e., 

BCP(S) = �. For the same circuit, {d=1} is the single-node implication of the signal 

assignment S= {a=1}. 

 

 

 

Figure 2.9: Boolean Constraint Propagation 

 

We define a few terms for single-node [16] and multi-node implications which we use in 

the following: 

j) Impl[N,v,t]: Set of single-node implications resulting from assigning node N in 

time frame t to value v. 

k) Impl[N,t]: Set of single-node implications resulting from assigning node N in time 

frame t to value v and v respectively (i.e., Impl[N,v,t] ∪ Impl[N, v ,t]). 

l) BCP(S): Set of multi-node implications resulting from assigning nodes 

N₁,N₂,…,Nn in time frame t to values v1,v2,..,vn respectively, where 

S={Ni,vi,t}i=1,2,.,n 

m) Implf[N, t]: Set of single-node forward implications in time frame t resulting from 

assigning node N in time frame t to value v and v’ respectively.  

n) Implb[N, t]: Set of single-node backward implications in time frame t-1 resulting 

from assigning node N in time frame t to value v and v’ respectively. 

 

 

a
b

c

d

0

1

1

1



17 

 

2.6 Restoration Ratio and Restoration Percentage 

In [1] and [3], a parameter called restoration ratio (RR) is used as an evaluation metric to 

measure the quality of the trace signals selected. It is calculated as: 

)(

)()(

FFstraced

FFsrestoredFFstraced

N

NN
RR

+
=                                    (2.1) 

Where Ntraced(FFs)  and Nrestored(FFs) are the number of traced states and the number of 

restored states respectively across all the time-frames under consideration. 

We define a new parameter called restoration percentage to measure the quality of trace 

signal selection more coherently. Total restoration percentage for all signals (including 

flip-flops) is calculated as: 
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Where Nrestored(all) is the number of restored signals in the circuit including PIs. Ntotal(all) is 

the total number of signals in the circuit.  

The restoration percentage for only flip-flops is calculated as: 
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×
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=
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FFs
N

NN
TR                                                            (2.3) 

Where Ntotal(FFs) is the total number of flip-flops in the circuit. 

TRall and TRFFs are the total restoration percentages calculated across all the time-frames. 

Equations (2.2) and (2.3) can also be used to determine the individual restoration 

percentages for each time-frame.   

 

2.7 Data Compression Codes 

Lossless data compression codes are classified into four categories depending on whether 

the symbols have a fixed size or a variable size, and whether the code-words have a fixed 

size or a variable size. Dictionary-based codes belong to fixed-to-fixed codes. A 

drawback of using a complete dictionary is that the size of the dictionary can become 
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very large, resulting in too much overhead for the on-chip compressor. Huffman code 

[33, 41] and run-length code [33, 40] are fixed-to-variable and variable-to-fixed codes, 

respectively. Adaptive/dynamic statistical coding algorithms, such as Huffman coding 

[33, 41] can provide a greater compression ratio but implementing them in hardware can 

incur exorbitant real estate cost.  Golomb code [31] and FDR code [32] belong to the 

variable-to-variable category. Both have evolved from the run-length code and are able to 

achieve greater compression. Since it was shown in [37] that FDR code is superior to 

Golomb code, we use FDR code in our work. 

2.8 Frequency Directed Run-length (FDR) Code 

Since our technique enhances FDR codes, we will briefly describe them. A detailed 

description is available elsewhere [32]. In FDR coding scheme, runs of zero’s are 

encoded as shown in Figure 2.10. Here, labels Ai (i=1,2, …) is used to represent a Group 

and the corresponding group prefix is shown in the column labeled Group prefix. The 

total number of code-words in a group Ai is 2
i
. To encode a given run of zeros, a code-

word is constructed by concatenating the group prefix and a tail. For example, the 

sequence 000001 (Run-length=5) is encoded as 1011 (Group prefix=10, tail=11). We 

will now illustrate a more complex example. 
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Figure 2.10: An FDR coding example 
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Example 1. Let the un-encoded sequence be T = 0001 000001 1 00001 00001 0000001 

001 00000001 001.  The run-lengths of zeroes in this un-encoded sequence are 3, 5, 0, 4, 

4, 6, 2, 7, and 2.  From Fig. 1 we obtain the encoded sequence, TE = 1001 1011 00 1010 

1010 110000 1000 110001 1000. 

 

2.9 Source Transformation 

Source transformation refers to the idea of transforming un-encoded data set T into a new 

data set, T’, which is more amenable for compression. Burrows-Wheeler transform [38] 

(BWT) is a widely used transformation that, when used on top of run length encoding, 

can give very impressive compression ratio. Bzip2 employs BWT transforms.  

 

2.10 Diagnosis and Compression Quality Metrics 

We use the following parameters to evaluate the quality of trace compression obtained 

using our proposed approach. Diagnostic Resolution and Compression Percentage: For 

trace compression, we consider the trace data set as an n⨉N matrix, where n is the total 

number of time-frames and N is the total number of trace flip-flops. Each row represents 

the current state of the trace flip-flops. T refers to the un-encoded sequence obtained from 

the n⨉N matrix by concatenating the n rows. TE is used to refer to the encoded trace data 

sequence. Diagnostic Resolution (DR) is defined by:  

EE
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×
==                                                                                                               (2.4) 

where SU is the size of T  (i.e., the number of bits in the un-encoded sequence T ) and 

SE is the size of TE (i.e., the number of bits in the encoded sequence TE)   

In other words, we can trace N signals using an N/DR wide trace buffer. Thus, the 

diagnostic capability is improved by DR times. 

Compression percentage (C) is defined by: 

100)
1

1( ×−=

RD
C                                                                                                            (2.5) 

For the un-encoded sequence of Example 1, SU = 42 and SE = 38. Hence, 

DR=SU/SE=42/38=1.105, and C = (1-1/DR) ⨉100 = (1-1/1.105) ⨉100 = 9.5%. 
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2.11 Entropy 

In information theory, entropy of a stream of data quantifies the overall information 

stored in that data. The entropy [36], E, of trace buffer data is defined as: 

E = -� p
log₂ (p
)
�

���
                                                                                                   (2.6) 

where pi is the probability of occurrence of a symbol Xi. Entropy can be used to compute 

the theoretical limits for achieving maximum compression using any encoding technique. 

For a variable-to-variable encoding, the theoretical maximum compression is: 

Cmax = (Sl – E) ∕(Sl)                                                                                                        (2.7) 

where E is the entropy and Sl is the average symbol length defined as: 

Sl = ∑ p
 ∗ |X
|
�
���                                                                                                            (2.8) 

where pi  is the probability of occurrence of the symbol  Xi and |Xi| is the length of Xi. 

Clearly from Equation (2.7), the maximum compression is inversely proportional to the 

entropy. The computation of entropy and theoretical maximum compression is illustrated 

in the example below. 

Example 2. Let us consider the un-encoded sequence T of Example 1. Let ti be the total 

number of times run-length i occurs. For our example, t0=1, t1=0, t2=2, t3=1, t4=2, t5=1, 

t6=1, t7=1, t8=0. Let R be the total number of run-lengths. Thus, R=∑ ��
�
��� =9. The 

probability of occurrence of run-length i is pi=ti/R. Thus, p0=1/9=0.11, p1=0, 

p2=2/9=0.22, p3=1/9=0.11, p4=2/9=0.22, p5=1/9=0.11, p6=1/9=0.11, p7=1/9=0.11, p8=0.  

From Equation (2.6), the entropy is E=-∑ p
log₂ (p
)
�
��� = - (0.11log2 (0.11) + 0.22log2 

(0.22) + 0.11log2 (0.11) + 0.22log2 (0.22) + 0.11log2 (0.11) + 0.11log2 (0.11) + 0.11log2 

(0.11)) = 2.79. The length of run-length i is |Xi|=i+1 if the run-length sequence end with a 

1, otherwise |Xi|=i. For example, 001 has a run-length of 2, but the size is 3 including the 

1 at the end. However, if we have an un-encoded sequence which ends with a zero, say 

001 0001 00, the size of the last run-length will be 2 since it does not have a terminating 

1. For our example, from Equation (2.8) the average symbol length Sl =∑ p
 ∗ |Xi|�
���   = 

(p0*|X0| + p2*|X2|+ p3*|X3|+ p4*|X4|+ p5*|X5|+ p6*|X6|+ p7*|X7|) = (0.11*1 + 0.22*3 + 

0.11*4 + 0.22*5 + 0.11*6 + 0.11*7 + 0.11*8) = 4.62. Thus, from Equation (2.7) the 

theoretical maximum compression, Cmax = (Sl-E)/(Sl)=(4.62-2.79)/(4.62)=0.396, i.e., 

39.6%.  
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2.12 Average Hamming Distance and Toggling Percentage 

The Hamming distance, H, between two strings of equal length is the number of positions 

at which the corresponding symbols are different. For the n⨉N matrix, let the Hamming 

distance between two successive rows k and k+1 be Hk. Note that 0≤Hk≤N, where N is the 

total number of trace flip-flops. This means that Hk trace flip-flops out of the total N trace 

flip-flops toggle between the successive rows k and k+1.  

The average Hamming distance for the trace data set represented by the n⨉N matrix is 

given by: 

Havg = 
∑ !"

#$%
"&%

�'(
                                                                                                                   (2.9) 

The average toggling percentage for the trace data set represented by the n⨉N matrix is 

given by: 

TPavg=
)*+,

-
× 100                                                                                                         (2.10) 
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Chapter 3 

Non-multiplexed Trace Selection and State 

Restoration 

This chapter is organized as follows. Section 3.1 formulates the problem. Section 3.2 

discusses the proposed approach for non-multiplexed trace signal selection. Section 3.3 

introduces the algorithm used for state restoration. Section 3.4 reports experimental 

results, and Section 3.5 summarizes the observation. 

 

3.1 Problem Formulation 

Let G represent the set of all gates in the circuit and S represent the set of trace signals to 

be selected. We define the problem statement as follows: Find the smallest subset of 

signals S⊆G such that ∀ legal valuations r of S, the values of the signals in G-S can be 

restored.  

In other words, our main objective is to maximize the restoration of missing internal 

signals using a minimum number of trace signals. In general, if we know all the primary 

input (PI) and current internal state element (flip-flop) values, it is possible to determine 

all the internal signal values through simple logic simulation. However, since the trace 

buffer capacity is limited in large designs, it is not possible to trace all the flip-flops. 

Hence, our objective is to select the best subset of flip-flops fi,i=1,2,…,N as trace signals 

such that most of the missing internal signal values can be restored. Throughout the paper 

we will assume that all PI values are known.  

3.2 New Trace Signal Selection 

In our trace signal selection algorithm, we use the number of single node implications 

(for both 0 and 1 assignment) per flip-flop 
Niif

N
,...2,1, =

 as our trace signal selection 

restorability metric.  First, we determine direct, indirect and extended backward 

implications [16] across a combinational time-frame and store them in an implication 
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graph. Next, we order the flip-flops fi, where i⋴1,2,…,N in the descending order of the total 

number of implications for both 0 and 1 assignment and term it as set Oi. Let us assume 

that the PIi, i=1,2…,p (p primary inputs) values are known. We define checked implications 

CI(fk) of a flip-flop fk in the ordered set Oi as those implications which are also implied 

by the primary inputs in the set ∪i⋴1,2,…,p Impl[PIi,0]and other flip-flops in the set 

∪i⋴1,2,…,k-1Impl[fi,0]. In other words, 

CI(fk)=Impl[fk,0]∩{(∪i⋴1,2,…,k-1Impl[fi,0])∪(∪i⋴1,2,…,p Impl[PIi,0])}                             (3.1) 

We define the unchecked implications UI(fk) of a flip-flop fk in the set Oi as those 

implications which are not implied by those in the set (∪i⋴1,2,…,k-1Impl[fi,0])∪(∪i⋴1,2,…,p 

Impl[PIi,0]). In other words, 

UI(fk)= Impl[fk,0] - CI(fk)                                                                                               (3.2) 

To prune the ordering further, we remove the checked implications corresponding to each 

flip-flop from the sorted list and order them again in the descending order of number of 

unchecked implications and term it as set Of. Based on a given trace buffer width n < N, 

where N is the total number of flip-flops, we select the first n flip-flops from the set Of as 

our trace signals. The basic idea is that the number of internal signals which can be 

restored using a flip-flop (trace signal) is directly proportional to the number of 

unchecked implications of that flip-flop. Hence, by ordering the flip-flops on the basis of 

number of unchecked implications, we aim to select the flip-flops which yield the best 

restorability individually. We will illustrate the trace signal selection method using the 

following example. Let us consider a circuit with one primary input PI1, three flip-flops 

f1, f2, f3 and six gates g1, g2, g3, g4, g5, g6. Suppose we obtain the following information 

from the implication graph: 

Impl[PI1,0,0]: {PI1=0, g6=1} 

Impl[PI1,1,0]: {PI1=1, g6=0} 

Impl[f1,0,0]: {f1=0, g1=1, g2=1, g3=0, g5=1} 

Impl[f1,1,0]: {f1=1, g1=1, g2=0, g3=0, g4=1} 

Impl[f2,0,0]: {f2=0, g1=1, g2=1, g3=1} 

Impl[f2,1,0]: {f2=1, g1=1, g2=0, g3=1, g4=1} 

Impl[f3,0,0]: {f3=0, g1=0, g3=1} 
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Impl[f3,1,0]: {f3=1, g1=1 , g2=0, g4=0} 

Thus, we get: 

Impl[PI1,0]=Impl[PI1,0,0]∪Impl[PI1,1,0]: {PI1=0, PI1=1, g6=0, g6=1} 

Impl[f1,0]=Impl[f1,0,0]∪Impl[f1,1,0]:{f1=1, f1=0, g1=1, g2=1, g2=0, g3=0, g4=1, g5=1} 

Impl[f2,0]=Impl[f2,0,0]∪Impl[f2,1,0]:{f2=1, f2=0, g1=1, g2=1, g2=0, g3=1, g4=1} 

Impl[f3,0]=Impl[f3,0,0]∪Impl[f3,1,0]:{f3=1, f3=0, g1=1, g1=0, g2=0, g3=1, g4=0} 

Nf1=|Impl[f1,0]|=8, Nf2=|Impl[f2,0]|=7, Nf3=|Impl[f3,0]|=7 

On ordering the flip-flops in the descending order of number of implications for both 0 

and 1 assignment, we get Oi= {f1, f2, f3}. Since f1 has the most number of implications, 

we will start with this flip-flop. Then we remove the checked implications from f1, f2 and 

f3. Using Equations (3.1) and (3.2), we get: 

CI(f1)= Impl[f1,0]∩Impl[PI1,0]=� 

UI(f1)=Impl[f1,0]-CI(f1):{ f1=1, f1=0, g1=1, g2=1, g2=0, g3=0, g4=1, g5=1} 

CI(f2)=Impl[f2,0]∩(Impl[f1,0]∪Impl[PI1,0]):{g1=1, g2=1, g2=0, g4=1} 

UI(f2)=Impl[f2,0]-CI(f2):{ f2=1,  f2=0, g3=1} 

CI(f3)=Impl[f3,0]∩(Impl[f2,0]∪Impl[f1,0]∪Impl[PI1,0]):{g1=1, g2=0, g3=1} 

UI(f3)=Impl[f3,0]-CI(f3):{ f3=1,  f3=0, g1=0, g4=0} 

Next, we set the implications to be the unchecked ones: 

Impl[f1,0]=UI(f1): {f1=1, f1=0, g1=1, g2=1, g2=0, g3=0, g4=1, g5=1} 

Impl[f2,0]=UI(f2): {f2=1, f2=0, g3=1} 

Impl[f3,0]=UI(f3): {f3=1, f3=0, g1=0, g4=0} 

Nf1=|Impl[f1,0]|=8,  Nf2=|Impl[f2,0]|=3,  Nf3=|Impl[f3,0]|=4 

On ordering the flip-flops in the descending order of number of unchecked implications 

for both 0 and 1 assignment, we get Of = {f1, f3, f2}. If we assume that the trace buffer 

width is 2, we will select f1, f3 as our trace signals. 

Algorithm 3.1: Unchecked implication-based trace signal selection  

1. Compute direct, indirect and extended backward implications and store them in an 

implication graph. 

2. Oi = Set of flip-flops fi,where i⋴1,2,…,N in the descending order of number of implications 

|Impl[fi,0]|where  i⋴1,2,…,N 
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3. reference_list = ∪i⋴1,2,…,p Impl[PIi,0];  

4. for each (flip-flop fi where i⋴1,2,…,N) 

        for each (implication m є Impl[fi,0]   ) 

                 if ( m∩reference_list ≠�) then 

                   Impl[fi,0] =Impl[fi,0]-m; 

                 else 

                   reference_list= reference_list∪ m; 

5. Of = Set of flip-flops fi, where i⋴1,2,…,N in the descending order of number of unchecked 

implications |Impl[fi,0]|where  i⋴1,2,…,N 

6. If trace buffer width=n, select first n flip-flops from the set Of as trace signals. 

 

We measure the quality of trace signals selected by Algorithm 3.1 using the two 

parameters defined in Section 2.6, Restoration Ratio and Restoration Percentage. In the 

next section, we present a novel state restoration algorithm which is used to obtain the 

above evaluation metrics.  

 

3.3 State Restoration from Traced Signals 

Our main objective is to maximize the number of internal signals which can be restored 

using the selected trace signal data. Given the traced signal values, we use a SAT-based 

multi-node implication based approach discussed in Section 2.5 to determine the restored 

signals across several time frames. For each time frame kє0,1,2...T we provide the SAT-

based multi-node implication engine a signal assignment set Sk=SPI ∪ St, where SPI is the 

set containing PI values and St is the set containing the current state values of the selected 

traced flip-flops in time frame k. We enlarge the set Sk for each time frame by including 

current state values of non-traced flops determined using forward and backward learning, 

which are defined as follows: 

Forward Learning:  For a signal assignment set Sk-1 in time frame k-1, if {signal 

g=v}єBCP(Sk-1) and g is the fan-in signal of non-traced flip-flop f, then for time frame k, 

Sk=Sk ∪{f=v}.  
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Backward Learning: For a set of trace flip-flops {f1, f2,....,fn} and the corresponding fan-

in signals {g1, g2,...,gn}, if in time frame k the current state values of the traced flip-flops 

are v1, v2,...,vn, then in time frame k-1, Sk-1=Sk-1∪{g1=v1, g2=v2,..., gn=vn}. If {signal 

g=v}єBCP(Sk-1) and g is the fan-in signal of non-traced flip-flop f, then for time frame k, 

Sk=Sk ∪{f=v}. 

For time frame k, suppose Sf is the set of non-trace flip-flop assignments determined by 

forward learning and Sb is the set of non-trace flip-flop assignments determined by 

backward learning. Then, for time frame k, Sk= SPI ∪St∪Sf ∪Sb 

We use Figure 3.1 to illustrate the concept of forward and backward learning. Figure 3.1 

shows a 3-frame expansion of a sequential circuit. Let us assume that the trace flip-flops 

are {f1, f2, f3}, the non-trace flip-flops are {f4, f5, f6} and the PIs are {p1, p2,...,pn} assigned 

to values v1, v2,..., vn respectively. The gates g1, g2, g3, g4, g5, g6 are the input signals of f1, 

f2, f3, f4, f5, f6 respectively. For time-frame 0, the signal assignment set S0=SPI∪St, where 

St={f1=0, f2=0, f3=0}. Suppose {g4=0}є BCP(S0). Since g4 is the input signal of non-trace 

flip-flop f4, the next state of f4 is learned to be 0 by forward learning, i.e. Sf={f4=0}. 

Therefore, in time frame 1, S1=S1∪Sf=S∪{f4=0}. Note that the subscript f for the values 

0f, 1f and Xf indicate the values learned by forward learning. If the current state values of 

traced flip-flops {f1, f2, f3} in time-frame 1 are {0,1,0}, then in time frame 0, 

S0=SPI∪St∪{g1=0, g2=1, g3=0} where St={f1=0, f2=0, f3=0}. Suppose {g5=1}єBCP(S0). 

Since g5 is the input signal of non-trace flip-flop f5, the next state of f5 is learned to be 1 

by backward learning, i.e. Sb={f5=1}. Therefore, in time frame 1, S1=S1∪Sb=S1∪{f5=1}. 

Note that the subscript b for the values 0b, 1b and Xb indicate the values learned by 

backward learning. Hence, considering both forward and backward learning for time 

frame 1, we get S1= S1∪Sf∪Sb =S1∪{f4=0}∪{f5=1}. Similarly, for time frame 2, S2= 

S2∪Sf∪Sb =S2∪{f4=1, f5=0, f6=0}∪{�}. 

Finally, we determine the multi-node implications BCP(Sk) for these assignments in time 

frame k using our SAT-based implication engine and count the number of restored 

internal signals. Restoration Ratio and Restoration Percentage are then calculated using 

equations described in Section 2.6. We also vary the trace buffer width and observe the 

effect on the restoration percentage across a set of 100 vectors (time-frames) for each 
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circuit. The experimental results are given in the next section. Algorithm 3.2 gives an 

overview of our state restoration approach. 

 

Algorithm 3.2: State restoration using multi-node implications 

1. trace_signal_list = flip-flops fi, where i⋴1,2,…,n  

2. for each (vector Vi, where i⋴0,1,2,…,T) 

Perform logic simulation using Vi; 

Signal assignment set Si =SPI ∪ St ∪ Sf ∪ Sb; 

Perform SAT-based multi-node implications BCP(Si) 

Nrestored(all) = number of signals including the PIs implied to either 0 or 1. 

Nrestored(FFs) = number of non-trace flip-flops implied to either 0 or 1. 

Use equations provided in Section II to calculate restoration ratio and restoration 

percentage. 

 
Figure 3.1: State Restoration-Forward and Backward Learning 

 

3.4 Experimental Results 

The above algorithms were written in C++ and experiments were conducted for 

ISCAS’89 sequential benchmark circuits on a Linux workstation with 2GB RAM. The 

results are reported in Tables 3.1-3.5. During state restoration, we do not assume any 

knowledge of an initial state other than the traced signals. We consider five different 
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trace buffer widths: 8, 16, 32, 64 and 128. The trace buffer depth is assumed to be 100 in 

contrast to [1] in which the trace buffer depth is assumed to be 4k. Note that less 

restoration is possible in the beginning and more restoration toward the end of the vector 

sequence since more values can be learned later from the earlier vectors.  Therefore, each 

random pattern used for our experiments has 100 vectors each for a more competitive 

comparison. We compare our results with [1] using the parameter RR (Restoration Ratio). 

For a sanity check, we also perform an experiment in which we perform a poor trace 

signal selection by selecting flip-flops with the least number of unchecked implications. 

We compare the total restoration percentage TRall (P) obtained by the poor trace signal 

selection with total restoration percentage TRall (A) obtained by the proposed trace signal 

selection algorithm for the first 10 vectors for different trace buffer widths reported in 

Table 3.6. Tables 3.1-3.5 give the results for trace buffer widths of 8, 16, 32, 64 and 128 

using only forward learning and assuming that the primary input values are known. For 

each circuit, the first two columns give the total number of flip-flops in the circuit and 

number of vectors considered respectively, followed by restoration ratio (RR) obtained in 

[1], the trace signal execution time in [1], the restoration ratio (RR) obtained by our 

method, total restoration percentage (only flip-flops) across 100 vectors (TRFFs), total 

restoration percentage (all gates) across 100 vectors (TRall), the restoration percentage 

(only flip-flops) obtained in the final vector (FRFFs), the restoration percentage (all gates) 

obtained in the final vector (FRall), and the trace selection execution time. Compared to 

[1] our approach has a better restoration ratio (RR). We also observe that our approach is 

considerably faster for all circuits than [1]. For example, consider s15850 of Table 3.1 

with only 8 traced signals; we achieved a high RR of 55.6 and execution time of only 

17.9 seconds as compared to a RR of 19.93 and execution time of 298.9 seconds achieved 

by [1]. Note that the trace selection execution time in our method is independent of the 

trace buffer width and depth, but only on the circuit size.  In s15850, we were able to 

restore 92.6% of all signals with only 8 trace signals. We were able to achieve high 

restoration percentage (FRall) for all circuits, sometimes with only 8 or 16 trace signals.  

We can observe that with an increase in the trace buffer width (toward 128) the 

restoration percentage also tends to increase, as expected. For s35932 and s38584, the 

restoration percentage approaches 100 percent as we approach the final vector. Figure 3.2 
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and Figure 3.3 illustrate this graphically. For a trace buffer width of 32, this trend is 

illustrated graphically in Figure 3.8 and Figure 3.9.  

Table 3.6 compares our method with the poor trace signal selection.  Results for the first 

10 vectors, which are the hardest to restore (e.g., initial state of non-trace FFs is 

unknown), are reported. Our restoration percentage TRall (A) is superior than the TRall (P) 

obtained using the poor selection of trace signals for all trace buffer widths. Among the 

circuits, s35932 is a special case: similar results were observed for both cases, since the 

number of unchecked implications per flip-flop is uniformly distributed in this circuit. 

Finally, Tables 3.7-3.11 compare the results obtained using forward learning only (H1) 

with the results obtained using both forward learning and backward learning (H2) for 

trace buffer widths of 8, 16, 32, 64 and 128. Clearly, backward learning further improves 

the restoration percentage. For example, consider s38584 in Table 3.9 for a trace buffer 

width of 32, H2 achieved a high restoration percentage (TRall) of 92.9% as compared to a 

restoration percentage (TRall) of only 86.4% achieved using H1. 

Table 3.1: Experimental Results (Trace Buffer Width=8) 
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(s) 

s5378 179 100 14.68 14.3  19.3 86.3 90.4 87.7 91.1 1.3 

s9234 211 100 4.767 26.3 20.3 77.1 90.5 83.4 93.4 9.6 

s15850 534 100 19.93 298.9 55.6 83.2 91.3 85.6 92.6 17.9 

s13207 638 100 - - 43.3 54.3 61.3 57.9 64.2 16.8 

s38584 1426 100 19.24 388.6 130.1 72.9 82.4 98.8 99.3 726 

s35932 1728 100 64.0 1407.6 209.6 97.0 97.6 100 100 193 
 

 

Table 3.2: Experimental Results (Trace Buffer Width=16) 
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(sec) 

s5378 179 100 8.996 35.9 9.7 86.5 90.6 87.7 91.1 1.4 

s9234 211 100 7.182 75.2 10.3 77.8 91.2 83.4 93.4 9.5 

s15850 534 100 24.22 764.4 27.8 83.3 91.33 85.6 92.6 18.0 

s13207 638 100 - - 24.5 61.4 68.8 64.6 70.9 16.9 

s38584 1426 100 13.96 802.9 66.02 74.1 83.3 98.8 99.3 726 

s35932 1728 100 38.13 5251.1 104.8 97.04 97.56 100 100 195 

  

Table 3.3: Experimental Results (Trace Buffer Width=32) 
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(s) 

s5378 179 100 4.726 74.9 4.84 86.7 90.8 87.7 91.1 1.3 

s9234 211 100 4.672 148.2 5.2 78.5 91.8 83.9 93.6 9.5 

s15850 534 100 13.3 1654.6 13.9 83.5 91.5 85.6 92.6 17.9 

s13207 638 100 - - 13.1 65.6 74.4 68.5 76.3 16.9 

s38584 1426 100 8.679 2826.0 34.8 78.1 86.4 98.8 99.3 726 

s35932 1728 100 21.06 10496.2 52.4 97.07 97.57 100 100 194 
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Table 3.4: Experimental Results (Trace Buffer Width=64) 
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(s) 

s5378 179 100 - - 2.6 92.4 94.9 93.3 95.3 1.5 

s9234 211 100 - - 2.6 79.5 92.6 84.4 94.0 9.7 

s15850 534 100 - - 7.0 84.1 92.1 85.6 92.6 18.1 

s13207 638 100 - - 6.9 69.7 78.2 71.5 79.5 16.9 

s38584 1426 100 - - 17.8 80.1 88.4 98.8 99.3 723 

s35932 1728 100 - - 26.2 97.13 97.59 100 100 194 
 

Table 3.5: Experimental Results (Trace Buffer Width=128) 
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(s) 

s5378 179 100 - - 1.4 99.7 99.9 100 100 1.4 

s9234 211 100 - - 1.4 83.9 94.5 85.8 95.2 9.9 

s15850 534 100 - - 3.5 84.2 92.2 85.6 92.6 19.8 

s13207 638 100 - - 3.9 77.3 82.9 78.8 83.7 18.8 

s38584 1426 100 - - 9.7 87.3 93.1 99.9 99.8 785 

s35932 1728 100 - - 13.13 97.24 97.64 100 100 215 

 

Table 3.6: Experimental Results-Poor (P) vs. our Algo (A) for the first 10 vectors 
Name TB Width=8 TB Width=16 TB Width=32 TB Width=64 TB Width=128 

TRall(P) TRall(A) TRall(P) TRall(A) TRall(P) TRall(A) TRall(P) TRall(A) TRall(P) TRall(A) 

s5378 73.7 82.8 74.2 84.9 81.5 86.3 84.1 91.5 95.5 99.2 

s9234 57.8 72.3 58.1 78.4 59.8 81.4 64.5 84.3 74.9 91.7 

s15850 75.4 79.0 75.9 79.6 76.1 80.6 77.5 85.9 81.6 86.9 

s13207 29.7 42.0 30.1 52.5 31.1 61.0 33.4 71.1 38.7 78.3 

s38584 38.9 41.1 40.3 43.9 41.3 49.6 43.3 55.7 46.4 63.3 

s35932 75.5 75.6 75.6 75.6 75.9 75.7 76.5 76.0 77.6 76.4 
  

 

 

 

Figure 3.2: TRall vs. TB width 
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Figure 3.3: TRFFs vs. TB width 

 

 

 

 

 

Figure 3.4: Restoration % (all) vs. vector # for TB width=8 
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Figure 3.5: Restoration % (FFs) vs. vector # for TB width=8 

 

 

 

 

 

 

Figure 3.6: Restoration % (all) vs. vector # for TB width=16 
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Figure 3.7: Restoration % (FFs) vs. vector # for TB width=16 

 

 

 

 

 

Figure 3.8: Restoration % (all) vs. vector # for TB width=32 
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Figure 3.9: Restoration % (FFs) vs. vector # for TB width=32 

 

 

 

 

 

 

Figure 3.10: Restoration % (all) vs. vector # for TB width=64 
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Figure 3.11: Restoration % (FFs) vs. vector # for TB width=64 

 

 

 

 

 

 

Figure 3.12: Restoration % (all) vs. vector # for TB width=128 
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Figure 3.13: Restoration % (FFs) vs. vector # for TB width=128 

 

 

Table 3.7: Forward Learning (H1) vs. Backward Learning (H2) (N=8) 
 N=8 

 H1 H2 

RRold TRall TRFF FRall FRFF RR TRall TRFF FRall FRFF RR 

s5378 14.68 90.4 86.3 91.1 87.7 19.3 92.0 88.3 94.0 91.6 19.8 

s9234 4.767 90.5 77.1 93.4 83.4 20.3 90.8 77.5 93.4 83.4 20.4 

s13207 - 61.3 54.3 64.2 58.0 43.3 67.3 53.7 75.6 71.3 53.7 

s15850 19.93 91.3 83.3 92.6 85.6 55.6 92.0 84.1 93.0 86.1 56.1 

s38584 19.24 82.5 73.1 99.3 98.8 130.2 91.7 86.0 100 100 153.2 

s35932 64.0 97.6 97.0 100 100 209.6 98.3 98.0 100 100 211.7 

s38417 18.6 36.3 21.8 38.1 22.5 44.5 41.3 25.8 42.2 26.5 52.8 

 

 

 

Table 3.8: Forward Learning (H1) vs. Backward Learning (H2) (N=16) 
 N=16 

 H1 H2 

RRold TRall TRFF FRall FRFF RR TRall TRFF FRall FRFF RR 

s5378 8.996 90.6 86.5 91.1 87.7 9.7 92.1 88.5 93.9 91.6 9.9 

s9234 7.182 91.2 77.8 93.4 83.4 10.3 91.5 78.1 93.4 83.4 10.3 

s13207 - 70.8 62.9 73.4 66.5 25.1 79.6 74.1 81.3 76.5 29.5 

s15850 24.22 91.3 83.3 92.6 85.6 27.8 92.0 84.1 92.9 86.1 28.1 

s38584 13.96 83.3 74.1 99.3 98.8 66.0 92.4 87.0 100 100 77.6 

s35932 38.13 97.6 97.0 100 100 104.8 98.3 98.0 100 100 105.9 

s38417 18.6 36.6 21.8 38.1 22.5 22.3 41.4 25.8 42.2 26.5 26.4 
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Table 3.9: Forward Learning (H1) vs. Backward Learning (H2) (N=32) 
 N=32 

 H1 H2 

RRold TRal

l 

TRFF FRall FRFF RR TRall TRFF FRall FRFF RR 

s5378 4.726 90.8 86.7 91.1 87.7 4.8 92.2 88.6 94.0 91.6 4.9 

s9234 4.672 91.8 78.5 93.6 83.9 5.2 92.0 78.8 93.6 83.9 5.2 

s13207 - 74.3 65.4 76.3 68.5 13.0 82.2 76.4 83.6 78.5 15.2 

s15850 13.3 91.5 83.5 92.6 85.6 13.9 92.2 84.4 92.9 86.1 14.1 

s38584 8.679 86.4 78.1 99.3 98.8 34.8 92.9 87.6 100 100 39.1 

s35932 21.06 97.6 97.1 100 100 52.4 98.3 98.1 100 100 53.0 

s38417 14.2 37.2 22.0 38.1 22.5 11.3 41.4 25.8 42.2 26.5 13.2 

 

 

Table 3.10: Forward Learning (H1) vs. Backward Learning (H2) (N=64) 
 N=64 

 H1 H2 

RRold TRall TRF

F 

FRall FRFF RR TRall TRFF FRall FRFF RR 

s5378 - 94.9 92.4 95.3 93.3 2.6 97.3 95.6 98.9 98.3 2.7 

s9234 - 92.6 79.5 94.0 84.4 2.6 92.7 79.7 94.0 84.4 2.6 

s13207 - 78.1 69.6 79.5 71.5 6.9 86.4 80.2 87.6 81.3 7.9 

s15850 - 92.1 84.1 92.6 85.6 7.0 92.4 84.6 92.9 86.1 7.1 

s38584 - 88.4 80.1 99.3 98.8 17.8 93.6 88.5 100 100 19.7 

s35932 - 97.6 97.1 100 100 26.2 98.4 98.2 100 100 26.5 

s38417 - 39.4 24.8 40.0 25.5 6.4 44.1 29.3 44.8 30.2 7.5 

 

 

 

Table 3.11: Forward Learning (H1) vs. Backward Learning (H2) (N=128) 
 N=128 

 H1 H2 

RRold TRall TRFF FRall FRFF RR TRall TRFF FRall FRFF RR 

s5378 - 99.9 99.7 100 100 1.4 99.9 99.7 100 100 1.4 

s9234 - 94.5 83.9 95.2 85.8 1.4 94.7 84.4 95.2 85.8 1.4 

s13207 - 82.9 77.3 83.6 78.8 3.9 88.7 83.6 89.5 84.5 4.2 

s15850 - 92.2 84.2 92.6 85.6 3.5 92.6 84.8 92.9 86.1 3.5 

s38584 - 93.1 87.3 99.8 99.9 9.7 95.9 92.1 100 100 10.3 

s35932 - 97.6 97.2 100 100 13.1 98.5 98.4 100 100 13.3 

s38417 - 44.6 29.6 45.6 30.8 3.8 46.8 31.9 47.3 32.6 4.1 
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3.5 Summary 

We have proposed a new trace signal selection method using non-trivial logic 

implications for the purpose of post-silicon debug. The selection of trace signals is 

performed by choosing those signals with the most number of implications that are not 

implied by other signals.  Results show that our approach gives a better restoration ratio 

than previous approaches. Moreover, since our method is learning-based, it is 

considerably faster than the earlier search based methods which use restorability metrics 

that consider both the topology and behavior of logic gates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Chapter 4 

Multiplexed Trace Selection and State 

Restoration 

 

This chapter is organized as follows. Section 4.1 formulates the problem. Section 4.2 

discusses the proposed approach for multiplexed trace signal selection using a new 

concept known as implication-based correlation. Section 4.3 introduces the algorithm 

used for state restoration for multiplexed trace signals. Section 4.4 introduces the SAT-

based greedy heuristic used for pruning the selected trace signal list further. Section 4.5 

reports experimental results, and Section 4.6 summarizes the observation. 

 

4.1 Problem Formulation 

Let G represent the set of all gates in the circuit and T1 and T2 represent the set of trace 

signals to be selected for the even and odd time frames respectively. We define the 

problem statement as follows: Find the smallest subset of signals T1⊆G and T2⊆G such 

that T1∩T2 = � and ∀ legal valuations r1 of T1 and r2 of T2 the values of the signals in 

2G-T can be restored across two consecutive time-frames, where T=T1∪T2. In other 

words, our objective is to increase the storage efficiency of the trace buffer by storing two 

different sets of trace signals in consecutive time-frames, thus widening the debug 

observation window. By multiplexing two different sets of trace signals, cumulatively we 

are tracing twice the number of trace signals as compared to the non-multiplexed scheme 

where the same set of trace signals are traced in every time-frame. 
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4.2 Implication-based Correlation 

We use both forward and backward implications of the flip-flops and the correlation 

between them to drive our new multiplexed trace signal selection heuristic.  

Next, we derive a mathematical model to represent the implication-based correlation 

between two flip-flops in consecutive time-frames.  Let us first consider two flip-flops fi 

and fj (i≠j) in time-frames t and t+1 respectively. Let Implf[fi,t] represent the forward 

implications of fi in time-frame t resulting from assigning flip-flop fi in time frame t to 

value 0 and 1 respectively and Implb[fj,t+1] represent the backward implications of fj in 

time-frame t resulting from assigning flip-flop fj in time frame t+1 to value 0 and 1 

respectively.  An implication-based correlation parameter C¹ij is derived using the 

following objectives: 

1. Maximize the size SU =| Implf[fi,t] ∪Implb[fj,t+1]| 

2. Minimize the size SI =|Implf[fi,t] ∩ Implb[fj,t+1]| 

3. The size Sf=|Implf[fi,t]| and Sb=|Implb[fj,t+1]| should be balanced. We denote it 

using a parameter called balance factor (y). 

We will illustrate the derivation of balance factor using Figure 4.1. Let Y-axis represent 

the balance factor, y, where 0≤y≤1. Let X-axis represent the size ratio, x, where 0≤x≤1. 

Size Ratio, x is given by the following equation: 

bf

f

SS

S
x

+
=                                                                                                                      (4.1) 

 

 

 

 

 

 

 

Figure 4.1: Balance Factor 

Figure 4.1 represents a parabola with vertex at (0.5, 1) and passing through the points (0, 

0) and (1, 0). The best case of balance occurs when Sf=Sb, which means x=0.5 and y=1. 

(0, 0) (1, 0) (0.5, 0) 

(0.5, 1) 

X 

Y 
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Therefore, the vertex of the parabola is (0.5, 1). The worst case of balance occurs in two 

situations: (a) Sf = 0 and Sb≠0, which means x=0 and y=0, and (b) Sb = 0 and Sf≠0, which 

means x=1 and y=0. Therefore, the parabola passes through the points (0, 0) and (1, 0).  

A parabola can be represented using the following equation:  

4 = 6 + 8 × (9 − ℎ)<                                                                                                    (4.2) 

Where (h, k) is the vertex of parabola. 

 

The parabola passes through the point (0, 0) and has a vertex at (0.5, 1). Putting x=0, y=0, 

h=0.5 and k=1 in Equation 4.2 we get a=-4. Therefore, the balance factor, y is given by: 

4 = 1 − 4 × (9 − 0.5)<                                                                                                 (4.3) 

 

Thus, the correlation parameter C¹ij is represented by the following equation: 

@¹�A =
BC

BD
× 4                                                                                                                  (4.4) 

 

Note that if SI=0, we give a default value of 0.5 to SI so that the denominator does not 

become 0. Let us now consider flip-flops fj and fi (j≠i) in time-frames t and t+1 

respectively. Thus, 

 SU=|Implf[fj,t]∪Implb[fi,t+1]|, SI=|Implf[fj,t]∩Implb[fi,t+1]| 

 Sf=|Implf[fj,t]| and Sb=|Implb[fi,t+1]| 

 

The correlation parameter C²ij for this case can also be determined using Equation 4.4, 

and the implication-based correlation parameter for two flip-flops fi and fj is given by: 

Cij= C¹ij + C²ij                                                                                                                 (4.5) 

 

Algorithm 4.1 gives an overview of the multiplexed trace signal selection method. We 

first order the first set of flip-flops Ot in the descending order of number of unchecked 

forward implications (steps 4-6) and form the set O’t. We then determine Cij for all flip-

flop pairs between O’t and Ot+1 and order the pairs in the descending order of Cij. Steps 8-

13 in algorithm 4.1 are then used to determine the two sets of trace signals T1 and T2. 
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Algorithm 4.1: Multiplexed Trace signal selection using implication-based correlation. 

1. Unroll the sequential circuit into three time frames t-1, t and t+1. Determine SAT-

based implications for PIs, POs and flip-flops. 

2. Ot = Set of flip-flops fi,where i⋴1,2,…,N in time-frame t in the descending order of number 

of forward implications|Implf[fi,t]|where  i⋴1,2,…,N 

3. Ot+1 = Set of flip-flops fi, where i⋴1,2,…,N in time-frame t+1 in the descending order of 

number of  backward implications|Implb [fi, t+1]|where  i⋴1,2,…,N 

4. reference_list = (∪i⋴1,2,…,p Impl[PIi,t])∪(∪i⋴1,2,…,m Impl [POi,t]);  

5. for each (flip-flop fi where i⋴1,2,…,N in time-frame t) 

        for each (implication m є Implf[fi,t]   ) 

                 if ( m∩reference_list ≠�) then 

                   Implf[fi,t] =Implf[fi,t]-m; 

                 else 

                   reference_list= reference_list∪m; 

6. O’t = Set of flip-flops fi, where i⋴1,2,…,N in time-frame t in the descending order of number 

of unchecked forward implications |Implf [fi,t]|where  i⋴1,2,…,N 

7. for each (flip-flop fi where i⋴1,2,…,N-1 in O’t) 

      for each (flip-flop fj where j⋴i+1,…,N in Ot+1) 

                 Calculate Cij 

8. Ok = Flip-flop pairs (fi, fj) in the descending order of Cij. 

9. T1=T2= �, k=1 

10. Let s be the size of T1 and T2, where s≤N/2 

11. while(|T1|!=s) 

       Ok= ( fi, fj ) 

       if fi ⊄ T1∪T2 and fj ⊄ T1∪T2 

       T1= T1∪fi, T2= T2∪fj 

       k=k+1 

12. Select first n flip-flops (n≤s) from T1 to be traced in even time-frames. 

13. Select first n flip-flops (n≤s) from T2 to be traced in odd time-frames 
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We use Figure 4.2 to illustrate the concept of implication-based correlation. Let a 

sequential circuit be unrolled into three time-frames as shown in Figure 4.2. Let fi, i=1,2,…,6 

represent the flip-flops and gi, i=1,2,… represent the logic gates (excluding flip-flops). In the 

figure, the forward implications of a flip-flop are the gates covered in the right cone of 

that flip-flop. The backward implications of a flip-flop are the gates covered in the left 

cone of that flip-flop. Note that gi means gi=1, g’i means gi=0.  We use two time frames 0 

and 1 to represent the forward and backward implications for clarity. Let us consider the 

flip-flop pair f3 and f4. First we will calculate the correlation parameter C¹34. The forward 

implications of f3 and backward implications of f4 are shown in time frame 1. Clearly, 

Implf[f3,1]={g’1, g2, g3, g4, g5, g6} and Implb[f4,2]={g’1, g3, g5, g6, g7}. Thus, 

Sf=|Implf[f3,1]|=6 

Sb=|Implb[f4,2]|=5 

SU=|Implf[f3,1]∪Implb[f4,2]|=|{g’1,g2,g3, g4, g5, g6, g7}|=7 SI=|Implf[f3,1]∩Implb[f4,2]|=|{ 

g’1, g3, g5, g6}|=4 

Using Equation 4.1, x=Sf/ (Sf+Sb) =6/ (6+5) =6/11=0.55 

Using Equation 4.3, y=1-4(x-0.5)
2
=0.99 

Using Equation 4.4, C¹34= (SU/ SI) ⨉ y= (7/4) ⨉ 0.99 = 1.73 

Next we calculate the correlation parameter C²34. The forward implications of f4 and 

backward implications of f3 are shown in time frame 0. Clearly, Implf[f4,0]={g’4, g5, g9, 

g10} and Implb[f3,1]={g5, g6, g9, g10}. Thus, Sf=|Implf[f4,0]|=4 

Sb=|Implb[f3,1]|=4 

SU=|Implf[f4,0]∪Implb[f3,1]|=|{g’4,g5,g6,g9,g10}|=5 SI=|Implf[f4,0]∩Implb[f3,1]|=|{g5, g9, 

g10}|=3 

x=Sf/(Sf+Sb)=4/(4+4)=4/8=0.5 

y=1-4(x-0.5)
2
=1 

C²34= (SU/ SI) ⨉ y= (5/3) ⨉ 1 = 1.67 

Hence, C34= C¹34 + C²34=1.73+1.67=3.4 
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Figure 4.2: Implication-based correlation 

Using the following example, we briefly explain the determination of unchecked 

implications (steps 2-6 in algorithm 4.1) under the assumption that primary input and 

output values are known. Let us consider a circuit with two flip-flops f1, f2, one primary 

input PI1, one primary output PO1 and five gates g1, g2, g3, g4, g5. Suppose we obtain the 

following information from the implication graph: 

 

Impl[PI1,0,0]: {PI1=0, g1=1, g5=0} 

Impl[PI1,1,0]: {PI1=1, g2=1, g4=0} 

Impl[PO1,0,0]: {PO1=0, g1=0, g5=1} 

Impl[PO1,1,0]: {PO1=1, g3=1, g4=1} 

Impl[f1,0,0]: {f1=0, g1=1, g2=1, g3=0, g5=1} 

Impl[f1,1,0]: {f1=1, g1=1, g2=0, g3=0, g4=1} 

Impl[f2,0,0]: {f2=0, g1=1, g2=1, g3=1} 

Impl[f2,1,0]: {f2=1, g1=1, g2=0, g3=1, g4=1} 

Thus, we get: 

Impl[PI1,0]=Impl[PI1,0,0]∪Impl[PI1,1,0]: {PI1=0, PI1=1, g1=1, g2=1, g4=0, g5=0} 

Impl[PO1,0]=Impl[PO1,0,0]∪Impl[PO1,1,0]:{PO1=0,PO1=1, g1=0, g3=1, g4=1, g5=1} 

Let CI denote the reference list containing the checked implications. 

Time Frame 0                         Time Frame 1                          Time Frame 2

f1

f2

f3

f4

f5

f6

PIs                                                  PIs PIs

POs                                             POs POs

f1

f2

f3

f4

f5

f6

f1

f2

f3

f4

f5

f6

g'1
g2

g3

g4

g5

g6

g7

g9

g5

g10

g’4

g6
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CI=Impl[PI1,0]∪Impl[PO1,0]: {PI1=0, PI1=1, g1=1, g2=1, g4=0, g5=0, PO1=0,PO1=1, 

g1=0, g3=1, g4=1, g5=1} 

Impl[f1,0]=Impl[f1,0,0]∪Impl[f1,1,0]:{f1=1, f1=0, g1=1, g2=1, g2=0, g3=0, g4=1, g5=1} 

Impl[f2,0]=Impl[f2,0,0]∪Impl[f2,1,0]:{f2=1, f2=0, g1=1, g2=1, g2=0, g3=1, g4=1} 

|Impl[f1,0]|=8, |Impl[f2,0]|=7 

Since f1 has the most number of implications, we will start with this flip-flop. Let UI(fi) 

denote unchecked implications of flip-flop fi. Thus, 

UI(f1)= Impl[f1,0]-CI={ f1=1, f1=0, g2=0, g3=0} 

CI=CI∪UI(f1)={PI1=0, PI1=1, g1=1, g2=1, g4=0, g5=0, PO1=0,PO1=1, g1=0, g3=1, 

g4=1, g5=1, f1=1, f1=0, g2=0, g3=0} 

UI(f2)= Impl[f2,0]-CI={ f2=1, f2=0} 

CI=CI∪UI(f2)={PI1=0, PI1=1, g1=1, g2=1, g4=0, g5=0, PO1=0,PO1=1, g1=0, g3=1, 

g4=1, g5=1, f1=1, f1=0, g2=0, g3=0,  f2=1, f2=0 } 

Next, we set the implications to be the unchecked ones: 

Impl[f1,0]=UI(f1): { f1=1, f1=0, g2=0, g3=0} 

Impl[f2,0]=UI(f2): { f2=1, f2=0} 

|Impl[f1,0]|=4,  |Impl[f2,0]|=2 

On ordering the flip-flops in the descending order of number of unchecked implications 

for both 0 and 1 assignment, we get O’t= {f1, f2}. 

 

Next, we illustrate steps 7-13 of Algorithm 4.1 using the following example. Let us 

consider a circuit with four flip-flops f1, f2, f3, f4. Suppose the following are the 

correlation parameters Cij calculated using Equations 4.1-4.5 for each possible pair of 

flip-flop: C12=10, C13=8, C14=20, C23=11, C24=5, C34=19. On ordering the flip-flop 

pairs in the descending order of Cij, we get Ok= {(f1, f4), (f3, f4), (f2, f3), (f1, f2), (f1, f3), (f2, 

f4)}. Let the trace buffer width be 2. Thus, the two trace signal lists T1 and T2 should 

contain two flip-flops each after trace selection is performed. First we initialize 

T1=T2=�. Next consider the pair (f1, f4). Place f1 in T1 and f4 in T2. Thus T1= {f1}, T2= 

{f4}. Consider the next pair (f3, f4). Since f4 is already present in T2 we skip (f3, f4) and go 

to the next pair (f2, f3). Both T1 and T2 do not contain either f2 or f3. Place f2 in T1 and f3 in 
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T2. Thus, T1= {f1, f2}, T2= {f4, f3}. We stop here since the size of T1 and T2 is now equal 

to the trace buffer width. 

In the next section we give a description of the state restoration algorithm for the 

multiplexed trace signal interconnection scheme. 

 

4.3 Modified State Restoration Algorithm 

We use Figure 4.3 to illustrate the concept of forward and backward learning for the case 

of multiplexed trace signals. Figure 4.3 shows a 3-frame expansion of a sequential circuit. 

Let us assume that the trace flip-flops in even time-frames 0 and 2 are {f1, f2, f3}, the non-

trace flip-flops in even time-frames 0 and 2 are {f4, f5, f6}, the trace flip-flops in odd time-

frame 1 are {f4, f5, f6}, the non-trace flip-flops in odd time-frame 1 are {f1, f2, f3},  the PIs 

are {p1, p2,...,pn} and the POs are {o1, o2,...,on}. The gates g1, g2, g3, g4, g5, g6 are the 

input signals of f1, f2, f3, f4, f5, f6 respectively. For time-frame 0, the trace signal list Te= 

{f1, f2, f3} and the signal assignment set S0=SPI∪SPO∪Ste, where Ste= {f1=0, f2=0, f3=0}. 

For time-frame 1, the trace signal list To= {f4, f5, f6} and the signal assignment set 

S1=SPI∪SPO∪Sto, where Sto= {f4=0, f5=1, f6=0}. For time-frame 2, the trace signal list Te= 

{f1, f2, f3} and the signal assignment set S2=SPI∪SPO∪Ste, where Ste= {f1=1, f2=1, f3=0}. 

Suppose {g2=0} є BCP (S0). Since g2 is the input signal of non-trace flip-flop f2 in the odd 

time frame 1, the next state of f2 is learned to be 0 by forward learning, i.e. Sfo={f2=0}. 

Therefore, in time frame 1, S1=S1∪Sfo=S1∪{f2=0}. Note that the subscript f for the values 

0f, 1f and Xf indicate the values learned by forward learning. If the current state values of 

traced flip-flops {f4, f5, f6} in time-frame 1 are {0,1,0}, then in time frame 0, 

S0=SPI∪Ste∪{g4=0, g5=1, g6=0} where Ste={f1=0, f2=0, f3=0}. Suppose {g3=1}єBCP(S0). 

Since g3 is the input signal of non-trace flip-flop f3, the next state of f3 is learned to be 1 

by backward learning, i.e. Sbo= {f3=1}. Therefore, in time frame 1, 

S1=S1∪Sbo=S1∪{f3=1}. Note that the subscript b for the values 0b, 1b and Xb indicate the 

values learned by backward learning. Hence, considering both forward and backward 

learning for time frame 1, we get S1= S1∪Sfo∪Sbo =S1∪{f2=0}∪{f3=1}. Similarly, for time 

frame 2, S2= S2∪Sfe∪Sbe =S2∪{f4=1, f5=0, f6=0}∪{�}. Algorithm 4.2 gives an overview 

of the state restoration approach for multiplexed trace signals. 
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Figure 4.3: Modified State Restoration 

Algorithm 4.2: State restoration for multiplexed trace signals 

1. trace_signal_list, Te = flip-flops fi, where i⋴1,2,…,n in T1 

2. trace_signal_list, To = flip-flops fi, where i⋴1,2,…,n in T2 

3. for each (vector Vi, where i⋴0,1,2,…,T) 

Perform logic simulation using Vi; 

   if (time-frame is even) 

     Signal assignment set Si =SPI∪SPO∪Ste∪ Sfe ∪ Sbe; 

   else if (time-frame is odd) 

     Signal assignment set Si =SPI∪SPO∪Sto∪ Sfo ∪ Sbo; 

Perform SAT-based multi-node implications BCP(Si) 

Nrestored(all) = number of signals including the PIs and POs implied to either 0 or 1. 

Nrestored(FFs) = number of non-trace flip-flops implied to either 0 or 1. 

Use equations (1), (2) and (3) to calculate restoration ratio and restoration 

percentage 

4.4. Multi-node implication-based trace list pruning 

The trace selection methods discussed so far are all based on single node implications. 

However, there could be a case where multi-node implications overshadow the single 

node-implications. Therefore, it is prudent to consider this aspect during trace selection. 
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We will explain this observation in detail in Section 4.5 later.  Algorithms 4.3 and 4.4 

give an overview of the proposed multi-node implication-based greedy heuristic for the 

non-multiplexed and multiplexed trace signal selection schemes respectively. We use our 

BCP-based state restoration algorithm as the engine for this greedy heuristic. 

Algorithm 4.3: Non-multiplexed trace list pruning.  

1. Form set Of using algorithm 3.1.  

2. Trace width=n=2
l
, l≥0 Search space=s=2

k
, k>l, s≤N 

3. Number of iteration, r =s/n, j=1 

4. while (j≤r) 

 trace_signal_list, Tj = flip-flops fi,  i=(j-1)n +1to (j-1)n+n in Of 

        Perform state restoration using algorithm 3.2 for first five vectors (i.e. Vi, where i⋴0,1,2,..5)  

Restoration Percentage, Rj = restoration percentage (all gates) obtained in the fifth 

vector 

j=j+1 

5. Ol=Set of trace signal lists Tj, j⋴1,2,…,r in the descending order of restoration 

percentage Rj, j⋴1,2..,r 

6. Select the first trace signal list Tr in Ol. 

7. Select n flip-flops from Tr as trace signals. 

 

Algorithm 4.4: Multiplexed trace list pruning.  

1. Form sets T1 and T2 using algorithm 4.1. 

2. Trace width=n=2
l
, l≥0 Search space=s=2

k
, k>l, s≤N/2 

3. Number of iteration, r =s/n, j=1 

4. while (j≤r) 

 trace_signal_list, Tje = flip-flops fi,  i=(j-1)n +1to (j-1)n+n in T1 

trace_signal_list, Tjo= flip-flops fi,  i=(j-1)n +1to (j-1)n+n in T2 

 Perform state restoration using algorithm 4.2 for first five vectors (i.e. Vi, where i⋴0,1,2,.5)  

Restoration Percentage, Rj = restoration percentage (all gates) obtained in the fifth 

vector 

j=j+1 
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5. Ol=Set of trace signal list pairs (Tje,Tjo) j⋴1,2,…,r in the descending order of restoration 

percentage Rj, j⋴1,2..,r 

6. Select the first pair of trace signal list (Tre,Tro) in Ol. 

7. Select n flip-flops from Tre as trace signals for even time-frames. 

8. Select n flip-flops from Tro as trace signals for odd time-frames. 

We use the following example to illustrate the non-multiplexed trace list pruning method 

(Algorithm 4.3). Let us consider the set Of = {f2, f3, f5, f4, f1, f6, f7, f8} in which the flip-

flops are ordered in the descending order of unchecked implications using Algorithm 3.1. 

Suppose the trace width, n=2 and the total flip-flops N=8. Thus l=1 since n=2=2
1
. Let 

k=2, hence the search space, s = 2
2
=4 < N, i.e., we consider the first 4 flip-flops only. The 

number of iterations, r=s/n=4/2=2. During the first iteration, we consider (f2, f3) and 

place it in T1. We perform state restoration for the first five vectors. Let the restoration 

percentage obtained for all gates in the fifth vector, R1=78%. During the second iteration, 

we consider (f5, f4) and place it in T2. Let R2=80%. Since R2>R1, we choose T2 as our 

trace signal list. 

Next, we illustrate the multiplexed trace list pruning method (Algorithm 4.4) using the 

following example. Let us consider two sets T1= {f2, f3, f5, f4} and T2= {f1, f6, f7, f8} 

obtained using Algorithm 4.1. Consider the same trace width, n=2 and the same total 

number of flip-flops N=8. Thus l=1 since n=2=2
1
. Let k=2, hence the search space, s = 

2
2
=4 ≤N/2, i.e., we consider the first 4 flip-flops for each of the sets T1 and T2. The 

number of iterations, r=s/n=4/2=2. During the first iteration, we place (f2, f3) from T1 in 

T1e and (f1, f6) from T2 in T1o. We perform state restoration for the first five vectors using 

T1e and T1o. Let the restoration percentage obtained for all gates in the fifth vector, 

R1=78%. During the second iteration, we place (f5, f4) from T1 in T2e and (f7, f8) from T2 in 

T2o. Let R2=80%. Since R2>R1, we choose T2e and T2o as our multiplexed trace signal 

lists. 
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4.5. Experimental Results 

The above algorithms were written in C++ and experiments were conducted for 

ISCAS’89 sequential benchmark circuits on a Linux workstation with 2GB RAM. The 

results are reported in Tables 4.1-4.4. During state restoration, we do not assume any 

knowledge of an initial state other than the traced signals. We consider five different 

trace buffer widths: 8, 16, 32, 64 and 128. The trace buffer depth is assumed to be 100. 

Note that since more values can be learned later from the earlier vectors, less restoration 

is possible in the beginning and more restoration toward the end of the vector sequence. 

Therefore, each random pattern used for our experiments has 100 vectors each for a more 

competitive comparison in contrast to [1] in which the trace buffer depth is assumed to be 

4k. In Table 4.1, we briefly summarize the results obtained for non-multiplexed trace 

selection scheme discussed in Chapter 3 for trace buffer width of 8. For each circuit in 

Table 4.1, H1 contains the result using forward learning and considering that primary 

input values are known (FL+PI), H2 contains the result obtained using forward and 

backward learning and considering both primary input and output values are known 

(FL+BL+PI+PO). The first sub-column under each column H1 and H2  gives the total 

number of flip-flops in the circuit, followed by restoration ratio (RR) obtained in [1], total 

restoration percentage (only flip-flops) across 100 vectors (TRFFs), total restoration 

percentage (all gates) across 100 vectors (TRall), the restoration percentage (only flip-

flops) obtained in the final vector (FRFFs), the restoration percentage (all gates) obtained 

in the final vector (FRall) and the restoration ratio (RR) obtained by H1 or H2. From Table 

4.1, it can be seen that H2 has a better restoration ratio (RR) compared to [1]. For 

example, consider s15850, H2 achieved a high RR of 56.1 as compared to a RR of only 

19.93 achieved by [1].  For all further comparison with non-multiplexed scheme, we will 

use the values obtained using H2. From Table 4.1 it can be observed that for s35932 and 

s38584, the restoration percentage approaches 100 percent as we approach the final 

vector even for a trace buffer width of 8. Therefore, we exclude these two circuits from 

further analysis since they are easy to restore. We consider all other circuits which are 

difficult to restore for our experiments in this work. Table 4.2 gives the results for 

multiplexed trace selection using implication-based correlation (H3) for trace buffer 

widths of 32, 64 and 128. We compare the restoration percentage obtained for 
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multiplexed scheme using H3 with the restoration percentage obtained for non-

multiplexed scheme using H2. We observe that in most of the cases H3 gives a superior 

restoration percentage than H2.  For example, consider s9234 for N=64, H3 achieved a 

total restoration percentage (TRall) of 94.5% as compared to a TRall of 92.7% achieved by 

H2. Moreover TRall of 94.5% obtained for s9234 for N=64 using H3 is close to 94.7% 

achieved for the same circuit using H2 for N=128. This means that for N=64 with 

multiplexing, we are getting results of N=128 without multiplexing. In other words, we 

are effectively tracing twice as many signals with the same trace buffer size and obtaining 

a restoration percentage which is equal to the restoration percentage obtained for twice 

the trace buffer width. From Table 4.2 for N=64 using H3, we can also observe that for 

s5378, the restoration percentage approaches 100 percent as we approach the final vector. 

For N=128, fields for s5378 and s9234 are empty because these circuits have less than 

256 flip-flops and hence cannot be considered for H3. Table 4.3 gives the results for 

multiplexed trace selection using multi-node implication-based trace list pruning (H4) for 

trace buffer widths of 16, 32 and 64. We prune the lists obtained using H3 using 

Algorithm 4.4. We report results for those corner cases where multi-node implications 

had a major role to play. From Table 4.3, we can observe that H4 is able to increase the 

restoration percentage of the corner cases significantly. For example, consider s5378 for 

N=32, H4 achieved a high restoration percentage (TRall) of 97.1% as compared to 94.3% 

obtained using H3 only. Figure 4.4 shows the comparison of total restoration percentage 

for various benchmark circuits using H2, H3 and H4. 

 

Finally, Table 4.4 compares our method (for N=32) with two cases: (1) No flip-flop is 

traced (only primary input and output values assumed to be known) and (2) Random trace 

signal selection. Our restoration percentage is superior to both the cases considered. For 

example, consider s13207, H3 achieved a high restoration percentage (TRall) of 82.8% as 

compared to only 60.9% and 67.2% obtained by the above two cases. For s15850, H4 

achieved a high restoration percentage (TRall) of 96.1% as compared to 91.5% and 92.1% 

obtained by the two cases. 
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Table 4.1: Results (H1: non-mux+FL+PI, H2: non-mux+FL+BL+PI+PO)  

N=8 

 #FFs RRold H1 H2 

TRFF TRall FRFF FRall RR1 TRFF TRall FRFF FRall RR2 

s5378 179 14.68 86.3 90.4 87.7 91.1 19.3 88.3 92.0 91.6 94.0 19.8 

s9234 211 4.767 77.1 90.5 83.4 93.4 20.3 77.5 90.8 83.4 93.4 20.4 

s15850 534 19.93 83.2 91.3 85.6 92.6 55.6 84.1 92.0 86.1 93.0 56.1 

s13207 638 - 54.3 61.3 57.9 64.2 43.3 53.7 67.3 71.3 75.6 53.7 

s38584 1426 19.24 72.9 82.4 98.8 99.3 130.1 86.0 91.7 100 100 153.2 

s38417 1636 18.6 21.8 36.3 22.5 38.1 44.5 25.8 41.3 26.5 42.2 52.8 

s35932 1728 64.0 97.0 97.6 100 100 209.6 98.0 98.3 100 100 211.7 

 

 

 

 

 

Figure 4.4: Total Restoration % (TRall) for benchmark circuits. 
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Table 4.2: Results (H2: non-multiplexed, H3: multiplexed) 
N=32 

 H2 H3 

TRFF TRall FRFF FRall TRFF TRall FRFF FRall 

s5378 88.6 92.2 91.6 94.0 91.8 94.3 94.9 96.1 

s9234 78.8 92.0 83.9 93.6 79.7 92.3 83.9 93.6 

s15850 84.4 92.2 86.1 92.9 84.4 92.2 86.1 92.9 

s13207 76.4 82.2 78.5 83.6 76.8 82.8 78.9 85.3 

s38417 25.8 41.4 26.5 42.2 31.4 46.2 32.6 47.3 

N=64 

 H2 H3 

TRFF TRall FRFF FRall TRFF TRall FRFF FRall 

s5378 95.6 97.3 98.3 98.9 97.3 98.3 100 100 

s9234 79.7 92.7 84.4 94.0 83.6 94.5 85.8 95.2 

s15850 84.6 92.4 86.1 92.9 84.9 92.5 86.5 93.1 

s13207 80.2 86.4 81.3 87.6 82.0 86.9 83.9 88.4 

s38417 29.3 44.1 30.2 44.8 31.7 46.5 32.6 47.3 

N=128 

 H2 H3 

TRFF TRall FRFF FRall TRFF TRall FRFF FRall 

s5378 99.7 99.9 100 100  

s9234 84.4 94.7 85.8 95.2 

s15850 84.8 92.6 86.1 92.9 93.1 97.1 94.9 98.0 

s13207 83.6 88.7 84.5 89.5 89.1 93.0 89.9 93.6 

s38417 31.9 46.8 32.6 47.3 49.8 57.1 52.7 57.4 

Table 4.3: Results (H3: multiplexed, H4:H3+multi-node impl.) 
 N=16 

H3 H4 

TRFF TRall FRFF FRall TRFF TRall FRFF FRall 

s5378 88.3 92.0 91.6 93.9 93.9 95.6 97.8 97.5 

s15850 84.1 91.9 86.1 92.9 87.0 93.3 88.9 94.2 

 N=32 

H3 H4 

TRFF TRall FRFF FRall TRFF TRall FRFF FRall 

s5378 91.8 94.3 94.9 96.1 95.9 97.1 99.4 99.3 

s15850 84.4 92.2 86.1 92.9 91.8 96.1 94.2 97.4 

s38417 31.4 46.2 32.6 47.3 35.9 47.1 37.5 47.6 

 N=64 

H3 H4 

TRFF TRall FRFF FRall TRFF TRall FRFF FRall 

s15850 84.9 92.5 86.5 93.1 94.3 97.4 96.4 98.5 

s13207 82.0 86.9 83.9 88.4 82.8 87.2 84.5 88.7 

  

Table 4.4: Results (No Trace, Random vs. our Algorithms) 
 N=32 

No Trace Random H3 H4 

TRall TRall TRall TRall 

s5378 91.6 92.8 94.3 97.1 

s9234 76.8 82.1 92.3 92.3 

s15850 91.5 92.1 92.2 96.1 

s13207 60.9 67.2 82.8 82.8 

s38417 41.2 42.6 46.2 47.1 
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4.6. Summary 

We have proposed a new multiplexer-based trace signal interconnection scheme and a 

new method for trace signal selection based on implication-based correlation. This 

approach uses the correlation between the forward and backward implications of flip-

flops (trace signals) across two consecutive time-frames. We also proposed a SAT-based 

greedy heuristic to prune the selected trace signal list further to consider the multi-node 

implications. Results show that our approach gives a better restoration percentage than 

previous techniques. 
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Chapter 5 

Trace Compression using Source 

Transformation over FDR codes 

This chapter is organized as follows. Section 5.1 discusses the proposed heuristics and 

Section 5.2 discusses the hardware implementation of the proposed approach. Section 5.3 

reports experimental results, and in Section 5.4 we summarize our observation. 

5.1. The Proposed Approach 

The proposed approach uses source transformation on top of FDR encoding to compress 

the trace buffer data. Sections 2.7 to 2.12 give an overview of the various compression 

concepts which we use. The transformation function converts the captured data into a 

reduced entropy data set. This makes the data set more amenable for compression using 

the FDR scheme. The extra hardware required to implement these transformation 

functions is very low. Three transformation functions are proposed in this work that uses 

the idea of a) Computing a difference vector of the captured data across time frames; b) 

Ordering based on probabilistic estimation of the captured data and, c) alternate vector 

reversal technique. These techniques will be described next. 

 

A. Difference vector transformation: is implemented as a hardware block which outputs 

the difference vector of the current trace vector with that of the vector in the previous 

time frame. From our extensive experiments, we observed that there already exists 

correlation between trace vectors of successive cycles for a given design and this can be 

exploited to generate a data set with reduced entropy. To quantify this correlation, we 

conducted experiments with ISCAS’89 benchmark circuits. We applied a large number 

of random vectors and observed a selected set of trace signals. We then computed the 

average toggling percentage, TPavg for the n⨉N trace data matrix using Equation (2.10). 

This is shown in Table 5.1. In this table, n represents the number of vectors used (i.e., 

total number of time-frames) for simulation. The column labeled Average Toggling 
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Percentage represents the average toggling percentage for different numbers, N, of trace 

signals selected. In our experiments, we considered N=32, 64, and 128. The trace signal 

selection algorithm is based on the technique proposed in Chapter 3. From the table, we 

note that for s13207 on an average only 13% of the selected 64 trace signals toggle for 

each successive vector. Hence, we form the difference vector matrix by XORing the 

successive rows of the original n⨉N matrix. If r1, r2, r3,…,rn represent the rows in the 

original n⨉N trace data matrix, then r1, r1 ⊕  r2, r2 ⊕ r3, …, rn-1 ⊕ rn represents the rows in 

the n⨉N difference vector matrix. We use Tdiff to represent the un-encoded difference 

vector sequence. The compression ratio can be improved by compressing Tdiff instead of 

T. This is because the Tdiff has longer run of zeroes compared to T and hence the total 

number of run-lengths, R is reduced. This is illustrated using an example shown in Figure 

5.1(a) and 5.1(b).  

0 1 0 0 1
0 1 0 0 0
0 1 0 0 0
1 1 1 0 0

                        

0 1 0 0 1
0 0 0 0 1
0 0 0 0 0
1 0 1 0 0

 

T=01 001 01 00001 0001 1 1 00    Tdiff=01 001 00001 000001 01 00 

(a)                                            (b) 

Figure 5.1 Transforming T to Tdiff 

Figure 5.1(a) shows the un-encoded trace data sequence T= 01 001 01 00001 0001 1 1 

00. Clearly SU=20. The run-lengths of zeroes in this un-encoded sequence are 1, 2, 1, 4, 

3, 0, 0, and 2. Hence, the total number of run-lengths, R is 8. Using Fig. 1 we obtain the 

encoded sequence, TE = 01 1000 01 1010 1001 00 00 1000. Clearly SE=24. Thus, for the 

trace data set T, diagnostic resolution (DR) = SU/SE=20/24=0.8. Figure 5.1(b) shows the 

difference vector Tdiff= 01 001 00001 000001 01 00. The run-lengths of zeroes in this un-

encoded sequence are 1, 2, 4, 5, 1 and 2. Hence, the total number of run-lengths, R for T-

diff is 6 which is less than 8 obtained for T. Clearly SU=20. The corresponding encoded 

sequence TE=01 1000 1010 1011 01 1000. Clearly SE=20. Therefore DR =SU/SE 

=20/20=1.0 which is greater than 0.8 obtained for T. 
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Table 5.1: Average Toggling Percentage 
Ckt. #Vectors, n Average Toggling Percentage, TPavg 

No. of Trace Signals, N  

32 64 128 

s5378 1k 9 15 17 

s9234 1k 12 8 8 

s13207 1k 8 13 11 

s15850 1k 8 7 8 

s38584 1k 22 25 23 

B.  Efficient ordering of trace flip-flops: The ordering of the trace flip-flops can affect the 

compression quality, i.e., different flip-flop order can lead to different compression 

percentage. In this section, we describe an algorithm to determine a flip-flop order that 

maximizes the achievable compression percentage. Note that this is a hard problem 

because we have to determine one flip-flop order that yields an overall good compression 

percentage for any real time data being captured. The caveat here is that if there are N 

trace flip-flops then there are N! possible ways to order them. Now, a flip-flop order that 

produces a good compression percentage for one functional vector may not generate 

similar result for another vector. Moreover, when N! becomes large, the computational 

complexity also increases. So, this is an optimization problem and one can solve it using 

meta-heuristics such as genetic algorithm or simulated annealing. But our evaluation 

suggested that a simple probability-based algorithm can give good results for efficient 

flip-flop ordering, which is described next.   

Our approach is to first compute the probability that the difference vector bit value for 

trace flip-flop k takes a  Boolean 0 (1). This is denoted by P0k (P1k). Note that depending 

on the design and the cone of logic feeding into the trace flip-flop k, it may tend to 

capture one Boolean value more often than the other. This determines the P0k/P1k values 

for the flop k. After computing the P0k values, we group the trace flip-flops in their 

decreasing order of the P0k values.  Now, probability computation can be either vector-

less or vector-based. We can use a vector-less symbolic simulation based approach using 

BDDs to compute the probability value. This will be computationally expensive. Hence, 

we used a vector-based approach. We simulated the vector to obtain the difference 

vectors and computed the probability values. When the flip-flop captured an ‘X’, we 

assumed a random Boolean value in our software. 
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To understand how ordering the flops affect the entropy, let us consider the n⨉N 

difference vector matrix where a row represents a difference vector. Ordering the flops 

based on probability will push the Boolean 0 values, probabilistically, towards the left 

portion of the matrix leaving the 1’s in the right portion. This operation increases the run 

length of 0. The impact of this ordering w.r.t. entropy and theoretical maximum 

compression Cmax are shown in the plots in Figure 5.3 and Figure 5.5 respectively.  Let 

Torder represent the un-encoded ordered trace data sequence. From Figure 5.3, we can see 

that Torder reduces the entropy as compared to the Tdiff for all circuits. From Figure 5.5, we 

can see that Torder increases Cmax as compared to the Tdiff for all circuits. We will illustrate 

the use of this transformation function using the example shown in Figure 5.2(a) and 

5.2(b). From Figure 5.2(a) we can obtain the probabilistic parameters, i.e., P01=3/4=0.75, 

P02=3/4=0.75, P03=3/4=0.75, P04=4/4=1.0 and P05=2/4=0.5. The columns are ordered in 

the descending order of P0k, k=1, 2, 3, 4, 5 as shown in Figure 5.2(b). From Figure 5.2(b), the 

un-encoded sequence Torder=001 01 00001 0000001 01 0. The run-lengths of zeroes in 

Torder are 2, 1, 4, 6, 1 and 1. Also SU=20, TE= 1000 01 1010 110000 01 01 and SE=20. 

Therefore, CR =SU/SE =20/20=1.0. 

0 1 0 0 1
0 0 0 0 1
0 0 0 0 0
1 0 1 0 0

                            

0 0 1 0 1
0 0 0 0 1
0 0 0 0 0
0 1 0 1 0

 

Tdiff=01 001 00001 000001 01 00           Torder=001 01 00001 0000001 01 0 

                                 (a)                                                   (b) 

Figure 5.2 Transforming Tdiff to Torder 

C.  Alternate vector reversal: is implemented as a hardware block. It is an elegant 

technique which reduces the entropy by further increasing the length of run of zeros 

across time-frames. To understand this transformation, let r1, r2, r3,…,rn represent the 

rows in the n⨉N reordered trace data matrix. The alternate vector reversed trace data 

matrix is obtained by reversing the alternate rows in the ordered trace data matrix. This 

method is effective because reversing of alternate rows groups together the 0-biased flip-

flops in those rows, thus increasing the run-length of zeroes in the un-encoded sequence. 

To understand this, consider two rows r1 and r2. Since the trace flip-flops are ordered, the 
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left portions of the vectors will have cluster of Boolean 0’s as described in Section 5.1 B. 

If r1 is reversed and concatenated with r2, we will have a longer run of 0 compared to just 

concatenating r1 with r2.  Thus, either {r1, R(r2), r3, R(r4),…} or  {R(r1), r2, R(r3), r4,…} 

can be used to represent the rows in the alternate vector reversed trace data matrix. Here 

R(rk) means reverse of rk. We use Treversal to represent the un-encoded alternate vector 

reversed trace data sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3: Entropy for various benchmark circuits (N=32) 

 

 

Figure 5.4(a) and Figure 5.4(b) show the usage of alternate vector reversal technique 

where rows 2 and 4 of Figure 5.4(a) are reversed. From Figure 5.4(b), Treversal=001 01 1 

00000000001 01 0. The run-lengths of zeroes in this un-encoded sequence are 2, 1, 0, 10, 

1, and 1. Thus, the longest run of zero is 10 which is greater than 6 obtained for Torder. 

Also SU=20, TE=1000 01 00 110100 01 01, SE=18 and DR=20/18=1.1. 

The impact of alternate vector reversal w.r.t. entropy and Cmax are shown in the plots in 

Figure 5.3 and Figure 5.5 respectively.  From Figure 5.3 and Figure 5.5, we can see that 

alternate vector reversal reduces the entropy and increases Cmax as compared to re-

ordering for all circuits. 
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0 0 1 0 1
0 0 0 0 1
0 0 0 0 0
0 1 0 1 0

                              

0 0 1 0 1
1 0 0 0 0
0 0 0 0 0
0 1 0 1 0

 

          Torder=001 01 00001 0000001 01 0     Treversal=001 01 1 00000000001 01 0 

  (a)                                                  ( b) 

Fig. 5.4 Transforming Torder to Treversal 

 

D. Decoding the data: The decoding of the trace buffer data in order to obtain the source 

transformed data is done off-chip using the decompression architecture described in [31] 

and [32]. After decoding the FDR code-words, we perform reversing, reordering, and 

XORing to obtain the original trace data. 

 

 

Fig. 5.5: Cmax % for various benchmark circuits (N=32) 

 

5.2. Compression Hardware 

We implemented the proposed source transformed FDR-based trace compressor at RTL 

as a two-staged pipelined architecture (see Figure 5.6). There are four main blocks in our 

hardware implementation: a) Source transform block that implements the source 

transforms described in Section III, b) FDR FSM block that implements the FDR code 

using little hardware overhead, c) Control block that generates the required signals for 

trace compressor operation, and d) Trace buffer which is a memory implemented as a 
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regular SRAM. These blocks will now be described in detail next. Note that we use the 

trace selection method proposed in Chapter 3 to select the set of N flip-flops to be traced. 

A. Source transformation: As described in Section 5.1, we use three source 

transformations to decrease the entropy of the data to be encoded. From hardware point 

of view, the source transform block receives ordered parallel data from the trace flip-

flops and converts it into difference vector and alternate vector-reversed parallel data. 

We will illustrate the generation of ordered parallel data using an example. Suppose we 

select four trace flip-flops labeled f1, f2, f3, f4 using the method proposed in Chapter 3. For 

our example, N=4. Next, we use software (a C++ program) to order these flip-flops based 

on the method described in section 5.1 B. The order generated by the software is 

communicated to the designer, which is then used for designing the hardware. For our 

example, suppose the order determined is {f2, f1, f4, f3}. Let d[3:0] be the source transform 

block input data bus. To reflect the new order on hardware, the designer only needs to 

connect f2 to d[0], f1 to d[1], f4 to d[2] and f3 to d[3]. Hence, we only incur routing 

overhead to generate the ordered data. To generate the difference vector we use N flip-

flops to store the trace vector in the previous time frame and N XOR gates to generate the 

Boolean difference. To reverse the alternate vectors, we use N multiplexers whose select 

signals are driven by a T-flop. 

B. FDR FSM: The FDR can be implemented as a finite-state-machine (FSM). But 

synthesizing this code may cost more area overhead. Hence, we present an optimization 

where the overall design and source transform block is made to work at a lower 

frequency, fsource, compared to the clock frequency, fFDR, of FDR FSM.  This allows 

increasing the sequential depth of the FDR FSM by more than one that, in turn, reduces 

the hardware overhead to implement this block. For all of the cores in a design, this can 

be realized as follows. For cores in the design that operate at a lower frequency compared 

to the fastest core of the ASIC, we can use a separate compressor using the fastest clock 

of the design. For fastest cores in the design, we visualize them as a high throughput 

system. We convert a high throughput application into a low throughput application by 

lowering the clock frequency only during the silicon debug phase. This can be 

implemented using additional clock divider circuits that can be enabled during the silicon 

debug phase. This would still be valid if we are trying to catch functional/logical bugs 
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and not speed-related defects for cores using the fastest clock. Speed related defects have 

to be exposed using diagnostic techniques using at-speed test vectors. With these 

assumptions, we will now describe our hardware implementation for this block. In our 

description, we refer a slow_clk as the clock signal used by the system and the source 

transform block, and fast_clk as the clock used by FDR FSM.  Whenever new data 

becomes available at the output of source transform block, the start signal goes HIGH for 

one fast_clk cycle and then remains LOW. This interrupt pulse generated by the control 

block indicates FDR FSM block to start encoding. The encoded codeword is put on a 

serial output port on encountering each run of zeroes. The ready signal remains HIGH 

during the time when the encoded codeword is being serially shifted out. The ready 

signal can be used to generate the write enable signal wen and the address addr for 

writing into the trace buffer memory. The address addr is simply incremented for each 

encoded bit being serially shifted into the trace buffer through the sin pin. When the 

parallel trace data at the compressor input is completely processed (encoded), the done 

signal becomes HIGH and it remains HIGH until it encounters another start interrupt 

pulse indicating the arrival of new data at compressor input. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 5.6: Trace compressor architecture 
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C. Control Block: This block generates the control signals necessary for the compression 

when the enc_en signal is asserted on entering the silicon debug mode. The control logic 

for bit-reversal is also generated by this block. 

 

5.3. Experimental Results 

The technique proposed in Chapter 3 was written in C++ that was used for trace signal 

selection and state restoration. The FDR algorithm (refer Section 2.8), the source 

transformation functions (refer Section 5.1) and the quality metrics (refer Section 2.10) 

were also written in C++ and experiments were conducted for ISCAS’89 sequential 

benchmark circuits on a Linux workstation with 2GB RAM. The results are reported in 

Tables 5.2. Each vector used for our experiment comprised 1000 clock cycles. Table 5.2 

gives the results for trace signal counts of 32, 64 and 128 for five benchmark circuits. For 

each circuit, the first column gives the total number of flip-flops in the circuit, followed 

by the compression percentage (C) containing four sub-columns T (existing FDR), Tdiff 

(difference vector), Tord (difference vector + ordering) and Trev  (difference vector + re-

ordering + bit-reversal) respectively. The values under sub-column T reflects the 

compression percentage obtained using the FDR code-based compression technique. The 

values under sub-columns Tdiff, Tord and Trev reflect the compression percentage obtained 

after using our proposed source transformation techniques. The last two columns give the 

theoretical maximum compression percentage (Cmax) and the diagnostic resolution (DR) 

for the proposed approach. We see that the compression percentage obtained using the 

proposed approach is close to the theoretical maximum compression percentage in all 

cases. For example, consider s15850 of Table 5.2 with 32 traced signals; we achieved a 

compression percentage of 63% by using all the three transformation functions as 

compared to a compression percentage of 29% achieved by using the FDR codes without 

any source transformation. This trend is also shown in Fig. 5.7. In addition, this value is 

close to the theoretical maximum compression percentage (Cmax %) of 66.8%.  This trend 

is shown in Figure 5.3 and Figure 5.5. We observe from Figure 5.3 that our proposed 

transformation functions reduce the entropy of the trace data and hence led to better 

compression. 
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Figure 5.7: Actual Compression Percentage for benchmark circuits, N=32   

 

We also observe that for some circuits we are able to achieve a diagnostic resolution (DR) 

greater than 3X. For example, consider s9234 of Table 5.2 with 64 traced signals. We 

achieved a diagnostic resolution of 3.3X which means that with a trace buffer width of 

64/3.3≈20, we are able to trace 64 signals. In other words, the diagnostic capability of the 

trace buffer is improved by 3.3X. Finally, we compare the compression % obtained by 

our method with the compression % obtained by using GZIP over the difference vector. 

This is shown in Table 5.3. We chose GZIP because it represents the state-of-the-art 

implementation of LZ77 and Huffman coding algorithm that is used by Anis et al. [14]. 

For all circuits, our proposed method gives better compression percentage than GZIP as 

the trace signal counts (N) increased in our experiments. For example, consider s13207 of 

Table 3 with 64 traced signals; we achieved a compression percentage of 57% as 

compared to a compression percentage of 48% achieved by using GZIP. 

To evaluate the area overhead, we implemented the trace compressor hardware using 

Verilog and synthesized it using a commercial synthesis tool for three different 

compressor input counts. The area overhead of the source transformation block is 

negligible. We do not incur any area overhead for ordering since we do it using software. 

Only routing overhead is incurred. For the difference vector and reversal functions, we 

incur an overhead of N XOR gates, N flip-flops and N multiplexers which is small.  The 

area overhead (in NAND gate equivalent) of the trace compressor as a percentage of the 
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trace buffer area is shown in Table 5.4. For each trace signal count N, the first column 

gives the trace buffer area M in NAND gate equivalent, followed by the trace buffer 

width TBwidth, the trace buffer depth TBdepth and the compressor area A in NAND gate 

equivalent, respectively. The last column gives the compressor area as a percentage of 

trace buffer area. We observed that the area overhead of the trace compressor is 

negligible as compared to the trace buffer area. For example, for a compressor input 

count of 128, the trace compressor area of 3.1K is only 0.5% of the trace buffer area 

(576K). In [39] it was reported that the area overhead of a LZ-based compressor was 

around 50k equivalent NAND gates. Also note that the main limitation of LZ77-based 

method proposed in [14] was related to the large area overhead involved owing to the use 

of different content-addressable memory (CAM) sizes. 

Table 5.2: Compression results (#Vectors=1000) 
N=32 

Circuit #FFs C% Cmax% DR 

T Tdiff Tord Trev Trev Trev 

s5378 179 -5.7 54 60 64 69.1 2.8 

s9234 211 -45 42 53 58 68.7 2.4 

s15850 534 29 56 60 63 66.8 2.7 

s13207 638 -43 51 60 66 71.9 2.9 

s38584 1426 10 23 24 26 33.9 1.4 

N=64 

s5378 179 -10 39 45 48 56.8 1.9 

s9234 211 -44 54 66 70 75.6 3.3 

s15850 534 3.3 61 67 70 73.5 3.4 

s13207 638 -39 40 52 57 62.3 2.3 

s38584 1426 2.5 17 20 21 28.2 1.3 

N=128 

s5378 179 -15 32 44 47 63.6 1.9 

s9234 211 -28 54 68 71 74.6 3.4 

s15850 534 8.1 60 68 70 73.9 3.4 

s13207 638 -38 46 61 64 69.6 2.8 

s38584 1426 7.3 20 25 27 33.4 1.4 

 

 

Table 5.3: GZIP vs. Our approach 

 GZIP(C %) Treversal(C %) 

N N 

64 128 256 512 64 128 256 512 

s5378 41 35 - - 48 47 - - 

s9234 64 56 - - 70 71 - - 

s15850 68 61 66 67 70 70 75 79 

s13207 48 50 60 54 57 64 76 76 

s38584 17 20 21 17 21 27 25 28 
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Table 5.4: Area overhead of compressor 
N TB Area 

(M) 

TBwidth TBdepth Compressor 

Area (A) 

(A/M %) 

32 145k 16 1024 2.0k 0.1% 

64 290k 32 1024 2.4k 0.8% 

128 576k 64 1024 3.1k 0.5% 

 

 

 

Figure 5.8: Actual Compression Percentage for various benchmark circuits, N=64   

 

 

Figure 5.9: Actual Compression Percentage for various benchmark circuits, N=128   
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Figure 5.10: Entropy for various benchmark circuits (N=64) 

 

 

 

Figure 5.11: Entropy for various benchmark circuits (N=128) 
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5.4. Summary 

Trace signal selection is critical to increase the observable window during the debug 

phase. We presented a novel compression technique for trace buffers that can 

significantly enhance this observable window. Source transformations proposed in our 

work can improve the effectiveness of FDR codes with very little extra hardware 

overhead and help achieve close to theoretical maximum compression. Results indicate 

that our approach gives a better compression percentage and diagnostic capability than a 

state-of-the-art implementation of LZ77. Moreover, the area overhead of our trace 

compressor is significantly less compared to dictionary-based codes. 
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Chapter 6 

Conclusion and Future Work 

In this thesis, we have addressed an important challenge being faced by the 

semiconductor industry today - efficient and fast identification of root cause of silicon 

failures. This is very critical due to the increasing demand for shorter time-to-market. In-

system silicon debug techniques like trace buffer-based technique are normally used to 

discover these undetected bugs and defects. However, due to limited availability of the 

trace buffer memory, it is important to use the available resource in the most efficient 

manner. In Chapter 3, we proposed an unchecked implication-based technique to drive 

the selection of critical trace signals which restore the maximum number of untraced 

signals. We also introduced an algorithm which uses a SAT-based multi-node implication 

engine to restore the values of untraced signals across multiple time-frames. We showed 

that our method is able to achieve a better restoration percentage than previous 

techniques. In Chapter 4, we proposed a new multiplexer-based trace signal 

interconnection scheme. We proposed a new heuristic based on implication-based 

correlation to intelligently select two sets of signals to be traced in even and odd time 

frames respectively and also introduced a state restoration algorithm for this scheme. We 

also proposed a SAT-based greedy heuristic to prune the selected trace signal list further 

to take into account the corner cases where multi-node implications play a major role.  

Experimental results showed that this new scheme is able to achieve a better restoration 

percentage than previous techniques. In Chapter 5, we proposed a compression scheme 

using source transformation techniques over Frequency-Directed Run-Length (FDR) 

codes in order to increase the capacity of the trace buffer. Source transformation reduces 

the entropy of the data to be compressed and hence, improves the compression 

percentage. Experimental results showed that the proposed method gives a better 

compression percentage compared to dictionary-based techniques. We also implemented 

the method on hardware and observed that the area overhead of the compressor is less 

compared to dictionary-based techniques and yields up to 3X improvement in the 

diagnostic capability. 



70 

 

Future Work:  

The multiplexed trace signal selection scheme could be enhanced by considering multi-

node implications during the formation of the implication-based correlation model itself. 

This could be an efficient alternative to the technique proposed in Chapter 4 in which a 

greedy heuristic was used to consider multi-node implications. Another scope of future 

work could be to consider the use of source transformation functions proposed in Chapter 

5 over enhanced FDR codes [53] for trace compression wherein both run-lengths of 1s as 

well as 0s can be considered instead of only considering run-lengths of 0s. 
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