

Algorithms and Low Cost Architectures for Trace

Buffer-Based Silicon Debug

Sandesh Prabhakar

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

Michael S. Hsiao, Chair

Christopher L. Wyatt

Patrick Schaumont

December 1, 2009

Blacksburg, Virginia

Keywords: Silicon Debug, Logic Implications, Trace selection, State Restoration, Trace

Compression

Copyright ©2009, Sandesh Prabhakar

Algorithms and Low Cost Architectures for Trace

Buffer-Based Silicon Debug

Sandesh Prabhakar

ABSTRACT

An effective silicon debug technique uses a trace buffer to monitor and capture a portion

of the circuit response during its functional, post-silicon operation. Due to the limited

space of the available trace buffer, selection of the critical trace signals plays an

important role in both minimizing the number of signals traced and maximizing the

observability/restorability of other untraced signals during post-silicon validation. In this

thesis, a new method is proposed for trace buffer signal selection for the purpose of post-

silicon debug. The selection is performed by favoring those signals with the most number

of implications that are not implied by other signals. Then, based on the values of the

traced signals during silicon debug, an algorithm which uses a SAT-based multi-node

implication engine is introduced to restore the values of untraced signals across multiple

time-frames. A new multiplexer-based trace signal interconnection scheme and a new

heuristic for trace signal selection based on implication-based correlation are also

described. By this approach, we can effectively trace twice as many signals with the same

trace buffer width. A SAT-based greedy heuristic is also proposed to prune the selected

trace signal list further to take into account those multi-node implications. A state

restoration algorithm is developed for the multiplexer-based trace signal interconnection

scheme. Experimental results show that the proposed approaches select the trace signals

effectively, giving a high restoration percentage compared with other techniques. We

finally propose a lossless compression technique to increase the capacity of the trace

buffer. We propose real-time compression of the trace data using Frequency-Directed

Run-Length (FDR) code. In addition, we also propose source transformation functions,

namely difference vector computation, efficient ordering of trace flip-flops and alternate

vector reversal that reduces the entropy of the trace data, making them more amenable for

compression. The order of the trace flip-flops is computed off-chip using a probabilistic

algorithm. The difference vector computation and alternate vector reversal are

implemented on-chip and incurs negligible hardware overhead. Experimental results for

iii

sequential benchmark circuits shows that this method gives a better compression

percentage compared to dictionary-based techniques and yields up to 3X improvement in

the diagnostic capability. We also observe that the area overhead of the proposed

approach is less compared to dictionary-based compression techniques.

iv

Acknowledgments

I want to express my sincere gratitude to my advisor Professor Michael Hsiao for his

continued guidance, motivation and encouragement throughout the duration of my

research. I want to thank him for giving me the opportunity to work with him and for

introducing me to the world of research. I will always cherish my interactions with him

for several important things that I have learned about research and life as a whole. This

work would not have been possible without his advice and encouragement at each stage

of my graduate student life. I am also highly grateful to Professor Christopher Wyatt and

Professor Patrick Schaumont for agreeing to be a part of my Masters committee.

I will always treasure my interaction with team-mates at PROACTIVE research lab for

their help and useful suggestions.

I am grateful to Craig Borden and Alec Shen for giving me the opportunity to intern at

Qualcomm Inc. and work on interesting DFT and digital design projects.

I want to thank Claudia Angelini for giving me challenging opportunities in the area of

DFT during my tenure at ST Microelectronics.

I want to thank my parents, sister and all family members and friends for their words of

encouragement, love and support.

Finally, I am grateful to God for always being there for me in my endeavor to become a

better person.

December 1, 2009 Sandesh Prabhakar

v

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 5

 2.1 Digital Integrated Circuit (IC) Development Process 5

2.2 Need for Silicon Debug . 7

2.3 Silicon Debug . 7

2.4 Static Logic Implications 10

2.5 SAT-based Boolean Constraint Propagation (BCP) 15

2.6 Restoration Ratio and Restoration Percentage 17

2.7 Data Compression Codes 17

2.8 Frequency Directed Run-length (FDR) Code 18

2.9 Source Transformation 19

2.10 Diagnosis and Compression Quality Metrics 19

2.11 Entropy 20

2.12 Average Hamming Distance and Toggling Percentage 21

3 Non-multiplexed Trace Selection and State Restoration 22

3.1 Problem Formulation . 22

3.2 New Trace Signal Selection . 22

3.3 State Restoration from Traced Signals . 25

3.4 Experimental Results . 27

3.5 Summary . 38

4 Multiplexed Trace Selection and State Restoration 39

4.1 Problem Formulation . 39

4.2 Implication-based Correlation . 40

4.3 Modified State Restoration Algorithm . 46

vi

4.4 Multi-node implication-based trace list pruning 47

4.5 Experimental Results . 50

4.6 Summary. 54

5 Trace Compression using Source Transformation over FDR codes 55

5.1 The Proposed Approach . 55

5.2 The Compression Hardware . 60

5.3 Experimental Results . 63

5.4 Summary . 68

6 Conclusion and Future Work 69

Bibliography 71

vii

List of Figures

2.1 Digital IC Development Process . 6

2.2 Design Implementation Hierarchy . 6

2.3 Trace buffer-based Silicon Debug Architecture . 8

2.4 Implication Graph Example . 11

2.5 Sequential Circuit Fragment . 12

2.6 Direct Implications for f=1 14

2.7 Adding Indirect Implications for f=1. 14

2.8 Adding Extended Backward Implications for f=1 15

2.9 Boolean Constraint Propagation . 16

2.10 An FDR coding example . 18

3.1 State Restoration- Forward and Backward Learning 27

3.2 TRall vs. TB width 30

3.3 TRFFs vs. TB width 31

3.4 Restoration % (all) vs. vector # for TB width=8 . 31

3.5 Restoration % (FFs) vs. vector # for TB width=8 . 32

3.6 Restoration % (all) vs. vector # for TB width=16 . 32

3.7 Restoration % (FFs) vs. vector # for TB width=16. 33

3.8 Restoration % (all) vs. vector # for TB width=32 . 33

3.9 Restoration % (FFs) vs. vector # for TB width=32. 34

3.10 Restoration % (all) vs. vector # for TB width=64 . 34

3.11 Restoration % (FFs) vs. vector # for TB width=64. 35

3.12 Restoration % (all) vs. vector # for TB width=128 35

3.13 Restoration % (FFs) vs. vector # for TB width=128 36

4.1 Balance Factor . 40

4.2 Implication-based Correlation 44

4.3 Modified State Restoration . 47

4.4 Total Restoration Percentage (TRall) for Benchmark Circuits 52

5.1 Transforming T to Tdiff . 56

5.2 Transforming Tdiff to Torder . 58

viii

5.3 Entropy for various Benchmark circuits (N=32) 59

5.4 Transforming Torder to Treversal . 60

5.5 Cmax % for various benchmark circuits (N=32) 60

5.6 Trace Compressor Architecture . 62

5.7 Actual Compression % for various benchmark circuits (N=32) 64

5.8 Actual Compression % for various benchmark circuits (N=64) 66

5.9 Actual Compression % for various benchmark circuits (N=128) 66

5.10 Entropy for various Benchmark circuits (N=64) 67

5.11 Entropy for various Benchmark circuits (N=128) 67

ix

List of Tables

3.1 Experimental Results (Trace Buffer Width=8). 29

3.2 Experimental Results (Trace Buffer Width=16) . 29

3.3 Experimental Results (Trace Buffer Width=32) . 29

3.4 Experimental Results (Trace Buffer Width=64) . 30

3.5 Experimental Results (Trace Buffer Width=128) 30

3.6 Experimental Results -Poor (P) vs. our Algo (A) for first 10 vectors . . . 30

3.7 Forward Learning (H1) vs. Backward Learning (H2) (N=8) 36

3.8 Forward Learning (H1) vs. Backward Learning (H2) (N=16) 36

3.9 Forward Learning (H1) vs. Backward Learning (H2) (N=32) 37

3.10 Forward Learning (H1) vs. Backward Learning (H2) (N=64) 37

3.11 Forward Learning (H1) vs. Backward Learning (H2) (N=128) 37

4.1 Results (H1: non-mux+FL+PI, H2: non-mux+FL+BL+PI+PO) 52

4.2 Results (H2: non-multiplexed, H3: multiplexed) . 53

4.3 Results (H3: multiplexed, H4:H3+multi-node impl.) 53

4.4 Results (No Trace, Random vs. our Algorithms) 53

5.1 Average Toggling Percentage . 57

5.2 Compression results (#Vectors=1000) . 65

5.3 GZIP vs. Our approach . 65

5.4 Area Overhead of Compressor . 66

1

Chapter 1

Introduction

Pre-silicon verification and post-silicon manufacturing test play an important role in

guaranteeing the integrated circuit (IC) product quality. Pre-silicon verification

techniques like formal verification and simulation-based functional validation are

commonly used to verify if the design implementation matches the specification.

Manufacturing test is used to screen out the fabrication defects that affect the IC

behavior. With the growing complexity of system-on-chip (SOC) designs, pre-silicon

verification and manufacturing test are becoming more challenging than ever. Many

functional bugs may remain undetected after pre-silicon verification and several defects

may escape the manufacturing test. The increasing demand for shorter time-to-market has

made the discovery of these undetected bugs and defects even more critical. In-system

silicon debug techniques using design for debug (DFD) hardware are employed to

identify the root cause of first silicon failures.

 There are several working groups who are involved in the standardization of on-chip

debug processes and instruments [52]. Two existing types of silicon debug techniques

are: scan-based and trace buffer-based. In the scan-based approach, the design’s existing

test structure comprising of JTAG and scan chains are re-used. The captured data from

the internal state elements corresponding to specific triggering events are off-loaded (or

dumped) through the scan chains. In [6] and [7], the authors discuss the identification of

failing state elements from the scan dump data using post-processing algorithms. In [5],

the backward and forward logic implications of the scan-dump values are used to restore

more circuit gate values. However, many complex, non repeatable bugs may only

manifest themselves after long period of operations, making repeated scan dump-based

debug approach costly and cumbersome for silicon debug. A trace buffer-based technique

is employed to acquire continuous data wherein an embedded logic analyzer (ELA) [8] is

used to sample internal signal data into on-chip trace buffers. Then, state restoration

software [9] reconstructs the internal signal values from the off-loaded trace data.

2

The amount of data which can be acquired by the trace buffer is limited by the

buffer’s depth and width. The buffer’s depth limits the number of samples that can be

stored and the width limits the number of trace signals which can be sampled and

recorded in each clock cycle [3]. Methods for ELA design improvement were proposed in

[4], [8] and [10]-[12]. The area of the trace buffer memory is limited. Thus it is highly

desirable to select the best trace signals which can maximize the restoration of missing

signal values. In [1], [2] and [3], trace selection and state restoration algorithms were

proposed which uses restorability metrics that consider both the topology and behavior of

logic gates. In [25] an interconnection fabric design for tracing signals was proposed

which comprised of a multiplexer network and a non-blocking concentration network.

The motivation in [25] was that it is not necessary to observe uncorrelated signals

concurrently. However, in many cases it is essential to observe uncorrelated signals

concurrently since these uncorrelated signals do not imply each other. On the other hand,

it may not be necessary to trace highly correlated signals concurrently since one signal

might restore (imply) the other. Another disadvantage of [25] is the area overhead of the

multiplexer tree and the crossbar switches.

Trace compression techniques can be used to increase the storage efficiency of the

trace buffer. Such techniques were proposed in [13]-[15] to increase the number of trace

signal samples. In [14], dictionary-based algorithms such as Lempel-Ziv (LZ77) and its

variants LZ78, LZW and word-based dynamic Lempel-Ziv (WDLZW) are used. In [39],

a LZ-based data compression algorithm was used for program trace compression. A

drawback of using a complete dictionary is that the size of the dictionary can become

very large, resulting in too much overhead for the on-chip compressor.

Contributions of this thesis:

Our main objectives are to maximize the restoration of missing internal signals using a

minimum number of trace signals and to increase the storage efficiency of the trace

buffer. The first contribution of this thesis is a new algorithm using a logic implication-

based [16] learning approach to intelligently select the trace signals. We favor selecting

3

those signals which contain more implications that are not implied by other signals. We

show that our trace selection method is efficient and is able to achieve better restoration

than other techniques. Then, based on the values of the traced signals during silicon

debug, we introduce an algorithm which uses a SAT-based multi-node implication engine

to restore the values of untraced signals across multiple time-frames. Experimental results

for sequential benchmark circuits showed that the proposed approach selects the trace

signals effectively, giving a high restoration percentage compared with other techniques.

Our second contribution is another algorithm which uses the correlation between the

forward and backward implications of flip-flops (trace signals) across two consecutive

time-frames as a parameter to intelligently select two sets of trace signals. The two sets

of trace signals are then multiplexed such that the first set is traced during even time-

frames and the second set is traced during odd time-frames. Our primary motivation is

that the signal pairs with high implication-based correlation between them need not be

traced concurrently. As a result, we can effectively trace twice as many signals with the

same trace buffer width. We show that our new trace selection method is efficient and

gives a better restoration percentage compared to previous techniques. We also propose a

SAT-based greedy heuristic to prune the selected trace signal list, thus considering some

corner cases where multi-node implications play a major role during state restoration.

This further improves the restoration percentage for a few circuits.

Trace compression techniques [13-15] are used to increase the storage efficiency of

the trace buffer. Golomb code [31] and FDR code [32] belong to the variable-to-variable

category of lossless data compression codes. To obtain a high compression percentage

with minimal hardware overhead, we propose enhancements for FDR codes that can be

implemented with minimal hardware overhead. We implement source transformation

functions on the captured data before encoding the data using the FDR codes. Source

transformation functions convert the captured data into reduced entropy data-set and

hence improve the achievable compression percentage. We show that our approach

achieves better compression percentage compared to dictionary-based techniques.

Moreover, the area overhead of our trace compressor is less compared to dictionary-

based codes and yields up to 3X improvement in the diagnostic capability. This is our

third contribution.

4

Organization of this thesis:

The rest of the thesis is organized as follows:

• Chapter 2: This chapter describes various silicon debug techniques used currently

in the industry to identify the root cause of first silicon failures. It surveys the

various trace selection, trace compression and state restoration schemes proposed

in literature. This chapter also gives an overview of static logic implications and

various compression techniques and defines parameters used to evaluate the

quality of trace selection and trace compression.

• Chapter 3: This chapter discusses the proposed approach for non-multiplexed

trace buffer signal selection and introduces a SAT-based heuristic for state

restoration.

• Chapter 4: This chapter discusses the proposed approach for multiplexer-based

trace signal selection and introduces a SAT-based greedy heuristic for pruning the

selected trace signal list further. It also explains the state restoration algorithm for

the new multiplexer-based scheme.

• Chapter 5: This chapter discusses the proposed source transformation functions

for Frequency-Directed Run-Length (FDR) codes. It also presents hardware

implementation scheme for the proposed trace data compression scheme.

• Chapter 6: This chapter concludes the thesis.

5

Chapter 2

Background

This chapter introduces the various steps involved in the development of a digital

integrated circuit (IC). It also gives an overview of the various silicon debug techniques

used currently in the industry and briefly introduces the trace selection, trace compression

and state restoration schemes proposed in literature. Finally, it describes concepts such as

static logic implications, SAT-based Boolean constraint propagation, dictionary and

adaptive/dynamic code-based compression techniques, entropy, hamming distance and

Burrows-Wheeler source transformation that we use in this thesis.

2.1 Digital Integrated Circuit (IC) Development Process

Figure 2.1 shows the steps involved in the development of a digital integrated circuit (IC)

[33]. We explain each of these steps below:

Design Specification: Design specification is defined as the formulation of a VLSI device

requirement in the form of a design documentation or behavioral reference model based

on a customer or project need.

Design Implementation: Design implementation is a process of transforming a higher

level description of a design into a lower level description. Figure 2.2 shows the steps

involved in the design implementation. Starting from a design specification, a behavioral

(architecture) level description is developed in a hardware description language (HDL) or

as a C program. The design is then described at the register-transfer level (RTL). The

RTL is then synthesized to produce the gate-level design of the circuit. Finally, the gate-

level design is transformed to a physical-level description in order to obtain the physical

placement and interconnection of the transistors in the VLSI device prior to fabrication.

Verification is important at each stage of the design implementation to ensure that the

functionality of the final design meets the design specifications including the timing and

operating frequency specifications.

Design Verification: Design verification, also known as pre-silicon verification is a

predictive analysis to check the correctness of the design implementation against its

6

specification. When a design error is found, modifications to the design are necessary and

design verification must be repeated. Two commonly used verification techniques are: 1)

formal verification and 2) simulation.

Design Fabrication: Design fabrication is a multiple-step sequence of photographic and

chemical processing steps during which electronic circuits are gradually created on a

wafer made of pure semiconducting material.

Manufacturing Test: Manufacturing test is a test which is applied to each fabricated

circuit to detect physical defects such as shorts and opens and timing defects. The test

procedure is based on the design specification and fault models associated with the

implementation technology.

Figure 2.1: Digital IC development process

Figure 2.2: Design implementation hierarchy

Design Specification

Design Implementation

 Fabrication

Design Verification

Manufacturing Test

Design Specification

Behavioral (Architecture) Level

Register-Transfer Level

Logical (Gate) Level

Physical (Transistor) Level

7

2.2 Need for Silicon Debug

The time required for design verification in the pre-silicon stage is increasing with the

growing complexity of integrated circuits. Insufficient verification may fail to detect

design errors. Moreover, the accuracy of circuit models is inadequate to ensure the first

silicon to be error free. Therefore, design verification has a definite impact on time-to-

market and hence is economically significant, and it is important that the undetected

design bugs are fixed as soon as the first silicon is available. In recent years, silicon

debug has emerged as a key technique to detect and locate design errors in silicon. Even

when the design is correct, defects may be introduced during the fabrication due to

impurities. In other words, not all chips manufactured from the same design may be

defect-free. Manufacturing test attempts to capture those defective parts. However, the

defect may be located in a corner-case region for which there are few or no tests. In such

cases, the chip may pass the manufacturing test and be shipped as if it was good. When

put into a system, the chip may malfunction whenever the defect is exercised. In this

case, silicon debug is likewise necessary to detect and locate the source of the problem.

2.3 Silicon Debug

In-system silicon debug techniques are employed to identify the root cause of first silicon

failures. Silicon debug can be defined as the process of finding, locating and identifying

design bugs in the post-silicon phase [18]. Three techniques used for silicon debug are: 1)

physical probing, 2) scan-based and 3) trace buffer-based. Silicon debug can be divided

into two main steps: data acquisition and analysis. A type of physical probing technique

which uses time-resolved photo emission [20] is widely used to acquire circuit data for

failure analysis. However, the decreasing feature size and growing complexity of designs

make this technique cumbersome for data acquisition. The debug methods based on

internal scan chains have been used extensively for debugging complex digital ICs [19].

Scan-based debug concepts have emerged from the manufacturing test research. In the

scan-based approach, the internal scan chains are reused wherein the captured data from

the internal state elements corresponding to specific triggering events are off-loaded (or

dumped) through the scan chains. In [6-7], the authors discuss post-processing algorithms

8

which can be used to identify the failing state elements from the scan dump data. In [5] a

method was proposed which utilizes backward and forward logic implications of the

scan-dump values to restore more circuit gate values. However, many complex, non

repeatable bugs may only manifest themselves after a long period of operations.

Moreover, to complete a scan dump while continuing the real-time execution, it is

necessary to double buffer the state elements in the scan chain, thus leading to

unacceptable area penalty. This makes repeated scan dump-based debug approach costly

and cumbersome for silicon debug. The trace buffer-based approach is a complementary

technique which can be used to acquire continuous data. This debug technique has been

influenced by software debugging used in embedded systems [22]. An embedded logic

analyzer (ELA) [8] is used for sampling internal signal data into on-chip trace buffers.

This is followed by a post processing stage [9] wherein the sampled data is off-loaded for

analysis to reconstruct internal signal values and identify functional bugs.

Figure 2.3: Trace buffer-based silicon debug architecture

Figure 2.3 shows an example of trace buffer-based debug architecture. The trace signal

interface shown in the figure is used to transfer the trace signals to on-chip trace buffers

and/or off-chip trace ports for diagnosis. A trace control unit controls the start and stop of

Core

under

Debug

Trace Signal

Interface

Trace Buffer

Trace

Control

Trace

Signals

To Trace

Port

JTAG

Interface

System Bus

Silicon Debug Block

Core A Core B Core C

9

the tracing, in which the control mechanism can be configured through JTAG interface.

The trace buffer-based debug methods can be broadly classified as: special-purpose or

generic. The special-purpose method [23-24] is applicable to embedded processors. The

generic method is applicable to any type of custom SOCs [11, 17]. Another classification

is based on centralized tracing or distributed sampling. In centralized tracing, one trace

buffer is used per SOC (with different interconnect topologies between the embedded

cores and the trace buffer) [17, 23, 24]. In distributed sampling the trace buffers are

allocated to individual cores [11]. Regardless of the above classification, the primary

benefit of the trace buffer-based method is that it provides real-time visibility to the

circuit under debug (CUD) and enables in-field at-speed debug. The amount of data

which can be acquired by the trace buffer is limited by two parameters: the buffer’s depth

and width. The former limits the number of samples that can be stored and the latter

limits the number of trace signals which can be sampled and recorded in each clock cycle

[3]. The space of the available trace buffer memory is normally very limited and hence

only a small number of internal signals can be observed together real-time.

The selection of the critical trace signals which can maximize the restoration of the

missing signal values is highly desirable. In [1-3], algorithms were proposed for trace

signal selection and state restoration using restorability metrics that consider both the

topology and behavior of logic gates. Ko et al. [3] used the state restoration concept to

select the best signals that can eventually restore maximum number of other signals and

hence improve the observability of the circuit under debug (CUD). Liu et al. [1] proposed

refinements to take care of a few limitations in [3]. The restorability formulation in [1]

and [3] is probabilistic in nature. The restorability calculation is computationally

intensive since the restorability for all flip-flops is recomputed for every iteration.

The interconnection fabric used to interconnect trace signals to the trace buffers and/or

trace ports involves non-trivial area overhead. The existing solutions [26-28] use

pipelined multiplexer (MUX) trees for the interconnection fabric design. However, these

ad-hoc techniques limits the visibility to the circuit under debug (CUD) since any signal

going through the same multiplexer cannot be observed concurrently. In [25], an

interconnection fabric design was proposed to take care of the above problem. It

consisted of two main parts: 1) a MUX network that connects those mutually-exclusive

10

tapped signals, which can be designated by designers and/or extracted automatically

based on structural analysis; 2) a non-blocking concentration network that is able to

transfer any m out of n inputs (m≤n) to the trace buffers/ports. The motivation in [25]

was that it is not necessary to observe uncorrelated signals concurrently. However, in

many cases it is essential to observe uncorrelated signals concurrently since these

uncorrelated signals do not imply each other. On the other hand, it may not be necessary

to trace highly correlated signals concurrently since one signal might restore (imply) the

other. Another disadvantage of [25] is the area overhead of the multiplexer tree and the

crossbar switches.

Trace compression [13-15] is another sought-after method to increase the number of trace

signal samples, thus increasing the storage efficiency of the trace buffer. In [14]

dictionary-based algorithms (LZ77 and its variants) were used. A dedicated fast parallel

search engine called content addressable memory (CAM) was used in [14] in order to

perform fast search in hardware between the incoming symbol and the dictionary entries.

The main limitation of dictionary-based method proposed in [6] was the large area

overhead due to different content-addressable memory (CAM) sizes. A LZ-based data

compression algorithm was used in [39] for program trace compression, however the area

overhead was large.

In the subsequent sections, we define and explain a few concepts that we use in this

thesis.

2.4 Static Logic Implications

Let us consider a circuit with n gates. Logic implications determine the effect of

assigning logic values (0 or 1) to one or more gates in the circuit. The implications are

stored using a directed implication graph G (V, E) where V (vertices) є the set of 2n nodes

corresponding to both value assignments (0 and 1) and E (edges) є single-node

implications. For sequential circuits, each edge is annotated with an integer weight w that

indicates the number of time frames that this implication spans. For example, consider an

AND gate and its implication graph, shown in Figure 2.4. The AND gate has three

signals, a, b, and c and the associated implication graph has six nodes. An edge in the

11

implication graph indicates the implication relationship and the annotated weight

indicates the number of time-frames spanned by the implication. From Figure 2.4, clearly

c=1 has two implications: b=1 and a=1 and the edge weight is 0.

Static logic implications can be sub-divided into direct, indirect and extended backward

implications [16, 33]. Indirect and extended backward implications use logic simulation

as well as the contra-positive and transitive laws extensively. These learned implications

are thus non-trivial.

Figure 2.4: Implication graph example

We define a few terms and concepts for single-node implications which we use for the

discussion:

a) [N,v,t]: Assign logic value v to gate N in time frame t.

b) [N,v,t1]→[M,w,t2]: Assigning logic value v to gate N in time frame t1 would imply

a logic value w to gate M in time frame t2.

c) DI[N,v,t]: Set of direct implications resulting from assigning node N in time

frame t to value v. For t=0, DI[N,v,t] is simply represented as DI[N,v] or DI[N=v].

d) IND[N,v,t]: Set of indirect implications resulting from assigning node N in time

frame t to value v. For t=0, IND[N,v,t] is simply represented as IND[N,v] or

IND[N=v].

e) EB[N,v,t]: Set of extended backward implications resulting from assigning node

N in time frame t to value v. For t=0, EB[N,v,t] is simply represented as EB[N,v]

or EB[N=v].

0

a=0 b=0 c=0

a=1 b=1 c=1

0

0

0

a

b
c

12

f) Impl[N,v,t]: Set of single-node implications resulting from assigning node N in

time frame t to value v. For t=0, Impl[N,v,t] is simply represented as Impl[N,v] or

Impl[N=v]. Note that Impl[N,v,t]= DI[N,v,t]∪ IND[N,v,t]∪ EB[N,v,t].

g) Transitive law: If [M,w]→[N,v,t1] AND [N,v]→[L,y,t2], then [M,w]→[L,y,t1+t2].

In set notation, if [N,v,t1]∈Impl[M,w] and [L,y,t2]∈Impl[N,v], then

[L,y,t1+t2]∈Impl[M,w].

h) Contrapositive law: If [M,w]→[N,v,t], then [N,v’]→[M,w’,-t]. In set notation, if

[N,v,t]∈Impl[M,w], then [M,w’,-t]∈Impl[N,v’].

i) Conflicting assignments: If [M,w]→[N,v,t] AND [M,w]→[N,v’,t], then [M,w] is

an impossible setting. This means that M is a constant node holding the value w’

permanently.

Figure 2.5: Sequential circuit fragment

We illustrate the direct, indirect and extended backward implications using the following

example. Consider gate f=1 in the sequential circuit fragment shown in Figure 2.5. Let

Impl[f=1]=� initially:

1. Direct Implications: In Figure 2.5, g and k are directly connected to gate f.

Clearly, f=1 would directly imply g=k=1. Moreover, f=1 has two implications:

d=1 and e=1. Let DI[f=1] denote the set containing direct implications for f=1.

Thus, DI[f=1]={(f,1,0), (g,1,0), (k,1,0),(d,1,0),(e,1,0)}. Similarly, the direct

a

b

c

d

e

f

h
g

i

j

k

w

x

y

z

D Q

13

implications for g=1, DI[g=1]={(g,1,0),(j,1,0),(f,1,0)}. These implications are

stored in the form of a graph, where each node represents a gate (with a logic

value). A directed edge between two nodes represents an implication, and a

weight along an edge represents the relative time frame associated with the

implication. The graph shown in Figure 2.6 represents a portion of direct

implications for f=1 in this example. The complete set of implications resulting

from setting f=1 can be obtained by applying transitive law and traversing the

graph rooted at node f=1. Computing the set of all nodes reachable from this root

node (f=1) (transitive closure on f=1) would return the set DI[f=1]. Thus, the

complete set of direct implications using the implication graph shown in the

figure for f=1 is DI[f=1]={(f,1,0),(d,1,0),(e,1,0),(g,1,0),(k,1,0),(j,1,0),(c,1,-1)}.

After learning direct implications, Impl[f=1]=Impl[f=1]∪DI[f=1].

2. Indirect implications: Note that neither j=1 nor k=1 implies a logic value on gate

x individually. However, if they are taken collectively, they imply x=1. Thus,

indirectly, f=1 would imply x=1. This is an indirect implication of f=1, and it can

be computed by performing a logic simulation on the current set of implications

of the root node on the circuit. In this example, by inserting the implications of

f=1 into the circuit, followed by a run of logic simulation, x=1 would be obtained

as a result. Thus, IND[f=1]={(x,1,0)} and Impl[f=1]=Impl[f=1]∪IND[f=1]. This

new implication is then added as an additional outgoing dashed edge from f=1 in

the implication graph as shown in Figure 2.7. Another nontrivial implication that

can be inferred from each indirect implication is based on the contrapositive law.

Since [f,1]→[x,1,0], by contrapositive law, [x,0]→[f,0,0].

3. Extended backward (EB) implications: The unjustified implied nodes in the

implication list can be used to learn more implications, known as extended

backward implications for any single node. Using the same circuit shown in

Figure 1 again, in the implication list of f=1, d=1 is an unjustified gate because

none of d’s inputs has been implied to a logic value of 1. Thus, d is a candidate

for the application of EB implications. To obtain EB implications on d, a

transitive closure is first performed for each of its unspecified inputs. In this case,

Impl[a=1] and Impl[b=1] are first computed. The implications of f=1 are logic

14

simulated together with each of d’s unspecified input’s implication sets in turn,

creating a set of newly found logic assignments for each input of the chosen

unjustified gate. For this example, when the implications of (a=1) and (f=1) are

simulated, the new assignments (seta) found include (w,0,0) and (z,0,0). Similarly,

for the combined implication set of (b=1) and (f=1), the new assignments (setb)

found include (y,0,0) and (z,0,0). All logic assignments that are not already in

Impl[f=1] which are common to seta and setb are the EB implications. These new

implications are added as new edges to the original node f=1. Thus,

EB[f=1]={(z,0,0)} and Impl[f=1]=Impl[f=1]∪EB[f=1]. In this running example,

because (z,0,0) is common in seta and setb, it is a new implication. The

corresponding new implication graph is illustrated in Figure 2.8, where the new

implication is shown as a dotted edge.

Figure 2.6: Direct implications for f=1

Figure 2.7: Adding indirect implications for f=1

f=1

d=1 g=1 k=1 e=1

j=1 c=1

0
0

0
0

0

0

-1

f=1

d=1 g=1 k=1 e=1

j=1 c=1

0
0

0
0

0

0

-1

0

x=1

15

Figure 2.8: Adding extended backward implications for f=1

2.5 SAT-based Boolean Constraint Propagation (BCP)

The implication graph stores only the single node implications, i.e., one node implying

another node. For determining multi-node implications, i.e., a set of nodes together

implying a single node, we use a SAT-based approach. We illustrate this method using

an example. Every Boolean formula can be expressed in conjunctive normal form (CNF).

For the circuit shown in Figure 2.9 the CNF formula can be expressed as:

(¬a ∨ b∨ c) ∧ (a ∨ ¬c) ∧ (¬b ∨ ¬c) ∧ (¬a ∨ d) ∧ (¬b ∨ d) ∧ (a ∨ b ∨ ¬d)

Suppose we wish to determine the multi-node implications of the signal assignments b=0

and d=1. We use Boolean Constraint Propagation (BCP) to quickly identify the multi-

node implications. First, set b=0 and d=1 in the above CNF formula. It gets simplified to:

(¬a ∨ c) ∧ (a ∨ ¬c) ∧ (1) ∧ (1) ∧ (1) ∧ (a)

The sixth clause has become a unit clause (a clause with one unassigned/free literal).

Therefore a=1 is an implication. Next, set a=1 in the simplified CNF formula. It gets

simplified to:

(c) ∧ (1) ∧ (1) ∧ (1) ∧ (1) ∧ (1)

The first clause is now a unit clause, hence c=1 is an implication. Since all the other

clauses are satisfied (clause evaluates to 1), we stop and conclude that {a=1, c=1} are the

multi-node implications of b=0 and d=1. In other words, if S is the set containing the

signal assignments b=0 and d=1, i.e. S= {b=0, d=1}, then BCP(S) = {a=1, c=1} Note that

f=1

d=1 g=1 k=1 e=1

j=1 c=1

0
0

0
0

0

0

-1

0

x=1

 z=0

0

16

if any clause evaluates to 0 (i.e. unsatisfied) we conclude that a conflict has occurred and

hence the given set of signal assignments S do not have any multi-node implications, i.e.,

BCP(S) = �. For the same circuit, {d=1} is the single-node implication of the signal

assignment S= {a=1}.

Figure 2.9: Boolean Constraint Propagation

We define a few terms for single-node [16] and multi-node implications which we use in

the following:

j) Impl[N,v,t]: Set of single-node implications resulting from assigning node N in

time frame t to value v.

k) Impl[N,t]: Set of single-node implications resulting from assigning node N in time

frame t to value v and v respectively (i.e., Impl[N,v,t] ∪ Impl[N, v ,t]).

l) BCP(S): Set of multi-node implications resulting from assigning nodes

N₁,N₂,…,Nn in time frame t to values v1,v2,..,vn respectively, where

S={Ni,vi,t}i=1,2,.,n

m) Implf[N, t]: Set of single-node forward implications in time frame t resulting from

assigning node N in time frame t to value v and v’ respectively.

n) Implb[N, t]: Set of single-node backward implications in time frame t-1 resulting

from assigning node N in time frame t to value v and v’ respectively.

a
b

c

d

0

1

1

1

17

2.6 Restoration Ratio and Restoration Percentage

In [1] and [3], a parameter called restoration ratio (RR) is used as an evaluation metric to

measure the quality of the trace signals selected. It is calculated as:

)(

)()(

FFstraced

FFsrestoredFFstraced

N

NN
RR

+
= (2.1)

Where Ntraced(FFs) and Nrestored(FFs) are the number of traced states and the number of

restored states respectively across all the time-frames under consideration.

We define a new parameter called restoration percentage to measure the quality of trace

signal selection more coherently. Total restoration percentage for all signals (including

flip-flops) is calculated as:

100
)(

)()(
×

+
=

alltotal

allrestoredFFstraced

all
N

NN
TR (2.2)

Where Nrestored(all) is the number of restored signals in the circuit including PIs. Ntotal(all) is

the total number of signals in the circuit.

The restoration percentage for only flip-flops is calculated as:

100
)(

)()(
×

+
=

FFstotal

FFsrestoredFFstraced

FFs
N

NN
TR (2.3)

Where Ntotal(FFs) is the total number of flip-flops in the circuit.

TRall and TRFFs are the total restoration percentages calculated across all the time-frames.

Equations (2.2) and (2.3) can also be used to determine the individual restoration

percentages for each time-frame.

2.7 Data Compression Codes

Lossless data compression codes are classified into four categories depending on whether

the symbols have a fixed size or a variable size, and whether the code-words have a fixed

size or a variable size. Dictionary-based codes belong to fixed-to-fixed codes. A

drawback of using a complete dictionary is that the size of the dictionary can become

18

very large, resulting in too much overhead for the on-chip compressor. Huffman code

[33, 41] and run-length code [33, 40] are fixed-to-variable and variable-to-fixed codes,

respectively. Adaptive/dynamic statistical coding algorithms, such as Huffman coding

[33, 41] can provide a greater compression ratio but implementing them in hardware can

incur exorbitant real estate cost. Golomb code [31] and FDR code [32] belong to the

variable-to-variable category. Both have evolved from the run-length code and are able to

achieve greater compression. Since it was shown in [37] that FDR code is superior to

Golomb code, we use FDR code in our work.

2.8 Frequency Directed Run-length (FDR) Code

Since our technique enhances FDR codes, we will briefly describe them. A detailed

description is available elsewhere [32]. In FDR coding scheme, runs of zero’s are

encoded as shown in Figure 2.10. Here, labels Ai (i=1,2, …) is used to represent a Group

and the corresponding group prefix is shown in the column labeled Group prefix. The

total number of code-words in a group Ai is 2
i
. To encode a given run of zeros, a code-

word is constructed by concatenating the group prefix and a tail. For example, the

sequence 000001 (Run-length=5) is encoded as 1011 (Group prefix=10, tail=11). We

will now illustrate a more complex example.

 Group Run-

length

Group

prefix

Tail Codeword

A1

0

0

0 00

01 1 1

A2

2

10

00 1000

1001

1010

1011

3 01

4 10

5 11

A3

6

110

000 110000

110001

110010

110011

110100

110101

110110

110111

7 001

8 010

9 011

10 100

11 101

12 110

13 111

… … … … …

Figure 2.10: An FDR coding example

19

Example 1. Let the un-encoded sequence be T = 0001 000001 1 00001 00001 0000001

001 00000001 001. The run-lengths of zeroes in this un-encoded sequence are 3, 5, 0, 4,

4, 6, 2, 7, and 2. From Fig. 1 we obtain the encoded sequence, TE = 1001 1011 00 1010

1010 110000 1000 110001 1000.

2.9 Source Transformation

Source transformation refers to the idea of transforming un-encoded data set T into a new

data set, T’, which is more amenable for compression. Burrows-Wheeler transform [38]

(BWT) is a widely used transformation that, when used on top of run length encoding,

can give very impressive compression ratio. Bzip2 employs BWT transforms.

2.10 Diagnosis and Compression Quality Metrics

We use the following parameters to evaluate the quality of trace compression obtained

using our proposed approach. Diagnostic Resolution and Compression Percentage: For

trace compression, we consider the trace data set as an n⨉N matrix, where n is the total

number of time-frames and N is the total number of trace flip-flops. Each row represents

the current state of the trace flip-flops. T refers to the un-encoded sequence obtained from

the n⨉N matrix by concatenating the n rows. TE is used to refer to the encoded trace data

sequence. Diagnostic Resolution (DR) is defined by:

EE

U

S

Nn

S

S
DR

×
== (2.4)

where SU is the size of T (i.e., the number of bits in the un-encoded sequence T) and

SE is the size of TE (i.e., the number of bits in the encoded sequence TE)

In other words, we can trace N signals using an N/DR wide trace buffer. Thus, the

diagnostic capability is improved by DR times.

Compression percentage (C) is defined by:

100)
1

1(×−=

RD
C (2.5)

For the un-encoded sequence of Example 1, SU = 42 and SE = 38. Hence,

DR=SU/SE=42/38=1.105, and C = (1-1/DR) ⨉100 = (1-1/1.105) ⨉100 = 9.5%.

20

2.11 Entropy

In information theory, entropy of a stream of data quantifies the overall information

stored in that data. The entropy [36], E, of trace buffer data is defined as:

E = -� p
log₂ (p
)
�

���
 (2.6)

where pi is the probability of occurrence of a symbol Xi. Entropy can be used to compute

the theoretical limits for achieving maximum compression using any encoding technique.

For a variable-to-variable encoding, the theoretical maximum compression is:

Cmax = (Sl – E) ∕(Sl) (2.7)

where E is the entropy and Sl is the average symbol length defined as:

Sl = ∑ p
 ∗ |X
|
�
��� (2.8)

where pi is the probability of occurrence of the symbol Xi and |Xi| is the length of Xi.

Clearly from Equation (2.7), the maximum compression is inversely proportional to the

entropy. The computation of entropy and theoretical maximum compression is illustrated

in the example below.

Example 2. Let us consider the un-encoded sequence T of Example 1. Let ti be the total

number of times run-length i occurs. For our example, t0=1, t1=0, t2=2, t3=1, t4=2, t5=1,

t6=1, t7=1, t8=0. Let R be the total number of run-lengths. Thus, R=∑ ��
�
��� =9. The

probability of occurrence of run-length i is pi=ti/R. Thus, p0=1/9=0.11, p1=0,

p2=2/9=0.22, p3=1/9=0.11, p4=2/9=0.22, p5=1/9=0.11, p6=1/9=0.11, p7=1/9=0.11, p8=0.

From Equation (2.6), the entropy is E=-∑ p
log₂ (p
)
�
��� = - (0.11log2 (0.11) + 0.22log2

(0.22) + 0.11log2 (0.11) + 0.22log2 (0.22) + 0.11log2 (0.11) + 0.11log2 (0.11) + 0.11log2

(0.11)) = 2.79. The length of run-length i is |Xi|=i+1 if the run-length sequence end with a

1, otherwise |Xi|=i. For example, 001 has a run-length of 2, but the size is 3 including the

1 at the end. However, if we have an un-encoded sequence which ends with a zero, say

001 0001 00, the size of the last run-length will be 2 since it does not have a terminating

1. For our example, from Equation (2.8) the average symbol length Sl =∑ p
 ∗ |Xi|�
��� =

(p0*|X0| + p2*|X2|+ p3*|X3|+ p4*|X4|+ p5*|X5|+ p6*|X6|+ p7*|X7|) = (0.11*1 + 0.22*3 +

0.11*4 + 0.22*5 + 0.11*6 + 0.11*7 + 0.11*8) = 4.62. Thus, from Equation (2.7) the

theoretical maximum compression, Cmax = (Sl-E)/(Sl)=(4.62-2.79)/(4.62)=0.396, i.e.,

39.6%.

21

2.12 Average Hamming Distance and Toggling Percentage

The Hamming distance, H, between two strings of equal length is the number of positions

at which the corresponding symbols are different. For the n⨉N matrix, let the Hamming

distance between two successive rows k and k+1 be Hk. Note that 0≤Hk≤N, where N is the

total number of trace flip-flops. This means that Hk trace flip-flops out of the total N trace

flip-flops toggle between the successive rows k and k+1.

The average Hamming distance for the trace data set represented by the n⨉N matrix is

given by:

Havg =
∑ !"

#$%
"&%

�'(
 (2.9)

The average toggling percentage for the trace data set represented by the n⨉N matrix is

given by:

TPavg=
)*+,

-
× 100 (2.10)

22

Chapter 3

Non-multiplexed Trace Selection and State

Restoration

This chapter is organized as follows. Section 3.1 formulates the problem. Section 3.2

discusses the proposed approach for non-multiplexed trace signal selection. Section 3.3

introduces the algorithm used for state restoration. Section 3.4 reports experimental

results, and Section 3.5 summarizes the observation.

3.1 Problem Formulation

Let G represent the set of all gates in the circuit and S represent the set of trace signals to

be selected. We define the problem statement as follows: Find the smallest subset of

signals S⊆G such that ∀ legal valuations r of S, the values of the signals in G-S can be

restored.

In other words, our main objective is to maximize the restoration of missing internal

signals using a minimum number of trace signals. In general, if we know all the primary

input (PI) and current internal state element (flip-flop) values, it is possible to determine

all the internal signal values through simple logic simulation. However, since the trace

buffer capacity is limited in large designs, it is not possible to trace all the flip-flops.

Hence, our objective is to select the best subset of flip-flops fi,i=1,2,…,N as trace signals

such that most of the missing internal signal values can be restored. Throughout the paper

we will assume that all PI values are known.

3.2 New Trace Signal Selection

In our trace signal selection algorithm, we use the number of single node implications

(for both 0 and 1 assignment) per flip-flop
Niif

N
,...2,1, =

 as our trace signal selection

restorability metric. First, we determine direct, indirect and extended backward

implications [16] across a combinational time-frame and store them in an implication

23

graph. Next, we order the flip-flops fi, where i⋴1,2,…,N in the descending order of the total

number of implications for both 0 and 1 assignment and term it as set Oi. Let us assume

that the PIi, i=1,2…,p (p primary inputs) values are known. We define checked implications

CI(fk) of a flip-flop fk in the ordered set Oi as those implications which are also implied

by the primary inputs in the set ∪i⋴1,2,…,p Impl[PIi,0]and other flip-flops in the set

∪i⋴1,2,…,k-1Impl[fi,0]. In other words,

CI(fk)=Impl[fk,0]∩{(∪i⋴1,2,…,k-1Impl[fi,0])∪(∪i⋴1,2,…,p Impl[PIi,0])} (3.1)

We define the unchecked implications UI(fk) of a flip-flop fk in the set Oi as those

implications which are not implied by those in the set (∪i⋴1,2,…,k-1Impl[fi,0])∪(∪i⋴1,2,…,p

Impl[PIi,0]). In other words,

UI(fk)= Impl[fk,0] - CI(fk) (3.2)

To prune the ordering further, we remove the checked implications corresponding to each

flip-flop from the sorted list and order them again in the descending order of number of

unchecked implications and term it as set Of. Based on a given trace buffer width n < N,

where N is the total number of flip-flops, we select the first n flip-flops from the set Of as

our trace signals. The basic idea is that the number of internal signals which can be

restored using a flip-flop (trace signal) is directly proportional to the number of

unchecked implications of that flip-flop. Hence, by ordering the flip-flops on the basis of

number of unchecked implications, we aim to select the flip-flops which yield the best

restorability individually. We will illustrate the trace signal selection method using the

following example. Let us consider a circuit with one primary input PI1, three flip-flops

f1, f2, f3 and six gates g1, g2, g3, g4, g5, g6. Suppose we obtain the following information

from the implication graph:

Impl[PI1,0,0]: {PI1=0, g6=1}

Impl[PI1,1,0]: {PI1=1, g6=0}

Impl[f1,0,0]: {f1=0, g1=1, g2=1, g3=0, g5=1}

Impl[f1,1,0]: {f1=1, g1=1, g2=0, g3=0, g4=1}

Impl[f2,0,0]: {f2=0, g1=1, g2=1, g3=1}

Impl[f2,1,0]: {f2=1, g1=1, g2=0, g3=1, g4=1}

Impl[f3,0,0]: {f3=0, g1=0, g3=1}

24

Impl[f3,1,0]: {f3=1, g1=1 , g2=0, g4=0}

Thus, we get:

Impl[PI1,0]=Impl[PI1,0,0]∪Impl[PI1,1,0]: {PI1=0, PI1=1, g6=0, g6=1}

Impl[f1,0]=Impl[f1,0,0]∪Impl[f1,1,0]:{f1=1, f1=0, g1=1, g2=1, g2=0, g3=0, g4=1, g5=1}

Impl[f2,0]=Impl[f2,0,0]∪Impl[f2,1,0]:{f2=1, f2=0, g1=1, g2=1, g2=0, g3=1, g4=1}

Impl[f3,0]=Impl[f3,0,0]∪Impl[f3,1,0]:{f3=1, f3=0, g1=1, g1=0, g2=0, g3=1, g4=0}

Nf1=|Impl[f1,0]|=8, Nf2=|Impl[f2,0]|=7, Nf3=|Impl[f3,0]|=7

On ordering the flip-flops in the descending order of number of implications for both 0

and 1 assignment, we get Oi= {f1, f2, f3}. Since f1 has the most number of implications,

we will start with this flip-flop. Then we remove the checked implications from f1, f2 and

f3. Using Equations (3.1) and (3.2), we get:

CI(f1)= Impl[f1,0]∩Impl[PI1,0]=�

UI(f1)=Impl[f1,0]-CI(f1):{ f1=1, f1=0, g1=1, g2=1, g2=0, g3=0, g4=1, g5=1}

CI(f2)=Impl[f2,0]∩(Impl[f1,0]∪Impl[PI1,0]):{g1=1, g2=1, g2=0, g4=1}

UI(f2)=Impl[f2,0]-CI(f2):{ f2=1, f2=0, g3=1}

CI(f3)=Impl[f3,0]∩(Impl[f2,0]∪Impl[f1,0]∪Impl[PI1,0]):{g1=1, g2=0, g3=1}

UI(f3)=Impl[f3,0]-CI(f3):{ f3=1, f3=0, g1=0, g4=0}

Next, we set the implications to be the unchecked ones:

Impl[f1,0]=UI(f1): {f1=1, f1=0, g1=1, g2=1, g2=0, g3=0, g4=1, g5=1}

Impl[f2,0]=UI(f2): {f2=1, f2=0, g3=1}

Impl[f3,0]=UI(f3): {f3=1, f3=0, g1=0, g4=0}

Nf1=|Impl[f1,0]|=8, Nf2=|Impl[f2,0]|=3, Nf3=|Impl[f3,0]|=4

On ordering the flip-flops in the descending order of number of unchecked implications

for both 0 and 1 assignment, we get Of = {f1, f3, f2}. If we assume that the trace buffer

width is 2, we will select f1, f3 as our trace signals.

Algorithm 3.1: Unchecked implication-based trace signal selection

1. Compute direct, indirect and extended backward implications and store them in an

implication graph.

2. Oi = Set of flip-flops fi,where i⋴1,2,…,N in the descending order of number of implications

|Impl[fi,0]|where i⋴1,2,…,N

25

3. reference_list = ∪i⋴1,2,…,p Impl[PIi,0];

4. for each (flip-flop fi where i⋴1,2,…,N)

 for each (implication m є Impl[fi,0])

 if (m∩reference_list ≠�) then

 Impl[fi,0] =Impl[fi,0]-m;

 else

 reference_list= reference_list∪ m;

5. Of = Set of flip-flops fi, where i⋴1,2,…,N in the descending order of number of unchecked

implications |Impl[fi,0]|where i⋴1,2,…,N

6. If trace buffer width=n, select first n flip-flops from the set Of as trace signals.

We measure the quality of trace signals selected by Algorithm 3.1 using the two

parameters defined in Section 2.6, Restoration Ratio and Restoration Percentage. In the

next section, we present a novel state restoration algorithm which is used to obtain the

above evaluation metrics.

3.3 State Restoration from Traced Signals

Our main objective is to maximize the number of internal signals which can be restored

using the selected trace signal data. Given the traced signal values, we use a SAT-based

multi-node implication based approach discussed in Section 2.5 to determine the restored

signals across several time frames. For each time frame kє0,1,2...T we provide the SAT-

based multi-node implication engine a signal assignment set Sk=SPI ∪ St, where SPI is the

set containing PI values and St is the set containing the current state values of the selected

traced flip-flops in time frame k. We enlarge the set Sk for each time frame by including

current state values of non-traced flops determined using forward and backward learning,

which are defined as follows:

Forward Learning: For a signal assignment set Sk-1 in time frame k-1, if {signal

g=v}єBCP(Sk-1) and g is the fan-in signal of non-traced flip-flop f, then for time frame k,

Sk=Sk ∪{f=v}.

26

Backward Learning: For a set of trace flip-flops {f1, f2,....,fn} and the corresponding fan-

in signals {g1, g2,...,gn}, if in time frame k the current state values of the traced flip-flops

are v1, v2,...,vn, then in time frame k-1, Sk-1=Sk-1∪{g1=v1, g2=v2,..., gn=vn}. If {signal

g=v}єBCP(Sk-1) and g is the fan-in signal of non-traced flip-flop f, then for time frame k,

Sk=Sk ∪{f=v}.

For time frame k, suppose Sf is the set of non-trace flip-flop assignments determined by

forward learning and Sb is the set of non-trace flip-flop assignments determined by

backward learning. Then, for time frame k, Sk= SPI ∪St∪Sf ∪Sb

We use Figure 3.1 to illustrate the concept of forward and backward learning. Figure 3.1

shows a 3-frame expansion of a sequential circuit. Let us assume that the trace flip-flops

are {f1, f2, f3}, the non-trace flip-flops are {f4, f5, f6} and the PIs are {p1, p2,...,pn} assigned

to values v1, v2,..., vn respectively. The gates g1, g2, g3, g4, g5, g6 are the input signals of f1,

f2, f3, f4, f5, f6 respectively. For time-frame 0, the signal assignment set S0=SPI∪St, where

St={f1=0, f2=0, f3=0}. Suppose {g4=0}є BCP(S0). Since g4 is the input signal of non-trace

flip-flop f4, the next state of f4 is learned to be 0 by forward learning, i.e. Sf={f4=0}.

Therefore, in time frame 1, S1=S1∪Sf=S∪{f4=0}. Note that the subscript f for the values

0f, 1f and Xf indicate the values learned by forward learning. If the current state values of

traced flip-flops {f1, f2, f3} in time-frame 1 are {0,1,0}, then in time frame 0,

S0=SPI∪St∪{g1=0, g2=1, g3=0} where St={f1=0, f2=0, f3=0}. Suppose {g5=1}єBCP(S0).

Since g5 is the input signal of non-trace flip-flop f5, the next state of f5 is learned to be 1

by backward learning, i.e. Sb={f5=1}. Therefore, in time frame 1, S1=S1∪Sb=S1∪{f5=1}.

Note that the subscript b for the values 0b, 1b and Xb indicate the values learned by

backward learning. Hence, considering both forward and backward learning for time

frame 1, we get S1= S1∪Sf∪Sb =S1∪{f4=0}∪{f5=1}. Similarly, for time frame 2, S2=

S2∪Sf∪Sb =S2∪{f4=1, f5=0, f6=0}∪{�}.

Finally, we determine the multi-node implications BCP(Sk) for these assignments in time

frame k using our SAT-based implication engine and count the number of restored

internal signals. Restoration Ratio and Restoration Percentage are then calculated using

equations described in Section 2.6. We also vary the trace buffer width and observe the

effect on the restoration percentage across a set of 100 vectors (time-frames) for each

27

circuit. The experimental results are given in the next section. Algorithm 3.2 gives an

overview of our state restoration approach.

Algorithm 3.2: State restoration using multi-node implications

1. trace_signal_list = flip-flops fi, where i⋴1,2,…,n

2. for each (vector Vi, where i⋴0,1,2,…,T)

Perform logic simulation using Vi;

Signal assignment set Si =SPI ∪ St ∪ Sf ∪ Sb;

Perform SAT-based multi-node implications BCP(Si)

Nrestored(all) = number of signals including the PIs implied to either 0 or 1.

Nrestored(FFs) = number of non-trace flip-flops implied to either 0 or 1.

Use equations provided in Section II to calculate restoration ratio and restoration

percentage.

Figure 3.1: State Restoration-Forward and Backward Learning

3.4 Experimental Results

The above algorithms were written in C++ and experiments were conducted for

ISCAS’89 sequential benchmark circuits on a Linux workstation with 2GB RAM. The

results are reported in Tables 3.1-3.5. During state restoration, we do not assume any

knowledge of an initial state other than the traced signals. We consider five different

Time Frame 0 Time Frame 1 Time Frame 2

combo combocombo

0f

Xf ,1
b

Xf ,Xb

1
f

0f

0f

f1

f2

f3

f4

f5

f6

f1

f2

f3

f4

f5

f6

f1

f2

f3

f4

f5

f6

00

1

00

1

PIs PIs PIs

POs POs POs

0

1

1

0

1

1

0

0

0

X

X

X

X

1

0

0

0

1

g1

g2

g3

g1

g2

g3

g4

g5

g6

g4

g5

g6

28

trace buffer widths: 8, 16, 32, 64 and 128. The trace buffer depth is assumed to be 100 in

contrast to [1] in which the trace buffer depth is assumed to be 4k. Note that less

restoration is possible in the beginning and more restoration toward the end of the vector

sequence since more values can be learned later from the earlier vectors. Therefore, each

random pattern used for our experiments has 100 vectors each for a more competitive

comparison. We compare our results with [1] using the parameter RR (Restoration Ratio).

For a sanity check, we also perform an experiment in which we perform a poor trace

signal selection by selecting flip-flops with the least number of unchecked implications.

We compare the total restoration percentage TRall (P) obtained by the poor trace signal

selection with total restoration percentage TRall (A) obtained by the proposed trace signal

selection algorithm for the first 10 vectors for different trace buffer widths reported in

Table 3.6. Tables 3.1-3.5 give the results for trace buffer widths of 8, 16, 32, 64 and 128

using only forward learning and assuming that the primary input values are known. For

each circuit, the first two columns give the total number of flip-flops in the circuit and

number of vectors considered respectively, followed by restoration ratio (RR) obtained in

[1], the trace signal execution time in [1], the restoration ratio (RR) obtained by our

method, total restoration percentage (only flip-flops) across 100 vectors (TRFFs), total

restoration percentage (all gates) across 100 vectors (TRall), the restoration percentage

(only flip-flops) obtained in the final vector (FRFFs), the restoration percentage (all gates)

obtained in the final vector (FRall), and the trace selection execution time. Compared to

[1] our approach has a better restoration ratio (RR). We also observe that our approach is

considerably faster for all circuits than [1]. For example, consider s15850 of Table 3.1

with only 8 traced signals; we achieved a high RR of 55.6 and execution time of only

17.9 seconds as compared to a RR of 19.93 and execution time of 298.9 seconds achieved

by [1]. Note that the trace selection execution time in our method is independent of the

trace buffer width and depth, but only on the circuit size. In s15850, we were able to

restore 92.6% of all signals with only 8 trace signals. We were able to achieve high

restoration percentage (FRall) for all circuits, sometimes with only 8 or 16 trace signals.

We can observe that with an increase in the trace buffer width (toward 128) the

restoration percentage also tends to increase, as expected. For s35932 and s38584, the

restoration percentage approaches 100 percent as we approach the final vector. Figure 3.2

29

and Figure 3.3 illustrate this graphically. For a trace buffer width of 32, this trend is

illustrated graphically in Figure 3.8 and Figure 3.9.

Table 3.6 compares our method with the poor trace signal selection. Results for the first

10 vectors, which are the hardest to restore (e.g., initial state of non-trace FFs is

unknown), are reported. Our restoration percentage TRall (A) is superior than the TRall (P)

obtained using the poor selection of trace signals for all trace buffer widths. Among the

circuits, s35932 is a special case: similar results were observed for both cases, since the

number of unchecked implications per flip-flop is uniformly distributed in this circuit.

Finally, Tables 3.7-3.11 compare the results obtained using forward learning only (H1)

with the results obtained using both forward learning and backward learning (H2) for

trace buffer widths of 8, 16, 32, 64 and 128. Clearly, backward learning further improves

the restoration percentage. For example, consider s38584 in Table 3.9 for a trace buffer

width of 32, H2 achieved a high restoration percentage (TRall) of 92.9% as compared to a

restoration percentage (TRall) of only 86.4% achieved using H1.

Table 3.1: Experimental Results (Trace Buffer Width=8)
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(s)

s5378 179 100 14.68 14.3 19.3 86.3 90.4 87.7 91.1 1.3

s9234 211 100 4.767 26.3 20.3 77.1 90.5 83.4 93.4 9.6

s15850 534 100 19.93 298.9 55.6 83.2 91.3 85.6 92.6 17.9

s13207 638 100 - - 43.3 54.3 61.3 57.9 64.2 16.8

s38584 1426 100 19.24 388.6 130.1 72.9 82.4 98.8 99.3 726

s35932 1728 100 64.0 1407.6 209.6 97.0 97.6 100 100 193

Table 3.2: Experimental Results (Trace Buffer Width=16)
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(sec)

s5378 179 100 8.996 35.9 9.7 86.5 90.6 87.7 91.1 1.4

s9234 211 100 7.182 75.2 10.3 77.8 91.2 83.4 93.4 9.5

s15850 534 100 24.22 764.4 27.8 83.3 91.33 85.6 92.6 18.0

s13207 638 100 - - 24.5 61.4 68.8 64.6 70.9 16.9

s38584 1426 100 13.96 802.9 66.02 74.1 83.3 98.8 99.3 726

s35932 1728 100 38.13 5251.1 104.8 97.04 97.56 100 100 195

Table 3.3: Experimental Results (Trace Buffer Width=32)
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(s)

s5378 179 100 4.726 74.9 4.84 86.7 90.8 87.7 91.1 1.3

s9234 211 100 4.672 148.2 5.2 78.5 91.8 83.9 93.6 9.5

s15850 534 100 13.3 1654.6 13.9 83.5 91.5 85.6 92.6 17.9

s13207 638 100 - - 13.1 65.6 74.4 68.5 76.3 16.9

s38584 1426 100 8.679 2826.0 34.8 78.1 86.4 98.8 99.3 726

s35932 1728 100 21.06 10496.2 52.4 97.07 97.57 100 100 194

30

Table 3.4: Experimental Results (Trace Buffer Width=64)
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(s)

s5378 179 100 - - 2.6 92.4 94.9 93.3 95.3 1.5

s9234 211 100 - - 2.6 79.5 92.6 84.4 94.0 9.7

s15850 534 100 - - 7.0 84.1 92.1 85.6 92.6 18.1

s13207 638 100 - - 6.9 69.7 78.2 71.5 79.5 16.9

s38584 1426 100 - - 17.8 80.1 88.4 98.8 99.3 723

s35932 1728 100 - - 26.2 97.13 97.59 100 100 194

Table 3.5: Experimental Results (Trace Buffer Width=128)
Name #FFs #Vec. RRold Timeold(s) RRnew TRFFs TRall FRFFs FRall Timenew(s)

s5378 179 100 - - 1.4 99.7 99.9 100 100 1.4

s9234 211 100 - - 1.4 83.9 94.5 85.8 95.2 9.9

s15850 534 100 - - 3.5 84.2 92.2 85.6 92.6 19.8

s13207 638 100 - - 3.9 77.3 82.9 78.8 83.7 18.8

s38584 1426 100 - - 9.7 87.3 93.1 99.9 99.8 785

s35932 1728 100 - - 13.13 97.24 97.64 100 100 215

Table 3.6: Experimental Results-Poor (P) vs. our Algo (A) for the first 10 vectors
Name TB Width=8 TB Width=16 TB Width=32 TB Width=64 TB Width=128

TRall(P) TRall(A) TRall(P) TRall(A) TRall(P) TRall(A) TRall(P) TRall(A) TRall(P) TRall(A)

s5378 73.7 82.8 74.2 84.9 81.5 86.3 84.1 91.5 95.5 99.2

s9234 57.8 72.3 58.1 78.4 59.8 81.4 64.5 84.3 74.9 91.7

s15850 75.4 79.0 75.9 79.6 76.1 80.6 77.5 85.9 81.6 86.9

s13207 29.7 42.0 30.1 52.5 31.1 61.0 33.4 71.1 38.7 78.3

s38584 38.9 41.1 40.3 43.9 41.3 49.6 43.3 55.7 46.4 63.3

s35932 75.5 75.6 75.6 75.6 75.9 75.7 76.5 76.0 77.6 76.4

Figure 3.2: TRall vs. TB width

0

10

20

30

40

50

60

70

80

90

100

8 16 32 64 128

T
o
ta

l
R

es
to

ra
ti

o
n

 %
 (

a
ll

si
g
n

a
ls

)

Trace Buffer Width

s5378

s9234

s15850

s13207

s38584

s35932

31

Figure 3.3: TRFFs vs. TB width

Figure 3.4: Restoration % (all) vs. vector # for TB width=8

0

20

40

60

80

100

8 16 32 64 128

T
o
ta

l
R

es
to

ra
ti

o
n

 %
 (

o
n

ly

F
F

s)

Trace Buffer Width

s5378

s9234

s15850

s13207

s38584

s35932

0
10
20
30
40
50
60
70
80
90

100

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

32

Figure 3.5: Restoration % (FFs) vs. vector # for TB width=8

Figure 3.6: Restoration % (all) vs. vector # for TB width=16

0
10
20
30
40
50
60
70
80
90

100

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

R
es

to
ra

ti
o
n

 %
 (

o
n

ly
 F

F
s)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

0
10
20
30
40
50
60
70
80
90

100

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0R

es
to

ra
ti

o
n

 %
 (

a
ll

 s
ig

n
a
ls

)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

33

Figure 3.7: Restoration % (FFs) vs. vector # for TB width=16

Figure 3.8: Restoration % (all) vs. vector # for TB width=32

0

20

40

60

80

100

120

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

R
es

to
ra

ti
o
n

 %
 (

o
n

ly
 F

F
s)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

0

20

40

60

80

100

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1R

es
to

ra
ti

o
n

 %
 (

a
ll

 s
ig

n
a
ls

)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

34

Figure 3.9: Restoration % (FFs) vs. vector # for TB width=32

Figure 3.10: Restoration % (all) vs. vector # for TB width=64

0

20

40

60

80

100

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

R
es

to
ra

ti
o
n

 %
 (

o
n

ly
 F

F
s)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

0
10
20
30
40
50
60
70
80
90

100

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

R
es

to
ra

ti
o
n

 %
 (

a
ll

 s
ig

n
a
ls

)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

35

Figure 3.11: Restoration % (FFs) vs. vector # for TB width=64

Figure 3.12: Restoration % (all) vs. vector # for TB width=128

0
10
20
30
40
50
60
70
80
90

100

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

R
es

to
ra

ti
o
n

 %
 (

o
n

ly
 F

F
s)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

0
10
20
30
40
50
60
70
80
90

100

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1R

es
to

ra
ti

o
n

 %
 (

a
ll

 s
ig

n
a
ls

)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

36

Figure 3.13: Restoration % (FFs) vs. vector # for TB width=128

Table 3.7: Forward Learning (H1) vs. Backward Learning (H2) (N=8)
 N=8

 H1 H2

RRold TRall TRFF FRall FRFF RR TRall TRFF FRall FRFF RR

s5378 14.68 90.4 86.3 91.1 87.7 19.3 92.0 88.3 94.0 91.6 19.8

s9234 4.767 90.5 77.1 93.4 83.4 20.3 90.8 77.5 93.4 83.4 20.4

s13207 - 61.3 54.3 64.2 58.0 43.3 67.3 53.7 75.6 71.3 53.7

s15850 19.93 91.3 83.3 92.6 85.6 55.6 92.0 84.1 93.0 86.1 56.1

s38584 19.24 82.5 73.1 99.3 98.8 130.2 91.7 86.0 100 100 153.2

s35932 64.0 97.6 97.0 100 100 209.6 98.3 98.0 100 100 211.7

s38417 18.6 36.3 21.8 38.1 22.5 44.5 41.3 25.8 42.2 26.5 52.8

Table 3.8: Forward Learning (H1) vs. Backward Learning (H2) (N=16)
 N=16

 H1 H2

RRold TRall TRFF FRall FRFF RR TRall TRFF FRall FRFF RR

s5378 8.996 90.6 86.5 91.1 87.7 9.7 92.1 88.5 93.9 91.6 9.9

s9234 7.182 91.2 77.8 93.4 83.4 10.3 91.5 78.1 93.4 83.4 10.3

s13207 - 70.8 62.9 73.4 66.5 25.1 79.6 74.1 81.3 76.5 29.5

s15850 24.22 91.3 83.3 92.6 85.6 27.8 92.0 84.1 92.9 86.1 28.1

s38584 13.96 83.3 74.1 99.3 98.8 66.0 92.4 87.0 100 100 77.6

s35932 38.13 97.6 97.0 100 100 104.8 98.3 98.0 100 100 105.9

s38417 18.6 36.6 21.8 38.1 22.5 22.3 41.4 25.8 42.2 26.5 26.4

0
10
20
30
40
50
60
70
80
90

100

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0R
es

to
ra

ti
o
n

 %
 (

o
n

ly
 F

F
s)

Vector #

s5378

s9234

s15850

s13207

s38584

s35932

37

Table 3.9: Forward Learning (H1) vs. Backward Learning (H2) (N=32)
 N=32

 H1 H2

RRold TRal

l

TRFF FRall FRFF RR TRall TRFF FRall FRFF RR

s5378 4.726 90.8 86.7 91.1 87.7 4.8 92.2 88.6 94.0 91.6 4.9

s9234 4.672 91.8 78.5 93.6 83.9 5.2 92.0 78.8 93.6 83.9 5.2

s13207 - 74.3 65.4 76.3 68.5 13.0 82.2 76.4 83.6 78.5 15.2

s15850 13.3 91.5 83.5 92.6 85.6 13.9 92.2 84.4 92.9 86.1 14.1

s38584 8.679 86.4 78.1 99.3 98.8 34.8 92.9 87.6 100 100 39.1

s35932 21.06 97.6 97.1 100 100 52.4 98.3 98.1 100 100 53.0

s38417 14.2 37.2 22.0 38.1 22.5 11.3 41.4 25.8 42.2 26.5 13.2

Table 3.10: Forward Learning (H1) vs. Backward Learning (H2) (N=64)
 N=64

 H1 H2

RRold TRall TRF

F

FRall FRFF RR TRall TRFF FRall FRFF RR

s5378 - 94.9 92.4 95.3 93.3 2.6 97.3 95.6 98.9 98.3 2.7

s9234 - 92.6 79.5 94.0 84.4 2.6 92.7 79.7 94.0 84.4 2.6

s13207 - 78.1 69.6 79.5 71.5 6.9 86.4 80.2 87.6 81.3 7.9

s15850 - 92.1 84.1 92.6 85.6 7.0 92.4 84.6 92.9 86.1 7.1

s38584 - 88.4 80.1 99.3 98.8 17.8 93.6 88.5 100 100 19.7

s35932 - 97.6 97.1 100 100 26.2 98.4 98.2 100 100 26.5

s38417 - 39.4 24.8 40.0 25.5 6.4 44.1 29.3 44.8 30.2 7.5

Table 3.11: Forward Learning (H1) vs. Backward Learning (H2) (N=128)
 N=128

 H1 H2

RRold TRall TRFF FRall FRFF RR TRall TRFF FRall FRFF RR

s5378 - 99.9 99.7 100 100 1.4 99.9 99.7 100 100 1.4

s9234 - 94.5 83.9 95.2 85.8 1.4 94.7 84.4 95.2 85.8 1.4

s13207 - 82.9 77.3 83.6 78.8 3.9 88.7 83.6 89.5 84.5 4.2

s15850 - 92.2 84.2 92.6 85.6 3.5 92.6 84.8 92.9 86.1 3.5

s38584 - 93.1 87.3 99.8 99.9 9.7 95.9 92.1 100 100 10.3

s35932 - 97.6 97.2 100 100 13.1 98.5 98.4 100 100 13.3

s38417 - 44.6 29.6 45.6 30.8 3.8 46.8 31.9 47.3 32.6 4.1

38

3.5 Summary

We have proposed a new trace signal selection method using non-trivial logic

implications for the purpose of post-silicon debug. The selection of trace signals is

performed by choosing those signals with the most number of implications that are not

implied by other signals. Results show that our approach gives a better restoration ratio

than previous approaches. Moreover, since our method is learning-based, it is

considerably faster than the earlier search based methods which use restorability metrics

that consider both the topology and behavior of logic gates.

39

Chapter 4

Multiplexed Trace Selection and State

Restoration

This chapter is organized as follows. Section 4.1 formulates the problem. Section 4.2

discusses the proposed approach for multiplexed trace signal selection using a new

concept known as implication-based correlation. Section 4.3 introduces the algorithm

used for state restoration for multiplexed trace signals. Section 4.4 introduces the SAT-

based greedy heuristic used for pruning the selected trace signal list further. Section 4.5

reports experimental results, and Section 4.6 summarizes the observation.

4.1 Problem Formulation

Let G represent the set of all gates in the circuit and T1 and T2 represent the set of trace

signals to be selected for the even and odd time frames respectively. We define the

problem statement as follows: Find the smallest subset of signals T1⊆G and T2⊆G such

that T1∩T2 = � and ∀ legal valuations r1 of T1 and r2 of T2 the values of the signals in

2G-T can be restored across two consecutive time-frames, where T=T1∪T2. In other

words, our objective is to increase the storage efficiency of the trace buffer by storing two

different sets of trace signals in consecutive time-frames, thus widening the debug

observation window. By multiplexing two different sets of trace signals, cumulatively we

are tracing twice the number of trace signals as compared to the non-multiplexed scheme

where the same set of trace signals are traced in every time-frame.

40

4.2 Implication-based Correlation

We use both forward and backward implications of the flip-flops and the correlation

between them to drive our new multiplexed trace signal selection heuristic.

Next, we derive a mathematical model to represent the implication-based correlation

between two flip-flops in consecutive time-frames. Let us first consider two flip-flops fi

and fj (i≠j) in time-frames t and t+1 respectively. Let Implf[fi,t] represent the forward

implications of fi in time-frame t resulting from assigning flip-flop fi in time frame t to

value 0 and 1 respectively and Implb[fj,t+1] represent the backward implications of fj in

time-frame t resulting from assigning flip-flop fj in time frame t+1 to value 0 and 1

respectively. An implication-based correlation parameter C¹ij is derived using the

following objectives:

1. Maximize the size SU =| Implf[fi,t] ∪Implb[fj,t+1]|

2. Minimize the size SI =|Implf[fi,t] ∩ Implb[fj,t+1]|

3. The size Sf=|Implf[fi,t]| and Sb=|Implb[fj,t+1]| should be balanced. We denote it

using a parameter called balance factor (y).

We will illustrate the derivation of balance factor using Figure 4.1. Let Y-axis represent

the balance factor, y, where 0≤y≤1. Let X-axis represent the size ratio, x, where 0≤x≤1.

Size Ratio, x is given by the following equation:

bf

f

SS

S
x

+
= (4.1)

Figure 4.1: Balance Factor

Figure 4.1 represents a parabola with vertex at (0.5, 1) and passing through the points (0,

0) and (1, 0). The best case of balance occurs when Sf=Sb, which means x=0.5 and y=1.

(0, 0) (1, 0) (0.5, 0)

(0.5, 1)

X

Y

41

Therefore, the vertex of the parabola is (0.5, 1). The worst case of balance occurs in two

situations: (a) Sf = 0 and Sb≠0, which means x=0 and y=0, and (b) Sb = 0 and Sf≠0, which

means x=1 and y=0. Therefore, the parabola passes through the points (0, 0) and (1, 0).

A parabola can be represented using the following equation:

4 = 6 + 8 × (9 − ℎ)< (4.2)

Where (h, k) is the vertex of parabola.

The parabola passes through the point (0, 0) and has a vertex at (0.5, 1). Putting x=0, y=0,

h=0.5 and k=1 in Equation 4.2 we get a=-4. Therefore, the balance factor, y is given by:

4 = 1 − 4 × (9 − 0.5)< (4.3)

Thus, the correlation parameter C¹ij is represented by the following equation:

@¹�A =
BC

BD
× 4 (4.4)

Note that if SI=0, we give a default value of 0.5 to SI so that the denominator does not

become 0. Let us now consider flip-flops fj and fi (j≠i) in time-frames t and t+1

respectively. Thus,

 SU=|Implf[fj,t]∪Implb[fi,t+1]|, SI=|Implf[fj,t]∩Implb[fi,t+1]|

 Sf=|Implf[fj,t]| and Sb=|Implb[fi,t+1]|

The correlation parameter C²ij for this case can also be determined using Equation 4.4,

and the implication-based correlation parameter for two flip-flops fi and fj is given by:

Cij= C¹ij + C²ij (4.5)

Algorithm 4.1 gives an overview of the multiplexed trace signal selection method. We

first order the first set of flip-flops Ot in the descending order of number of unchecked

forward implications (steps 4-6) and form the set O’t. We then determine Cij for all flip-

flop pairs between O’t and Ot+1 and order the pairs in the descending order of Cij. Steps 8-

13 in algorithm 4.1 are then used to determine the two sets of trace signals T1 and T2.

42

Algorithm 4.1: Multiplexed Trace signal selection using implication-based correlation.

1. Unroll the sequential circuit into three time frames t-1, t and t+1. Determine SAT-

based implications for PIs, POs and flip-flops.

2. Ot = Set of flip-flops fi,where i⋴1,2,…,N in time-frame t in the descending order of number

of forward implications|Implf[fi,t]|where i⋴1,2,…,N

3. Ot+1 = Set of flip-flops fi, where i⋴1,2,…,N in time-frame t+1 in the descending order of

number of backward implications|Implb [fi, t+1]|where i⋴1,2,…,N

4. reference_list = (∪i⋴1,2,…,p Impl[PIi,t])∪(∪i⋴1,2,…,m Impl [POi,t]);

5. for each (flip-flop fi where i⋴1,2,…,N in time-frame t)

 for each (implication m є Implf[fi,t])

 if (m∩reference_list ≠�) then

 Implf[fi,t] =Implf[fi,t]-m;

 else

 reference_list= reference_list∪m;

6. O’t = Set of flip-flops fi, where i⋴1,2,…,N in time-frame t in the descending order of number

of unchecked forward implications |Implf [fi,t]|where i⋴1,2,…,N

7. for each (flip-flop fi where i⋴1,2,…,N-1 in O’t)

 for each (flip-flop fj where j⋴i+1,…,N in Ot+1)

 Calculate Cij

8. Ok = Flip-flop pairs (fi, fj) in the descending order of Cij.

9. T1=T2= �, k=1

10. Let s be the size of T1 and T2, where s≤N/2

11. while(|T1|!=s)

 Ok= (fi, fj)

 if fi ⊄ T1∪T2 and fj ⊄ T1∪T2

 T1= T1∪fi, T2= T2∪fj

 k=k+1

12. Select first n flip-flops (n≤s) from T1 to be traced in even time-frames.

13. Select first n flip-flops (n≤s) from T2 to be traced in odd time-frames

43

We use Figure 4.2 to illustrate the concept of implication-based correlation. Let a

sequential circuit be unrolled into three time-frames as shown in Figure 4.2. Let fi, i=1,2,…,6

represent the flip-flops and gi, i=1,2,… represent the logic gates (excluding flip-flops). In the

figure, the forward implications of a flip-flop are the gates covered in the right cone of

that flip-flop. The backward implications of a flip-flop are the gates covered in the left

cone of that flip-flop. Note that gi means gi=1, g’i means gi=0. We use two time frames 0

and 1 to represent the forward and backward implications for clarity. Let us consider the

flip-flop pair f3 and f4. First we will calculate the correlation parameter C¹34. The forward

implications of f3 and backward implications of f4 are shown in time frame 1. Clearly,

Implf[f3,1]={g’1, g2, g3, g4, g5, g6} and Implb[f4,2]={g’1, g3, g5, g6, g7}. Thus,

Sf=|Implf[f3,1]|=6

Sb=|Implb[f4,2]|=5

SU=|Implf[f3,1]∪Implb[f4,2]|=|{g’1,g2,g3, g4, g5, g6, g7}|=7 SI=|Implf[f3,1]∩Implb[f4,2]|=|{

g’1, g3, g5, g6}|=4

Using Equation 4.1, x=Sf/ (Sf+Sb) =6/ (6+5) =6/11=0.55

Using Equation 4.3, y=1-4(x-0.5)
2
=0.99

Using Equation 4.4, C¹34= (SU/ SI) ⨉ y= (7/4) ⨉ 0.99 = 1.73

Next we calculate the correlation parameter C²34. The forward implications of f4 and

backward implications of f3 are shown in time frame 0. Clearly, Implf[f4,0]={g’4, g5, g9,

g10} and Implb[f3,1]={g5, g6, g9, g10}. Thus, Sf=|Implf[f4,0]|=4

Sb=|Implb[f3,1]|=4

SU=|Implf[f4,0]∪Implb[f3,1]|=|{g’4,g5,g6,g9,g10}|=5 SI=|Implf[f4,0]∩Implb[f3,1]|=|{g5, g9,

g10}|=3

x=Sf/(Sf+Sb)=4/(4+4)=4/8=0.5

y=1-4(x-0.5)
2
=1

C²34= (SU/ SI) ⨉ y= (5/3) ⨉ 1 = 1.67

Hence, C34= C¹34 + C²34=1.73+1.67=3.4

44

Figure 4.2: Implication-based correlation

Using the following example, we briefly explain the determination of unchecked

implications (steps 2-6 in algorithm 4.1) under the assumption that primary input and

output values are known. Let us consider a circuit with two flip-flops f1, f2, one primary

input PI1, one primary output PO1 and five gates g1, g2, g3, g4, g5. Suppose we obtain the

following information from the implication graph:

Impl[PI1,0,0]: {PI1=0, g1=1, g5=0}

Impl[PI1,1,0]: {PI1=1, g2=1, g4=0}

Impl[PO1,0,0]: {PO1=0, g1=0, g5=1}

Impl[PO1,1,0]: {PO1=1, g3=1, g4=1}

Impl[f1,0,0]: {f1=0, g1=1, g2=1, g3=0, g5=1}

Impl[f1,1,0]: {f1=1, g1=1, g2=0, g3=0, g4=1}

Impl[f2,0,0]: {f2=0, g1=1, g2=1, g3=1}

Impl[f2,1,0]: {f2=1, g1=1, g2=0, g3=1, g4=1}

Thus, we get:

Impl[PI1,0]=Impl[PI1,0,0]∪Impl[PI1,1,0]: {PI1=0, PI1=1, g1=1, g2=1, g4=0, g5=0}

Impl[PO1,0]=Impl[PO1,0,0]∪Impl[PO1,1,0]:{PO1=0,PO1=1, g1=0, g3=1, g4=1, g5=1}

Let CI denote the reference list containing the checked implications.

Time Frame 0 Time Frame 1 Time Frame 2

f1

f2

f3

f4

f5

f6

PIs PIs PIs

POs POs POs

f1

f2

f3

f4

f5

f6

f1

f2

f3

f4

f5

f6

g'1
g2

g3

g4

g5

g6

g7

g9

g5

g10

g’4

g6

45

CI=Impl[PI1,0]∪Impl[PO1,0]: {PI1=0, PI1=1, g1=1, g2=1, g4=0, g5=0, PO1=0,PO1=1,

g1=0, g3=1, g4=1, g5=1}

Impl[f1,0]=Impl[f1,0,0]∪Impl[f1,1,0]:{f1=1, f1=0, g1=1, g2=1, g2=0, g3=0, g4=1, g5=1}

Impl[f2,0]=Impl[f2,0,0]∪Impl[f2,1,0]:{f2=1, f2=0, g1=1, g2=1, g2=0, g3=1, g4=1}

|Impl[f1,0]|=8, |Impl[f2,0]|=7

Since f1 has the most number of implications, we will start with this flip-flop. Let UI(fi)

denote unchecked implications of flip-flop fi. Thus,

UI(f1)= Impl[f1,0]-CI={ f1=1, f1=0, g2=0, g3=0}

CI=CI∪UI(f1)={PI1=0, PI1=1, g1=1, g2=1, g4=0, g5=0, PO1=0,PO1=1, g1=0, g3=1,

g4=1, g5=1, f1=1, f1=0, g2=0, g3=0}

UI(f2)= Impl[f2,0]-CI={ f2=1, f2=0}

CI=CI∪UI(f2)={PI1=0, PI1=1, g1=1, g2=1, g4=0, g5=0, PO1=0,PO1=1, g1=0, g3=1,

g4=1, g5=1, f1=1, f1=0, g2=0, g3=0, f2=1, f2=0 }

Next, we set the implications to be the unchecked ones:

Impl[f1,0]=UI(f1): { f1=1, f1=0, g2=0, g3=0}

Impl[f2,0]=UI(f2): { f2=1, f2=0}

|Impl[f1,0]|=4, |Impl[f2,0]|=2

On ordering the flip-flops in the descending order of number of unchecked implications

for both 0 and 1 assignment, we get O’t= {f1, f2}.

Next, we illustrate steps 7-13 of Algorithm 4.1 using the following example. Let us

consider a circuit with four flip-flops f1, f2, f3, f4. Suppose the following are the

correlation parameters Cij calculated using Equations 4.1-4.5 for each possible pair of

flip-flop: C12=10, C13=8, C14=20, C23=11, C24=5, C34=19. On ordering the flip-flop

pairs in the descending order of Cij, we get Ok= {(f1, f4), (f3, f4), (f2, f3), (f1, f2), (f1, f3), (f2,

f4)}. Let the trace buffer width be 2. Thus, the two trace signal lists T1 and T2 should

contain two flip-flops each after trace selection is performed. First we initialize

T1=T2=�. Next consider the pair (f1, f4). Place f1 in T1 and f4 in T2. Thus T1= {f1}, T2=

{f4}. Consider the next pair (f3, f4). Since f4 is already present in T2 we skip (f3, f4) and go

to the next pair (f2, f3). Both T1 and T2 do not contain either f2 or f3. Place f2 in T1 and f3 in

46

T2. Thus, T1= {f1, f2}, T2= {f4, f3}. We stop here since the size of T1 and T2 is now equal

to the trace buffer width.

In the next section we give a description of the state restoration algorithm for the

multiplexed trace signal interconnection scheme.

4.3 Modified State Restoration Algorithm

We use Figure 4.3 to illustrate the concept of forward and backward learning for the case

of multiplexed trace signals. Figure 4.3 shows a 3-frame expansion of a sequential circuit.

Let us assume that the trace flip-flops in even time-frames 0 and 2 are {f1, f2, f3}, the non-

trace flip-flops in even time-frames 0 and 2 are {f4, f5, f6}, the trace flip-flops in odd time-

frame 1 are {f4, f5, f6}, the non-trace flip-flops in odd time-frame 1 are {f1, f2, f3}, the PIs

are {p1, p2,...,pn} and the POs are {o1, o2,...,on}. The gates g1, g2, g3, g4, g5, g6 are the

input signals of f1, f2, f3, f4, f5, f6 respectively. For time-frame 0, the trace signal list Te=

{f1, f2, f3} and the signal assignment set S0=SPI∪SPO∪Ste, where Ste= {f1=0, f2=0, f3=0}.

For time-frame 1, the trace signal list To= {f4, f5, f6} and the signal assignment set

S1=SPI∪SPO∪Sto, where Sto= {f4=0, f5=1, f6=0}. For time-frame 2, the trace signal list Te=

{f1, f2, f3} and the signal assignment set S2=SPI∪SPO∪Ste, where Ste= {f1=1, f2=1, f3=0}.

Suppose {g2=0} є BCP (S0). Since g2 is the input signal of non-trace flip-flop f2 in the odd

time frame 1, the next state of f2 is learned to be 0 by forward learning, i.e. Sfo={f2=0}.

Therefore, in time frame 1, S1=S1∪Sfo=S1∪{f2=0}. Note that the subscript f for the values

0f, 1f and Xf indicate the values learned by forward learning. If the current state values of

traced flip-flops {f4, f5, f6} in time-frame 1 are {0,1,0}, then in time frame 0,

S0=SPI∪Ste∪{g4=0, g5=1, g6=0} where Ste={f1=0, f2=0, f3=0}. Suppose {g3=1}єBCP(S0).

Since g3 is the input signal of non-trace flip-flop f3, the next state of f3 is learned to be 1

by backward learning, i.e. Sbo= {f3=1}. Therefore, in time frame 1,

S1=S1∪Sbo=S1∪{f3=1}. Note that the subscript b for the values 0b, 1b and Xb indicate the

values learned by backward learning. Hence, considering both forward and backward

learning for time frame 1, we get S1= S1∪Sfo∪Sbo =S1∪{f2=0}∪{f3=1}. Similarly, for time

frame 2, S2= S2∪Sfe∪Sbe =S2∪{f4=1, f5=0, f6=0}∪{�}. Algorithm 4.2 gives an overview

of the state restoration approach for multiplexed trace signals.

47

Figure 4.3: Modified State Restoration

Algorithm 4.2: State restoration for multiplexed trace signals

1. trace_signal_list, Te = flip-flops fi, where i⋴1,2,…,n in T1

2. trace_signal_list, To = flip-flops fi, where i⋴1,2,…,n in T2

3. for each (vector Vi, where i⋴0,1,2,…,T)

Perform logic simulation using Vi;

 if (time-frame is even)

 Signal assignment set Si =SPI∪SPO∪Ste∪ Sfe ∪ Sbe;

 else if (time-frame is odd)

 Signal assignment set Si =SPI∪SPO∪Sto∪ Sfo ∪ Sbo;

Perform SAT-based multi-node implications BCP(Si)

Nrestored(all) = number of signals including the PIs and POs implied to either 0 or 1.

Nrestored(FFs) = number of non-trace flip-flops implied to either 0 or 1.

Use equations (1), (2) and (3) to calculate restoration ratio and restoration

percentage

4.4. Multi-node implication-based trace list pruning

The trace selection methods discussed so far are all based on single node implications.

However, there could be a case where multi-node implications overshadow the single

node-implications. Therefore, it is prudent to consider this aspect during trace selection.

Time Frame 0 Time Frame 1 Time Frame 2

combo combocombo

0

1

0

1f

0f

0f

f1

f2

f3

f4

f5

f6

f1

f2

f3

f4

f5

f6

f1

f2

f3

f4

f5

f6

1Xf ,1b

0

XXf ,Xb

0f

PIs PIs PIs

POs POs POs

0

1

1

0

1

1

0

0

0

X

X

X

0

1

0

0

0

1

g1

g2

g3

g1

g2

g3

g4

g5

g6

g4

g5

g6

48

We will explain this observation in detail in Section 4.5 later. Algorithms 4.3 and 4.4

give an overview of the proposed multi-node implication-based greedy heuristic for the

non-multiplexed and multiplexed trace signal selection schemes respectively. We use our

BCP-based state restoration algorithm as the engine for this greedy heuristic.

Algorithm 4.3: Non-multiplexed trace list pruning.

1. Form set Of using algorithm 3.1.

2. Trace width=n=2
l
, l≥0 Search space=s=2

k
, k>l, s≤N

3. Number of iteration, r =s/n, j=1

4. while (j≤r)

 trace_signal_list, Tj = flip-flops fi, i=(j-1)n +1to (j-1)n+n in Of

 Perform state restoration using algorithm 3.2 for first five vectors (i.e. Vi, where i⋴0,1,2,..5)

Restoration Percentage, Rj = restoration percentage (all gates) obtained in the fifth

vector

j=j+1

5. Ol=Set of trace signal lists Tj, j⋴1,2,…,r in the descending order of restoration

percentage Rj, j⋴1,2..,r

6. Select the first trace signal list Tr in Ol.

7. Select n flip-flops from Tr as trace signals.

Algorithm 4.4: Multiplexed trace list pruning.

1. Form sets T1 and T2 using algorithm 4.1.

2. Trace width=n=2
l
, l≥0 Search space=s=2

k
, k>l, s≤N/2

3. Number of iteration, r =s/n, j=1

4. while (j≤r)

 trace_signal_list, Tje = flip-flops fi, i=(j-1)n +1to (j-1)n+n in T1

trace_signal_list, Tjo= flip-flops fi, i=(j-1)n +1to (j-1)n+n in T2

 Perform state restoration using algorithm 4.2 for first five vectors (i.e. Vi, where i⋴0,1,2,.5)

Restoration Percentage, Rj = restoration percentage (all gates) obtained in the fifth

vector

j=j+1

49

5. Ol=Set of trace signal list pairs (Tje,Tjo) j⋴1,2,…,r in the descending order of restoration

percentage Rj, j⋴1,2..,r

6. Select the first pair of trace signal list (Tre,Tro) in Ol.

7. Select n flip-flops from Tre as trace signals for even time-frames.

8. Select n flip-flops from Tro as trace signals for odd time-frames.

We use the following example to illustrate the non-multiplexed trace list pruning method

(Algorithm 4.3). Let us consider the set Of = {f2, f3, f5, f4, f1, f6, f7, f8} in which the flip-

flops are ordered in the descending order of unchecked implications using Algorithm 3.1.

Suppose the trace width, n=2 and the total flip-flops N=8. Thus l=1 since n=2=2
1
. Let

k=2, hence the search space, s = 2
2
=4 < N, i.e., we consider the first 4 flip-flops only. The

number of iterations, r=s/n=4/2=2. During the first iteration, we consider (f2, f3) and

place it in T1. We perform state restoration for the first five vectors. Let the restoration

percentage obtained for all gates in the fifth vector, R1=78%. During the second iteration,

we consider (f5, f4) and place it in T2. Let R2=80%. Since R2>R1, we choose T2 as our

trace signal list.

Next, we illustrate the multiplexed trace list pruning method (Algorithm 4.4) using the

following example. Let us consider two sets T1= {f2, f3, f5, f4} and T2= {f1, f6, f7, f8}

obtained using Algorithm 4.1. Consider the same trace width, n=2 and the same total

number of flip-flops N=8. Thus l=1 since n=2=2
1
. Let k=2, hence the search space, s =

2
2
=4 ≤N/2, i.e., we consider the first 4 flip-flops for each of the sets T1 and T2. The

number of iterations, r=s/n=4/2=2. During the first iteration, we place (f2, f3) from T1 in

T1e and (f1, f6) from T2 in T1o. We perform state restoration for the first five vectors using

T1e and T1o. Let the restoration percentage obtained for all gates in the fifth vector,

R1=78%. During the second iteration, we place (f5, f4) from T1 in T2e and (f7, f8) from T2 in

T2o. Let R2=80%. Since R2>R1, we choose T2e and T2o as our multiplexed trace signal

lists.

50

4.5. Experimental Results

The above algorithms were written in C++ and experiments were conducted for

ISCAS’89 sequential benchmark circuits on a Linux workstation with 2GB RAM. The

results are reported in Tables 4.1-4.4. During state restoration, we do not assume any

knowledge of an initial state other than the traced signals. We consider five different

trace buffer widths: 8, 16, 32, 64 and 128. The trace buffer depth is assumed to be 100.

Note that since more values can be learned later from the earlier vectors, less restoration

is possible in the beginning and more restoration toward the end of the vector sequence.

Therefore, each random pattern used for our experiments has 100 vectors each for a more

competitive comparison in contrast to [1] in which the trace buffer depth is assumed to be

4k. In Table 4.1, we briefly summarize the results obtained for non-multiplexed trace

selection scheme discussed in Chapter 3 for trace buffer width of 8. For each circuit in

Table 4.1, H1 contains the result using forward learning and considering that primary

input values are known (FL+PI), H2 contains the result obtained using forward and

backward learning and considering both primary input and output values are known

(FL+BL+PI+PO). The first sub-column under each column H1 and H2 gives the total

number of flip-flops in the circuit, followed by restoration ratio (RR) obtained in [1], total

restoration percentage (only flip-flops) across 100 vectors (TRFFs), total restoration

percentage (all gates) across 100 vectors (TRall), the restoration percentage (only flip-

flops) obtained in the final vector (FRFFs), the restoration percentage (all gates) obtained

in the final vector (FRall) and the restoration ratio (RR) obtained by H1 or H2. From Table

4.1, it can be seen that H2 has a better restoration ratio (RR) compared to [1]. For

example, consider s15850, H2 achieved a high RR of 56.1 as compared to a RR of only

19.93 achieved by [1]. For all further comparison with non-multiplexed scheme, we will

use the values obtained using H2. From Table 4.1 it can be observed that for s35932 and

s38584, the restoration percentage approaches 100 percent as we approach the final

vector even for a trace buffer width of 8. Therefore, we exclude these two circuits from

further analysis since they are easy to restore. We consider all other circuits which are

difficult to restore for our experiments in this work. Table 4.2 gives the results for

multiplexed trace selection using implication-based correlation (H3) for trace buffer

widths of 32, 64 and 128. We compare the restoration percentage obtained for

51

multiplexed scheme using H3 with the restoration percentage obtained for non-

multiplexed scheme using H2. We observe that in most of the cases H3 gives a superior

restoration percentage than H2. For example, consider s9234 for N=64, H3 achieved a

total restoration percentage (TRall) of 94.5% as compared to a TRall of 92.7% achieved by

H2. Moreover TRall of 94.5% obtained for s9234 for N=64 using H3 is close to 94.7%

achieved for the same circuit using H2 for N=128. This means that for N=64 with

multiplexing, we are getting results of N=128 without multiplexing. In other words, we

are effectively tracing twice as many signals with the same trace buffer size and obtaining

a restoration percentage which is equal to the restoration percentage obtained for twice

the trace buffer width. From Table 4.2 for N=64 using H3, we can also observe that for

s5378, the restoration percentage approaches 100 percent as we approach the final vector.

For N=128, fields for s5378 and s9234 are empty because these circuits have less than

256 flip-flops and hence cannot be considered for H3. Table 4.3 gives the results for

multiplexed trace selection using multi-node implication-based trace list pruning (H4) for

trace buffer widths of 16, 32 and 64. We prune the lists obtained using H3 using

Algorithm 4.4. We report results for those corner cases where multi-node implications

had a major role to play. From Table 4.3, we can observe that H4 is able to increase the

restoration percentage of the corner cases significantly. For example, consider s5378 for

N=32, H4 achieved a high restoration percentage (TRall) of 97.1% as compared to 94.3%

obtained using H3 only. Figure 4.4 shows the comparison of total restoration percentage

for various benchmark circuits using H2, H3 and H4.

Finally, Table 4.4 compares our method (for N=32) with two cases: (1) No flip-flop is

traced (only primary input and output values assumed to be known) and (2) Random trace

signal selection. Our restoration percentage is superior to both the cases considered. For

example, consider s13207, H3 achieved a high restoration percentage (TRall) of 82.8% as

compared to only 60.9% and 67.2% obtained by the above two cases. For s15850, H4

achieved a high restoration percentage (TRall) of 96.1% as compared to 91.5% and 92.1%

obtained by the two cases.

52

Table 4.1: Results (H1: non-mux+FL+PI, H2: non-mux+FL+BL+PI+PO)

N=8

 #FFs RRold H1 H2

TRFF TRall FRFF FRall RR1 TRFF TRall FRFF FRall RR2

s5378 179 14.68 86.3 90.4 87.7 91.1 19.3 88.3 92.0 91.6 94.0 19.8

s9234 211 4.767 77.1 90.5 83.4 93.4 20.3 77.5 90.8 83.4 93.4 20.4

s15850 534 19.93 83.2 91.3 85.6 92.6 55.6 84.1 92.0 86.1 93.0 56.1

s13207 638 - 54.3 61.3 57.9 64.2 43.3 53.7 67.3 71.3 75.6 53.7

s38584 1426 19.24 72.9 82.4 98.8 99.3 130.1 86.0 91.7 100 100 153.2

s38417 1636 18.6 21.8 36.3 22.5 38.1 44.5 25.8 41.3 26.5 42.2 52.8

s35932 1728 64.0 97.0 97.6 100 100 209.6 98.0 98.3 100 100 211.7

Figure 4.4: Total Restoration % (TRall) for benchmark circuits.

0

20

40

60

80

100

s5378 s9234 s15850 s13207 s38417

T
o
ta

l
R

es
to

ra
ti

o
n

 %
 (

a
ll

si
g
n

a
ls

)

N=32

H2

H3

H4

53

Table 4.2: Results (H2: non-multiplexed, H3: multiplexed)
N=32

 H2 H3

TRFF TRall FRFF FRall TRFF TRall FRFF FRall

s5378 88.6 92.2 91.6 94.0 91.8 94.3 94.9 96.1

s9234 78.8 92.0 83.9 93.6 79.7 92.3 83.9 93.6

s15850 84.4 92.2 86.1 92.9 84.4 92.2 86.1 92.9

s13207 76.4 82.2 78.5 83.6 76.8 82.8 78.9 85.3

s38417 25.8 41.4 26.5 42.2 31.4 46.2 32.6 47.3

N=64

 H2 H3

TRFF TRall FRFF FRall TRFF TRall FRFF FRall

s5378 95.6 97.3 98.3 98.9 97.3 98.3 100 100

s9234 79.7 92.7 84.4 94.0 83.6 94.5 85.8 95.2

s15850 84.6 92.4 86.1 92.9 84.9 92.5 86.5 93.1

s13207 80.2 86.4 81.3 87.6 82.0 86.9 83.9 88.4

s38417 29.3 44.1 30.2 44.8 31.7 46.5 32.6 47.3

N=128

 H2 H3

TRFF TRall FRFF FRall TRFF TRall FRFF FRall

s5378 99.7 99.9 100 100

s9234 84.4 94.7 85.8 95.2

s15850 84.8 92.6 86.1 92.9 93.1 97.1 94.9 98.0

s13207 83.6 88.7 84.5 89.5 89.1 93.0 89.9 93.6

s38417 31.9 46.8 32.6 47.3 49.8 57.1 52.7 57.4

Table 4.3: Results (H3: multiplexed, H4:H3+multi-node impl.)
 N=16

H3 H4

TRFF TRall FRFF FRall TRFF TRall FRFF FRall

s5378 88.3 92.0 91.6 93.9 93.9 95.6 97.8 97.5

s15850 84.1 91.9 86.1 92.9 87.0 93.3 88.9 94.2

 N=32

H3 H4

TRFF TRall FRFF FRall TRFF TRall FRFF FRall

s5378 91.8 94.3 94.9 96.1 95.9 97.1 99.4 99.3

s15850 84.4 92.2 86.1 92.9 91.8 96.1 94.2 97.4

s38417 31.4 46.2 32.6 47.3 35.9 47.1 37.5 47.6

 N=64

H3 H4

TRFF TRall FRFF FRall TRFF TRall FRFF FRall

s15850 84.9 92.5 86.5 93.1 94.3 97.4 96.4 98.5

s13207 82.0 86.9 83.9 88.4 82.8 87.2 84.5 88.7

Table 4.4: Results (No Trace, Random vs. our Algorithms)
 N=32

No Trace Random H3 H4

TRall TRall TRall TRall

s5378 91.6 92.8 94.3 97.1

s9234 76.8 82.1 92.3 92.3

s15850 91.5 92.1 92.2 96.1

s13207 60.9 67.2 82.8 82.8

s38417 41.2 42.6 46.2 47.1

54

4.6. Summary

We have proposed a new multiplexer-based trace signal interconnection scheme and a

new method for trace signal selection based on implication-based correlation. This

approach uses the correlation between the forward and backward implications of flip-

flops (trace signals) across two consecutive time-frames. We also proposed a SAT-based

greedy heuristic to prune the selected trace signal list further to consider the multi-node

implications. Results show that our approach gives a better restoration percentage than

previous techniques.

55

Chapter 5

Trace Compression using Source

Transformation over FDR codes

This chapter is organized as follows. Section 5.1 discusses the proposed heuristics and

Section 5.2 discusses the hardware implementation of the proposed approach. Section 5.3

reports experimental results, and in Section 5.4 we summarize our observation.

5.1. The Proposed Approach

The proposed approach uses source transformation on top of FDR encoding to compress

the trace buffer data. Sections 2.7 to 2.12 give an overview of the various compression

concepts which we use. The transformation function converts the captured data into a

reduced entropy data set. This makes the data set more amenable for compression using

the FDR scheme. The extra hardware required to implement these transformation

functions is very low. Three transformation functions are proposed in this work that uses

the idea of a) Computing a difference vector of the captured data across time frames; b)

Ordering based on probabilistic estimation of the captured data and, c) alternate vector

reversal technique. These techniques will be described next.

A. Difference vector transformation: is implemented as a hardware block which outputs

the difference vector of the current trace vector with that of the vector in the previous

time frame. From our extensive experiments, we observed that there already exists

correlation between trace vectors of successive cycles for a given design and this can be

exploited to generate a data set with reduced entropy. To quantify this correlation, we

conducted experiments with ISCAS’89 benchmark circuits. We applied a large number

of random vectors and observed a selected set of trace signals. We then computed the

average toggling percentage, TPavg for the n⨉N trace data matrix using Equation (2.10).

This is shown in Table 5.1. In this table, n represents the number of vectors used (i.e.,

total number of time-frames) for simulation. The column labeled Average Toggling

56

Percentage represents the average toggling percentage for different numbers, N, of trace

signals selected. In our experiments, we considered N=32, 64, and 128. The trace signal

selection algorithm is based on the technique proposed in Chapter 3. From the table, we

note that for s13207 on an average only 13% of the selected 64 trace signals toggle for

each successive vector. Hence, we form the difference vector matrix by XORing the

successive rows of the original n⨉N matrix. If r1, r2, r3,…,rn represent the rows in the

original n⨉N trace data matrix, then r1, r1 ⊕ r2, r2 ⊕ r3, …, rn-1 ⊕ rn represents the rows in

the n⨉N difference vector matrix. We use Tdiff to represent the un-encoded difference

vector sequence. The compression ratio can be improved by compressing Tdiff instead of

T. This is because the Tdiff has longer run of zeroes compared to T and hence the total

number of run-lengths, R is reduced. This is illustrated using an example shown in Figure

5.1(a) and 5.1(b).

0 1 0 0 1
0 1 0 0 0
0 1 0 0 0
1 1 1 0 0

0 1 0 0 1
0 0 0 0 1
0 0 0 0 0
1 0 1 0 0

T=01 001 01 00001 0001 1 1 00 Tdiff=01 001 00001 000001 01 00

(a) (b)

Figure 5.1 Transforming T to Tdiff

Figure 5.1(a) shows the un-encoded trace data sequence T= 01 001 01 00001 0001 1 1

00. Clearly SU=20. The run-lengths of zeroes in this un-encoded sequence are 1, 2, 1, 4,

3, 0, 0, and 2. Hence, the total number of run-lengths, R is 8. Using Fig. 1 we obtain the

encoded sequence, TE = 01 1000 01 1010 1001 00 00 1000. Clearly SE=24. Thus, for the

trace data set T, diagnostic resolution (DR) = SU/SE=20/24=0.8. Figure 5.1(b) shows the

difference vector Tdiff= 01 001 00001 000001 01 00. The run-lengths of zeroes in this un-

encoded sequence are 1, 2, 4, 5, 1 and 2. Hence, the total number of run-lengths, R for T-

diff is 6 which is less than 8 obtained for T. Clearly SU=20. The corresponding encoded

sequence TE=01 1000 1010 1011 01 1000. Clearly SE=20. Therefore DR =SU/SE

=20/20=1.0 which is greater than 0.8 obtained for T.

57

Table 5.1: Average Toggling Percentage
Ckt. #Vectors, n Average Toggling Percentage, TPavg

No. of Trace Signals, N

32 64 128

s5378 1k 9 15 17

s9234 1k 12 8 8

s13207 1k 8 13 11

s15850 1k 8 7 8

s38584 1k 22 25 23

B. Efficient ordering of trace flip-flops: The ordering of the trace flip-flops can affect the

compression quality, i.e., different flip-flop order can lead to different compression

percentage. In this section, we describe an algorithm to determine a flip-flop order that

maximizes the achievable compression percentage. Note that this is a hard problem

because we have to determine one flip-flop order that yields an overall good compression

percentage for any real time data being captured. The caveat here is that if there are N

trace flip-flops then there are N! possible ways to order them. Now, a flip-flop order that

produces a good compression percentage for one functional vector may not generate

similar result for another vector. Moreover, when N! becomes large, the computational

complexity also increases. So, this is an optimization problem and one can solve it using

meta-heuristics such as genetic algorithm or simulated annealing. But our evaluation

suggested that a simple probability-based algorithm can give good results for efficient

flip-flop ordering, which is described next.

Our approach is to first compute the probability that the difference vector bit value for

trace flip-flop k takes a Boolean 0 (1). This is denoted by P0k (P1k). Note that depending

on the design and the cone of logic feeding into the trace flip-flop k, it may tend to

capture one Boolean value more often than the other. This determines the P0k/P1k values

for the flop k. After computing the P0k values, we group the trace flip-flops in their

decreasing order of the P0k values. Now, probability computation can be either vector-

less or vector-based. We can use a vector-less symbolic simulation based approach using

BDDs to compute the probability value. This will be computationally expensive. Hence,

we used a vector-based approach. We simulated the vector to obtain the difference

vectors and computed the probability values. When the flip-flop captured an ‘X’, we

assumed a random Boolean value in our software.

58

To understand how ordering the flops affect the entropy, let us consider the n⨉N

difference vector matrix where a row represents a difference vector. Ordering the flops

based on probability will push the Boolean 0 values, probabilistically, towards the left

portion of the matrix leaving the 1’s in the right portion. This operation increases the run

length of 0. The impact of this ordering w.r.t. entropy and theoretical maximum

compression Cmax are shown in the plots in Figure 5.3 and Figure 5.5 respectively. Let

Torder represent the un-encoded ordered trace data sequence. From Figure 5.3, we can see

that Torder reduces the entropy as compared to the Tdiff for all circuits. From Figure 5.5, we

can see that Torder increases Cmax as compared to the Tdiff for all circuits. We will illustrate

the use of this transformation function using the example shown in Figure 5.2(a) and

5.2(b). From Figure 5.2(a) we can obtain the probabilistic parameters, i.e., P01=3/4=0.75,

P02=3/4=0.75, P03=3/4=0.75, P04=4/4=1.0 and P05=2/4=0.5. The columns are ordered in

the descending order of P0k, k=1, 2, 3, 4, 5 as shown in Figure 5.2(b). From Figure 5.2(b), the

un-encoded sequence Torder=001 01 00001 0000001 01 0. The run-lengths of zeroes in

Torder are 2, 1, 4, 6, 1 and 1. Also SU=20, TE= 1000 01 1010 110000 01 01 and SE=20.

Therefore, CR =SU/SE =20/20=1.0.

0 1 0 0 1
0 0 0 0 1
0 0 0 0 0
1 0 1 0 0

0 0 1 0 1
0 0 0 0 1
0 0 0 0 0
0 1 0 1 0

Tdiff=01 001 00001 000001 01 00 Torder=001 01 00001 0000001 01 0

 (a) (b)

Figure 5.2 Transforming Tdiff to Torder

C. Alternate vector reversal: is implemented as a hardware block. It is an elegant

technique which reduces the entropy by further increasing the length of run of zeros

across time-frames. To understand this transformation, let r1, r2, r3,…,rn represent the

rows in the n⨉N reordered trace data matrix. The alternate vector reversed trace data

matrix is obtained by reversing the alternate rows in the ordered trace data matrix. This

method is effective because reversing of alternate rows groups together the 0-biased flip-

flops in those rows, thus increasing the run-length of zeroes in the un-encoded sequence.

To understand this, consider two rows r1 and r2. Since the trace flip-flops are ordered, the

59

left portions of the vectors will have cluster of Boolean 0’s as described in Section 5.1 B.

If r1 is reversed and concatenated with r2, we will have a longer run of 0 compared to just

concatenating r1 with r2. Thus, either {r1, R(r2), r3, R(r4),…} or {R(r1), r2, R(r3), r4,…}

can be used to represent the rows in the alternate vector reversed trace data matrix. Here

R(rk) means reverse of rk. We use Treversal to represent the un-encoded alternate vector

reversed trace data sequence.

Fig. 5.3: Entropy for various benchmark circuits (N=32)

Figure 5.4(a) and Figure 5.4(b) show the usage of alternate vector reversal technique

where rows 2 and 4 of Figure 5.4(a) are reversed. From Figure 5.4(b), Treversal=001 01 1

00000000001 01 0. The run-lengths of zeroes in this un-encoded sequence are 2, 1, 0, 10,

1, and 1. Thus, the longest run of zero is 10 which is greater than 6 obtained for Torder.

Also SU=20, TE=1000 01 00 110100 01 01, SE=18 and DR=20/18=1.1.

The impact of alternate vector reversal w.r.t. entropy and Cmax are shown in the plots in

Figure 5.3 and Figure 5.5 respectively. From Figure 5.3 and Figure 5.5, we can see that

alternate vector reversal reduces the entropy and increases Cmax as compared to re-

ordering for all circuits.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

s5378 s9234 s15850 s13207 s38584

E
n

tr
o
p

y,
 E

ISCAS Sequential Benchmark Circuits

Tdiff Torder Treversal

60

0 0 1 0 1
0 0 0 0 1
0 0 0 0 0
0 1 0 1 0

0 0 1 0 1
1 0 0 0 0
0 0 0 0 0
0 1 0 1 0

 Torder=001 01 00001 0000001 01 0 Treversal=001 01 1 00000000001 01 0

 (a) (b)

Fig. 5.4 Transforming Torder to Treversal

D. Decoding the data: The decoding of the trace buffer data in order to obtain the source

transformed data is done off-chip using the decompression architecture described in [31]

and [32]. After decoding the FDR code-words, we perform reversing, reordering, and

XORing to obtain the original trace data.

Fig. 5.5: Cmax % for various benchmark circuits (N=32)

5.2. Compression Hardware

We implemented the proposed source transformed FDR-based trace compressor at RTL

as a two-staged pipelined architecture (see Figure 5.6). There are four main blocks in our

hardware implementation: a) Source transform block that implements the source

transforms described in Section III, b) FDR FSM block that implements the FDR code

using little hardware overhead, c) Control block that generates the required signals for

trace compressor operation, and d) Trace buffer which is a memory implemented as a

0

20

40

60

80

s5378 s9234 s15850 s13207 s38584T
h

eo
re

ti
ca

l
M

a
x
im

u
m

C
o
m

p
re

ss
io

n
,
C

m
a
x

ISCAS Sequential Benchmark Circuits

Tdiff Torder Treversal

61

regular SRAM. These blocks will now be described in detail next. Note that we use the

trace selection method proposed in Chapter 3 to select the set of N flip-flops to be traced.

A. Source transformation: As described in Section 5.1, we use three source

transformations to decrease the entropy of the data to be encoded. From hardware point

of view, the source transform block receives ordered parallel data from the trace flip-

flops and converts it into difference vector and alternate vector-reversed parallel data.

We will illustrate the generation of ordered parallel data using an example. Suppose we

select four trace flip-flops labeled f1, f2, f3, f4 using the method proposed in Chapter 3. For

our example, N=4. Next, we use software (a C++ program) to order these flip-flops based

on the method described in section 5.1 B. The order generated by the software is

communicated to the designer, which is then used for designing the hardware. For our

example, suppose the order determined is {f2, f1, f4, f3}. Let d[3:0] be the source transform

block input data bus. To reflect the new order on hardware, the designer only needs to

connect f2 to d[0], f1 to d[1], f4 to d[2] and f3 to d[3]. Hence, we only incur routing

overhead to generate the ordered data. To generate the difference vector we use N flip-

flops to store the trace vector in the previous time frame and N XOR gates to generate the

Boolean difference. To reverse the alternate vectors, we use N multiplexers whose select

signals are driven by a T-flop.

B. FDR FSM: The FDR can be implemented as a finite-state-machine (FSM). But

synthesizing this code may cost more area overhead. Hence, we present an optimization

where the overall design and source transform block is made to work at a lower

frequency, fsource, compared to the clock frequency, fFDR, of FDR FSM. This allows

increasing the sequential depth of the FDR FSM by more than one that, in turn, reduces

the hardware overhead to implement this block. For all of the cores in a design, this can

be realized as follows. For cores in the design that operate at a lower frequency compared

to the fastest core of the ASIC, we can use a separate compressor using the fastest clock

of the design. For fastest cores in the design, we visualize them as a high throughput

system. We convert a high throughput application into a low throughput application by

lowering the clock frequency only during the silicon debug phase. This can be

implemented using additional clock divider circuits that can be enabled during the silicon

debug phase. This would still be valid if we are trying to catch functional/logical bugs

62

and not speed-related defects for cores using the fastest clock. Speed related defects have

to be exposed using diagnostic techniques using at-speed test vectors. With these

assumptions, we will now describe our hardware implementation for this block. In our

description, we refer a slow_clk as the clock signal used by the system and the source

transform block, and fast_clk as the clock used by FDR FSM. Whenever new data

becomes available at the output of source transform block, the start signal goes HIGH for

one fast_clk cycle and then remains LOW. This interrupt pulse generated by the control

block indicates FDR FSM block to start encoding. The encoded codeword is put on a

serial output port on encountering each run of zeroes. The ready signal remains HIGH

during the time when the encoded codeword is being serially shifted out. The ready

signal can be used to generate the write enable signal wen and the address addr for

writing into the trace buffer memory. The address addr is simply incremented for each

encoded bit being serially shifted into the trace buffer through the sin pin. When the

parallel trace data at the compressor input is completely processed (encoded), the done

signal becomes HIGH and it remains HIGH until it encounters another start interrupt

pulse indicating the arrival of new data at compressor input.

Figure 5.6: Trace compressor architecture

ready done

 en

 addr wen
 fast_clk

 slow_clk

 enc_en

 start

 Control Block

 d[N-1:0]

 d’[N-1:0] sin
Source

Transform

Block

Trace

Flip-

Flops

 FDR FSM

Trace

Buffer

 Trace Compressor

63

C. Control Block: This block generates the control signals necessary for the compression

when the enc_en signal is asserted on entering the silicon debug mode. The control logic

for bit-reversal is also generated by this block.

5.3. Experimental Results

The technique proposed in Chapter 3 was written in C++ that was used for trace signal

selection and state restoration. The FDR algorithm (refer Section 2.8), the source

transformation functions (refer Section 5.1) and the quality metrics (refer Section 2.10)

were also written in C++ and experiments were conducted for ISCAS’89 sequential

benchmark circuits on a Linux workstation with 2GB RAM. The results are reported in

Tables 5.2. Each vector used for our experiment comprised 1000 clock cycles. Table 5.2

gives the results for trace signal counts of 32, 64 and 128 for five benchmark circuits. For

each circuit, the first column gives the total number of flip-flops in the circuit, followed

by the compression percentage (C) containing four sub-columns T (existing FDR), Tdiff

(difference vector), Tord (difference vector + ordering) and Trev (difference vector + re-

ordering + bit-reversal) respectively. The values under sub-column T reflects the

compression percentage obtained using the FDR code-based compression technique. The

values under sub-columns Tdiff, Tord and Trev reflect the compression percentage obtained

after using our proposed source transformation techniques. The last two columns give the

theoretical maximum compression percentage (Cmax) and the diagnostic resolution (DR)

for the proposed approach. We see that the compression percentage obtained using the

proposed approach is close to the theoretical maximum compression percentage in all

cases. For example, consider s15850 of Table 5.2 with 32 traced signals; we achieved a

compression percentage of 63% by using all the three transformation functions as

compared to a compression percentage of 29% achieved by using the FDR codes without

any source transformation. This trend is also shown in Fig. 5.7. In addition, this value is

close to the theoretical maximum compression percentage (Cmax %) of 66.8%. This trend

is shown in Figure 5.3 and Figure 5.5. We observe from Figure 5.3 that our proposed

transformation functions reduce the entropy of the trace data and hence led to better

compression.

64

Figure 5.7: Actual Compression Percentage for benchmark circuits, N=32

We also observe that for some circuits we are able to achieve a diagnostic resolution (DR)

greater than 3X. For example, consider s9234 of Table 5.2 with 64 traced signals. We

achieved a diagnostic resolution of 3.3X which means that with a trace buffer width of

64/3.3≈20, we are able to trace 64 signals. In other words, the diagnostic capability of the

trace buffer is improved by 3.3X. Finally, we compare the compression % obtained by

our method with the compression % obtained by using GZIP over the difference vector.

This is shown in Table 5.3. We chose GZIP because it represents the state-of-the-art

implementation of LZ77 and Huffman coding algorithm that is used by Anis et al. [14].

For all circuits, our proposed method gives better compression percentage than GZIP as

the trace signal counts (N) increased in our experiments. For example, consider s13207 of

Table 3 with 64 traced signals; we achieved a compression percentage of 57% as

compared to a compression percentage of 48% achieved by using GZIP.

To evaluate the area overhead, we implemented the trace compressor hardware using

Verilog and synthesized it using a commercial synthesis tool for three different

compressor input counts. The area overhead of the source transformation block is

negligible. We do not incur any area overhead for ordering since we do it using software.

Only routing overhead is incurred. For the difference vector and reversal functions, we

incur an overhead of N XOR gates, N flip-flops and N multiplexers which is small. The

area overhead (in NAND gate equivalent) of the trace compressor as a percentage of the

-60

-40

-20

0

20

40

60

80

s5378 s9234 s15850 s13207 s38584

%
 C

o
m

p
re

ss
io

n

ISCAS Sequential Benchmark Circuits

T Tdiff Torder Treversal

65

trace buffer area is shown in Table 5.4. For each trace signal count N, the first column

gives the trace buffer area M in NAND gate equivalent, followed by the trace buffer

width TBwidth, the trace buffer depth TBdepth and the compressor area A in NAND gate

equivalent, respectively. The last column gives the compressor area as a percentage of

trace buffer area. We observed that the area overhead of the trace compressor is

negligible as compared to the trace buffer area. For example, for a compressor input

count of 128, the trace compressor area of 3.1K is only 0.5% of the trace buffer area

(576K). In [39] it was reported that the area overhead of a LZ-based compressor was

around 50k equivalent NAND gates. Also note that the main limitation of LZ77-based

method proposed in [14] was related to the large area overhead involved owing to the use

of different content-addressable memory (CAM) sizes.

Table 5.2: Compression results (#Vectors=1000)
N=32

Circuit #FFs C% Cmax% DR

T Tdiff Tord Trev Trev Trev

s5378 179 -5.7 54 60 64 69.1 2.8

s9234 211 -45 42 53 58 68.7 2.4

s15850 534 29 56 60 63 66.8 2.7

s13207 638 -43 51 60 66 71.9 2.9

s38584 1426 10 23 24 26 33.9 1.4

N=64

s5378 179 -10 39 45 48 56.8 1.9

s9234 211 -44 54 66 70 75.6 3.3

s15850 534 3.3 61 67 70 73.5 3.4

s13207 638 -39 40 52 57 62.3 2.3

s38584 1426 2.5 17 20 21 28.2 1.3

N=128

s5378 179 -15 32 44 47 63.6 1.9

s9234 211 -28 54 68 71 74.6 3.4

s15850 534 8.1 60 68 70 73.9 3.4

s13207 638 -38 46 61 64 69.6 2.8

s38584 1426 7.3 20 25 27 33.4 1.4

Table 5.3: GZIP vs. Our approach

 GZIP(C %) Treversal(C %)

N N

64 128 256 512 64 128 256 512

s5378 41 35 - - 48 47 - -

s9234 64 56 - - 70 71 - -

s15850 68 61 66 67 70 70 75 79

s13207 48 50 60 54 57 64 76 76

s38584 17 20 21 17 21 27 25 28

66

Table 5.4: Area overhead of compressor
N TB Area

(M)

TBwidth TBdepth Compressor

Area (A)

(A/M %)

32 145k 16 1024 2.0k 0.1%

64 290k 32 1024 2.4k 0.8%

128 576k 64 1024 3.1k 0.5%

Figure 5.8: Actual Compression Percentage for various benchmark circuits, N=64

Figure 5.9: Actual Compression Percentage for various benchmark circuits, N=128

-60

-40

-20

0

20

40

60

80

s5378 s9234 s15850 s13207 s38584

%
 C

o
m

p
re

ss
io

n

ISCAS Sequential Benchmark Circuits

T Tdiff Torder Treversal

-60

-40

-20

0

20

40

60

80

s5378 s9234 s15850 s13207 s38584

%
 C

o
m

p
re

ss
io

n

ISCAS Sequential Benchmark Circuits

T Tdiff Torder Treversal

67

Figure 5.10: Entropy for various benchmark circuits (N=64)

Figure 5.11: Entropy for various benchmark circuits (N=128)

0

1

2

3

4

5

6

s5378 s9234 s15850 s13207 s38584

E
n

tr
o
p

y

ISCAS Sequential Benchmark Circuits

Tdiff Torder Treversal

0

1

2

3

4

5

6

s5378 s9234 s15850 s13207 s38584

E
n

tr
o
p

y

ISCAS Sequential Benchmark Circuits

Tdiff Torder Treversal

68

5.4. Summary

Trace signal selection is critical to increase the observable window during the debug

phase. We presented a novel compression technique for trace buffers that can

significantly enhance this observable window. Source transformations proposed in our

work can improve the effectiveness of FDR codes with very little extra hardware

overhead and help achieve close to theoretical maximum compression. Results indicate

that our approach gives a better compression percentage and diagnostic capability than a

state-of-the-art implementation of LZ77. Moreover, the area overhead of our trace

compressor is significantly less compared to dictionary-based codes.

69

Chapter 6

Conclusion and Future Work

In this thesis, we have addressed an important challenge being faced by the

semiconductor industry today - efficient and fast identification of root cause of silicon

failures. This is very critical due to the increasing demand for shorter time-to-market. In-

system silicon debug techniques like trace buffer-based technique are normally used to

discover these undetected bugs and defects. However, due to limited availability of the

trace buffer memory, it is important to use the available resource in the most efficient

manner. In Chapter 3, we proposed an unchecked implication-based technique to drive

the selection of critical trace signals which restore the maximum number of untraced

signals. We also introduced an algorithm which uses a SAT-based multi-node implication

engine to restore the values of untraced signals across multiple time-frames. We showed

that our method is able to achieve a better restoration percentage than previous

techniques. In Chapter 4, we proposed a new multiplexer-based trace signal

interconnection scheme. We proposed a new heuristic based on implication-based

correlation to intelligently select two sets of signals to be traced in even and odd time

frames respectively and also introduced a state restoration algorithm for this scheme. We

also proposed a SAT-based greedy heuristic to prune the selected trace signal list further

to take into account the corner cases where multi-node implications play a major role.

Experimental results showed that this new scheme is able to achieve a better restoration

percentage than previous techniques. In Chapter 5, we proposed a compression scheme

using source transformation techniques over Frequency-Directed Run-Length (FDR)

codes in order to increase the capacity of the trace buffer. Source transformation reduces

the entropy of the data to be compressed and hence, improves the compression

percentage. Experimental results showed that the proposed method gives a better

compression percentage compared to dictionary-based techniques. We also implemented

the method on hardware and observed that the area overhead of the compressor is less

compared to dictionary-based techniques and yields up to 3X improvement in the

diagnostic capability.

70

Future Work:

The multiplexed trace signal selection scheme could be enhanced by considering multi-

node implications during the formation of the implication-based correlation model itself.

This could be an efficient alternative to the technique proposed in Chapter 4 in which a

greedy heuristic was used to consider multi-node implications. Another scope of future

work could be to consider the use of source transformation functions proposed in Chapter

5 over enhanced FDR codes [53] for trace compression wherein both run-lengths of 1s as

well as 0s can be considered instead of only considering run-lengths of 0s.

71

Bibliography

[1] X. Liu and Qiang Xu, “Trace Signal Selection for Visibility Enhancement in Post-

Silicon Validation”, Proc. IEEE DATE, 2009.

[2] H. Ko and N. Nicolici, “Algorithms for State Restoration and Trace-Signal Selection

for Data Acquisition in Silicon Debug”, Proc. IEEE, 2009, pp. 285-297

[3] H. Ko and N. Nicolici, “Automated Trace Signals Identification and State Restoration

for Improving Observability in Post-Silicon Validation”, Proc. IEEE DATE, 2008,

pp. 1298-1303

[4] H. Ko, Adam B. Kinsman & N. Nicolici, “Distributed Embedded Logic Analysis for

Post-Silicon Validation of SOCs”, Proc. IEEE Int. Test Conf., 2008, pp. 755-763.

[5] V. Vimjam, et al., “Using Scan-Dump Values to Improve Functional-Diagnosis

Methodology”, Proc. IEEE VTS, 2007, pp. 231-238

[6] P. Dahlgren, P. Dickinson, and I. Parulkar, “Latch divergency in microprocessor

failure analysis”, Proc. IEEE Int. Test Conf., 2003, pp. 755-763.

[7] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon debug based on

failure propagation tracing”, Proc. IEEE Int. Test Conf., 2005, pp. 284-293.

[8] M. Abramovici, et al, “A Reconfigurable design-for-debug infrastructure for SoCs”,

Proc. IEEE/ACM Des. Autom. Conf., 2006, pp. 7-12.

[9] K. Morris, “On-chip debugging-Built-in logic analyzers on your FPGA”, J. FPGA

Structured ASIC, vol. 2, no. 3, Jan. 2004.

[10] M. Riley and M. Genden, “Cell broadband engine debugging for unknown events”,

IEEE Des. & Test Comput., vol. 24, no. 5, pp. 486-493, Sep./Oct. 2007.

[11] R. Leatherman and N. Stollon, “An embedding debugging architecture for SOCs”,

IEEE Potentials, vol. 24, no. 1, pp. 12-16, Feb./Mar. 2005.

[12] A. Mayer, H. Siebert, and K. McDonald-Maier, “Boosting debugging support for

complex systems on chip”, Computer, vol. 40, no. 4, pp. 76-81, Apr. 2007.

[13] M.Burtscher, et al, “The VPC trace-compression algorithms”, IEEE Trans. Comput.,

vol. 54, no. 11, pp.1329-1344, Nov. 2005.

[14] E. Anis and N. Nicolici, “On using lossless compression of debug data in embedded

logic analysis”, in Proc. IEEE Int. Test Conf., 2007, pp. 1-10.

72

[15] E. Anis and N. Nicolici, “Low cost debug architecture using lossy compression for

silicon debug”, in Proc. IEEE/ACM Des. Autom. Test Eur., 2007, pp. 1-6.

[16] J. Zhao, J. Newquist and J. Patel, “A graph traversal based framework for sequential

logic implication with an application to c-cycle redundancy identification”, Proc.

VLSI Design Conf., 2001, pp. 163-169.

[17] M. Abramovici and Y. Hsu, “A New Approach to Silicon Debug”, in IEEE

International Silicon Debug and Diagnosis Workshop (SDD), November 2005.

[18] M. Abramovici, E. J. Marinissen, M. Ricchetti, and B. West, “Suggested

Terminology Standard for Silicon Debug and Diagnosis”, in IEEE International

Silicon Debug and Diagnosis Workshop (SDD), November 2005.

[19] B. Vermeulen, et al., “Core-Based Scan Architecture for Silicon Debug” in

Proceedings IEEE International Test Conference (ITC), pages 638-647, 2002.

[20] R. Desplats, et al., “Fault Localization Using Time Resolved Photon Emission and

STIL Waveforms. In Proceedings IEEE International Test Conference (ITC), pages

254-263, October 2003.

[21] B. Vermeulen, M. Urifianto, and S. Goel, “Automatic Generation of Breakpoint

Hardware for Silicon Debug”, in Proceedings ACM/IEEE Design Automation

Conference (DAC), pages 514-517, June 2004.

[22] C. MacNamee and D. Heffernan, “Emerging On-chip Debugging Techniques for

Real-Time Embedded Systems”, IEE Computing and Control Engineering Journal,

11(6):295-303, December 2000.

[23] A. Hopkins, et al., “Debug Support Strategy for Systems-on-Chips with Multiple

Processor Cores”, IEEE Transactions on Computers, 55(2):174-184, February 2006.

[24] Y. Huang and W. T. Cheng, “Using Embedded Infrastructure IP for SOC Post-Silicon

Verification” in Proceedings ACM/IEEE Design Automation Conference (DAC),

pages 674-677, June 2003.

[25] X. Liu and Q. Xu, “Interconnection Fabric Design for Tracing Signals in Post-Silicon

Validation”, Proc. DAC, 2009, pp. 352-357.

[26] M. Abramovici, “In-System Silicon Validation and Debug”, IEEE Design and Test of

Computers, 25(3):216-223, May-June 2008.

73

[27] H. F. Ko, A. B. Kinsman, and N. Nicolici, “Distributed Embedded Logic Analysis for

Post-Silicon Validation of SOCs”, in Proc. IEEE International Test Conference

(ITC), paper 16.3, 2008.

[28] B. Vermeulen, S. Oostdijk, and F. Bouwman, “Test and Debug Strategy of the

PNX8525 Nexperia
TM

 Digital Video Platform System Chip”, in Proc. IEEE

International Test Conference (ITC), pp. 121-130, 2001.

[29] B. Vermeulen and S. K. Goel, “Design for Debug: Catching Design Errors in Digital

Chips”, IEEE Design and Test of Computers, 19(3):37-45, May 2002.

[30] C. Kao, et al.,” A Hardware Approach to Real-Time Program Trace Compression for

Embedded Processors”, in Proc. IEEE Transactions on Circuits and Systems, 2007,

pp. 530-543.

[31] A. Chandra, et al., “Test Data Compression for System-on-a-Chip Using Golomb

Codes”, in Proc. IEEE VLSI Test Symp, 2000, pp. 113-120.

[32] A. Chandra, and K. Chakrabarty, “Frequency-Directed Run-Length (FDR) Codes

with Application to System-on-a-Chip Test Data Compression”, in Proc. IEEE VLSI

Test Symposium, 2001, pp. 42-47.

[33] L.Wang, C.W.Wu and X.Wen, VLSI Test Principles and Architectures, San

Fransisco: Morgan Kaufmann Publishers, 2006.

[34] M. Abramovici, M. Breuer, A. Friedman, Digital Systems Testing and Testable

Design; New York: Computer Science Press, (W. H. Freeman and Co.), 1990.

[35] Samir Palnitkar, Verilog HDL: A Guide to Digital Design Synthesis, Prentice Hall

PTR, Upper Saddle River, N. J., 2003.

[36] Balakrishnan and Touba, “Relating Entropy Theory to Test Data Compression”, in

Proc. European Test Symposium, 2004, pp. 94-99.

[37] A. Chandra, et al., “How effective are compression codes for reducing test data

volume?”, in Proc. IEEE VLSI Test Symposium, 2002, pp. 91-96.

[38] Burrows M and Wheeler D, “A block sorting lossless data compression algorithm”,

Technical Report 124, Digital Equipment Corporation, 1994.

[39] C. Kao, et al., “A Hardware Approach to Real-Time Program Trace Compression for

Embedded Processors”, in Proc. IEEE Transactions on Circuits and Systems, 2007,

pp. 530-543.

74

[40] S. Golomb, “Run-Length Encoding”, in Proc. IEEE Transactions on Information

Theory, vol. IT-12, pp. 399-401, 1966.

[41] L. Liu, et al., “Design and Hardware Architectures for Dynamic Huffman Coding”, in

Proc. IEE Comp. & Digital Techniques, 1995, pp. 411-418.

[42] G. Manzini, “An Analysis of the Burrows-Wheeler Transform”, Journal of the ACM,

Vol. 48, No. 3, May 2001.

[43] J. Zhao, et al., “Static Logic Implication with Application to Redundancy

Identification”, 15th IEEE VLSI Test Symposium (VTS'97), 1997, pp. 288.

[44] J. P. Silva and K. A. Sakallah, “Boolean Satisfiability in Electronics Design

Automation”, in Proc. ACM/IEEE DAC, 2000, pp. 675-680.

[45] J. P. Silva and K. A. Sakallah, “GRASP: A Search Algorithm for Propositional

Satisfiability”,in Proc. IEEE Transactions on Computers, 1999, vol. 48, pp. 506-521.

[46] G. J. Van Rootselaar and B. Vermeulen, “Silicon Debug: Scan chains alone are not

enough”, Iin Proc. International Test Conference, 28-30 Sept. 1999, pp. 892-902.

[47] D. Josephson and B. Gottlieb, “The crazy mixed up world of silicon debug [IC

validation]”, in Proc. IEEE Custom Integrated Circuits Conf., 2004, pp. 665-670.

[48] IEEE Industry Standards and Technology Organization. The Nexus 5001 Forum

Standard for a Global Embedded Procesor Debug Interface.

http://www.nexus5001.org, 2003.

[49] D. Josephson, “The Manic Depression of Microprocessor Debug”, In Proc. IEEE

International Test Conference (ITC), pp. 657-663, October 2002.

[50] J. Solden and R. Anderson, “IC Failure Analysis: Techniques and Tools for Quality

and Reliability Improvement”, Proceedings of the IEEE, 81(5):703-715, 1993.

[51] D. Vallett, “IC Failure Analysis: The importance of Test and Diagnostics”, IEEE

Design and Test of Computers, 14(4):76-82, July 1997.

[52] Vermeulen, et al,”Overview of Debug Standardization Activities”, in Proc. IEEE

Design and Test of Computers, 2008, pp. 258-267.

[53] S. Hellebrand, et al, “Alternating Run-Length Coding- A Technique for Improved

Test Data Compression”, Handouts 3
rd

 IEEE International Workshop on Test

Resource Partitioning, 2002.

