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Exploring Abstraction Techniques for Scalable Bit-Precise Verification of
Embedded Software

Nannan He

(ABSTRACT)

Conventional testing has become inadequate to satisfy rigorous reliability requirements of embedded

software that is playing an increasingly important role in many safety critical applications. Automatic

formal verification is a viable avenue for ensuring the reliability of such software. Recently, more

and more formal verification techniques have begun modelinga non-Boolean data variable as a bit-

vector with bounded width (i.e. a vector of multiple bits like 32- or 64- bits) to implement bit-precise

verification. One major challenge in the scalable application of such bit-precise verification on real-

world embedded software is that the state space for verification can be intractably large.

In this dissertation, several abstraction techniques are explored to deal with this scalability challenge

in the bit-precise verification of embedded software. First, we propose a tight integration of program

slicing, which is an important static program analysis technique, with bounded model checking (BMC).

While many software verification tools apply program slicing as a separate preprocessing step, we in-

tegrate slicing operations into our model construction andreduction process and enhance them with

compilation optimization techniques to compute accurate program slices. We also apply a proof-based

abstraction-refinement framework to further remove those program segments irrelevant to the property

being verified. Next, we present a method of using symbolic simulation for scalable formal verifica-

tion. The simulation involves distinguishing X as symbolicvalues to abstract concrete variables’ values.

Also, the method embeds this symbolic simulation in a counterexample-guided abstraction-refinement

framework to automatically construct and verify an abstract model, which has a smaller state space than

that of the original concrete program.

This dissertation also presents our efforts on using two common testability metrics —controllabil-

ity metric (CM) and observability metric(OM) — as the high-level structural guidance for scalable

bit-precise verification. A new abstraction approach is proposed based on the concept of under- and



over-approximation to efficiently solve bit-vector formulas generated from embedded software verifica-

tion instances. These instances include both complicated arithmetic computations and intensive control

structures. Our approach applies CM and OM to assist the abstraction refinement procedure in two

ways: (1) it uses CM and OM to guide the construction of a simple under-approximate model, which

includes only a subset of execution paths in a verification instance, so that a counterexample that refutes

the instance can be obtained with reduced effort, and (2) in order to reduce the cost of using proof-based

refinement alone, it uses OM heuristics to guide the restoration of additional verification-relevant for-

mula constraints with low computational cost for refinement. Experiments show a significant reduction

of the solving time compared to state-of-the-art solvers for the bit-vector arithmetic.

This dissertation finally proposes an efficient algorithm todiscover non-uniform encoding widthsWe of

individual variables in the verification model, which may besmaller than their original modeling width

but sufficient for the verification. Our algorithm distinguishes itself from existing approaches in that

it is path-oriented; it takes advantage of CM and OM values toguide the computation of the initial,

non-uniform encoding widths, and the effective adjustmentof these widths along different paths, until

the property is verified. It can restrict the search from those paths that are deemed less favorable or

have been searched in previous steps, thus simplifying the problem. Experiments demonstrate that our

algorithm can significantly speed up the verification especially in searching for a counterexample that

violates the property under verification.
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Chapter 1

Introduction

Embedded software is playing an increasingly important role in many safety-critical or mission-critical

applications. Since an error may potentially cause disastrous results or severe economic consequences

in these applications, the correctness of the software mustbe rigorously tested before it is put into oper-

ation. Statistics show that a large fraction of resources isdevoted to guarantee the software correctness

in most software development practices.

Software verification and validation (V & V) aims to assure that the software correctly implements all

the requirements. Technically speaking, software verification checks that the software product produced

after each development step satisfies the given design specifications. It has two main aspects: (1) the

software does what it is supposed to do, and (2) the software does not do what it is not supposed to

do. Both of these aspects are important and have become greatconcerns in the software development.

Software validation checks that the design specification meets the intended user requirements. Operating

under the assumption that the specification already matchesthe user requirements, we focus on the

software verification issues in this dissertation.

1
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1.1 Software Verification

1.1.1 Overview

Testing and formal verification are two fundamental software verification approaches. Generally speak-

ing, testing is an attempt to show the presence of bugs in the software, while formal verification primarily

aims to prove the absence of bugs with respect to specified properties. As testing and formal verification

each has its own benefits and drawbacks, the selection of approaches in practice depends on many fac-

tors, such as the required degree of correctness and the available verification resources in the software

development.

Testing is still the mainstream approach in software verification practices to detect bugs, and demonstrate

confidence in the software quality before the product is delivered, mainly due to its automation capability

and simplicity. Many techniques have been established for software testing [12]. Based on whether or

not the internal information of the software is used, they can be basically classified into two groups:

black-box testing and white-box testing. Black-box testing only takes the external information such

as design requirements of the software to generate test cases without considering any internal details.

It is primarily applied in the large test scope; for example,testing the functional or non-functional

requirements of the entire software system. White-box testing derives tests mainly from the internal

perspective of the software, such as the program structure in the implementation. It is typically used to

test small-scale program units at the early testing phases,such as unit testing.

One of the main advantages of testing techniques is the ease of use. A test practice is done simply

to apply an input stimulus to initiate the program execution, and compare whether the actual outputs

equal to the expected ones. If so, we say the software passes the test; otherwise, the errors are reported

for debugging. In addition, testing can be independent fromthe complex implementation details as in

black-box testing. This feature also makes testing the onlyverification choice when the source code is

not available. Furthermore, when encountering verification resource constraints such as memory or ex-

ecution time, testing can still provide some coverage, while formal verification may not be successfully

conducted to report meaningful coverage numbers. However,automatic generation of high quality test

cases and the accuracy of coverage metrics for measuring testing quality are still two very challenging
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issues of software testing. Moreover, since it is rarely able to achieve one hundred percent input cover-

age, software testing is inadequate to guarantee program correctness in the reliability-critical embedded

applications, even if the program passes all the available tests.

1.1.2 Formal Verification

Formal verification conducts an exploration of all the possible behaviors based on the formal models

of the program and the formal specification of the intended requirements. The main advantage of for-

mal verification is the completeness it offers in terms of thespecific properties, which can eliminate

the notion of inadequate coverage that conventional testing faces. This is a very attractive feature in

reliability-critical embedded applications. Furthermore, some automatic formal verification methods

like model checking can be used to detect hard corner-case bugs, which are very difficult to be detected

by testing alone. With the significant advances in automaticreasoning and the computing capability

of modern computers, formal verification is no longer only ofacademic interest. However, the limited

scalability is still the major problem of most formal methods when dealing with practical applications,

and so they are often used to verify the small portions of code, but cannot directly handle the large scale

and complex programs in the real-world.

Several formal verification techniques have been proposed that can be basically classified into two main

categories. One is deductive verification such as theorem proving; the other is model checking. The

basic idea of deductive verification is to use a set of axioms or mathematical rules to prove program

correctness. Although some tools have been developed to aidthe correct use of axioms and proof rules,

deductive verification is still hard to be automated and is anextremely time-consuming process that can

be performed only by experts with considerable experience in logical reasoning and mathematics. This

makes deductive approaches less attractive in practice.

On the other hand, model checking is used to verify the specified property of the finite state model

defined by the software, through an explicit or implicit enumeration of all the reachable states and

behaviors. It attempts to assure the correctness of the software, as it has shown the capability of finding

subtle bugs, and formally verifying the correctness of complex hardware designs, with respect to a target

reliability property. Model checking can be fully automatic without requiring the users to be experts.
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Furthermore, when the design being verified fails to satisfya given specification, counterexamples are

generated, which show the erroneous behaviors of the design. This information can be very valuable for

debugging. Model checking has been successfully applied tothe formal verification of the real-world

hardware designs in industry.

Figure 1.1 compares the verification efforts and assurance capabilities among several verification tech-

niques: testing, model checking, and deductive verification. From the aspect of verification efforts,

testing is the easiest approach, while deductive verification is the hardest one as it can not be fully auto-

mated. Model checking lies in between, mainly because some model construction processes still need

the manual assistance, although the checking can be automatic. From the aspect of assurance capabili-

ties, deductive verification and model checking as formal methods can provide the complete guarantee

of program correctness. Figure 1.1 shows that deductive verification has the highest assurance capabili-

ties since it can deal with both finite and infinite state systems, while model checking is restricted to the

finite ones. In general, testing can only provide the partialassurance of program correctness, since the

application of exhaustive stimuli is often prohibitive.

Effort

Formal Methods

Testing Model 

Checking

Deductive 

Verification

Assurance

Figure 1.1: Effort versus assurance capability

Data modeling, as a very important issue in formal verification [19], can be conducted in different

manners. One data model is the bit-level modeling where eachbit is represented individually. It is the

basis of most computer aided verification. Although this bit-level modeling is precise, it may make it

hard to extract the functionality, due to the excessive details that come with individual bits. And such

modeling has very limited scalability. Another form of datamodeling is using symbolic words, where
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each word can have an arbitrary value like unbounded integers. In the past, this approach was used in

the software verification to model program variables. But this data modeling is not precise, as it does not

allow for the detection of arithmetic underflow and overflow bugs, which frequently occur in embedded

software. Moreover, the existing theorem provers based on the logics with unbounded word can only

provide the limited reasoning for real program properties,since they mainly target on mathematical

theories.

Recently, modeling data variables asbit-vectorswith bounded width has shown some unique benefits.

Bounded data modeling is capable of capturing precisely thesemantics of the verification instances

constrained by a physical word-size on a computer. With the advances in propositional and bit-vector

arithmetic reasoning, the formal verification with this data modeling has the potential to deal with large

problems. Many existing software model checking tools (e.g., CBMC [35], SATABS [36], Saturn [115],

F-SOFT [70]) and hardware design validation techniques (e.g., [66,82]) have taken the bit-vector mod-

eling of program variables. We also adopt it in our software verification work. In this dissertation, we

define the termbit-precise verification, whichspecifically represents verification techniques using such

bit-vectors based data modeling.

1.2 Contributions of this Dissertation

With the successful application of model checking to hardware designs, there is a growing interest in

applying automatic formal techniques to verify the embedded software programs, whose safety and

reliability are critical. However, the limited scalability is still the major problem of formal techniques,

and a lot of research has been invested in alleviating this problem. In this dissertation, several efficient

abstraction techniques are explored for scalable bit-precise verification of embedded software.

1.2.1 Scalable BMC via Integration of Program Slicing and Proof-based Localization

Abstraction Refinement

Since the properties under verification usually depend on a small portion of a program, we propose an

approach to accurately and efficiently find this portion withlow computational cost toward the goal
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of enhancing the scalability of software BMC. The proposed approach tightly integrates an aggressive

static program slicing approach in the software verification model construction and reduction process.

Program slicing is an important program analysis techniquethat can reduce the entire program to seg-

ments relevant to a particular computation. This allows foreffective removal of those program segments

that arecomputationally irrelevantto the property, so as to significantly reduce the model complexity.

Moreover, our slicing operations naturally combine the compilation optimization techniques, such as

constant propagation, to compute the accurate program slice.

We further explore a proof-based localization abstraction-refinement strategy, using under- and over- ap-

proximation of our software verification model to abstract the program segments, which areverification

relevantto the property for scalable BMC. A heuristics method by program analysis is also proposed to

effectively refine the under-approximation in each iteration.

1.2.2 BMC via Symbolic Simulation

We also explore the potential of combining symbolic simulation with localization abstraction [78] for

scalable formal verification. The proposed approach applies distinguishing X as symbolic values to

abstract the concrete variables’ values, so that a limited number of identified symbolic input vectors can

cover the complete input space. In order to reduce the verification cost and ease the identification of

symbolic input vectors, symbolic simulation is used in a counterexample-guided abstraction-refinement

framework to automatically construct an abstract model. This model includes a subset of property-

relevant program constraints, which can be more easily verified than the original program. The property-

relevance of program constraints is automatically determined during the iterative abstraction refinement

procedure.

1.2.3 Testability-guided Abstraction to Solving Bit-vector Arithmetic

We investigate two testability metrics — controllability metric (CM) and observability metric (OM)

— as the high-level structural guidance for the scalable bit-precise verification. To speed up solving

bit-vector formulas generated from control-dominated embedded software verification instances, A new
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abstraction approach is proposed based on the concept of under- and over-approximation. We also

design a new CM and OM computation method and apply CM and OM toefficiently guide the proposed

abstraction procedure. The under-approximate model is built by enforcing constant constraints to a

small set of single-bit variables that control the branch selection of If-Then-Else (ITE) nodes. This

restricts the search space to only a subset of formula constraints. With the guidance of CM and OM,

the proposed approach can quickly find a satisfying solutionon the easily controllable portion of the

formula if a solution exists.

Our approach computes the over-approximate abstraction via the learning from an UNSAT proof of the

under-approximate model. It also restores additional verification relevant constraints according to the

OM metric to reduce the refinement cost by only using the UNSATproof. As a result, an abstract model

that is accurate enough to the verification can be built quickly, long before all partitions are enumerated.

To start a new refinement iteration, the satisfiable assignment (solution) of the current over-approximate

abstraction is used to guide the construction of a new under-approximate model with an unvisited portion

in the formula. With the proposed approach, the verificationcan be conducted incrementally due to its

partition-based feature.

1.2.4 A Reduced Bit-vector Encoding Width Computation Algorithm

We finally propose an efficient algorithm to iteratively discover non-uniform encoding widthsWe of vari-

ables in the verification model, which may be smaller than their original modeling widths, but sufficient

to the verification. Different from existing approaches [20], the proposed algorithm is path-oriented in

that it takes advantage of the CM and OM values to guide the computation of the encoding widths in

three ways: (1) it computes initial non-uniformWe of variables on different paths; (2) it enlarges theWe

of the easily-controllable variables first in the encoding width adjustment steps (if necessary); (3) it sets

We to zero for some single-bit variables that determine the path(s) selection so as to concentrate search-

ing only on a subset of paths. Our approach is capable of restricting the search from those paths that

are deemed less favorable or have been checked in earlier steps, thus greatly simplifying the verification

problem.
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1.3 Organization of the Dissertation

The remainder of the dissertation is organized as follows. The next chapter describes the background of

program representation, SAT problem, software model checking, especially SAT-based bounded model

checking and abstraction techniques. The details behind the proposed verification approach of inte-

grating program slicing with the proof-based abstraction for scalable BMC are presented in Chapter

3. Chapter 4 discusses our proposed verification approach ofcombining symbolic simulation with

counterexample-based weakening abstraction for formallyverifying the embedded software. Chapter 5

describes our new testability guided abstraction technique for speeding up solving bit-vector arithmetic

instances derived from the verification of the embedded software. Our path-oriented bit-vector encod-

ing width computation algorithm is presented in Chapter 6. Finally, the conclusion and future work are

presented in Chapter 7.



Chapter 2

Background

In this chapter, we provide the necessary background knowledge related to our work. We first give

several definitions about the program representation used throughout this dissertation. Then, in Section

2.2, we introduce some basics about the satisfiability problem. In Section 2.3, we review the SAT-based

bounded model checking technique, in particular, its application to software formal verification. Finally,

we introduce some automatic abstraction techniques in Section 2.4.

2.1 Definitions of Program Representation

Definition 1. (digraph). A directed graph, or digraph,G consists of a nonempty set of nodesN, and a

set of ordered pairs between distinct nodesE (E ⊆ N×N). Each ordered pair is called a directed edge

or an arc.

Definition2. (basic block).A Basic Block (BB) contains one or more program statements inthe straight-

line sequence with a conditional or unconditionalgotostatement only at the end.

Definition 3. (guard). The guard of a BB is the conjunction of a set of conditional predicates, which

must be satisfied in order to enter this BB.

Definition 4. (control-flow graph).A Control Flow GraphGCF is a digraph representation of the pro-

gram, where each node represents a BB, and each directed edgerepresents the execution flow from one

BB to another.

9
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Definition5. (branch-merge).In a GCF, a node with more than one successor is called Branch; a node

with more than one predecessor inGCF is called Merge.

1.  x = x + y;

2.  if(x != 1) {

3.      x = 2;

4.      if(z) 

5.           ++;

     }

6.  assert(x <= 3);

BB0: x = x+y;

      if(x != 1) goto BB1; 

      else goto BB3;

BB1:  = 2;

      if(  != 0) goto BB2;

      else goto BB3;

BB2:  =  + 1;

      goto BB3;

BB3: assert(  <= 3);(a) Example code in C

(b) GCF of code in (a)

Figure 2.1: An example ofGCF

Figure 2.1 shows aGCF example, where each node in it represents a labeled BB. The nodes bounded by

the dot-dash border lines (e.g.,BB0 andBB1) are Branches; for those bounded by the dashed border lines

(e.g.,BB3) are Merges. All nodes are connected by the directed edges, which represent the control flow

relationships among the corresponding BBs. The guards ofBB0, BB1 andBB2 are respectivelyg(BB0) =

TRUE, which meansBB0 is always executed;g(BB1) = (x! = 1), which is actually the conditional

predicate in line 2;g(BB2) = ((x! = 1)∧ (z! = 0)), which is the conjunction of conditional predicates in

line 2 and line 4.

Definition6. (SSA form).A Static Single Assignment (SSA) form [39] is an intermediate representation

of a program, in which every variable is replicated in different versions, and each variable version is

statically defined exactly once. (Onestatic definition may be in a loop resulting in the variable being

dynamically defined many times during execution.)

As an intermediate representation of the program widely used in the modern compiler designs, the SSA

form enhances various compiler optimizations such as dead code elimination and partial redundancy

elimination. This is mainly because the use-definition chain of each variable becomes explicit in this

form. Figure 2.2 presents a small example code and its SSA form. In Figure 2.2(b), to find all uses
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1.   x = a + b;

2.   z = x + c;

3.   y = x + y;

4.   x = f(y);

1.  x1 = a1 + b1;

2.  z1 = x1 + c1;

3.  y2 = x1 + y1;

4.  x2 = f(y2);

(a) Example code in C (b) SSA form of code in (a)

Figure 2.2: An example of SSA form

of the variablex defined at line 1 before it is re-defined, we simply need to identify the occurrences of

the variable versionx1, which are in line 2 and 3. Furthermore, since the value of each variable version

never changes (not considering those in loops), reasoning about variables in this form is significantly

simplified compared to that in the original program. This feature also greatly facilitates the verification

task that we will explain in later chapters.

Definition7. (Phi function).The basic operation of aPhi function ofx formulated asφ(x1, . . . ,xn), is

to select one of all reachable definition versions(x1, . . . ,xn) of x at the location of thePhi function.

Before Merge nodes in an SSA form, special statements usingPhi functions are added to define new

versions of variables, for example the statementxn+1 = φ(x1, . . . ,xn) defining a new versionxn+1 of a

variablex.

Definition 8. (SSA-transformed CFG).An SSA-transformed Control Flow GraphGSSA
CF is a GCF aug-

mented withPhi function nodes in front of Merges. Each of these nodes includes one or more special

statements usingPhi functions, if more than one definition version of the variables can reach the node.

In addition, all variables in each BB are in the SSA form.

In Figure 2.3, the subscripts distinguish different variable versions in the SSA form. In Figure 2.3(a),

the versionx5 is defined by aPhi function parameterized with all three reachable versionsxi (i ∈ I =

{2,3,4}) at that location, which are listed by their definition order.The number in the parentheses be-

side each of three versions indicates the index of the BB, in which the version is defined. Eachxi has

a different definition condition (Def-C). Its definition is executed only if its Def-C is satisfied.x5 is as-

signed to the last versionxk (k∈ I ) whose Def-C isTRUEduring the actual execution. Correspondingly,

the Phi node with the dotted border line, which includes thisPhi function is added before the Merge
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1.  x2 = x1 + y1;

2.  if(x2 != 1) {

3.       x3 = 2;

4.       if(z1) 

5.            =  + 1;

     }

6.  # x5 =Ȉ< x2(0), x3(1), x4(2) >

7.  assert(x5 <= 3);

BB0: x2 = x1+y1;

      if(x2 != 1) goto BB1; 

      else goto BB3;

BB1:  = 2;

      if(  != 0) goto BB2;

      else goto BB3;

BB2:  =  + 1;

      goto BB3;

# x5 =Ȉ< x2(0), x3(1), x4(2) >
(a) Example code in SSA form

(b) GCF
SSA of code in (a)

BB3: assert(  <= 3);

Figure 2.3: An example ofGSSA
CF

nodeBB3 in theGSSA
CF of Figure 2.3(b).

2.2 Satisfiability Problem

The satisfiability problem (SAT) is one of the most studied NP-Complete problems because of its sig-

nificance in theoretical computer science and practical applications. In this section, we begin with some

basic definitions related to SAT, before diving into a discussion of solving this problem.

Definition 9. (First-order logic). First-order logic [62, 68, 77] is defined by a formal mathematical

language, whose basic elements include:

1. Logical symbols:

• Parentheses: (, )

• Quantifiers:∀ (for all), ∃ (there exists)

• Boolean connectives:∧ (and),∨ (or),¬ (not)
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• Constant Booleans:TRUE, FALSE

• Equality: =

2. Non-logic symbols:

• Functions symbols: a function symbol has an associated arity, a non-negative integer that

indicates the number of arguments required by the function.

• Constants: a special case of function whose arity is zero.

• Relation symbols (Predicates):≤,≥,<,>, etc.

3. Variables

Terms and formulas consisting of these elements can be constructed by following some fixed,well-

formednessrules, which are referred to [62,68].

Definition10. (term).A term is recursively defined as

• a variable

• application of function symbol over terms

Definition11. (formula).A formula is recursively defined as

• TRUE,FALSE

• equality between terms or application of relation symbol toterms

• if θ is a formula, so is¬θ

• if θ andφ are formulas, so areθ∧φ andθ∨φ

Definition12. (atomic formula).It is a formula constructed by applying a relation symbol over terms.

The formulaTRUEandFALSEare also atomic.

Definition13. (literal). A literal is an atomic formula in either its positive or negated form.

Definition 14. (quantifier-free formula).It is a formula constructed by only literals and Boolean con-

nectives.
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(b) Tree structure of F

l1 l2 l3

 F = (l1 v l2) ! l3 

where {l1: d == (a - b), l2: d > c, l3: c == (a * b)}

literals as leaf nodes

Boolean structure of F

(a) An example of First-order Formula F

Figure 2.4: An example of FOL formula

The formulas used in this dissertation are the quantifier-free first-order formulas. Every such formula

can be represented as a tree structure, whose leaves are literals, and whose internal nodes are the Boolean

connectives. An example quantifier-free formulaF is given in Figure 2.4.F consists of three literals and

two Boolean connectives as shown in Figure 2.4(a). The threeliterals are the leaves of the tree structure

of F as in Figure 2.4(b).

Definition 15. (assignment).For a formulaF, an assignment ofF from some domain D is a value

mappingF ’s variables to elements in D.

Definition16. (satisfiability). A formula is satisfiable (SAT) if there exists an assignment under which

the formula evaluates toTRUE. If no such assignment exists, the formula is unsatisfiable (UNSAT).

Definition17. (validity). A formula is valid if it evaluates toTRUEunder all assignments.

Definition18. (decision problem).It is a question with yes-or-no answer, which is the validityof a given

first-order formula of theoryT.

Definition19. (decision procedure).A function for solving the decision problem with respect to every

formula of theoryT is defined as a decision procedure for the theoryT.
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Technically speaking, several theories can be considered as first-order logic theories [77], such as propo-

sitional logic theory, equality theory, theory of bit-vectors, theory of arrays, etc. In the following two

subsections, we mainly introduce the SAT problem in the theory of propositional logic and fixed-width

bit-vector arithmetic, which are mostly related in our work.

2.2.1 Propositional Logic

Propositional logic is the basis of automated reasoning. Itis widely used in various fields that include

planning problems in artificial intelligence, circuit design and verification, etc.

Definition 20. (Propositional formula).The formula in propositional logic is also called the Boolean

formula, which is defined by the following grammars:

• formula : formula∧ formula | formula∨ formula | ¬ formula | (formula) | atom

• atom: Boolean variable| TRUE | FALSE

Definition 21. (Conjunction). Conjunction is a AND logic operation between literals (or atoms) that

results in a value ofTRUE if and only if all the literals (or atoms) in the conjunction areTRUE.

Definition22. (Disjunction).Disjunction is a OR logic operation between literals (or atoms) that results

in a value ofTRUE if and only if any literal (or atom) in the disjunction isTRUE.

Definition23. (CNF).Conjunctive Normal Form (CNF) is a conjunction of clauses, where each clause

is a disjunction of literals.

Here is an example of a Boolean formula in the CNF format:f = (ā∨b)∧(a∨b∨c∨ d̄)∧(b∨c∨d). In

this simple formula,f is satisfiable. One possible satisfying assignment is:a= TRUE,b= FALSE,c=

TRUE,d = FALSE. Various verification problems are represented as or transformed to the circuits that

are built up with logic gates. The circuits must be translated to the CNF formula first, in order to utilize

SAT solvers for verification. SAT solvers are the tools for solving the SAT problem in the propositional

logic.

Figure 2.5 gives the CNF translation of four common logic gates.
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(~z + x)(~z + y)(z + ~x + ~y)

(z + ~x)(z + ~y)(~z + x + y)(~z + x + y)(~z + ~x + ~y)

(z + ~x + y)(z + x + ~y)

(z + x)(~z + ~x)

Figure 2.5: CNF translation of basic gates.

One popular approach to systematically solve a SAT problem in propositional logic is based on a branch-

and-bound search algorithm called the Davis Putnam Logemann Loveland (DPLL) algorithm [41].

DPLL is the basis for most state-of-the-art SAT solvers. It is a complete, backtracking-based algo-

rithm, whose memory cost is linear to the number of Boolean variables in the formula, but the solving

time can still be exponential. The basic DPLL algorithm is composed of three major steps:

1. Decide the branching variable and assign a value (eitherTRUEor FALSE) to it.

2. Propagate the impact of the decision variable being assigned by invoking more implied assign-

ments. For instance, in the previous example formulaf , after a is decided to beTRUE, b is

implied FALSEby the first clause.

3. If a conflict occurs in which at least one clause has all its literals assignedFALSE, backtrack to

undo the decisions made so far to resolve the conflict.

This algorithm was augmented with the conflict-driven-learning proposed in [83] to prune the search

space. The basic idea of the conflict-driven learning is to record the variable value combination in the

decision history, which is responsible for the conflict. Aconflict clauseis added to the formula to avoid

the unnecessary value assignments that will definitely cause a similar conflict in the future. Figure 2.6

gives the pseudo code of the DPLL algorithm with the conflict-driven learning.

In the following, we briefly introduce some basic concepts about the unsatisfiable core extraction from

an unsatisfiable formula, since we use this core in our verification work.
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1.  while(True) do

           /* choose a branching variable */

2.     if (Decide_Next_Branch_Variable()) then

              /* propagate the constraints of the chosen branching variable*/ 

3.         while (Deduce()  == Conflict)  do

                 /* learn conflict reason and return a backtracking level to resolve conflict*/ 

4.              level = Conflict_Analysis();

5.              if (level == 0) then  /* show conflict exists even without any branching*/

6.                  return UNSATISFIABLE;

7.              else

8.                  Back_Track(level);   /* Backtrack to resolve conflict */

9.              end if

10.       end while

           /* no branching variable that all variables got assigned */

11.   else 

12.       return SATISFIABLE;    

13.   end if

14.  end while 

Figure 2.6: DPLL algorithm with learning.

Definition 24. (resolution rule).The resolution rule in the Boolean logic takes two clauses containing

complementary literals (i.e.,x and x̄), and produces a new clause with all literals from both except for

the complementary one. The clause produced by the resolution rule is called the resolvent of the two

clauses.

Definition 25. (unsat proof).A proof of unsatisfiabilityP for a set of clausesC is a directed acyclic

graph(VP,EP), where each nodev∈VP represents a clause. Each node inP can be classified into one

of the following three categories:

1. The Root nodes (without predecessors), which are clausesbelonging to the setC;

2. The unique Leaf node, which is the empty clause;

3. The internal nodev, which has exactly two predecessorsv1 andv2 such thatv is the resolvent of

v1 andv2.

A simple example of deriving an empty clause is given in Figure 2.7. Many DPLL-style SAT solvers

have been extended to provide this proof, such as [89,90].

Given an unsatisfiable CNF formulaF =C1∧C2∧ . . .∧Cn, there exists a subset of clausesλ ⊆ {Ci | i =
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(a + b) (~a + b) (~a + ~b) (a + ~b)

(b) (~b)

()

Root Nodes

Leaf Node

Figure 2.7: An example of unsatisfiability proof by resolution

1. . .n} such that a formulaFc formed by the conjunction of the clauses inλ is also unsatisfiable. We

call Fc anunsatisfiable coreof the original formula.Fc may contain a much smaller number of clauses

than the original formula but it may not be unique. All root nodes used in the proof of unsatisfiability

actually form an unsatisfiable core. A number of efficient procedures have been proposed to extract a

small unsatisfiable core from the unsatisfiability proof provided by a SAT-solver [14,118].

2.2.2 Bit-vector Arithmetic

In the last few years, the solvers for Satisfiability Modulo Theories (SMT) [80] have experienced the

amazingly fast applications in formal verification, compiler optimization and scheduling, program anal-

ysis, etc. SMT solvers are constructed to determine the satisfiability of first-order formulas with respect

to decidable background theories, using a combination of SAT solving and theory-specific decision pro-

cedures. Here, we only discuss the SAT problem related to thetheory of fixed-width bit vectors. The

SAT problem for the theory of arbitrary-width bit vectors isundecidable and is beyond the scope of this

dissertation.

bw-1 bw-2 .... b2 b1 b0

w bits

Figure 2.8: An example of bit-vector withw bits. Theith bit is denoted asbi .

Definition26. (bit vector).A bit vectorB as shown in Figure 2.8 is a vector of bits with a given modeling

width w:
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B : {b0, ..,bi , ..,bw−1} where0≤ i < w, bi ∈ {0,1}

Thetypeassociated with a bit vectorB in the bit-vector arithmetic formula depends on two main factors:

1. Modeling widthw of B;

2. WhetherB is signed or not.

Definition 27. (binary encoding).Let x be an unsigned integer, andB be a bit vector with modeling

width w. We say thatB is the binary encoding ofx (0≤ x < 2w) if and only if

x = ∑w−1
i=0 bi ×2i

Bit b0 is theleast significantbit, and bitbw−1 is themost significantbit.

Definition28. (two’s complement encoding).Let x be a natural number (signed integer) andB be a bit

vector with modeling widthw. We say thatB is the two’s complement encoding ofx (−2w−1 ≤ x< 2w−1)

if and only if

x = −2w−1×bw−1+ ∑w−2
i=0 bi ×2i

Bit bw−1 is thesignbit.

Definition 29. (bit-vector arithmetic formula).The bit-vector arithmetic formula is one kind of first-

order logic formula [77] which is defined based on the following elements:

1. Constants: e.g.,〈0b00011101〉8;

2. Bit vector variables with fixed width: implicit restriction to finite domain.

3. Function symbols:

• Type cast operators: Concatenation, Extraction, Extension

• Arithmetic operators:+,−,×; ÷,% (signed or unsigned)

• Bitwise operators:∧ (and),∨ (or),¬(not),⊗(xor)
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• Shifting operators:<<, >> a (arithmetic shift right),>> l (logic shift right),

4. Predicate symbols:=, 6=; <,>,≤,≥ (signed or unsigned)

5. If-then-else operator:ite

Here, we introduce four general categories of decision procedures (DP) for solving the SAT problem in

the bit-vector arithmetic, which are widely used in the software formal verification [48]:

1. SAT translation-based decision procedures (Bit-blasting) and its variants

Through the SAT translation or bit-blasting, a quantifier-free formula in the theory of fixed-width

bit vectors can be equivalently transformed into a quantifier-free formula over Boolean variables.

Many existing DPs (E.g., Cogent [37], CVC-Lite [47], STP [25], Yices [116]), share this basic

idea to reduce the input SAT problem over bit-vectors to the SAT problem over Boolean variables,

then apply a SAT solver to solve the resultant Boolean SAT instance. This method is popular

mainly due to the ever-increasing efficiency of SAT solvers.However, the naive translation of

all bit-vector operators to SAT usually can not make use of the inherent structural information

of the input formula. So, most DP tools in this category applythe pre-processing step before

bit-blasting to SAT to improve the performance. Some effective pre-processing methods use

solvers for linear arithmetic, algebraic transformationsand simplifications, etc. For example,

CVC-Lite [47] includes a normalization step followed by equality rewriting to pre-process the

input formula; STP [25] pre-processes the bit-vector formulae using several array optimizations,

as well as arithmetic and Boolean simplifications.

2. Shostak-style based procedures

The DP for a particular theory T using the Shostak-style approach needs to have a canonizer and

solver for T, so as to be soundly and completely combined withother DPs also using this Shostak-

style [99]. More information about canonizer and solver canbe found in [102]. Stanford Validity

Checker or SVC [10] belongs to this category. But so far, the DPs developed with this method are

restricted to a subset of bit-vector arithmetic with concatenation, extraction and bitwise Boolean

operations. They also have not shown as competitive as the translation to SAT based DPs or

abstraction-refinement based methods.
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3. Procedures for modular or bounded arithmetic

A large amount of work has been done for modular arithmetic todecide both linear and non-linear

bit-vector arithmetic. Since the methods developed in the decision procedures in this category

vary a great deal, we refer the reader to [6,16,67,95] for obtaining more details about individual

methods.

Build initial 

Fu and Fo

Original formula F

Fu Fo

Verify Fu

Refine Fo

Fu Fo

SAT Stop!

F is SAT

UNSAT

Verify Fo

Refine Fu

Fu Fo

UNSAT

Stop!

F is UNSAT

SAT

Iteration stops until 

Fu or Fo is refined 

as same as F.

Note:

Fu : under-approximation of F 

Fo : over-approximation of F

      Initial Fo is TRUE.

Figure 2.9: Overview of abstraction-refinement based decision procedure.

4. Abstraction-refinement based procedures.

Recently, the abstraction-refinement paradigm was appliedto solve the SAT problem of bit-vector

arithmetic [20, 58, 59]. The basic idea is to alternatively compute an over- and under- approxi-

mation of the formula, until the SAT problem is solved, as illustrated in Figure 2.9. The over-

approximationFo owns asupersetof behaviors of those in the original formulaF, while the

under-approximationFu has asubsetof behaviors compared to the original one. At the start, we

build the initialFu andFo, whereFo can be initialized asTRUE. The iterative refinement proce-

dure has four main operations. It first verifiesFu. If Fu is SAT, it can conclude thatF is also SAT,

and it can stop. Otherwise,Fu is refined via learning the UNSAT proof ofFo. Then, it verifies

Fo. If Fo is UNSAT, it can conclude thatF is also UNSAT and stop. Otherwise,Fu is refined via
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learning the counterexample ofFo. Then, it goes back the first operation of verifying the refined

Fu. The iteration definitely terminates when eitherFo or Fu is refined as the same asF. A more

detailed discussion of over-approximation and under-approximation will be presented in Section

2.4. It has shown efficiency when the approximations are easier to be solved than the original

formula, and the number of iterations to compute the appropriate approximations is small.

Our techniques, which are proposed in Chapter 5 and 6 for solving the bit-vector arithmetic formula

instances derived from the bit-precise verification of embedded software, are in the fourth category.

2.3 Software Model Checking

Model checking is a formal technique for automatically verifying the properties of finite state sys-

tems [33]. Given a specification and a model with finite statesdefined by the design, model checking

systematically traverses the entire state space to completely verify whether the specification holds or

not. If so, model checking proves the correctness of the design with respect to the specification; other-

wise, it returns a counterexample to show an erroneous tracethat violates the specification. Modeling,

specification and verification are three major components inmodel checking. We will briefly introduce

them in the following.

Generally speaking, the design is modeled as aFinite State Machine(FSM) that can be graphically

represented as the State Transition Graph (STG).

Definition30. A FSM is a six tuple(I ,S,δ,S0,O,λ), where

• I : a set of inputs.

• S: a finite set of states.

• δ : S× I → S(the next state function).

• S0 : a set of initial states.

• O : a set of outputs.
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• λ : the output function.

1. S× I → O : Mealy machine that is widely used to represent sequential circuits.

2. S→ O : Moore machine.

The specification is usually expressed in temporal logic, which is a formalism for describing sequences

of transitions between states. Here, we introduce one kind of powerful temporal logic called Compu-

tation Tree Logic (CTL), which consists of two path quantifiers: A (“for all computation paths”) andE

(“for some computation path”), and five basic temporal operators:

1. X ϕ (”next time“): Propertyϕ must hold in the second state of the path.

2. F ϕ (”in the future” or “eventually“): Propertyϕ must hold at some time on the path.

3. G ϕ: (“always“ or ”globally”): Propertyϕ must hold at every state on the path.

4. ϕ U ψ: (“until“): Property ψ holds at the current or a future state, and propertyϕ must hold until

that state. the path.

5. ϕ G ψ: (“release“): Propertyψ is true until the first state in whichϕ is true.

With CTL or its variants, we can assert how the behavior of thedesign evolves over time. Safety is a

class of properties widely used in the specification, which says some errorf will never happen at any

(time) instance (AG¬ f in CTL). It is also the class of properties that we mainly focus on in our work.

A model checking example from the wireless connection system is given in Figure 2.10. The FSM

of this example system has 5 states derived from three atomicpropositions: scanned, classified and

connected. In order to verify whether a propertyϕ described in the temporal logic holds or not, a

model checker explores the FSM to check if all states satisfyϕ. For instance, a propertyϕ = AG(p =

(connected=> classi f ied)) claims that, all states in the design satisfy that if a connection is set up,

the connection must use a classified waveform. The simple verification process ofϕ with 4 steps is

given in the block under the circle of ”model checker” in Figure 2.10. SinceAG(p) = ¬EF(¬p), the

verification problem is first transformed to check the FSM to see if there exists a path where a state

satisfying f = ¬p = (connected∧¬classi f ied) can eventually be reached. After traversing every state
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s3:

+ scanned

+ classified- connected s1

s2 s4

s3 s5

s4:

- scanned

+ classified

- connected

s1:

- scanned

- classified

- connected

        FSM of a wireless connection example

s2:

+ scanned- classified- connected scan

classify

disconnect

connect

classify

clear

clear

s5:

+ scanned

+ classified

+ connected

Property specification in temporal logic

E.g. AG(p=(connected =>classified))

Model Checker

FSM satisfies the 

property!

A counterexample 

to show error trace

E.g.  AG(p) = = ~EF(~p)

= ~EF(connected ! ~(classified))

̚

1. S(connected) = {s5};

    S(~classified) = {s1, s2};

2. S(connected ! ~(classified)) = ø;

3. S(EF(connected ! ~(classified))) = ø;

4. S(~EF(connected ! ~(classified))) = 

     {s1, s2, s3, s4, s5}; 

          All states satisfy the property!

Figure 2.10: An example of model checking

in the FSM, the model checker finds that the set of states satisfying such query is empty, which means

all states satisfyp. So, it can conclude that this FSM satisfies the propertyϕ. For other verification

instances of obtaining a non-empty set of states that dissatisfy the property, i.e., satisfy the negation of

the property, the model checker can automatically analyze these states and the traversal history to return

a counterexample that shows the error trace for debugging.

Due to the state explosion problem, i.e., the number of states of a design is exponential in size of the

design description (i.e., the number of state variables), the explicit model checking that directly traverses

every state in the STG of the design, is unable to handle largeinstances in practice. With the discovery

of the concise representation of transition relations in FSM using Ordered Binary Decision Diagrams

(OBDDs), the capability of model checking was dramatically enhanced by symbolic model checking

(SMC) [24, 85] based on this representation. Instead of explicitly traversing the STG, SMC implicitly

traverses the FSM via OBDDs, where the number of nodes no longer depends on the actual number

of states in FSM. With this breakthrough, some real-world designs with more than 1020 states have

been successfully verified [22, 23]. However, for large design systems, SMC is still costly in terms

of memory since the OBDDs built for model checking can still be very large. Selection of the right

ordering of BDD variables is very important, but the generation of a variable ordering with small BDD
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size is a time consuming procedure, and may need manual intervention.

With the recent dramatic advances in SAT-solver, Bounded Model Checking (BMC) is becoming in-

creasingly popular [11,119]. The basic idea is to use a SAT-solver to check the states within a bounded

length ofK transitions from a given initial state(s). WhenK reaches the diameter of FSM, BMC can

prove the property completely. BMC has two main advantages.First, BMC can find the counterexample

with the shortest path very fast. Second, it uses much less space than OBDD based SMC, and does not

need manual variable ordering.

Properties

specified as 

asserts

Program 
� Formula 

F
Model bounded  

variables, loops(in 

bound K)

Symbolic 

simulate M

verification 

model M

P holds property 

in bound k!

Counterexample 

with bound k

Verify F with 

SMT/SAT 

solver

Figure 2.11: Basic steps of software bounded model checking

2.3.1 Software Bounded Model Checking

A typical SAT-based bounded model checking (BMC) formulation for software programs has the steps

as shown in Figure 2.11.

1. Given a programP (assuming that all function calls have been inlined), and the properties speci-

fied as assertions inP, we build the bounded verification modelM by unrolling the loop structures

or recursions in boundK and modeling the data variables as bit-vectors with fixed width. The as-

sertion is a special program statement where the value of theasserted expression must always be

true; otherwise, the execution aborts. Figure 2.12 gives anexample assertion, which claims the

array indexx must fall within the lower and upper bounds of the arrayarr.

Figure 2.13 gives a simple example of bounded modeling the execution sequence of loop struc-

tures and program variables. In Figure 2.13(a), the code block A includes all statements in the

loop. The maximum number of iterations of thefor loop is five. In the bounded modeling shown

in Figure 2.13(b), code blockA is repeated five times, and every program variable is modeledas
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void foo() {

   int x; 

   char arr[4];

   assert((x+1) >= 0&&(x+1)<4);

   arr[x+1] = 'k';

}

Figure 2.12: An example of assertion

a vector of 32 bits. Any constant is given in its binary representation; for example, the constant

integer 0 is modeled as a bit-vector [0..0000] with 32 bits.

z[31,0] = y[31,0] + b[31,0];

size[31,0] = [0..0011]; // 3

x[31,0]=[0..0000]; // value 0

x[31,0]=[0..0001]; // 1

x[31,0]=[0..0010]; // 2

z = y + b;

size = 3;

For(x = 0; x < size; x++) {

     if() ....

     else ....

     .....

}
Code  Block A

Code  Block A

Code  Block A

Code  Block A

(a) Example code in C

(b) Software bound model by 

unrolling For loop in (a) 

Figure 2.13: An example of software bounded model.

Modeling program variables as bounded bit-vectors rather than unbounded variables with infinite

ranges (as in the pure mathematical sense) conforms to the actual computation; for example, the

integer data type is set to 32 bits wide in most existing embedded computers.

2. All bounded program constraints, including the assertedproperty, are encoded as a first-order

bit-vector arithmetic formulaF.

3. The satisfiability of the formulaF, which corresponds to the discovery of a counter-example that

can violate the property, is then decided by a SMT/SAT solver. If F is UNSAT, we can conclude

that the property assertion can never fail within a bound ofK. If the depth of un-winding reaches
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the finite upper bound of the loop iterations, we are able to prove the program property completely.

On the other hand, ifF is satisfiable, a satisfying solution is produced that can bemapped to the

word-level to construct an error trace in the program.

2.4 Automatic Abstraction Techniques

Generally speaking, software verification models have verylarge numbers of states, which make the

state-explosion problem of model checking much worse than in hardware design systems. Property-

based automatic abstraction becomes necessary in the scalable hardware design and software formal

verification [28, 40, 53, 78, 84, 120]. Abstraction reduces the verification effort by building a small ab-

stract model only with the information relative to the property in the design and removing the irrelevant

information. Furthermore, an abstract model sometimes will not keep all the relevant portions of the

design, thereby aggressively pruning away much of the statespace. In contrast with such a model, we

call the original design under verification the concrete model. We also name the counterexample found

in the abstract model and concrete model as theabstract counterexampleandconcrete counterexample

respectively. To automate the abstraction process, a refinement process is usually conducted iteratively.

Refinement is used to learn and restore any relevant information that was removed in a previous abstrac-

tion step, until the model is precise enough for the verification task.

According to the verification capability that the abstract model can render, we distinguish three impor-

tant abstraction approaches for model checking, especially safety properties [69,104]:

• Over-approximation based abstraction (Existential Abstraction): render the correct verification of

proving the property. It may producefalse negativeerrors, but notfalse positiveerrors.

• Under-approximation based abstraction (Universal Abstraction): render the correct verification of

refuting the property. It may producefalse positiveerrors, but notfalse negativeerrors.

• Ternary abstraction: render the sound verification of both proving and refuting the property, de-

pending on the usage.

A false negative errorfn is an error of rejecting a design while it is actually correct. A false positive
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error fp is an error of failing to reject a design while it is actually false. In the case of conducting

verification based on the abstraction,fn occurs when the property holds in the concrete design, but a

spurious counterexample violating the property can be found in the abstract model;fp occurs when

the property is violated in the concrete design, but no abstract counterexample can be found. In the

following subsections, we will introduce several realistic techniques belonging to these three kinds

of abstraction approaches and two systematic refinement methods (counterexample guided and proof-

based refinement).

Existential 

abstraction 

mapping

Sa2

(b) An over-approximation 

based abstract model (Exact)

(c) An over-approximation based 

Abstract model (Relaxed)(a) A concrete model

initial state

error state

Sa1

Sa4Sa3

Sa1

Sa4

Sa2

Sa3

Figure 2.14: Over-approximation based abstraction

2.4.1 Over-approximation based Abstraction

In an exact over-approximation based abstract model, an abstract transition is made from an abstract

state if there exists a transition fromat leastone corresponding concrete state. So, this abstraction

is also called theexistentialabstraction. The example in Figure 2.14 illustrates constructing such an

abstract model from a concrete one. All concrete states in each big circle of Figure 2.14(a) are mapped

to a new abstract state in Figure 2.14(b). In the abstract model, the error stateSa4 is reachable from the

initial stateSa1 through the abstract transitions{(Sa1,Sa3),(Sa3,Sa4)}. But the error state in the concrete

design is actually not reachable, so this trace of abstract transitions is spurious and incurs the false

negative error. Since the precise computation of abstract transitions is expensive, most realistic abstract

techniques relax the condition of making an abstract transition to reduce the computation cost, and, as

a result, may add extra transitions, as in Figure 2.14(c). The abstract transition{(Sa1,Sa2)} is made,

although there does not exist a transition from the corresponding concrete states. Predicate abstraction

is an important example of such techniques.
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Weakening abstraction represents a special class of over-approximation based abstraction techniques.

The model with such abstraction can generate more behaviorswith respect to the concrete one, either by

directly removing the input computation constraints of some concrete variables, or by simply replacing

the concrete transitions of the original model with the weakened ones in the same data domain. The

distinguishing point is that no state space mapping is involved during this kind of abstraction. In a

word, the over-approximation based abstraction techniques add additional behaviors (or transitions)

into the abstract model that the concrete model does not have. In the following, we present the predicate

abstraction technique and weakening abstraction with moredetails.

assume (a = 0);

assume (b = 0);

while(a>=0){

   if(a < 10) {

      a = a + 1;

      b = b + 1;

   }

    else  a = -1;

}

assert(b>=0);

110
Ȉ1: 0<=a<10

Ȉ2: b>!0

Ȉ3: terminates?
010

011

111

000

101

100

(a) Example C code

001

(b) Predicates

(Boolean variables) 

unreachable states

(c) Abstract model in FSM

Figure 2.15: An example of predicate abstraction of programin C.

Predicate Abstraction

Predicate abstraction [40, 53] is a powerful abstraction technique that can transform an infinite state

system design to a finite state model. This makes model checking applicable to some infinite state

concurrent system designs. Its basic idea is to construct the abstraction by tracking only a small set
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of predicates over the variables in the original concrete design. Each predicate is represented by a

Boolean variable. In this way, a very large or even infinite state space of the concrete design can be

mapped to a new, small state space, but all behaviors of the concrete design are still preserved. Predicate

abstraction has been widely used in software model checking[8,26,36,60]. Figure 2.15 gives a predicate

abstraction example of a simple C code. Three predicates (Boolean variables),{φ1,φ2,φ3} as given in

Figure 2.15(b), are used to track the computation on two integer variables in the code, whose number

of states can be 264 (assume that each integer has 32 bits). The abstract model isrepresented as a FSM,

as in Figure 2.15(c). The initial abstract state corresponding to the first line of the code is{110}; it is

true until thewhile loop execution finishes. The next abstract state{010} is mapped from the concrete

state when the code execution jumps out of the loop, since thevalue ofa becomes−1 and the predicate

φ1 becomesf alse. Then the abstract state moves to{011}, as the predicateφ3 becomesTRUE when

the execution terminates at the assertion statement. The two abstract states{101,001} filled with color

represent the erroneous states with respect to the assertedproperty in the code. Since, all the reachable

states, beginning with the initial state, are not erroneous, the assertion can be verified as valid.

S0->S1: A = (x1 == ctr1) ! (y1 == x1 + 1)
 x1 = ctr1;

 y1 = x1 + 1;

"error state"

assume (ctr1==i1);

assume (y1!=i1 + 1);

S2

S0

S1

S1->"error state": B = (ctr1 == i1) ! (y1 !=  i1 + 1)

Interpolant: A' = (y1 == ctr1 + 1)

Figure 2.16: An example of interpolant.

The number and the quality of predicates closely impact the complexity and precision of the abstract

model. The method of extracting predicates from interpolants [86], has been widely used in the pred-

icates discovery/selection for the abstraction refinement, which is a critical step in the predicate ab-

straction. Given a pair of formulas (A, B) such thatA∧B is UNSAT, an interpolant [38] for (A, B)

is a formulaA′ with three properties: (1) A impliesA′, (2) A′ ∧B is UNSAT, and (3)A′ refers only to
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the common symbols of A and B. Figure 2.16 gives an example of an interpolant. Assume the exe-

cution trace from stateS0 to “error state′′ presented on the left is obtained by analyzing the spurious

abstract counterexample. The two “assume′′ statements placed at stateS1 to stateS2, and stateS2

to “error state′′ respectively, mean that each transition between the statesmust satisfy the condition

claimed in the corresponding ”assume“ statement. FormulaA represents the constraints between state

S0 to stateS1; formulaB corresponds the constraints between stateS1 to ′′error state′′. SinceA∧B is

UNSAT, the trace leading to the error state in Figure 2.16 is actually not feasible. We could obtain an

interpolantA′ at the stateS1, such thatA′∧B is still UNSAT. In the counterexample guided abstraction

refinement which we will introduce later, such interpolantsare usually used as new predicates for re-

fining the abstract model, so as to avoid generating such spurious abstract counterexamples again. This

interpolation based predicate selection approach has one major advantage: at each program location, it

uses only predicates that are relevant to that location. This can achieve a reduction in the number of

abstract states, so as to increase the verification performance [61]. However, the operations of predi-

cate discovery and abstract states mapping generally require a great deal of computation resources. So,

although it is powerful, predicate abstraction is an expensive abstraction technique.

Weakening Abstraction

Weakening abstraction [84] represents a class of over-approximation based abstraction techniques,

which weakens the transitions of the concrete model withoutmapping to a new data domain so that

both the abstraction and the concrete designs are in the samedomain. This is different from predicate

abstraction, which involves the state space mapping between different domains; for instance, in predi-

cate abstraction, variables in the Integer domain may be mapped into variables in the Boolean domain

via a set of predicates.

Localization abstraction [78] is a weakening abstraction technique that weakens the transition relation

by completely removing the input constraints of a set of non-input variables, and considers these vari-

ables as pseudo primary inputs. In other words, all variables removed areexistentiallyquantified as

inputs. This is shown in Figure 2.17: the removed variables,including their connections (drawn in pale

black), are invisible in the abstract model; the variables (represented by the squares filled with color)

at the boundary between visible and invisible variables become pseudo inputs. As a result, the abstract
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Visible 

variables

(a) Data  Dependency Graph (b) Localization Abstraction

Invisible 

variables

Figure 2.17: Over-approximation based abstraction without state space mapping

model contains only a subset of computation constraints in the concrete model represented by the visible

variables.

Figure 2.18 gives a simple localization abstraction example of a small C code segment. Figure 2.18(b)

gives a weakening abstractionω of the code in Figure 2.18(a) by removing the program constraints in

Line 1 and 2. The asserted property “assert(z>= y)′′ fails in ω sinceω removes the concrete constraint

betweeny andz and causes the false negative error. After restoring the constraints in Line 2, we get

a refined abstractionω′ in Figure 2.18(c). The property holds inω′, so it also holds in the original

program.

1.  y = z * x;

2.  z = y;

3.  if(x > y) {

4.      z = x;

     }

5.  assert(z >= y);

(a) Original program (b) Initial abstraction

1.  if(x > y) {

2.      z = x;

  }

3.  assert(z >= y);

1.  z = y;

2.  if(x > y) {

3.      z = x;

     }

4.  assert(z >= y);

(c) Abstraction after 

refinement

Figure 2.18: An example of localization abstraction of program in C

Un-interpreted function (UF) abstraction [21] is another weakening abstraction technique widely used in

the high-level hardware design and software verification. It is mainly applied to abstract the arithmetic

computations in the data-path. UF operator removes the constraints between the output and inputs of

the individual arithmetic operator. But the constraint of functional consistency is enforced, which is
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symbolically defined as follows:

(x1 = y1)& . . .&(xn = yn) −→ f (x1, . . . ,xn) = f (y1, . . . ,yn)

In practice, more arithmetic constraints between the inputs and outputs of the specific UF computation

can be partially interpreted, as in [20]. For example, assuming x and y are integers,y = x∗2 is defined

in the original code. We could use the UF operator to weaken the accurate multiplication computation

constraint betweenx andy with a relational function asy >(UF) x.

(b) An under-approximation 

based Abstract model 
(a) A concrete model

Universal 

abstraction 

 mapping

Sa1 Sa2

Sa4Sa3

initial state

error state

Figure 2.19: Under-approximation based abstraction

2.4.2 Under-approximation based Abstraction

In an under-approximation based abstract model, an abstract transition is made from an abstract state if

there exists a tradition fromall corresponding concrete state. This abstraction is also called theuniversal

abstraction. Figure 2.19 gives an example of such an abstract model construction. In the abstract model

of Figure 2.19(b), the error stateSa4 is not reachable from the initial stateSa1. However, the error state

in the concrete design is actually reachable along the transitions drawn with the dash line in Figure

2.19(a). So this abstract model causes the false positive error. Compared with the over-approximation

based abstraction, the under-approximation based abstraction actuallyremovessome behaviors of the

concrete model.

Here we briefly introduce two realistic under-approximation based abstraction techniques for software

verification, which are also used in our work. First, an abstract model can be built by constraining the
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(a) Data  Dependency Graph

(b) Under-approximation based 
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(Encoding) Width 

of bit-vectors 
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(c) Under-approximation based 

Abstraction with constrained data 
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(Modeling)

Width of bit-

vectors W

Figure 2.20: Two examples of under-approximation based abstraction

program execution on a certain subset of paths in the concrete model. For example, enforcing some

control predicates in the program to some constant values sothat only one branch is taken for each

enforced predicate. This is shown in Figure 2.20(b). Second, another kind of abstract model can be

built by constraining the value of variables to a smaller range compared with the original variable value

ranges in the concrete model. This can be realized by settingthe encoding widthWe of bit-vector

variables smaller than their individual modeling widthW as illustrated in Figure 2.20(c). Both of these

abstract models do not need the state space mapping.

2.4.3 Ternary Abstraction

Ternary abstraction [15,91] is based on the three-valued logic, which enhances the two-valued Boolean

logic with a third valueX denoting the unknown value. The traditional symbolic simulation [17, 101],

which uses these three values{0,1,X} as symbolic inputs to abstract the inputs space, is considered

an application of ternary abstraction. It can cover multiple system executions using concrete value
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Figure 2.21: Two verification examples using ternary abstraction

inputs in a single symbolic run, thus it has the potential of greatly reducing the size of verification

problems. Through dual rail encoding, such three-valued variables and operators have a propositional

representation, which can be processed by a Boolean SAT solver. Ternary abstraction uses the valueX

to abstract the computation in the design that does not affect the property being checked. It is capable

of both proving and refuting the correctness of the design, depending on the concrete applications. As

in Figure 2.21(a), we aim to verify the property that the value of one outputp in the combinational

circuit always be 0. We could find a counterexample which setsXXX10X0 at the primary inputs (PI)

makesp to 1, thus refuting the property. The computations related to the PIs set byX are abstracted

away. For another example in Figure 2.21(b), the property tobe verified is that some internal gatep is

always 0 starting from the state 1001101 in the sequential circuit. If p is 0 while setting 1001101 to the

corresponding flip-flop, and setting all PIs toX, we could conclude the property holds.

However, it is a challenging task to decide which variables should be enforced with valueX, so as to

construct a precise but simple abstraction that does not produce the inconclusiveX at the property under

verification.
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Figure 2.22: Basic flow of CEGAR

2.4.4 Two Refinement Methods

Counterexample guided abstraction refinement (CEGAR) and proof-based refinement are the two most

widely used abstraction refinement methods. CEGAR was initially proposed to automate the local-

ization abstraction [78] and has been extended with severalvariations [32, 52, 81]. The combination of

CEGAR with predicate abstraction has been applied in several software model checking tools [9,26,60].

The overall iteration of CEGAR with four stages is shown in Figure 2.22. Given a design to be verified

and the specified property, this method begins with an initial abstraction chosen by the user (It can be as

coarse as aTRUEstate). In the second stage, it applies some verification technique, like model check-

ing, to check the property in the abstraction. If the property holds in the abstraction, the verification is

done; otherwise, an abstract counterexampleλ is found. In the third stage, the feasibility ofλ in the

original design is validated. If the answer is yes, the property fails and the corresponding true counterex-

ample in the original design is returned; otherwise, the constraints along the spurious counterexample

in the original design are reasoned in the fourth stage of refining the abstraction to produce a refined

abstract model. The iteration continues until the propertyis proved to be valid, or a counterexample in

the original design is found and returned for debugging.

Proof-based refinement [87] is an alternative abstraction refinement method, which was proposed based

on the BMC and SAT/SMT solver. The basic work-flow of this method, also with four stages, is shown

in Figure 2.23. (1) Given an initial boundK, it first verifies the satisfiability of thenegationof the given
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property in the design unrolled with boundedK, similar to a BMC run. If the instance is SAT, a true

counterexample with boundK can be obtained to show the violation of the property; if the instance is

UNSAT, it means that there is no counterexample within boundK. (2) It then builds an abstractionα

with the set of design constraints, used in the UNSAT proof generated from a SAT solver. (3) It verifies

α without any bound constraints. If the property holds inα, it means that the property holds in the

original design as well; otherwise, an abstract counterexample λ that violates the property in abstract

modelα can be obtained. (4) Finally, the bound ofλ, instead of the values assigned inλ, is used to

determine a larger boundK′ for starting a new loop iteration.

Verify design in 

bound (like BMC).

SAT?

Build abstraction 

via UNSAT proof

Verify abstraction.

SAT?
abstract

counterexample

Property fails!

(return concrete 

counterexample)

Yes

No

initial bound K

No

Property holds!

Yes

Decide new bound K' > K

(via learning the bound of 

abstract counterexample, 

not actual assignment)

Figure 2.23: Basic flow of proof-based refinement

Comparatively speaking, with the proof-based abstractionrefinement approach, all counterexamples

within the boundK are ruled out at once, whereas CEGAR may require many refinement iterations to

achieve this. Moreover, using a single abstract counterexample — as in CEGAR for the refinement—

is risky because there may be many ways to remove one specific counterexample. It is highly possible

that the restored constraints actually are not relevant to the property being proved. However, the proof-

based approach has one main drawback. It may be much more computationally intensive to extract

the refutation proof that there are no counterexamples of bound K, than to refute a single abstract
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counterexample [79]. Thus, the refinement step could becomea bottleneck in the verification process. In

practice, it is hard to find the pure CEGAR process or the proof-based refinement process. For example,

some CEGAR processes use interpolants to obtain new predicates, where interpolants are the results of

the UNSAT proof extraction. Several approaches have been proposed to combine these two refinement

methods, which take advantages of both, and at the same time alleviate their disadvantages [2,13].
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Scalable BMC via Integration of Program

Slicing and Proof-based Localization

Abstraction Refinement

As explained in the previous chapter, due to the state explosion problem, scalability is one of the major

obstacles in the application of model checking to large software designs. In this chapter, we present

a new verification approach to combine aggressive program slicing with a proof-based localization

abstraction-refinement strategy toward the scalability enhancement of bounded model checking embed-

ded software. While many software model-checking tools useprogram slicing as a separate or optional

step [26, 35], our program slicing is tightly integrated in the model construction and reduction process.

Furthermore, it incorporates the compilation optimization techniques, so as to compute a more accurate

slice. In exploring the application of a proof-based localization abstraction-refinement strategy based on

the under/over-approximation of our proposed software model, we propose a heuristic method of decid-

ing new encoding size of bit vector variables to effectivelyrefine the under-approximation. Experiments

on C programs from wireless cognitive radio systems show that, this approach can greatly reduce the

model size, and shorten the solving time by the SAT-solver.

39
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3.1 Motivation and Overview

Since the verified properties usually depend only on a small portion of the program, our proposed

approach aims to accurately and efficiently find this portionwith low cost and complexity.

Program slicing [31,113] and localization abstraction aretwo important techniques to enhance the ver-

ification scalability. Program (static) slicing [30, 63, 107] automatically extracts a subset of program

segments called slice(s), which involves only the variables referred to in the slicing criteria. Here, the

slicing criteria can simply be the target property assertion statement. The slice(s) is an accurate ab-

straction without incurring spurious errors, since it includes all the program constraints, which have the

computation relevanceto the variables referred to in the assertion. In this regard, program slicing is

conservative. In other words, the sliced program is sufficient to prove the target property.

Localization abstraction is another important abstraction technique, which could further enhance scal-

ability. It can identify a small set of program constraints,which haveverification relevanceto the

asserted property. A proof-based refinement method using under- and over-approximation is applied

to iteratively automate this abstraction process. Figure 3.1 illustrates the differences between program

slicing and abstraction refinement in the model reduction. Slicing removes the irrelevant constraints step

by step, so the complexity of the abstraction is also reducedstep by step. On the other hand, abstrac-

tion starts with a small representation of the original design and gradually learns verification relevant

constraints during refinement. So the complexity or the accuracy of the abstraction increases step by

step. To accomplish our goal of identifying the small set of program constraints relevant to the verifica-

tion for scalable BMC, we explore the combination of these two techniques, considering their different

behaviors in the reduction of model complexity.

The rest of the chapter is organized as follows. In Section 3.2, we present our proposed software

verification model, model construction and the program slicing based model reduction. In Section

3.3, we introduce our bounded model checking with the proof-based abstraction-refinement strategy to

construct the localization abstraction. Experiment results are reported in 3.4 followed by related work

and summary in Section 3.5 and 3.6.



Chapter 3. 41

SliceRefine

original program

sliced 

program

Figure 3.1: Comparison of program slicing and abstraction refinement (Circle: program constraints or

verification complexity, circle with the darkest border is the final abstract model)

3.2 Software Verification Model

In this section, we first introduce the structure of our proposed software verification model, followed by

its construction and reduction.

3.2.1 Model Structure

Our proposed structural verification modelM is a Digraph. InM, each node represents a computation,

which operates on variable values from its input edges and produces the result to the output edges. Each

directed edge represents a data flow, which carries the variable value computed by its source node to

its target nodes. Our verification modelM has three derivatives:MH , MBV andMB. In the high-level

modelMH , the nodes represent the computation of the program variables defined in the code, and the

edges represent the computation result in the first-order variable domain. Every node belongs to one of

the following three categories:

1. Input or constant nodes;

2. Arithmetic or relational operations;

3. Ternary conditional operationc?T : F.

As a data-flow-like representation of the program,MH is similar to the value dependence graph (VDG)

[112], which was proposed for simplifying the compiler optimization and supporting the program slic-
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ing [44] in fine granularity. However, ourMH is built on the pre-processed programs, in which all loops’

iterations have been unwound to a certain bound, and all function calls have been inlined; moreover,

the SSA-transformation has been performed to the code. SoMH can be structurally simpler thanVDG,

which is constructed from the raw programs with full programming language features.MH has one im-

portant feature that the edges from theguard nodes only connect with the c?T:F nodes. This is because

only these nodes’ outputs are conditional, which need to be determined by the guards at verification

time.

+

 F   T

c?T:F
≠

≠ &

x1
y1

xp1#

x3=2

x4=3

1

z10

g2#

g1#

=c1#

c1#

c2#

≤

3

x5

False?
Control Part

F   T

c?T:F

x2
1.  x2 = x1 + y1;

2.  if(x2 != 1) {

3.       x3 = 2;

4.       if(z1) 

5.            =  + 1;

     }

6.  # x5 =Ȉ< x2(0), x3(1), x4(2) >

7.  assert(x5 <= 3);

(a) Example code in SSA form (b) MH of code in (a)

Figure 3.2: An example ofMH

Figure 3.2 gives an example of an SSA-transformed code and its modelMH . In Figure 3.2(a), the

subscripts distinguish different variable versions in theSSA form. For example, the variable version

x5 is defined by aφ function parameterized with three variable versionsxi (i ∈ I = {2,3,4}) reachable

to x5, listed by their definition order. To use the definition of some xi during execution, its Definition

Condition (Def-C) must be satisfied. Def-C is actually the guard of the BB, in which this variable

version is statically defined.x5 is defined by the variable versionxk (k∈I), whose Def-C is true at the

actual execution, and whose order in the parameter list ofφ is the biggest (latest defined in the program).

In Figure 3.2 (b), all node names ending with the symbol # represent new intermediate variables inserted

in MH . Two “c?T:F” nodes together represent theφ function. For example, nodex5 has three inputs:

g2# is a condition,x4 is True branch and a new variablexp1# is False branch.g2# modeled as the guard

of BB2 ((x2! = 1)∧ (z1! = 0)) is the Def-C ofx4. Similarly, g1# modeled as the guard of BB1 (x2! = 1)

is the Def-C ofx3 connected to the nodexp1#. If g2# is true,x5 is assigned byx4; otherwise it is assigned
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by xp1#, whose value is decided in a similar way byg1#. So the two “c?T:F” nodes correctly model the

φ function. The relational node in red represents the property assertion. Thus, the property verification

problem is converted to checking if the value of the output node of the model can be False.

After the high-level model reduction (details to be presented in the following subsection 3.2.2), we

compute another model derivationMBV by modeling every program variable as a bit-vector variable

with a fixed width, but leaving all program operations as before. The main purpose of this step is to

model the data in bound, instead of considering them as words, which can have the arbitrary or infinite

values like integer numbers as inMH .

To compute the model derivationMB, we convert each program operator inMBV to the corresponding

Boolean logic operators through circuit translation. During the conversion fromMBV to MB, some new

nodes may be added to complete this translation, like in the translation of arithmetic addition operation

with Boolean logic gates. InMB, each node represents a logic operator and each edge represents a bit.

By converting the logic gate to its representative CNF clauses (this can be done in a single pass through

the logic circuit), we could use one of the state-of-the-artSAT solvers, to decide the satisfiability of the

monitor output node set equal to a certain value, for our purpose of formal assertion checking.

All model derivatives are implemented as doubly linked circuit netlists. Every element in the netlist

stores the properties of a model node and its connection withother nodes.

3.2.2 High Level Model Construction

Given a SSA-transformed programP and its propertyΩ which is specified as an assertion statement

S(Ω) in P, the high-level modelMH is constructed in the following four steps:

1. Perform program slicing to slice BBs with respect toS(Ω) via the reachability analysis ofGSSA
CF

of P.

Result: A setB of BBs {BB[1],. . ., BB[N]} is obtained, which are reachable toS(Ω); a set

PHI SET of Phi functions{φ[1], . . . ,φ[M]} , each of which can be found in the front of some

Merge node BB in the setB.
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2. Computeguardof every BB in the setB, which must be satisfied in order to enter this BB.

Let b andg denote the current BB and its guard, respectively, and letb′ andg′ denote the target

BB that b jumps to and the corresponding guard expression ofb′ computed by the path fromb.

First, g of every BB is initialized toTRUE. The computation ofg′ proceeds by a case split on

the last statements of b. Figure 3.3 gives the SSA transformed control flow graphGSSA
CF of the

example code in Figure 3.2(a). We use it for illustrating thecomputation.

1.  x
2
 = x1 + y1;

2.  if(x2 != 1) {

3.       x3 = 2;

4.       if(z1) 

5.            =  + 1;

     }

6.  # x5 =Ȉ< x2(0), x3(1), x4(2) >

7.  assert(x5 <= 3);

BB0: x2 = x1+y1;

      if(x2 != 1) goto BB1; 

      else goto BB3;

BB1:  = 2;

      if(  != 0) goto BB2;

      else goto BB3;

BB2:  =  + 1;

      goto BB3;

# x5 =Ȉ< x2(0), x3(1), x4(2) >
(a) Example code in SSA form

(b) GCF
SSA of code in (a)

BB3: assert(  <= 3);

Figure 3.3: An example ofGSSA
CF

• Case 1:sbe a conditionalgotostatement as“if(c) goto b′ else goto b
′′
” .

Analysis:b′ is entering the control range ofc. Sog′ = g∧c.

For example of the“goto BB1“ statement inBB0 of Figure 3.3, we could compute the guard

of BB1 asg(BB1) = g(BB0)∧cBB0 = (x2! = 1).

• Case 2:sbe a conditionalgotostatement as“if(c) goto b
′′

else goto b′” .

Analysis:b′ is entering the control range of ¯c. Sog′ = g∧ c̄.

For example of the“goto BB3“ statement inBB0 of Figure 3.3, the guard ofBB3 is computed

asg(BB3) = g(BB0)∧ ¯cBB0 = ¬(x2! = 1).

• Case 3:sbe an unconditionalgotostatement“goto b′” .
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Analysis:b′ is in the same control range as b. Sog′ = g.

Considering the“goto BB3“ statement inBB2 of Figure 3.3, we could compute the guard of

BB3 asg(BB3) = g(BB2) = ((x2! = 1)∧ (z1! = 0)).

For a merge node which has multiple incoming paths, the final guard is the disjunction of all guard

expressions computed from these paths. For example ofBB3 in Figure 3.3, its guard is finally

computed asg(BB3) = ¬(x2! = 1)∨ ((x2! = 1)∧¬(z1! = 0))∨ ((x2! = 1)∧ (z1! = 0)) = TRUE.

Different from computing theguard for every statement as in [35], we build one guard for every

BB, so that all statements inside the BB can share the sameguard.

3. Compute program constraintsCP and the target property constraintsCΩ as program equations.

(a) CP consists of two parts:CB, which is the conjunction of constraints from all BBs in setB,

andCΦ, which is the conjunction of constraints from allφ functions in setPHI SET. Since

every assignmentA(i, j) in setB is deterministic, we can easily deriveCB as:

CB = ∧N
i=1(∧

L
j=1A(i, j))

whereN is the size of setB, andL is the number of assignments inBB[i](i ∈ [0,N−1]).

The variable version on the Left-Hand-Side (LHS) of aφ function may be assigned by any

variable version in the parameter list, which is decided by the definition order and Def-C

of each parameter. As discussed before, during the actual execution, LHS is assigned by

the last variable version (according to the definition order) whose Def-C is true. Since we

assume that the variable versions in the parameter list havealready been ordered by their

definition sequence, we could simply computeCφ[i] (i ∈ [0,M − 1]) for the ith φ function

(LHS[i] = φ(v[1, i], . . . ,v[K, i])) in the setPHI SETas:

Cφ[i] = ((tv[1, i] == v[1, i])

∧K−2
k=1 (tv[k+1, i] == (G(v[k+1, i]) ?v[k+1, i] : tv[k, i]))

∧ (LHS[i] == (G(v[K, i]) ? v[K, i] : tv[K −1, i])))

whereK is the size of parameter list ofφ[i], tv[k, i] is thekth newly conjuncted variable of

φ[i], v[k, i] is thekth RHS parameter ofφ[i], G is a function that returns theguardof the given

parameter.

And Cφ = ∧M
i=1Cφ[i], whereM is the size of the setPHI SET.

Finally CP = CB∧Cφ.
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(b) To computeCΩ, let a andg denote the specified assertion and theguardof the BB wherea

is defined respectively.

PΩ = ḡ∨a

Cp :=  (x2==x1+y1) ʌ (x3==2) ʌ (x4==x3+1)

         ʌ (xp1 = (x2!=1) ? x3 : x2)

         ʌ (x5=((x2!=1)&&(z1!=1))? x4 : xp1)

CΩ := x5 <= 3

Figure 3.4: Program equationCP andCΩ

Figure 3.4 shows the program equationsCP andCΩ of the SSA-transformed program in Figure

3.2(a). For instance, the first statementx2 = x1 + y1 is transformed to the first literal inCP. The

assignment withPhi function at line 6 are transformed to the 4th and 5th literals of CP. The

assertion statement at line 7 becomesCΩ.

4. Construct the high-level modelMH .

This step is straightforward asMH is essentially the graphic representation of the constraints in

theCP andCΩ equations. TheMH for our running example is illustrated in Figure 3.2(b).

2. Constant 

propagation

3. Array 

modeling &

reduction 

4.Redundant 

branches 

reduction

1. Reachability 

analysis of BBs

on GCF
SSA

 

5.COI 

reduction

After model construction

Figure 3.5: Basic procedures of static slicing
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3.2.3 High Level Model Reduction and Array Modeling

We perform static program slicing through reduction steps as shown in Figure 3.5. The slicing criterion

is set as the target property assertion statement. Slicing starts by the backward reachability analysis

of Basic Blocks (BBs) during the model construction. All BBsunreachable to the target assertion

statement are immediately sliced away. But the obtained slice is considered to be very coarse because

not all computations inside the reachable BBs are necessarily relevant. At this model reduction stage, the

slicing process can go to either procedure 2 or 4, depending on whether the current slice has operations

over constants and array variables or not. COI (Cone-of-Influence) reduction, as a separate procedure

can be invoked after any procedure 2, 3 and 4. Its purpose is toremove the nodes identified as irrelevant

by any invoking procedure. Finally the model reduction stops at procedure 5.

Constant Propagation

It is a popular compiler optimization technique [1] whose goal is to discover and propagate constants

through the program [111]. Any node inMH whose inputs are all constant values can also be evaluated

as a constant node and propagated further. We use a simulatorsimilar to a logic simulator to implement

the constant propagation on modelMH . But, the value evaluation here is conducted in the Integer or

Floating Point domain, instead of being restricted in the Boolean domain. After the propagation, we

could remove the redundant constant nodes, which have no connections to other non-constant nodes.

This removal reduces theMBV size, and further reduces the computation cost of logic implication with

constant value cost at the level of bit vectors. In the case that the constant True (False) is propagated to

the conditional inputc of the “c?T : F ′′ node, the connection of the False (True) input branch could be

removed, as the branch can be determined as never taken.

Array Modeling and Reduction

We first assume all array variables have fixed sizes, which is generally true in the embedded programs

being verified. We also assume that there are only two programoperations on array variables. LetA be

an array variable, andeandx are scalar variables; these two operations are: “A[x] = e” for implementing
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Store access; and “e = A[x]” forSelectaccess. Actually, all other array operations can be transformed

as a series of steps involving only these two simple operations.

T   F

c?T:F

e

=

x

0

T   F

c?T:F
=

x

N-1

.....

Ak[0] .....

.....

e

=

e

Ak[N-1]

=

e

T   F

c?T:F
=

x0
T

T   F

c?T:F
=

N-1
Tx

∩
Ak[0] Ak[N-1]

Ak-1[N-1]Ak-1[0] .....

(a)   Ak[x]=e; (b)  e=Ak[x];

Figure 3.6: Array node expansion

An array nodeA is first expanded to a set of nodes, each of which represents anelement ofA. For

“A[x] = e,” only the xth element ofA receives the new valuee, while all other elements ofA retain

their previous values. Figure 3.6(a) models the following constraint, using the SSA representations ofA

imposed by this operation, whereAk−1 is the latest version of array variableA at this operation location:

∀i ∈ [0,N−1],Ak[i] = ((i == x) ?e : Ak−1[i])

Figure 3.6(b) models the following constraints imposed by Select access:

∧N−1
i=0 ((i == x) ? (e= Ak[i]) : True)

The modeling of array in Figure 3.6 is for the general case, where the indexx is not known. After all

loop structures are fully unwounded and constant propagation applied, the valuex can almost always be

computed. Then the complexity of modeling array access operations can be greatly reduced. ForStore

accesses, all “c?T:F” nodes are simply substituted by nodeswith “=” operator (as the conditionc is

deterministic): the node representing thexth elementAk[x] is connected withe, while any other element

nodeAk[x](i 6= x) is connected with nodeAk−1[i] correspondingly. ForSelectaccesses, only the array

element, whose index equalsx, is connected with the node representing variablee, leaving the rest of

the array element nodes unconnected from nodee.

For the nodes with the assignment (“=”) operator, which are redundant in logic reasoning, we perform

the transitive equality reduction to slice away these nodesto reduce the model size. For the nodes
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with no output connection, they can be easily identified and removed during COI reduction. Through

this reduction, the model size can be independent from the array size, but on the number ofStore and

Selectaccesses on the array. In a word, this reduction exploits thedeterministic array accesses after the

unwinding of loops operating on arrays, as the referred array element index becomes constant.

×

x1 18

T   F

c?T:F

x3=17

T   F

c?T:F

y2=2

y3

x4

≠
p1

p1
≡

q1

x2

(b) Model MH of code in (a)

y1=x4

1.  if(p1 == q1) {

2.      x2 =18 * x1;

3.  } else {

4.      x3 = 17;  

     }

5.  #x4 = Ȉ< x2, x3 >;

6.  if(p1 != q1) {

7.       y1 = x4;

8.   } else { 

9.        = 2;  

      }

10.  #y3 = Ȉ< y1, y2 >;

(a) Example code in SSA form

Figure 3.7: An example of redundant branches

Redundant Branch Reduction

A motivational example is given in Figure 3.7. In Figure 3.7(a), line 2 is redundant to the computation of

y in line 10, due to the constant negation between two conditional predicates. This kind of redundancy

is reported as undetectable, by most traditional slicing techniques without compiler optimization [107].

But it can be identified and removed in the two steps performedon ModelMH :

1. Identify the pairs of conditional predicate nodes, whichhave the constant equality or inequality

correlation.

2. Determine the redundant computations according to case pattern recognition. Currently, we only

consider a limited number of redundant case patterns. For one example of Figure 3.7(b): as two

condition predicates are constantly negated and nodex4 is connected with True branch of node

y3, the constraints on True branch ofx4 are identified as redundant shown in the dash line.
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3.3 Software Bounded Model Checking

A proof-based abstraction-refinement strategy proposed for bit-vector arithmetic reasoning [20] is ex-

plored on the bounded model checking to enhance scalability.

3.3.1 Major Steps in Refinement Framework

1. Under-approximation construction

Every free variable nodev in the modelMBV has an encoding sizeWe used for under-approximation.

For bit-vector variables whose modeling widthW is greater thanWe, we enforce additional con-

straints on its most significant bits by setting them to a constant value. For the example of unsigned

free variables with their most significant bits set to “0”, their value that is originally arbitrary in

range [0, 2W −1] is now restricted in range [0, 2We −1]. In our implementation, we simply use

single-literal clauses to restrict these most significant bits in the CNF formula. If the SAT solver

returns satisfiable for this constrained CNF formula, we canconclude that the target assertion

fails, and the SAT solution can easily be converted to a counterexample in the program to show

the error trace of violating the assertion. This counterexample is definitely feasible in the pro-

gram, since the state space of an under-approximation modelis a subset of that in the original

model. If the SAT solver returns UNSAT, it is inconclusive about the assertion. But we could

extract the UNSAT core as a proof to guide the following abstraction construction.

It is important to maintain consistency among the added constant constraints to avoid the UNSAT

case caused by these inconsistent constraints. This is because the SAT solver may return an

arbitrary UNSAT core, which is not useful for identifying the relevant program constraints to

build the abstraction. For instance, consider the example program statement “y==x+1”. We

set the same encoding sizesWe for all node variables, which involve translating this word-level

statement in the modelMBV, and set the most significant bits of these variables to be thesame

kind of constant constraint: either all “1” (TRUE) or all “0”(FALSE). Assume that, we enforce

the sign bit(the most significant bit) ofx to 1, which meansx is a negative number, but enforce

the sign bit ofy to 0, which representsy as a positive number. We could find that these enforced

constant values conflict with each other, which causes the constrained instance UNSAT. But this
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information is not considered as directly relevant to the actual verification problem.

2. Abstraction construction and verification

Constructing the abstraction modelMabs is an over-approximation procedure, which extracts a

subset of nodes from modelMB. The main idea of Algorithm in Figure 3.8 is to group the set of

nodes inMB, according to the translation relationship with the nodes in modelMH . So, if any bit

of node variables in this set is used in the UNSAT core, all other bits of the node variables are

also included inMabs; otherwise, they don’t contribute toMabs. This is to simplify the abstraction

and reduce the non-determinism of the over-approximation.Some popular SAT-solvers provide

an UNSAT core if a formula is UNSAT. The coreC usually has two parts: a set of bit variablesV

used inC, and a set of clausesCL involved inC. Since all clauses in the original CNF formula,

which use variables in the setV, are a superset of the setCL, it is safe to useV to build the

abstraction.

Over_appr (Model M, Abstract Model Mabs, set V)

1: for each node i in high-level model MH

2:    Map to a set N of nodes in MB that translate node i;

3:    Get a set V2 of bit variables from all nodes in set N;

        /* Intersection set of V2 and V; */

4:       Compute set V3 = V2 ! V ;

5:     if V3 not Empty

6:        Add all nodes in set N to Mabs;

7:        Remove all bit variables in V3 from V;

         /*stops if V has been included in Mabs*/

8:     if set V empty  

9:          break;

10:  end for

Figure 3.8: Over-approximation algorithm

Theorem1. Mabs is an abstraction ofMB.

Proof. SinceMabs has a subset of nodes inMB, the set of CNF clausesKabs of Mabs is also a

subset of CNF clausesKB of MB. Let α be a satisfying assignment ofMB. Under this assignment,

since all clauses inKB are true, any subset of clauses must also be true.Kabs must be satisfied,

and soMabs is also SAT. Conversely, ifKabs is UNSAT,KB must be UNSAT as all clauses inKabs
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referred to prove UNSAT are also included in the setKB. So, we could conclude thatMabs is

UNSAT implies thatMB is also UNSAT.

Theorem2. Mabs encoded withWe is UNSAT.

Proof. First, MB encoded withWe was UNSAT with a UNSAT CoreC; Second,Mabs includes

all the bit variables used in the setV of C. Third, after constrainingMabs with the encoding size

We, all clauses that contribute toC also exist in the constrainedMabs. So the constrainedMabs is

UNSAT.

Based on Theorem 2, all counterexamples within bit-widthWe for variablev can be ruled out

from Mabs. If there is a counterexample inMabs, variablev must have a width larger thanWe.

Since at least one variable needs to increase its encoding size in every iteration, this refinement

procedure is ensured to terminate. IfMabs is UNSAT, the assertion proves to be true. Otherwise,

a counterexample (potentially spurious) is returned, which is used to direct refining the under-

approximation in next iteration.

3. Computation of encoding sizeWe for refining under-approximation

Given a counterexample, each variable inMabs is assigned a valueO. One direct way to determine

an updated valueWe for each variable inMabs, is to letWe be big enough to coverO. For the

variables not inMabs, we derive theirWe by data dependency to keep the consistency among new

constraints added by the updated encoding size. In a word, wemake use of the width of assigned

bits in the counterexample instead of the assigned values onthe bits to direct the next refinement

iteration, as the counterexample-based refinement does. Note that after this process, different

variables may be assigned different updatedW′
e.

3.3.2 New Encoding Width Computation

Due to the decision heuristics of the SAT solver, a counterexample may assign large values on variables

[54]. So the updated encoding width based on the values of variables given in the counterexample may

be unnecessarily large. Since extracting UNSAT cores becomes increasingly difficult with an increasing
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/* Given 1) a counterexample Cex 

 2) a set N of Boolean variable nodes corresponding to conditional 

predicates in program and its value implied in the under-

approximation without decision. */

Procedure New_Encode (Cex, set N)

1:  for each Boolean variable node i assigned in Cex

2:      if (node i in set N) && (value of i in Cex != value of i in N)

3:          Mark node i;

     end for

4:  if (any node marked)

5:      for each marked node i

6:          Compute forward & backward slice of node i;

7:          Decide larger Si’ that i be free value in under-approx;

    /* via data dependence analysis */

8:           Compute updated Sv’ to all nodes v in slice;

9:       end for

11:  else

12:     Follow old encoding size computation;

Figure 3.9: New encoding size computation algorithm

encoding size, the whole refinement may suffer the performance loss. We propose a heuristic method

to improve the accuracy of the updated encoding size using program analysis. In the algorithm shown

in Figure 3.9, when a counterexampleλ is produced, we first identify all node variables inMB that

correspond to the control predicates in the program. Then wefind out those whose valueT implied by

the enforce constraints in the under-approximation are different from the value assigned inλ. These

nodes that decide which program paths to be taken are important to help find the SAT solution in the

under-approximation. We then compute their enlargedW′
e to allow the non-fixed values in the refined

under-approximation, and we use the data dependency to determineW′
e of other nodes. For example:

(x > 100) with old We = 4 is constantly false,W′
e of x is then set 7 to avoid the constant value in new

under-approximation. Since many control predicates have aconstant RHS in our verification problems,

it is easy to compute the newW′
e.
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3.4 Experimental Results

We implemented the proposed approach in C++, which is calledC2BIT and used it to verify the safety

properties in C programs from a wireless cognitive radio system [98]. Our benchmark programs are

extracted from two safety-critical components in this system. One is the policy engine that enforces

regulatory restrictions on the waveform. Another is the cognitive controller. These programs have two

important features:

1. Most loop structures have an upper bound so the execution always terminates. For example, there

are 10 C programs in the controller with 23 for loops whose upper bound is explicit, and there

are 15 while loops, 12 of which the maximum bound is statically known. The other 3 loops are

while(true) for monitoring sockets with very simple operations, which are not our verification

targets.

2. Most Array variables have constant size.

With all loops unrolled to a certain bound, all function calls inlined and properties specified as assertions,

we use open source GCC 4.0 compiler to generate the SSA form for the pre-processing. The maximum

boundK of the unrolling can be statically identified for formally proving the program correctness. Then

C2BIT uses this form as input for BMC. During model checking with the proof-based abstraction re-

finement, C2BIT uses zChaff to check the under-approximation, and extract UNSAT core as the proof

for the UNSAT instance, and uses MINISAT to check the satisfiability of the over-approximate abstrac-

tion. This is because zChaff provides a more user friendly UNSAT core compared with MINISAT. All

experiments run on Intel Xeon 2.8GHz processor with 2 GB RAM.

In Figure 3.10, we first show the effectiveness of our slicingmethod using a simple BubbleSort code

[76], compared to CBMCv2.4 with “–slice” option. The property we checked isassert(A[N−2] <=

A[N−1]) whereA is an array variable,N is the size ofA. All loops are maximally unwound. The left

plot shows the CNF formula size generated by CBMC grows very fast. While the growth of C2BIT is

almost proportional toN. The results also confirm our claim that the CNF formula size generated from

C2BIT depends on the number of array accesses, not on the array size. (Otherwise the CNF size should
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Figure 3.10: Results on bubbleSort

be proportional toN2.) The right plot shows that the solving time by MINISAT solver is basically

consistent with CNF size for both CBMC and C2BIT. The detailed data is given in Table 3.1.

Table 3.2 shows the results on 10 selected property verification problems onC programs. “TO′′ means

exceeding 3600s. The max bitvector widthW is 32 for every property. P3 to P9 are different properties

on the same unrolled program. The rest are different properties on different programs. Col (Column)

2 and 3 show the number of lines of code after loop unrolling and the satisfiability of properties being

checked. The memory usage and solving time by MINISAT for CBMC and C2BIT+S are given in Col 4-

5 and Col 6-7 respectively. Col 4 to 8 of Table 3.3 give resultsfrom C2BIT+S+R, including total runtime

(encoding+solving), number of refinement iterations, ratio of size(Mabs)/size(MB) and runtime speedup

over the setup without abstraction. C2BIT+S shows great reduction on the memory usage and runtime

compared to CBMC on both SAT and UNSAT properties. One main reason is due to our efficient

modeling of array variables and aggressive slicing. C2BIT+S+R shows speedup compared to C2BIT+S

on all SAT properties, because their satisfying solutions can be obtained in the under-approximate model

with small encoding width.

For P2-P4 whose UNSAT cores are all small, C2BIT+S+R shows faster than C2BIT+S. For P1 whose

UNSAT core is very big,Mabs is similar toMB in both size and solving time, while C2BIT+S+R needs

extra time of constructing the abstraction. For P5, although the size ofMB is 13 times bigger than that

of Mabs, their solving time is similar, because MINISAT itself is efficient enough in searching relevant

constraints among redundant ones in this case. For P6, C2BIT+S+R is slower than C2BIT+S, although

the abstract model size is rather small. Since some constraints not in the UNSAT core may still be useful
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Table 3.1: Results on bubbleSort program

CBMC-slice C2BIT CBMC-slice C2BIT

Array Size CNF Size CNF Size Solving Time Solving Time

4 128 64 0.37 0.14

5 208 84 1.05 0.26

6 308 108 1.11 0.36

7 428 128 2.72 0.87

8 580 152 3.00 0.97

9 768 172 5.01 1.62

10 976 196 9.30 1.53

11 1204 220 7.64 2.90

12 1468 240 26.00 2.91

13 1744 264 16.55 4.75

14 2048 284 22.87 3.71

15 2372 308 36.29 5.10

16 2724 328 40.15 6.10

17 3116 352 60.88 7.27

18 3516 372 80.98 8.28

to assist the SAT solver to find conflicts quickly, the abstraction may increase the non-determinism by

removing these constraints. Therefore, there is a trade offbetween removing constraints to reduce model

size and reducing solving time when the UNSAT core is not verysmall. Note that for P9, the values in

the braces indicate the results without the proposed improvement in computing updated encoding width

that is even worse than without refinement. In summary, the slicing can greatly reduce the memory

usage and runtime, and the refinement is efficient to further reduce the solving time in two cases. One

is that the satisfying solution for SAT properties can be found in the small encoding range of the under-

approximation. Another is that the UNSAT core is small for UNSAT properties.
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Table 3.2: Comparison of runtime and memory cost ofCBMC− 2.4, C2BIT with slicing and C2BIT

with slicing plus refinement (Part 1).

LOC Property CBMC C2BIT with slicing C2BIT+S

Mem(kb) T(s) Mem(kb) T(s)

P1 2411 UNSAT 2560 TO 1536 356

P2 4255 UNSAT 22928 1075 5764 411

P3 4255 UNSAT 22928 570 6508 151

P4 4255 UNSAT 22928 767 7236 44.3

P5 4255 UNSAT 22928 252 8496 14.7

P6 4255 UNSAT 22928 TO 2860 172

P7 4255 SAT 22928 TO 5012 119.9

P8 4255 SAT 22928 TO 9280 664.8

P9 260 SAT 941 45 561 7.5

P10 4565 SAT 23540 TO 11616 1233

3.5 Related Work

The application of model checking for software verificationhas been investigated in [8,26,35,43,70,109,

115]. Some apply symbolic model checking with predicate abstraction [8,26,70] or without abstraction

[43, 109]. Others apply SAT-based bounded model checking toverify asserted safety properties of the

program [35,70,115]. Our approach belongs in the second category.

Both Edwards’s work [43] and the recent work of Wang [109] applied symbolic model checking ap-

proaches to verify the asserted property of the embedded software by building a finite states transition

verification model. In [109], the authors exploited a uniquefeature of the software that program vari-

ables have a high degree of locality. They reported being able to directly handle software models having

thousands of state variables without predicate abstraction. The major advantage of modeling software

program as a states transition system is that, it is conceptually sound for proving the absence of bugs,

even in programs with unbounded loops and recursions. However, due to the limited scalability, sym-

bolic model checking is mostly combined with predicate abstraction, which transforms the program
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Table 3.3: Comparison of runtime and memory cost ofCBMC− 2.4, C2BIT with slicing and C2BIT

with slicing plus refinement (Part 2).

LOC Property C2BIT with slicing + Refinement (C2BIT+S+R)

Total T(s) Iteration Max S Max (Mabs/MB) Speedup

P1 2411 UNSAT 343 + 152 1 4 1532/1536 0.72

P2 4255 UNSAT 35.5 + 7.6 1 4 1196/5764 > 9

P3 4255 UNSAT 41 + 8.5 1 4 908/6508 > 3

P4 4255 UNSAT 15.3 + 9.6 1 4 1088/7236 > 1.5

P5 4255 UNSAT 10.8 + 9.2 1 4 612/8496 0.73

P6 4255 UNSAT 388 + 5.1 1 4 968/2860 0.44

P7 4255 SAT 5.14 1 4 − > 23

P8 4255 SAT 45.79 1 4 − > 14

P9 260 SAT 5.4(15.5) 2(2) 7 − > 1

P10 4565 SAT 29.5 1 4 − > 40

written in the high-level programming language to a simple Boolean program [8,26,70].

CBMC [35] is the first SAT-based bounded model checker for embedded software in C, to the best

of our knowledge. It has been used for assertion checking, aswell as equivalence checking to other

hardware description language like Verilog. It does not document the scalability enhancement method,

although the tool supports limited program slicing and translating the C program into the Satisfiability

Modulo Theories (SMT) [80] format, which can facilitate using a SMT solver for verification. Saturn

[115] applies BMC to detect hard errors, and uses function summaries, which are represented as finite

state systems, to be scalable enough to handle inter-procedural calls. This kind of function summary

targets on verification properties involving with few states, such as having only locked and unlocked

two states in the lock management problem. F-Soft [70] supports both SAT-based BMC and BDD based

unbounded MC. The translation from program to the Boolean model does not require the unwinding of

loops, as their model is sequential instead of combinational. It makes use of predicate abstraction and

counterexample-guided abstraction refinement technique to enhance the scalability of model checking.
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3.6 Summary

In this chapter, we have presented a new approach that applies the aggressive program slicing combined

with compiler optimization to compute an accurate slice. Wealso explored a proof-based abstraction-

refinement technique on our software model to build a localization abstraction for further enhancing

the scalability of software bounded model checking. Experiments show that our technique can achieve

significant speedups compared to the conventional BMC tool.
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BMC via Symbolic Simulation

In this chapter, we explore symbolic simulation on the verification model used in Chapter 3 to achieve

complete input coverage. As in previous chapters, abstraction is also used. We used a counterexample-

guided abstraction-refinement procedure to automaticallyabstract the property-relevant constraints. Ex-

perimental results suggest that this approach is promisingto formally verify some safety properties,

using a small number of simulation runs with symbolic values.

4.1 Motivation and Overview

We aim to investigate the applicability of some approaches in the hardware formal verification to ver-

ify the embedded software. There has been a great deal of research conducted in this manner in re-

cent years. For example, Counterexample-Guided-Abstraction-Refinement (CEGAR), first proposed

for model checking hardware designs, has been increasinglyused in software verification. Actually,

software and hardware model checking have reinforced each other in recent years [34]. In addition, our

research was also motivated by the experiences acquired from using CBMC (Bounded Model Checking

of ANSI-C) [35]. CBMC was originally developed at Carnegie Mellon University with the aim of model

checking embedded software. The basic idea is to transform the program under verification to a Boolean

formula so that the property checking problem is reduced to searching for a satisfying assignment to the

Boolean formula by a SAT-solver. However, the flattened Boolean formula loses the explicit data de-

60
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pendency and the structural information in the program, which can be used to aid the search process. In

addition, the complete transformation to the Boolean formula reduces the chance of applying abstraction

techniques to improve the scalability of model checking, and using word-level decision procedures like

SMT-solvers to enhance the searching ability of SAT-solverin software verification. (The latest version

of CBMC supports dumping program constraints in the SMT format.)

The rest of the chapter is organized as follows. In Section 4.2, we present some preliminaries about sym-

bolic simulation. In Section 4.3, we introduce our proposedsymbolic simulation-based model checking.

Experiment results are reported in 4.4, followed by the summary in Section 4.5.

Symbolic 

output O 
Simulate with 

symbolic inputs
Program P

Decide the SAT 

problem of O with 

reasoning engine

Property 

hold or fail

Figure 4.1: Basic symbolic simulation procedure

4.2 Preliminaries

4.2.1 Symbolic Simulation

Symbolic simulation is a rather broad concept and has becomeincreasingly popular in the system ver-

ification [18, 114] and software testing and verification [3,50, 74, 75]. The basic idea is that the pro-

gram execution is conducted by assigning each input unknownsymbolic values, instead of specific

concrete values as the conventional software testing. The main advantage of symbolic simulation is

that one symbolic simulation run can replace multiple conventional simulation runs. Formal verification

requires proving that the software satisfies the specification for all combinations of input values. Sym-

bolic simulation holds promise for this purpose, since a single symbolic simulation can capture multiple

scenarios. For example, when verifying a 3-inputAND function, one symbolic run with input vector

0XX, where the logic value of symbolX is unspecified, is equivalent to four fully specified testingruns

{011,000,001,010}, as long as the output values obtained from simulating 0XX do not contain any

unknowns. In this particular example, the output of the AND gate is 0 for all four vectors. Figure 4.1

shows the flow of a general symbolic simulation procedure. Given a programP, we apply symbolic
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inputs to perform symbolic simulation, and we obtain the symbolic resultO. We then use some decision

procedure to reason the SAT problem ofO, so as to conclude that the property being verified holds or

fails in P.

Broadly speaking, our model construction process introduced in Chapter 3 is a kind of symbolic simula-

tion. As in Figure 4.2, the symbolic values enforced on program inputs have symbolic names, which are

the same as the corresponding program variable names in thiscase. After symbolic execution, we can

obtain the symbolic output value as a first-order formula using nestedITEs. This symbolic simulation

approach is precise; however, as the program becomes larger, the number of paths may increase expo-

nentially. As a result, the terms representing the symbolicvalue may easily blow up [103]. Although

some research has been conducted to alleviate this problem,such as term rewriting [4, 42] andITE

simplification [88,92], it is still one of the obstacles in the scalable applications.

 x = ite( 

             ((x=x+y) != 1), (ite(z==0, 2+1, 2)), x+y

       )

1.  x = x + y;

2.  if(x != 1) {

3.      x = 2;

4.      if(z == 0) 

5.           ++;

     }

{ x, y, z }

symbolic inputs symbolic output

Figure 4.2: An example of symbolic simulation

In this work, we apply another kind of symbolic simulation [56]. We assume only a small number of

bits in the input variables’ bit-vectors need to be specifiedto verify program invariants in the verification

problems. Therefore, rather than using OBDD-based symbolic simulation, which describes the accurate

program functionality with all input bits, we use distinguishing Xs introduced in [72] as symbolic vari-

ables for simulation. It distinguishes every don’t-care (X) with a unique ID. EveryXi has a correlated

Xj . In particular, an odd idi has a correlated id(i −1), and an even idj has a correlated id( j +1). The

cost of simulating distinguishing Xs is almost the same as the traditional 3-value simulation, and it has a

strong reasoning ability among correlated Xs. Figure 4.3 gives examples to show the difference between

simple X, distinguishing X and BDD. Consider the NOT gate in Figure 4.3(a) and (b), a distinguishing

X uses an even id 0 and its incremented id 1 to record the negation relation of the two Xs (if input X

with odd id, the output id is its decrement.), but simple X loses this correlation. For the example cases
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of AND gate, simple Xs cannot differentiate two related Xs onan AND gate. For distinguishing Xs,

it can derive the output value 0 if two inputs have negation relation, and the output equals one input if

another input has non-dominant value (i.e., 1 in this case).But if two inputs have no correlation, distin-

guishing X uses a new id to label the output. Finally, BDDs canbe used to capture the full functionality

of AND logic. However, they may require excessive memory space for complex functions. In terms

of the accuracy of symbolically representing the functionality, BDD is the most accurate, while 3-value

logic values is the least accurate, distinguishing X lies inbetween.

NOT

NOT

x x

x[0] x[1]

AND

AND

x
x

x

0

x[0]

x[1]

AND

AND

x
1

x

x[1]

1

x[1]

AND
a&b

a

b

a

b0

0 1

(c) Distinguishing  X

(a) Simple  X

(b) BDD

AND x[4]

x[0]

x[2]

(d) Accuracy comparison of three 

symbolic simulation techniques 

BDD3-value Dist X

Accuracy

Figure 4.3: Example of simple X, BDD, Distinguishing X and accuracy comparison.

In our approach, we enhance distinguishing Xs by enabling itto reason the consistency among the same

type of the un-interpreted functions (UFs) [21]. Recall that the UF operator loses all semantics of the

underlying functions, except the functional consistency among different instances of the same function.

So the computational constraints between inputs and outputof each individual UF are abstracted away.
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Figure 4.4 gives an example of how the correlation among input Xs are propagated through UF oper-

ators. The two UF operators are abstracted from the same operation type (e.g., “+′′), their input pairs

are both(X[m],X[n]) although the exact values ofX[m] andX[n] are unknown, so their outputs are both

X[k]. We can easily conclude that the output of the connected== operation is always 1. In this case,

we can only get the inconclusiveX at the output with the simpleXs simulation.

+

UF

+

UF

==

x[m]

x[n]

x[m]

x[n]

x[k]

x[k]

1

Figure 4.4: An example of UF functions simulated with distinguishing X

4.3 Model Checking in CEGAR Framework

The model construction is similar to that in Chapter 3. So we focus on the model checking procedure.

Given the program modelsMH andMB, we first choose an initial abstractionMγ. Then, we model check

Mγ with the symbolic simulation. IfMγ holds the property, the concrete program also holds the property,

sinceMγ is anover-approximation based abstraction. Otherwise, we could get a counterexample, which

violates the property. The counterexampleE is a set of value assignments on some internal and input

edges. We validate the counterexample by justifying these value assignments in the low-level model

MB. If E is valid in MB, we can conclude that the program violates the property; otherwise, we restore

the constraints along the internal edges inE to remove the invalid counterexample for refiningMB, and

jump to the step of model checking for the next CEGAR loop. TheCEGAR procedure with these four

steps is illustrated in Figure 4.5. We describe the first two steps with more details in the following.

• Choose an initial abstract modelMγ

The selection ofMγ involves a trade-off between the model checking cost and themodel refine-

ment cost. IfMγ is too coarse, the cost of removing false negatives through the refinement steps

can be very high. On the other hand, if it has a similar complexity to the original program, the
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Choose initial 

abstraction M
!

Symbolic simulate M
!
 

for model checking

Validate

counterexample on MB

Restore constraints 

to M
!
 for refinement

Property hold

Property violated with 

returned counterexample

Yes

No

Prove

Disprove with 

a counterexample

Figure 4.5: CEGAR procedure with symbolic simulation

model checking operation would be costly. In order to find thesuitable initial abstract model, we

take the following steps.

1. We make use of the equality assumptions in the program to increase the chance of reducing

the redundant variables. These assumptions claim the conditions that must be satisfied for

the execution to reach the property assertion being verified. For example, if a property

assertion is located within the control range of an equalitycondition(a == b) as shown in

Figure 4.6 (a), we could replace all the usage of eithera or b after the last definition with

the other. If one variable is the primary input without new definition in the program, we

could safely remove it to reduce the number of variables as variableb in Figure 4.6 (b). This

transformation can reduce the model complexity without invoking false negative errors; it

can be easily implemented in the modelMH .

2. Following the last step, some variables that have the sametype of operation may share the

same inputs. So the nodes corresponding to these variables in the model can be merged as

the variabley in Figure 4.6(c).

3. We remove the variables with complex arithmetic operations like multiplication and divi-

sion, replace other arithmetic operations like addition with un-interpreted function (UF),

and keep the variables with predicate operations. For each removed node, we also remove

its data dependencies with its input nodes and its data dependencies with its output nodes.

In some cases, the model at this step contains only the program constraints defined in the
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int a, b, ...;

if(a == b) {

   assert(p);

}

...

...

...

...

x = a - k;

...

y = b + m;

...

z = a + m;

...

Both a and b are 

only used, but not 

defined.

Assume a==b here.

(a) Original program

!

p==

a

-

kmb

++

y z x

........

.......

........

.......
........

.......

!

p==

a

-

kma

++

y

x

........

.......

........

.......
........

.......

a

(b) MH of code in (a) by replacing b with a (c) MH of code in (a) by replacing z with y

Figure 4.6: An example of model reduction

property assertion. In order to avoid the abstract modelMγ being too coarse, we restore the

variables that have the data dependency with the assertion statement at the distanceS, where

S is usually set to 3. Finally, the model we get is the initial abstract modelMγ.

• Model checking by symbolic simulation with DistinguishingXs

We symbolically simulate the abstract modelMγ to verify whether its output node is an invariant

under all possible input values. Our goal is to implement thecomplete coverage through a small

number of symbolic input vectors. There are three general cases in which the properties are

formally verified with symbolic inputs.

1. One is using distinguishing Xs without specifying any input bit value to constant “1” or “0”,

so that the size ofV is 1. This is easy to conduct.

2. Another is constructingV by the enumeration of all specified logic values on only a small

subset of input bits and leaving rest bits asX, for example{XX1X,XX0X}. This could

abstract away the variables which are not relevant to the verification.

3. A third option is the identification of a set of limited input patterns to buildV, for example

{0001,XXX0}. This relaxes the restriction of the previous case on enumerating the value of

only certain input bits, but still with a small number of input vectors.

We use the value justification to realize cases 2) and 3) [96].The basic idea is that the input values
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node at level i+1

node at level i

1 1

1 1 1 1
node at level  i+1

node at level i

1 1

0(1) 1(0) 0(1) 1(0)

Inputs Inputs Inputs Inputs

(a) (b) (c) (d)

Figure 4.7: Four scenarios of input space partition

of a node can be justified by the specified output value according to the operator type, so that the

whole input space can be partitioned. Figure 4.7 shows four scenarios. In scenarios (a) and (b), in

order to verify the node at the leveli +1 who has anANDoperator as “1′′, both edges connected

with the nodes at the leveli must be justified as “1′′. In parts (c) and (d) of the figure, since the

node at the leveli +1 has aORrelation with the input nodes at leveli, only one edge connecting

with nodes at the leveli needs to be justified as “1′′. The subset of input bits, on which each node

output at the leveli depends, may be correlated as in scenario (a) and (c), or may be uncorrelated

as in scenario (b) and (d).

For scenario (a), we give the correlated input bits higher priority for specifying their values or

searching their patterns. For scenario (b), we could separate the symbolic simulation into two

independent tasks, and each with a smaller input space. For scenario (c) and (d), the manner in

which the pattern is searched, depends on the justification order among the optional edges. Using

the value justification to partition input space into smaller subspaces, we can have the better

chances of obtaining the symbolic input patterns, which mayavoid the don’t-care value at the

monitor output, so as to relieve the conservativeness of symbolic simulation.

We set the threshold of the size ofV as 32. So the number of value-specified input bits is 5 for

case 2). In fact, the case 3) is a complement of case 2). With the setV, we symbolically simulate

the abstract modelMγ for model checking. The pseudo code of our simulation is given in Figure

4.8.
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1. Procedure SymSim (Abstraction M’)

       /*levelizing nodes*/

 2.      level(Input Nodes) = 0;

 3.      for each node n

 4.          level(n) = max(level (n’s predecessor))+1;

 5.      end for

        /*symbolic inputs with 0, 1 and distinguishing X[id]*/

 6.     for each input vector V 

 7. for level l = 0 to max level

 8.      for each node n with level(n)==l 

 9. evaluate(n);

                end for

           end for  

        end for  

    end

Figure 4.8: Pseudo code of proposed simulation

4.4 Primary Experimental Results

Currently, we implemented our approach in the prototype C2CKT with C++. For the comparison pur-

pose, we also implemented in the prototype C2CNF, the transformation from the program to CNF for-

mula for bounded model checking by the SAT solver, which was proposed in CBMC [35]. The programs

that we experimented with have only integer type variable. Table 4.1 gives the basic analysis of the test

results on the five C experimented programs.

Table 4.1: Test results

BB# in SSA SSby case 1 SSby case 2,3 CEGAR Loop# #input patterns (>32)

Tut4.c 4 Y 0 N

Tut6.c 5 Y 1 N

Lock.c 12 Y 0 N

Ineq.c 5 0 Y

Date06.c 3 Y N

In Table 4.1,SSmeans the symbolic simulation for short. The 2nd column describes the property of the

C benchmark program, the 3rd and the 4th columns record the case type, by which the programs are
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verified. The 5th column is the number of CEGAR loops being taken. The 6th column records whether

the program is completely verified with the small threshold of 32 symbolic input patterns. For example,

consider the benchmark program Tut6.c. There are 5 BBs in this code, and its verification falls in case

2,3) with one CEGAR refinement iteration. The required inputpatterns to cover the complete input

space are smaller than 32 (actually 5 patterns in this case).Only one benchmark program Ineq.c is not

verified under this threshold.

Table 4.2 shows that the size ofV does not change with the width of the bit-vector for data representation,

but the size of CNF increases as the width of the bit-vector increases. This reason is that our approach

aims to find input patterns that can cover whole search space.The size of these patterns is not directly

dependent on the integer representation, like the size of CNF clauses in the C2CNF approach. For

example, with the modeling width of bit-vector increased from 4 to 16, the number of patterns in the set

V is still 5, but the number of clauses in CNF is increased to 1143.

Table 4.2: Comparison between C2CKT and C2CNF in verifying Tut6.c

Size of bit-vector Size ofV # of clauses in CNF

4 5 763

16 5 1143

32 5 2383

4.5 Summary

We investigate the potential of combining symbolic simulation with localization abstraction [78] for

scalable formal verification. Our approach uses distinguishing X as symbolic values to replace the

concrete variables’ values, so that a limited number of identified symbolic input vectors can cover the

complete input space. In order to reduce the verification time and ease the identification of symbolic

input vectors, we apply the symbolic simulation to check theabstract model, which is automatically

constructed in the counterexample-guided abstraction-refinement framework. This abstract model is

a localization abstraction of the program, which includes asubset of property-relevant program con-

straints, and so it is more easily verified than the original program. The property-relevance of program
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constraints is automatically determined during the iterative abstraction refinement procedure.



Chapter 5

A New Testability Guided Abstraction to

Solving Bit-vector Formulae

In this chapter, we present a new abstraction approach basedon the concept of under- and over-approximation,

to efficiently solve bit-vector formulae generated from software verification instances, which include in-

tensive control structures. Our proposed approach appliestwo common testability metrics — controlla-

bility metric (CM) and observability metric (OM) — for guiding the abstraction refinement procedure.

We construct the under-approximation by enforcing constant constraints on a small set of single-bit

variables, which control the branch selection of someITE variable nodes. Subsequently, each con-

structed under-approximate model includes only a subset ofpaths in the formula. We use CM and OM

to guide building such models so that a counterexample can beobtained with little effort. If the under-

approximate model is unsatisfiable, an over-approximate abstraction is obtained by refining along the

paths included in the model. This is conducted by using the UNSAT proof to learn the relevant formula

constraints. We also use OM as a guide to heuristically and efficiently restore additional verification-

relevant constraints in the iteration. The experimental results show a significant reduction of the solving

time compared to state-of-the-art solvers for bit-vector arithmetic.

71
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5.1 Motivation and Overview

Many existing software verification techniques [5,35,37,110,115], model the bounded data-types as bit-

vectors with fixed bit-widths, and the verification constraints are modeled as the bit-vector arithmetic

formula. For example, in the embedded software model checking tool called CBMC [35], the program

verification instances derived from the bounded model checking of ANSI-C programs are formulated as

bit-vector equations. Another example of an application can be found in an automatic theorem prover

called Cogent [37]. It has been applied to precisely reason the satisfiability of the queries produced in

the predicate abstraction refinement procedure for symbolic software model checking, like in SLAM [9]

and ComFoRT [71]. This bounded modeling allows the bit-precise reasoning to be applicable to almost

all programming language constructs. However, due to the program complexity, the existing decision

procedures are still not scalable to directly reason the validity of the bit-vector formulas, obtained from

the practical software verification without aggressive abstraction.

Compared with other abstraction techniques like predicateabstraction, weakening abstraction is simple

and easy to apply since it weakens the transition relations without mapping the state space of the design

to another state space domain. Several existing abstraction methods, such as those proposed in [5, 20],

are considered to be weakening abstraction. In order to makefull use of the ease and simplicity of

weakening abstraction, it is critical to develop a refinement procedure that can efficiently and accurately

identify the verification-relevant variables to constructthe precise abstract model.

The goal of our work is to apply a weakening abstraction technique — localization abstraction to quicken

the decision procedure of bit-vector formulas, especiallythose generated from the verification of control-

dominated software properties. Our contributions are as follows:

1. We propose a new localization abstraction procedure using the concept of under- and over-approximation.

The under-approximate model is built by enforcing constantconstraints to a small set of single-bit

variables that control the branch selection of ITE nodes. This restricts the search space to only a

subset of paths in the formula. The over-approximate abstraction is obtained basically via learning

the relevant variables from the UNSAT proof of the under-approximate model. To start a new re-

finement iteration, we use the satisfiable assignment of the current over-approximate abstraction,
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to guide the construction of a new under-approximate model,with an unvisited subset of paths in

the formula.

2. We present a new CM and OM computation and apply them to efficiently guide the proposed

abstraction refinement procedure. CM estimates the ease of finding a SAT solution by the SAT

solver on the paths reaching the target variableV. It is different from traditional CM metric, which

evaluates the testability of a structure to guide thesimulation-based testing. Our proposed OM

approximates the influence of the variation ofV on the outputs. Our approach can quickly find a

satisfying solution on the easily controllable subset of paths in the formula, as long as a solution

exists on them. It also restores additional verification relevant constraints, according to the OM

heuristics in the iteration, to significantly reduce the refinement cost by only using the UNSAT

proof. As a result, an abstract model that is precise enough for the verification can be quickly

built, long before all paths have been enumerated.

The experimental results show that a significant amount of solving time can be reduced for the bench-

marks generated from the bit-precise software verificationapplications.

The rest of the chapter is organized as follows. In Section 5.2, we present the controllability and ob-

servability computation. Our proposed abstraction approach is presented in Section 5.3. We report our

experimental results in Section 5.4. A discussion of related work is given in Section 5.5, followed by

some conclusions in Section 5.6.

5.2 Controllability / Observability Metric

In order to quantifiably estimate the amount of influence thateach bit-vector variable has on the property

under verification, we propose a new method to compute CM and OM of each variable in the formula.

CM and OM respectively approximate the difficulty of finding asolution on the paths leading up to the

variable, and the amount of impact that the variable has on the target property at the output.

One informal definition of the testability of a variable in a design is: the degree to which the variation on

that variable can be controlled from the inputs or observed at some observation point. CM and OM are
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two popular metrics widely used to evaluate the testabilityof hardware designs at either the RTL level

or the logic-level. Examples include the test case quality evaluation [46], identification of hard-to-test

regions in a design, where faults can hide from /easily be reached by testing [27,51,55,64,65,106], and

testability analysis of software components [93].

One way to view formal verification is “testing with completeinput-coverage”. Thus, CM is useful

to provide some high-level structural information to guidethe search of a SAT solution with different

expectations. For example, we can focus on the easy-to-control paths if we want to test those common

cases; or focus on the hard-to-control paths if we aim at the corner cases where the random/directed

testing have difficulty with. Furthermore, the hard-to-observe variables are less likely to be relevant

to the verification property, as variations of their values have the limited impact on the property. In

this regard, OM provides a guidance to estimate whether a given variable should be involved in the

abstraction or not.

Our proposed CM and OM computation is performed on the bit-vector variables directly, instead of

the individual bits. It also makes use of the pre-calculatedcontrollability and observability coefficients

(COC) of basic operators, to efficiently compute the CM and OMof each individual variable computed

by that operator. These coefficients approximately reflect the different amounts of influence that the

basic operators have on the CM and OM computation. We apply the graph-based model of the bit-

vector formula to facilitate the computation.

5.2.1 Controllability and Observability Coefficient

We first present how we estimateControllability and Observability Coefficient(COC) of basic operators.

Since we make use of the SAT-solver to finally determine the satisfiability of the bit-vector formula being

solved, the number of clauses encoded from the bit-vector arithmetic operator is a good indicator of its

complexity in searching for a solution. The adder is the basic element of almost all predicate operators

and arithmetic operators in our encoding, and 32-bit is the most widely used width to represent program

variables. Therefore, we use the 32-bit adder as the standard and set its COC value as 10.

The COC values for other operators (OPs) are computed, based on the number of encoded CNF clauses
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and bit-vector width. It is formulated as the following (Forall non-predicate operators,K is the output

bit vector width ofOP; for predicate operators,K is the maximum of inputs bit vector width ofOP):

COC(OP) = ⌈ # o f CNF clauses(OP32)
# o f CNF clauses(ADDER32)

×10× K
32⌉

Table 5.1 lists the COC values for some commonly used bit-vector operators.

Table 5.1: COC Values for Common Operators

Bitwise OPs

OR, AND 2

XOR 2.5

Predicate OPs

==, 6=, =¿ 3

>,< 9

Arithmetic OPs

+ 10

- 11

Others

≥,≤ 12

ITE 2.5

5.2.2 CM and OM Computation

The CMs of all primary inputs (PIs) are first initialized to zero. Then, since the CM of an internal

variable depends on the CM of its inputs and the type of the operator by which the variable is computed,

we formulate the relationship between the CM of any variablev with the operatoropand the CMs of all

its inputsIN as the following (whereN is the number of inputs ofv):

CM(v) = max{CM(INi)}+COC(op),(0≤ i < N)
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After computing the CM values of all variables in the graph-based model of the formula, we begin to

calculate the OM value of each variable backwards from POs. The OMs of the one or more POs that

correspond to the properties under verification, are first set to zero. As the observability of an input of

any variablev depends on both the observability ofv and the controllability of any other inputs tov,

we compute the OM of the input variableINi as the sum of the COC value ofv’s operatorop, and the

maximum value among the CM of all side inputs ofv and the OM ofv as:

OM(INi) = COC(op)+max{
OM(v)

max{CM(IN j 6=i)}
}

F = (c0 = (b0 < a0)) ∧ (c1 = (z0 < b1)) ∧ (b1 ite c0 a0 b0) ∧

(a1 ite c0 b0 a0) ∧ (z1 ite c1 b1 z0) ∧¬(z1>=a1)

S1:  if(b0 < a0) { b1=a0; a1=b0; } else { b1=b0; a1=a0; }

S2:  if(z0 < b1) { z1=b1; } else{ z1=z0; }

S3: assert(z1 >= a1);

(b) Bit-vector formula F generated from (a) 

  (a) Program statements in SSA

ITE

T    F

b0a0

ITE

F    T

a0 b0

ITE

F    T

b1 a1

z0

>=

z1

<

<

c0

c1

==1
O

(c) Graph-based model of F labeled with <CM, OM>

<0,35> <0,46.5> <0,46.5>

<20.5, 26>

<11.5,35>

<11.5,35>
<9,37.5>

<35,0>

<23, 23.5>

<0,46.5> <0,46.5>

Figure 5.1: An example of bit-vector arithmetic formula with its Model
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In Figure 5.1, we use a bit-vector formula generated from a small program verification instance as an

example of the CM and OM computation on its graph-based model. Figure 5.1(a) gives a simple sorting

code with two statements in the Single Static Assignment (SSA) form and one property assertion at

statementS3. In S3, b0 < a0 andz0 < b1 are two control predicates determining the execution path.

In the corresponding generated bit-vector formulaF given in Figure 5.1(b), the program control flow

information is decomposed by a set of ITE operators, each of which has a selection inputiSel to control

which of the two inputs to propagate to the output of the operator. iSel represents the conjunction of all

control predicates, which must be satisfied to take the new variable definition on the true branch input.

All variable definitions in the same control range share oneiSel. For instance, asb1 anda1 are all under

the control of predicateb0 < a0 in Figure 5.1(a),c0 defined asb0 < a0 is theiSel of two ITEsa1 and

b1 shown inF. Thus, enforcing constant constraints oniSels of F can be regarded as restricting the

execution on a subset of control-flow paths in the program.

In the graph-based modelM of the formulaF shown in Figure 5.1(c), we label the computed CM and

OM in the pairs next to each variable node. As an example, the CM of the outputO is computed as

CM(O) = max{CM(z1),CM(a1)}+COC(O) = 23+12= 35

Computation of OM begins after the CM values for all variables have been computed. The OM ofa1 is

calculated as

OM(a1) = max{OM(O),max{CM(z1)}}+COC(O) = 23+12= 35

For the fanout structure in the graph, where one variable hasmore than one output connection, the OM

of this variable may be computed several times. We choose themaximum one as the final OM of this

variable. For the example ofz0, which has two fanoutsc1 andz1, OM(z0) computed fromc1 andz1 is

35 and 26. SoOM(z0) is set to 35.

In summary, the CM/OM has three important properties:

• Larger values of the CM/OM indicate harder controllability/observability.
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• On any path from PIs to a PO,CM(v1) < CM(v2) andOM(v1) > OM(v2) always hold ifv1 is the

predecessor ofv2.

• For fan-out free inputsIN0, . . . , INN−1 of v, OM(INi) ≥ OM(IN j) if CM(INi) < CM(IN j)(i 6= j).

5.3 Testability Guided Abstraction and Refinement

In this section, we present our new testability guided abstraction and refinement approach to efficiently

solve the bit-vector formulae. We first give an overall framework of our approach. Details regarding the

steps of choosingiSelvariables, deciding enforced constant constraints to build the under-approximate

model and constructing the over-approximate abstraction,are described in later subsections.

5.3.1 Overall Framework

Given a bit-vector formulaΦ, our proposed approach has four steps as illustrated in Figure 5.2. Steps

2−4 are iterative steps during the refinement.

Bit-vector 

Formula Ȉ

Decide constraints 

on chosen ite-selects

by CM and OM

Build & check under-

approximation Ȉu
Ȉu 
SAT

Ȉ SAT with 
returned 

counterexample 

Refine & check abstraction 

Ȉo  guided by OM and 
Proof

Ȉ UNSAT
Ȉo 

UNSAT

Ȉu UNSAT

Ȉo SAT

Refinement 

Iterations

Initialize

counterexample UNSAT core 

as a Proof 

Figure 5.2: Overview of testability guided abstraction approach to solving Bit-vector formula

1. Initialize: We first build the graph-based modelM of Φ, and calculate the CM and OM of every

variable node inM, according to our proposed computation method discussed inthe previous

section. We also define some data sets based onΦ for the abstraction:

• I : a collection of all the ITE variables.
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• IS: a collection of all theiSelvariables, each of which controls the branch-taking of at least

one ITE variable.

• ISS (⊂ IS): a collection of choseniSels to which the constant constraints (0 or 1) are enforced

to build the under-approximate model.

Enforcing all enumerated combinations of constant constraints on theiSels in the setISS, is actu-

ally the act of partitioning of all control-flow paths ofΦ into a number of subsets of paths, each of

which is an under-approximation. This is because the searchspace is limited to only one branch

of all ITEs controlled by the constrainediSels. In order to minimize the similarities among the

enumerated partitions and the complexity of each partition, we set two basic criteria of choosing

iSels into the setISS. Recall that multiple ITE operators may be controlled by thesameiSel vari-

able. So first, we prefer choosing thoseiSels with the largest number of connected ITEs. Second,

considering the different degrees of verification relevance of variables, we prefer selecting the

iSels whose connected ITEs are most relevant to the property under verification.

2. Decide 0 or 1 for each iSel constraint:For eachiSel in ISS, we decide which value (0 or 1) to

enforce for building aΦu. First, we must ensure that the enforced constant constraints have not

been applied before, to avoid building the sameΦu again. Second, we give the priority to the

ones that can restrict the search on the branches of the controlled ITEs with smaller CM values.

Thus,Φus consisting of a set of easy paths according to CM are constructed early. This facilitates

the finding of a SAT solution with less effort. Furthermore, since theseΦus usually involve either

fewer variables or simpler formula constraints among the variables inΦ, it may also ease the

UNSAT proof extraction for refining the abstraction.

3. Build and check under-approximationΦu: The chosen constant constraints on theiSels in ISS are

added to the formulaΦ to build Φu. Since the variables on the unselected branch of each ITE

are irrelevant to reasoning the validity ofΦu, we can safely slice them away. After encodingΦu

into a Boolean formulaβu, we check the satisfiability ofβu with a SAT-solver. If it is SAT, we

can conclude thatΦ is also SAT, because the constant constraints added on the variables inISS

are also achievable inΦ. On the other hand, ifβu is unsatisfiable, we use the UNSAT coreC

generated fromβu, as a proof to help us obtain an over-approximate abstraction Φo in the next

step.
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4. Refine and check abstractionΦo: In the case thatΦu is unsatisfiable from the previous step, we

restore the verification relevant variables to refineΦo in two ways. First, we identifyall bit-vector

variablesVH involved in the given UNSAT coreC and add them intoΦo. Note that the constant

constraints enforced on theiSelvariables inΦu are not carried over, so that we can make sure that

Φo only contains the original formula constraints ofΦ. Second, considering that the variables

with similar OM values have similar impact on the property, we can heuristically restore more

verification relevant variables, guided by the OM values of variables that are already learned as

being relevant. Thus, after computing the maximumOMmaxof the variables inVH , we useOMmax

as a threshold to restore more variables, whose OMs are equalto or smaller thanOMmax into Φo.

Thirdly, we check the satisfiability of the Boolean formulaβo encoded fromΦo. If βo is UNSAT,

we could conclude thatΦ is also UNSAT; otherwise, we use the SAT assignments on theiSels

from the setISS to guide enforcing new constant constraints in step 2 iteratively.

Due to the finite search space, the refinement procedure always terminates. In the worst case, the number

of iterations can be exponential to the size ofISS as the explicit enumerations of enforced constant

constraints are exponential. However, earlier enumerations can actually be sufficient to refute a large

number of paths that need not be enumerated in subsequent iterations. According to the experimental

results, many properties can be verified, with only a very small number of iterations assisted by the

proposed CM and OM guidance.

5.3.2 CM/OM Guided Under-approximation

As discussed earlier, we prefer choosing thoseiSelvariables that control a large number of verification-

relevant ITEs. Thus, we define a parameterPriority for eachiSel to quantify this preference. In order

to differentiate the verification relevance of ITEs, we classify all ITEs into K subsetsI = {I1, . . . , IK}

depending on their OM values. LetOMmax andOMmin be theMaximumandMinimumOM of all ITE

nodes. The OM value of every ITE classified in the subsetIi (1 ≤ i < K) must fall into the interval

[OMmin+ (OMmax−OMmin)∗(i−1)
K ,OMmin+ (OMmax−OMmin)∗i

K ). Every ITE in the subsetIK has OM in the range

[OMmin + (OMmax−OMmin)∗(K−1)
K ,OMmax]. A weight with the value of(K − i) is assigned to all ITEs in

each subsetIi (1 ≤ i ≤ K) to approximately quantify their verification relevance. The computation of
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Priority is formulated as the following (where 1≤ j ≤ Size(IS) andITE count( j, i) returns the number

of ITEs in the subsetIi controlled byiSelj ):

Priority(iSelj ) = ∑K
i=1((K − i)weight∗ ITE count(iSelj , i))

We then define a tupleT = (ID, Priority, < CMT , CMF >, L) to describe aniSel. EachiSelhas a unique

ID. The third element records theaverageCM of the True and False branches among all controlled

ITEs. Due to the existence of embedded control structures like i f (c1){..; i f (c2){..}}, someiSels may

be the conjunction of otheriSels in the formula generated from such instances. (We assume each control

predicate in the program has only one predicate operator). In order to express this dependency among

iSels, we useL to record the list ofiSels that include thisiSel in their conjunctive form.

With the defined tupleT and a given thresholdθ, we choose alliSels each of which has the PriorityP

aboveθ, and store them in the decreasing order ofP into the setISS, i.e.,(P(iSeli)>= P(iSelj)) where(1≤

i < j ≤ Size(ISS)). The order of enforcing constant constraints on theiSels in ISS follows the two basic

principles:

1. To build the initialΦu, we prefer the constant 0 to 1 ifCMT of the iSel is greater thanCMF (False

input branch is more controllable); otherwise, 1 is preferable. In the special cases that theL of

the iSel is not empty, we prefer enforcing the constant 0, which meansthat the enforced constant

constraints on all otheriSels in L have to be 0 as well. As a result, the initial model includes the

easily controllable paths with a low computation complexity.

2. To build a newΦu during the refinement iteration, we only modify the enforcedconstant values

for the iSel variables involved in the current UNSAT proof. We prefer that the enforced constant

constraints can produce a newΦu with the least similarity to the currentΦu. These enforced

constraints must be valid in the abstractionΦo.

5.3.3 OM Guided Abstraction Refinement

If Φu yields no solution, the SAT solver (like [14]) extracts an UNSAT coreC from βu and returns a set

of bit variablesV present inC. With V, we learn those verification-relevant variables guided by OM to
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Over_appr  (set V of UNSAT core C )

   /*1. Learn new constraints from V */

1:  for each bit-vector variable i in formula Ȉ
2:    Map to a set V2 of bits in β that encode i;

3:     /* the intersection set of V2 and V */

4:     Compute set V3 = V2 ∩V ;

5:     if V3 not Empty

6:        Add variable i to Ȉo;

7:        Remove all bits in V3 from V;

8:        Mark the variable i;

   /*stop if all bits in V have been included in Ȉo*/

9:     if V empty                  break;

10: end for

/*2. Learn more constraints guided by OM */

11: OMmax = maximum OM of all marked variables in Ȉ;

12: for each bit-vector variable i in Ȉ
13:    if i marked                continue;

14:    if OM(i) <= OMmax    Add variable i to Ȉo;   

15: end for

Figure 5.3: Abstraction refinement algorithm

obtain a refined abstractionΦo in two steps. The algorithm for the refinement is given in Figure 5.3.

First, to facilitate learning those relevant variables fromV, a bit-vector variable and the original formula

constraints with all its input variables inΦ are added inΦo, if any bit of this variable is included in

V. Therefore, thisΦo only contains a subset of formula constraints ofΦ without the enforced constant

constraints included inΦu. For the example shown in Figure 5.1, the under-approximatemodel built

by constrainingc0 = 0 andc1 = 0 involves the same set of variables as the original formula shown in

the dark color of Figure 5.1(c) except that there is less control dependency among them. The abstrac-

tion built by the proof of such an under-approximation has all verification-relevant constraints (same

constraints as the original formula), so we only useoneout of all four possible combinations of added

constraints to learn enough relevant variables for the abstraction in one iteration. This example illus-

trates that the proof-based refinement iterations need not enumerate all combinations of the enforced

constant constraints to reach a conclusion.

Second, in order to reduce the burden of proof-based abstraction, we also apply OM as a guide to

heuristically restore more verification-relevant variables in each refinement iteration. If a variablev
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with OM equalλ is identified relevant by the proof, other variables whose OMis no bigger (i.e., equal

or more observable) thanλ are also considered relevant by the observability heuristic. This is reasonable

becausev is considered to have equal or greater impact on the target output. One explanation of why

these variables were not in the proof of the current under-approximate modelφu is that they may not

have been needed in the restricted path(s) of thisφu. But they may be referred to in the proof ofφus that

have not been enumerated. Furthermore, this OM-guided approach can identify these relevant variables

with very little effort. It can be very efficient in the cases that we use the UNSAT proof to learn relevant

constraints from the easy under-approximate model (partitions) ofφ, and apply the guidance of OM to

learn additional constraints in the other portions ofφ that are complex and have not been involved in

the previous enumerated partitions. So, it can increase thelikelihood that the verification task is done

without actually building the under-approximate models onthose complex partitions. The third property

of our CM/OM computation helps to increase the probability of such cases. It means that the branch

with the smaller CM has the bigger OM value. So, if the variables on the easy-to-control branch are

found to be included in the UNSAT core, the variables on another branch are also considered as relevant

according to our OM heuristics, which is true for most properties being verified.
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Table 5.2: Results Comparison

Benchmark Vars# iSels# Spear(s) Our CM/OM-Guided Abstraction-Refinement

Vars# iSels# % CNF(% SF) Iter. MINISAT (Spear)

vc331256 27248 3110 314.42 9259 1019 55.3 (48.50) 1 58.05 (51.46)

vc331257 27369 3149 437.13 9160 994 55.2 (48.15) 1 52.30(79.22)

vc331185 21990 2468 545.28 7466 831 55.4 (48.46) 2 35.85(44.17)

vc331190 23188 2656 632.33 7713 852 54.5 (48.18) 2 26.83(101.77)

vc331211 23554 2681 449.62 7959 877 56.2 (48.20) 2 42.46(60.98)

vc331179 21918 2553 44.31 7206 787 52.5 (48.06) 1 25.80(40.72)

vc331180 21094 2398 90.64 7036 771 52.3 (48.39) 1 41.11(56.37)

vc331228 21918 2920 175.01 8504 948 52.1 (48.18) 2 48.64 (28.22)

vc331218 25413 2920 140.99 8504 948 52.4 (48.00) 1 28.67(38.11)

vc1225825 17628 1985 41.39 5916 594 52.8 (34.9) 1 21.85 (8.43)

vc1225314 17481 1991 28.54 5847 604 54.0 (34.3) 1 22.51 (13.51)

vc1225832 19867 2273 64.80 7360 665 53.3 (43.1) 2 41.56 (23.97)

bs10-3-6* 488 45 N/A 195(132) 45 45.1 1 165.41/411.14

bs39-1-5* 21997 252 N/A 107(76) 252 0.5 1 23.65/80.04
* represents UNSAT property.
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5.4 Experimental Results

To validate the effectiveness of our approach, we implemented the proposed method in C++, which

is called C2BIT-2, and applied it to reason the quantifier-free bit-vector logic benchmarks [7] in (1)

Spearsambav2.3.35log suite, (2) Spearsambav2.3.35client suite; (3) Some other software bounded

model-checking instances. The selected benchmarks from 1)and 2) all consist of a large number of

ITE nodes, and their satisfiability decisions required longexecution times by Spear v2.3 (which reports

best results for the bit-vector logic section in SMT competition 2007). C2BIT-2 uses Booleforce [14]

to extract the UNSAT core, and MINISAT [89] to check the satisfiability of both the under-approximate

model and the over-approximate abstraction. The number of subsets of the ITE variables in the setI

classified by OM values is set as 7, and the size ofISS is set as 20. All experiments are conducted on an

Intel Xeon 2.8GHz processor with 2 GB RAM.

The results are reported in Table 5.2. First, for every benchmark, the attributes of the original bit-vector

formula are given: Vars# reports the number of all bit-vector variables including constants;iSel# reports

the number ofiSels. The runtime of Spear v2.3 is then reported. Then, for our approach, the number of

all variables,iSels and the ratio of CNF file size of the verification model after the slicing and abstraction

of the original one is given. The corresponding percentage of input SF (Spear Format) file size for Spear

is also given in parentheses. In the final column, the total runtime of our approach (including slicing,

encoding, UNSAT core extraction and solving time on MINISAT) is reported. In parenthesis, we also

report the run time of Spear on the final reduced model for comparison.

All benchmarks in Table 5.2, with the exception of the last two, have SAT properties. We first discuss

the results from the SAT benchmarks. Compared with Spear, wehave achieved significant speedup for

all SAT instances. For vc331185 and vc331190, more than 10× speedup was observed using C2BIT-

2. The SAT solution found in each benchmark has been validated with the provision of the CNF file

and the variable mapping file generated by Spear. After slicing away redundant variables of the given

formula, we found that only about one-third ofiSels are unique as shown in the 6th column, which

implies that multiple ITE variables share the sameiSel. Furthermore, theseiSels have little dependency

on each other, and their inputs are mostly close to PIs that have the high controllability. As shown in

the 5th column, we observed that the verification model (under-approximation) usually has only about
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33% of all variables in the original formula and the generated CNF file size is about 50% of that from

the original formula. For the benchmarks that require multiple iterations to verify, theVars# shown is

in the largest under-approximate model. For the benchmarksthat could be verified in just one iteration,

the non SAT-solving time is less than 5 seconds; for the rest of the benchmarks, this time is around 10

seconds, mainly due to the cost of handling the UNSAT core forrefining the abstraction.

We also applied C2BIT-2 to two UNSAT properties of software BMC instances. We currently could not

apply Spear to them for comparison because their format is not easily convertible to the input format that

Spear requires due to the presence of array variables. Thus,we evaluate the effectiveness of our approach

by comparing the approach with and without the proposed abstraction refinement framework. The

primary results are shown in the last two rows. The number in the parenthesis of the 5th column is the

number of variables restored by OM heuristics out of all variables in the over-approximate abstraction.

The two numbers given in the last column show the total runtime with and without the abstraction. The

speedup reaches 3 times.

5.5 Related Work

Recently, Bryant et al. [20] proposed a proof-based abstraction refinement framework based on the

under- and over-approximation to decide bit-vector arithmetic. The under-approximate modelFU is

built through enforcing constraints on the encoding value range of variables. With the UNSAT proof of

FU , the over-approximate abstractionFA includes only the subset of variables referred to the proof.This

approach has shown effectiveness in two scenarios: (1) a SATsolution exists with a small number of

bits encoded inFU , and (2) only a small number of variables included inFA participate in the UNSAT

proof of the original formula.

Our approach is similar in that the over-approximate abstraction is also built based on the UNSAT proof

of the under-approximate model. However, our model consists of a subset of paths obtained from the

added constraints on the bit-vector variables that controlthe branch selection. Since we do not enforce

constraints on the encoding size, the SAT solution does not need to be limited to a reduced value range.

Furthermore, through the path(s)-based partition, we could perform the verification task incrementally
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in the sense that the abstraction refined in the iteration only needs to be accurate enough to prove the

part of the problem instance. It is different from [20] that the abstraction of the entire instance is created

in every refinement iteration.

The symbolic software model-checking tool BLAST [60] uses predicate abstraction and counterexample

driven refinement to lazily construct the abstraction during path enumeration. The new predicates are

inferred to be interpolants found from the infeasibility proof of the path being traced. Our approach also

uses the counterexample-guided refinement strategy and theUNSAT proof of the path-based partitions

to gradually identify the verification-relevant variablesfor refining the abstraction. However, besides the

basic difference that BLAST applies predicate abstractionwhile we use WA, our approach is different

from BLAST in two additional aspects. First, BLAST considers the data-type as infinite integers, while

we model the program data as bounded bit-vectors, so our reasoning is bit-precise. Second, we use the

controllability and observability to guide the order of enumerating the set of paths, but BLAST uses the

predicates for path enumeration.

In [5], the authors proposed a structural abstraction to facilitate the checking of software verification

conditions by exploiting the natural function-level abstraction boundaries like function calls defined

in the program. Multiple low-cost counter-example driven refinement steps are used to decide which

function calls’ constraints need to be included in the abstraction without requiring of the unsatisfiability

proofs. We also aim to exploit the structural information ofprograms to develop a low-cost and accurate

abstraction. However, we use the control structures to divide-and-conquer the problem.

5.6 Summary

We have presented a new abstraction refinement approach to solve bit-vector arithmetic formulas. It

speeds up the search for a SAT solution by first building a small under-approximate model that includes

a subset of paths in the formula. This is performed by imposing constant constraints on a small set

of branching control variables in the formula, guided by controllability and observability metrics, to-

gether with slicing away those irrelevant portions. If the under-approximate model is unsatisfiable, it

uses the UNSAT proof to obtain an over-approximate abstraction incrementally. In order to reduce the
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computational cost of the proof-based refinement and avoid enumerating all possible paths in the pro-

gram, we use the observability heuristics to guide restoring variables, such that the verification-relevant

variables outside the UNSAT core are also brought into the abstract model. Our approach has shown

both effectiveness and efficiency in solving the formulae generated from the verification instances of the

embedded software with intensive control structures.



Chapter 6

A Reduced Bit-vector Encoding Width

Computation Algorithm for Bit-precise

Verification

Bit-precise verification with variables modeled as bit-vectors has recently drawn much interest. How-

ever, a huge search space usually results after bit-blasting. To accelerate the verification of bit-vector

formulae, we propose an efficient algorithm to discover non-uniform bit-vectors’ encoding widthsWe

which may be smaller than their original modeling widths butsufficient to find a counterexample. Dif-

ferent from existing approaches, our algorithm is path-oriented, in that it takes advantage of the control-

lability and observability values in the structure of the model to guide the computation of the paths, their

encoding widths, and the effective adjustment of these widths in subsequent steps. For path selection,

a subset of single-bit path-controlling variables is set toconstant values. This can restrict the search

from those paths that have been deemed less favorable or havebeen checked in previous steps, thus

simplifying the problem. Experiments show that our algorithm can significantly speed up the search by

focusing first on those promising, easy paths for verifying those path-intensive models with reduced,

non-uniform bit width encoding.

89
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6.1 Motivation and Overview

In formal verification, modeling data variables asbit-vectorswith a bounded width has shown some

unique benefits. Bounded modeling is capable of accurately capturing the true semantics of the veri-

fication instances constrained by a physical word-size on a computer. Furthermore, with the advances

in Boolean and bit-vector arithmetic reasoning, SAT (or SMT) based formal verification has the po-

tential to deal with large problems. Many existing softwaremodel checking tools (e.g., CBMC [35],

SATABS [36], Saturn [115], F-SOFT [70]) and hardware designvalidation techniques (e.g., [66, 82])

have taken bit-vector modeling.

However, with bit-vectors, the search space can be huge after bit-blasting, especially when dealing with

large hardware designs and/or software programs. For example, in a large instance, it is extremely

challenging to find a satisfying assignment (counterexample) with a full-size encoding. One way to

handle this problem is to reduce the encoded bit-vector width of the variables, thereby restricting the

searching space. Then, the verification is conducted on the restricted model instead of the original

one. Several approaches have been proposed to compute the reduced bit-vector width for enhancing the

verification scalability.

In [73], an abstraction approach was introduced to scale down the data path for formal RTL property

checking. Based on the static data dependency analysis and granularity analysis of bit-vector equations,

it computes an abstract model in which the bit-vector width of variables is reduced with respect to the

property. To alleviate the state explosion in software model checking, the authors of [117] reduce the

bit-vector width of variables according to their lower and upper bounds determined by a symbolic value

range analysis technique. Both approaches are applied as preprocessing steps that directly decrease the

modeling widthW of each variable and still preserve the verification property. However, they do not

consider the dynamic information during verification.

Recently, a new approach was proposed in an under- and over-approximation based abstraction-refinement

framework to iteratively learn the sufficient encoding width We of variables for verification, which is

smaller than their individual modeling widths [20]. Starting with a smallWe for every free variable, their

approach enlargesWe of some variables in each refinement step by analyzing the abstract counterexam-
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ple of the over-approximate abstraction. For refutable properties (where a counterexample exists), the

refinement process continues until a SAT assignment is found(with a smallerWe) or when theWe of

all variables have reached their originalW. This approach dynamically computes small values forWe

during verification instead of scaling down the width beforehand using static analysis as in [73, 117].

Although it is flexible, its claimed efficiency is limited in scenarios where the SAT assignment can be

represented with a smaller encoding width. Moreover, the values assigned in the abstract counterexam-

ple may be unnecessarily large derived from a largeWe, and thus increases the verification difficulty.

In this chapter, we present an efficient path-oriented bit-vector encoding width computation algorithm to

alleviate the above limitations. Similar to [20], our algorithm embeds thedynamiccomputation ofWe in

the abstraction-refinement framework. However, it is distinguished by its path-oriented analysis with the

guidance ofstaticcontrollability metric (CM) and observability metric (OM)in three major ways. First,

it computes the initialnon-uniform We of variables on different paths. By setting a bigger initialWe for

the variables on the easy-to-control paths while setting a smallerWe for the other paths, our approach can

greatly increase the chance of finding a SAT assignment in therestricted search space directly, without

the need to adjustWe multiple times. Second, in theWe adjustment steps (if necessary), our approach

gives priority to enlarging theWe of the easily-controllable variables first through the manipulating of

the abstract counterexample generation guided by CM and OM.This helps to systematically search for

the concrete counterexample with a reduced effort. Third, it setsWe to zero for some single-bit variables

that determine the path(s) selection, thereby enforcing constant values on them to restrict choosing only

a subset of paths. This can avoid searching those partitionsthat have been checked in previous steps,

especially the ones on which the variables’We experienced no increase, thus simplifying the problem.

The remainder of the Chapter is organized as follows. In Section 6.2, we will give some preliminaries

related to our work. Our proposed encoding algorithm is presented in Section 6.3. We report our

experimental results in Section 6.4 followed by the conclusion in Section 6.5.
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6.2 Preliminaries

6.2.1 Bit-vector Formula Encoding

The bit-vector arithmetic formula we focus on is a conjunction of terms, where each term is in the

format (Identifier == Identifier [op Identifier]). Every Identifier represents a bit-vector variable which

is interpreted as a numeric value represented in two’s complement form. According to whether the

operator accepts single-bit inputs and whether the output is a single bit, we group operators into three

categories:

• Bitwise operators: &(and), | (or), ⊗ (xor), ∼ (not);

• Predicate operators:==, 6=, >, <, ≥, ≤;

• Non-Boolean operators:+, −, ×, /, %, shift, type cast (Concatenation, Extraction and Exten-

sion),ITE (i f − then−else), etc;

The resulting formula can be represented as a directed acyclic graph model. An example is shown in

Figure 6.1, where three possible paths (highlighted by dashlines) are possible to reachp from the inputs.

Definition31. Starting from the least significant bit, the encoding widthWe(v) for a bit-vector variablev

is the number of consecutive bits in the vector whose values have not been assigned, 0≤We(v) ≤W(v).

For each of the remainingW(v)−We(v) bits, the value is set to be constant 0 (or 1).

If theWe of individual variables is smaller than theirW, the search space can be restricted. For example,

a variablev with W = 32,We = 6, the original value range is[−231,231−1] and the constrained value

range is reduced to[0,63] by enforcing the 22 most significant bits to 0. WhenWe is set equal to 0, the

variable simply becomes a constant. We observe that the selector input of an ITE (if-then-else) variable

(called iSel) has a special property. (In Figure 6.1,C2 is an iSel.) When constant 0 (1) is enforced to

an iSel (setting itsWe to zero), the false (true) branch is always taken, and some variables on the true

(false) branch may become dangling variables. Thus, it is safe to slice away these dangling variables, as

they do not feed other portions of the code.
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F = (b1=a1+(-2))∧(C1=(d0==b1))∧(C2=(z0>1))

      ∧(b2=C2 ite b0 b1)∧(C3=(d1!=b2))

      ∧(p=(C1||C3))∧p

(a) Example Bit-vector arithmetic formula

(b) Graph representation of (a)

Boolean Part

Figure 6.1: An example of Bit-vector formula with its graph model



Chapter 6. 94

Definition32. A variable is a Boolean Frontier Variable (BFV) if it is the output of a predicate operator

and all its fanouts are variables with Bitwise operators.

In Figure 6.1,C1 andC3 are BFVs. We consider them as pseudo inputs of the Boolean portion of the

formula where every variable hasW = 1.

6.2.2 Controllability/Observability Metrics

CM and OM are two generic metrics widely used to evaluate the testability of a hardware design (

[64,106]) or software components [93]. In [58], CM and OM have been used to estimate the amount of

influence that each bit-vector variable has on the property verification. Specifically, the CM of a variable

approximates thedifficulty of setting a value along the paths reaching a target variablefrom the inputs.

Thedifficulty is defined by two main factors: the lengths of the paths and thecomputation complexity

along these paths. The OM approximates the amount of impact that a value-change on a variable has on

the output. It is used to estimate the verification relevanceof a variable to the target property of interest.

The CM/OM computation defined in [58] is adopted here. It usespre-calculated controllability and

observability coefficients (COC) of basic bit-vector operators to represent the operators’ computational

efficiency. The COC approximates the different amounts of influence the operators have on the CM and

OM. The details of COC values and the formulas of the CM and OM computation are omitted due to

the space limit. We introduce two properties of our CM/OM computation relevant to this work:

• Larger values of the CM/OM indicate harder controllable/observable.

• On any path from primary inputs (PIs) to a primary output (PO),CM(v1) <CM(v2) andOM(v1)>

OM(v2) always hold ifv1 is the predecessor ofv2.

However, in [58], the 1- and 0-state CM of the variables in theBoolean portion of the instance were not

differentiated. Here, we first estimate the 0-stateCM0 and 1-stateCM1 of every BFVvar according to

four cases below:

1. op(var) ∈ {≥,≤,<,>} : CM0 = CM1 = 0.5.
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2. op(var) ∈ {==, 6=} and at least one argument ofvar is fully controllable like PI:CM0 = CM1 =

0.5.

3. op(var) ∈ {==} and no arguments ofvar is fully controllable:CM0 = 1−2−W,CM1 = 2−W.

4. op(var) ∈ {6=} and no arguments ofvar is fully controllable:CM0 = 2−W,CM1 = 1−2−W.

ITE

F  T

==

+

-2 a1

d0

>

1
z0

||

b0

b1
C2

!=

d1b2

C1

p==0?

C3

Boolean Part

<0, 21.5>

<0,12.5>
<0, 21.5>

<9, 12.5>

<0, 15.5>

<15.5, 0>

{0.5,0.5}

<13, 0>

{0.5, 0.5}

<12.5, 3>
<0, 13>

<10, 11.5>

{0.75, 0,25}

Figure 6.2: Graph model of Figure 6.1 labeled with CM/OM

We propagate theCM0 andCM1 of BFVs to all other variables in the Boolean portion according to the

1 and 0 probability measure of the corresponding bitwise operator. In Figure 6.2, it shows CM and OM

labeled as a< CM,OM > pair next to each variable outside or at the boundary of the Boolean portion.

It also gives theCM1 andCM0 next to each variable in the Boolean portion (enclosed by thebrace).

For example,CM0 andCM1 of variableC1 are both 0.5 based on Case(2) sinced0 is a PI. To verify the

propertyp == 0, C1 andC3 have the sameCM1. But sinceCM of C1 is smaller than that ofC3 which

meansC1 is more easily controllable, the path following the dash line is considered the easy-to-control

path.
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Figure 6.3: Basic flow of our algorithm

6.3 Our Proposed Algorithm

6.3.1 Overview of the Steps

To enhance the scalability of bit-precise verification, we propose an efficient path-oriented algorithm

to compute a small but verification-sufficient encoding width We of individual variables in the instance.

The algorithm exploits not only the dynamic information learned in the abstraction-refinement itera-

tions, but also the high-level static structural information through the guidance of the controllability and

observability metrics. We assume a verification instance formulated as a bit-vector arithmetic formula

whose satisfiability corresponds to the negation of a given property (i.e., SAT means the property is

refuted). We also assume many paths exist in the instance, which is common in practical problems.

Finally, our current work focuses on refuting properties.

The basic flow of our algorithm is illustrated in Figure 6.3. We give an overview of each step below.

Three important steps enclosed with dash line borders will be presented in more detail in following

subsections.
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1. Preprocessing: Given a bit-vector formula, our algorithm first builds its graph modelM, then

computesBFVs, CM, and OM. Next, it selects someiSels to build the setIS. TheseiSels stored

in IS will be used to conduct the path(s) oriented abstract counterexample generation in Step 5

and slicing in Step 6. We prefer selecting theiSels with a larger number of connections to the

verification-relevantITEs because they have a greater impact on reducing the partition size. The

work proposed in [73,117] can also be applied here to reduce the modeling width.

2. Guided initial We computation: Our algorithm computes a small initialWe and determines the

constant value to be placed for the bits outside of the encoding widths. The main idea is to give

preference (larger initialWe) to variables on easy-to-control paths so as to increase thechances of

finding a SAT assignment fast. Moreover, it keeps the encoding size of a variable consistent with

the input/output variables and the given operator type. Thealgorithm also considers the effect

of constants in the encoding computation. It then applies the computed initialWe of variables to

build an initial under-approximate modelMu.

3. Model verification: Through bit-blasting,Mu is transformed to a Boolean modelβu. If βu is SAT,

we can concludeM is also SAT as the values enforced onMu are achievable inM; otherwise, go

to Step 4.

4. UNSAT analysis: Our algorithm adopts the method used in [57] to conduct the UNSAT analysis

for refining the abstractionMo. The basic idea is to identifyall variables involved in the UNSAT

proof ofMu and add them intoMo. Note that the constant values used outside the encoding widths

and constant values for theiSelvariables inMu are not carried over. Thus, all variables inMo have

the original modeling widthW. The refinedMo can refute all spurious counterexamples where the

assignment of the variable is within the encoded value rangeof itsWe, so that it prevents repeated

generation of the same spurious counterexample. A theorem on this can be found in [57]. This

method is simpler than the technique in [20], whose proof-based abstraction also considers the

special usage of Boolean nodes.

5. Guided abstract counterexample generation: SinceMo is small, it is easy to handle and find

an abstract counterexampleγ with certain expectations. This is done by enforcing some extra

constraints onMo guided by CM and OM to steer the search. To avoid generating a new Mu

that is similar to the previousMu in which no SAT assignment was found, we prefer generating
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γ on Mo that can help enlarge those least frequently enlargedWe. As some variables have values

assigned inγ falling beyond the value ranges of their previousWe values, it is also preferred that

they are the easy-to-control ones.

6. New We computation with guided slicing: Given the abstract counterexampleγ, we enlarge the

We of some variables in the previousMu so that the new value ranges can adequately cover their

values assigned inγ. We update theWe of all other data dependent variables inM and apply

the newWe on variables to building the new under-approximate modelM
′

u. To avoid repeatedly

searching the same space among the iterations, our algorithm enforces certain constant values

on someiSels and applies model slicing to remove from the new under-approximate model those

variables whoseWe were not enlarged and have thus become dangling variables. The process goes

back to Step 3 to start a new iteration.

Due to the finite search space, the algorithm always terminates. In the worst case, theWe of individual

variables may need to be enlarged to their originalW. However, experiments show that a SAT assign-

ment with small value ranges or on the path with the small number of variables exists in most instances.

6.3.2 Guided Initial We Computation

The initialWe of variables including the constant valueCe chosen on bits outside ofWe are very important

to the efficiency of our algorithm. We enforce the same constant valueCe to all bits beyondWe starting

from the most significant one of bit-vector variables. The algorithm of the initialWe computation with

two phases is shown in Figure 6.4. In phase 1, it identifies thePIs on the easy-to-control paths and sets

a largerWe to them; the other PIs are given a smallerWe. Guided by CM and OM, our algorithm first

backtraces from the target property along the easy paths in the Boolean portion of the instance to a set

of BFVs. Then it extracts all non-Boolean part variables in the cone of theseBFVs and place them in

a new setS. It removes fromS any variable on the hard-to-control branches ofITEs connected with

the iSels in theIS. We empirically setCe as 0, choose 6 as the initialWe for the PIs inSand 2 for the

remaining PIs.

In phase 2, our algorithm adjusts the computedWe andCe considering the effects of constants inM.
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Initial_encoding_width (M, P, IS )

 /*phase 1. CM/OM guided We computation*/

1. Backtrace from P to BFVs on easy-to-control paths;

2. Extract variables on traced paths to set S;

3. for each isel in IS

4.    Remove hard-to-control branches from S guided by CM;

5. end for

6. Set We=min{max{celling(W/6), 6},W}&(Ce=0) for all PIs in 

S;

7. Set We=min{2,W}&(Ce=0) for all other PIs in M;

8. Propagate We for all other variables in M;

 /* phase 2.  We adjustment */

9. for each constant O connected with predicate OP

10.  if (O > 0)  

11.      Set W_T=ceiling(log2(O), C_T=0; 

12.   else        

13.      Set W_T=ceiling(log2(-O), C_T=1; 

14.   endif

15.    for each V related to O with predicate OP

16.      if ((We of V < W_T) || (Ce!= C_T) )   

17.          Adjust We=W_T and (Ce=C_T) for V;

18.          Adjust We for PIs that Vs depends; 

19.      endif

20.    end for

21. end for

22. Propagate adjusted We for all other variables in M;

23. end

Figure 6.4: Alg. of initialWe computation

We observe from experiments that it is preferable to give thesame negative or positive polarity for the

variables with which the constant is computed. We set theWe of variables that allow their encoded value

range to cover the absolute value of the constant, especially for predicate operations. This is to avoid

fixing the output value of such predicate operations. For example, consider the constrainta > −4; its

value is not fixed only when settingWe bigger than 2 andCe = 1 for a. Finally, the adjusting ofWe and

Ce on PIs are also propagated to all internal variables, while considering computation consistency on

the operators along the paths.
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Choose K path selection variables from first Mo model to set Sp

  Cex_gen (Mo,  Sp )

1.   while (1)

2.     {C1,..,CK} = pathsSelGen(Sp);

3.     Enforce {C1,..,CK} assignment on Mo  to get Mo*;

4.     if(Mo* is SAT)    break;

5.   endwhile  

 

6.   Sort all pseudo PIs of Mo w.r.t. CM in increasing order; 

7.   Divide all sorted pseudo PIs into L groups; 

8.   Enforce current We for all pseudo PIs to get M**;

9.   for i = 1 to L

10.    Refine M** by enlarging We for pseudo PIs in group i;

11.    if (Refined M** is SAT)

12.        CEXRET = SAT-SOL;

13.        break;

14.    endif

15.  endfor   

16. end

Figure 6.5: Alg. of abstract counterexample generation

6.3.3 Abstract Counterexample Generation

In this step, our algorithm sequentially enforces two kindsof constant values onMo to steer the search for

an abstract counterexample as shown in Figure 6.5. The setSp, which consists of someBFVs andiSels

included in theMo, is constructed beforehand. A combination of constant values is first imposed on the

variables in the setSp so as to restrict searching on a subset of paths. The functionpathsSelGen, which

returns such constant assignments{C1, ..,CK}, starts enumerating variables inSp at the first iteration

and stops until the verification is finished. Since no SAT assignment was found inMu, we assume a low

chance that a SAT one exists on the partition of the instance similar to Mu, and we expect that the new

Mu bears the least similarity to the previousMu in the search space. So, our goal is to return a value

combination with the least similarity to the last one and notbeing found as infeasible so as to constrain

the search in a different subset of paths. Once a value assignments is found satisfyingMo, we apply

it to Mo to restrict the search space to ease the generation task. Next, small encoding widthsWes are

applied to some pseudo PIs ofMo to further constrain the search. A greedy search starts fromthe most

easily controllable PIs, so that the value assignments on the harder-to-control pseudo PIs in the returned

counterexample can still be covered by their presentWe.

Theorem 1. An infeasible assignment on Mo is also infeasible in M.



Chapter 6. 101

�� 
enlarged

iSel

Mo

iSel

Mo

new

Mu
new

Mu
sliced sliced

We no change

sliced

(a) Step 1 (b) Step 2

Figure 6.6: Two-steps guided slicing

Proof. Since the set of clausesβo of Mo is a subset of CNF clausesβ of M, if an assignmentv0, ..,vn

cannot satisfyβo, this same assignment also cannot satisfyβ because at least a subset (βo) cannot be

satisfied inβ.

With this theorem, we can safely check the invalidity of someassignments in theMo with a low cost. It

is especially efficient to identify a subset of infeasible paths usingMo.

6.3.4 NewWe with Guided Slicing

We focus on introducing the guided slicing process as illustrated in Figure 6.6. First, we apply the

assignments{C1, ..,CK} (that were obtained fromM∗
o) to the newMu and slice away any dangling

variables. In Figure 6.6(a), theiSel whose value is enforced controls theITEs of M both insideMo and

outside ofMo. So, more branches can be sliced away from the newMu compared toMo. Next, the

branches of the ITEs controlled byiSels in IS on which variables had no enlargedWe are removed. In

Figure 6.6(b), the variables whoseWe need to be changed are in the center cone. The path branches

shown in the bottom are outside of this cone and are removed from the newMu.

6.4 Experimental Results

To validate the effectiveness of our approach, we implemented the proposed method in C++, which is

called C2BIT-2, and applied it to the bit-vector arithmeticbenchmarks [7] in the following suites:Spear

andTACAS07. There are two main reasons that 14 benchmarks were chosen: either 1) a benchmark is
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Table 6.1: Results Comparison (Benchmarks from Spear, TACAS07)

Benchmark Vars# iSels# Spear Proof-Based CM/OM Guided

(s) We Iter. T(s) We Iter. T(s)

log 331256 27773 3110/1019 314.42 4/12 2 117.71 4/6 2 43.67

log 331257 27369 3149/994 437.13 4/18 2 76.59 4/12 2 47.27

log 331190 23188 2656/852 632.33 4/18 2 46.96 4/12 2 34.36

log 331211 23554 2681/877 515.31 4/12 2 91.20 4/12 2 33.32

innd 33359 1368 77/33 49.66 8/32 2 41.28 8/12 2 37.90

innd 33725 1025 52/22 55.26 8/32 2 43.32 8/12 2 37.16

nnrpd 21453 1330 76/32 20.94 8/18 2 47.21 8/18 3 50.76

wget 17909 1042 37/32 380.74 8/18 2 520.3 8/18 2 148.97

wget 18506 1062 38/30 39.86 8/18 2 30.26 8/18 2 29.14

cli 1225314 17481 1991/604 40.45 4/12 2 33.52 4/12 2 27.70

cli 1225757 18171 2090/616 25.02 4/12 2 36.79 4/12 2 25.84

cli 1225783 18766 2159/637 51.06 4/6 2 57.80 4/6 2 28.19

cli 1225832 19867 2273/665 65.25 4/12 2 75.28 4/12 2 29.67

S-40-50 1321 0(156)/0 14.36 4/32 4 98.47 4/16 2 30.29



Chapter 6. 103

Table 6.2: Results Comparison (Benchmarks from Spear, TACAS07)

Benchmark Vars# iSels# C2BIT-2

We <,> Iter. T(s)

log 331256 27773 3110/1019 < 6,2 > 1 10.21

log 331257 27369 3149/994 < 6,2 > 1 9.38

log 331190 23188 2656/852 < 6,2 > 1 5.34

log 331211 23554 2681/877 < 6,2 > 1 6.47

innd 33359 1368 77/33 < 12,2 > /12 2 30.29

innd 33725 1025 52/22 < 12,2 > /12 2 33.71

nnrpd 21453 1330 76/32 < 12,2 > /12 2 34.39

wget 17909 1042 37/32 < 12,2 > /12 2 50.38

wget 18506 1062 38/30 < 12,2 > 1 15.34

cli 1225314 17481 1991/604 < 6,2 > 1 5.2

cli 1225757 18171 2090/616 < 6,2 > 1 6.21

cli 1225783 18766 2159/637 < 6,2 > 1 4.53

cli 1225832 19867 2273/665 < 6,2 > 1 6.31

S-40-50 1321 0(156)/0 < 8,2 > 1 12.31
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path intensive that has a large amount ofiSels orBFVs, or 2) verification takes a long time with existing

tools. They are all refutable properties (a satisfiable solution exists). C2BIT-2 uses Booleforce v1.0 to

extract UNSAT core in the UNSAT case, and uses MINISAT v1.14 to generate abstract counterexamples

and verify the satisfiability of the under-approximate model. The experiments were conducted on an

Intel Xeon 2.8GHz processor with 2 GB RAM.

The results are reported in Table 6.1, 6.2. First, for every benchmark, the characteristics of the original

bit-vector formula are given: Vars# reports the number of bit-vector variables including constants;iSel#

reports the number ofiSels both before and after pruning. After pruning the formula instance, we found

that only about one-third ofiSels are unique. For example, in logvc331256, only 1019 out of 3110

iSels are unique which corresponds to 3110/1019 in the table. This implies that multiple ITE variables

may share the sameiSel. Furthermore, theseiSels have no dependency to each other, and their inputs

are close to PIs, thus they are very controllable. For the last benchmark,iSel# is zero, which means no

ITE variables, but the number ofBFVs is big, as shown in parentheses. Next, the runtime of Spear v2.6

is reported. We apply three methods on the benchmarks:

1. uniform initialWe with the proof-based refinement as in [20];

2. uniform initialWe with CM/OM guided refinement;

3. non-uniform initialWe < max,min> with CM/OM guided refinement (C2BIT-2).

For each benchmark, the initial/finalmodalvalue of encoding widths after refinement are reported as

4/12 given in the table, followed by the number of refinement iterations and total runtime (including

pruning, encoding, UNSAT core extraction and solving time)of these three methods. For instance, in

innd 33359, the initial uniformWe is 8 and the finalmodeof We after two iterations is 32 for method

1 and 12 for method 2. With method 3) the non-uniform initialWe is < 12,2 > (variables on easy-to-

control paths have width of 12 and the rest have widths of 2), and the finalmodeof We is still 12, as

only few variables have the enlargedWe after refinement. All methods need 2 iterations to find the SAT

solution for this particular instance but C2BIT-2 is the fastest.

Compared with Spear, C2BIT-2 has achieved significant speedups. Some were even greater than 10×.

Note that the assignment found for each benchmark was validated using the CNF file and the variable



Chapter 6. 105

mapping file generated by Spear. We also observe that the maximumWe computed by two refinement

methods are the same or similar for many benchmarks. One reason is that modern SAT solvers typically

return a ‘maximally-false’ solution that contains as many false bits as possible that can produce small

value assignments. However, with the CM/OM guidance, the enlargement of variables’ encoding widths

focuses on the subset of paths so that the slicing can be conducted to reduce the model size and solving

time. With C2BIT-2, the SAT assignment for 10 out of 14 benchmarks can be obtained in just one iter-

ation with our initial non-uniform bit width encoding. It shows that this encoding effectively increases

the chances of finding a SAT solution on the easy paths and requires minimal effort for searching on

hard-to-control paths.

6.5 Summary

We have presented an efficient algorithm of computing small encoding widths for bit-vectors by uti-

lizing a path-oriented abstraction-refinement framework.This algorithm exploits both the high-level

structure and dynamic verification knowledge to effectively steer the search. It takes advantage of the

controllability and observability metrics to guide three major steps: initial encoding width computation,

abstract counterexample generation, and under-approximate model slicing. Experiments show that our

proposed algorithm can reduce the solving time significantly, especially in verifying the paths-intensive

designs.
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Conclusions

In this dissertation, we mainly address the limited scalability problem of automatic formal verification

techniques like model checking, in the application of ensuring the correctness of embedded software

programs with respect to the critical safety properties. Weintroduce performing the bit-precise verifica-

tion for the bounded verification model of software, in whichall the data variables are modeled as the

fixed-width bit vectors, all the loops or recursions are unrolled in certain bound. In order to promote the

scalable application of such bit-precise verification to the real-world embedded software in practice, we

proposed several efficient property-based automatic abstraction refinement techniques with the assist of

static program analysis, symbolic simulation, and testability guidance.

Firstly, based on the observation that the properties underverification usually depend on a small portion

of the program, we proposed an approach to accurately and efficiently find this portion, by incorpo-

rating the program slicing and the proof-based abstractionrefinement. Our proposed approach tightly

integrates an aggressive static program slicing approach,which can reduce programs to the segments

relevant for a particular computation into the software verification model construction and reduction pro-

cess. This allows for effectively removing the program segments that have no computational relevance

to the property under verification, so as to greatly reduce the model size. Our slicing operations also

naturally combine the compilation optimization techniques, such as constant propagation, to effectively

compute the accurate program slice.

After the slicing, we explored a proof-based abstraction-refinement strategy using under and over-
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approximation of the verification model to construct a localization abstraction, which further removes

the program segments having no verification relevance to theproperty. A heuristics method by program

analysis was also proposed to more effectively refine the under-approximation in each iteration. Ex-

periments conducted on the programs from wireless cognitive radio software systems have shown the

effectiveness of the proposed approach.

Second, we investigated the potential of combining symbolic simulation for the scalable formal ver-

ification. Our approach uses distinguishing X as symbolic values to abstract the concrete variables’

values, so that a small number of identified symbolic input vectors can cover the complete input space.

In order to reduce the verification time and ease computing the symbolic input vectors, we apply the

symbolic simulation to check the abstract model instead of the original program, which is automati-

cally constructed in the counterexample-guided abstraction-refinement framework. This abstract model

is a localization abstraction of the program, which includes a subset of property-relevant program con-

straints. So it may be more easily verified than the original program. The property-relevance of program

constraints is automatically determined during the iterative abstraction refinement procedure.

In the next two proposed abstraction techniques, we explored the common testability metrics — control-

lability metric (CM) and observability metric (OM) — as the high-level structural guidance to construct

the accurate abstract model with fewer control paths and smaller variable value ranges for the scalable

bit-precise verification.

Third, we have presented a new abstraction refinement approach, based on the concept of the under-

and over-approximation for solving bit-vector arithmeticformulae, generated from control-dominated

embedded software verification instances. We also designeda new CM and OM computation method

and applied them to efficiently guide the proposed abstraction procedure. Our approach builds the

under-approximate model by enforcing constant constraints to a small set of single-bit variables, which

control the branch selection of ITE nodes. This restricts the search space to only a subset of formula

constraints. With the guidance of CM and OM, our approach canquickly find a satisfying solution on

the easily controllable portion of the formula if a solutionexists on it.

Our approach computes the over-approximate abstraction via learning the UNSAT proof of the under-

approximate model. It also restores additional verification relevant constraints according to the OM
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heuristics to reduce the high computational cost of refinement by only using the UNSAT proof. As a

result, a sufficiently accurate abstract model for the verification can be built quickly, long before all

partitions have been enumerated. To start the new refinementiteration, we use the satisfiable assign-

ment of the current over-approximate abstraction to guide the construction of a new under-approximate

model with an unvisited portion in the formula. With our approach, the verification can be conducted

incrementally due to the partition-based feature of our approach. The experimental results show that a

significant amount of solving time can be reduced for the benchmarks generated from the bit-precise

verification of embedded software compared to state-of-the-art solvers for bit-vector arithmetic.

Finally, we propose an efficient algorithm to iteratively discover non-uniform encoding widthsWe of

variables in the verification model, which may be smaller than their original modeling widths but suffi-

cient to the verification. This algorithm exploits both the high-level structure and dynamic verification

knowledge to effectively steer the search. Different from existing approaches, our algorithm is path-

oriented in that it takes advantage of the CM and OM values to guide the computation of the encoding

widths in three major operations: (1) computation of the initial non-uniformWe of variables on different

paths, (2) generation of an abstract counterexample, whichaffects the computation of the enlargedWe

of variables in the new under-approximate model, and (3) under-approximate model slicing to avoid

searching the paths that have been checked. Our approach is capable of restricting the search from those

paths that are deemed less favorable or have been checked in earlier steps, thus simplifying the verifi-

cation problem. Experiments demonstrate that our algorithm can significantly speed up the verification,

especially in searching for the counterexample violating the property.

7.1 Recommendations for Future Research

Our research presented in this dissertation shows the promise of bit-precise verification of embedded

software programs in scalable applications. It can serve asthe foundation for promoting the scalable

bit-precise verification of software programs in general. We recommend several avenues for the future

research based on our current vision.
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7.1.1 Larger Experiments

Due to the variety of software programs, the standard or evenwidely accepted benchmarks still do

not exist. It is always a challenge to conduct the research related to the software. The benchmarks

used in our current research are from the SMT competition [80]. Most of them are derived from the

verification of NULL pointers in real-world embedded software. In the future, we expect to produce

more benchmarks for checking complex properties from largescale software systems in the embedded

applications, such as software defined radio, automotive and avionic control systems, etc.

7.1.2 Program Analysis Enhanced Abstraction Refinement

As we know, the automatic abstraction refinement becomes a necessary technique in practical software

formal or semi-formal verification. However, many abstraction refinement procedures used in software

verification follow the general strategies of their applications in hardware design verification, without

considering the uniqueness of software programs. Moreover, in the most abstraction practices that we

observed, the verification performance decreases, once thenumber of refinement iterations becomes

large. Therefore, one potential direction of the future research is to make use of the knowledge specific

to programs, which can be exploited by the code analysis techniques, thereby enhancing the accuracy

and efficiency of abstraction refinement.

Concept analysis [49] separates groups ofobjectsthat have commonattributesbased on the concept

lattice. As a static code analysis technique, it has been applied in support of program understanding,

change impact analysis [97,108] and modularization of legacy code [105]. Concept analysis can provide

a decomposition of program with the cohesive grouping of functions or program statements. It is related

to, but different from another popular code analysis technique — program slicing that decomposes the

program by focusing on the subcomputations performed on it with respect to some slicing criterion.

In [108], they have taken advantage of both concept analysisand program slicing by proposing a pro-

gram representation calledconcept lattice of decomposition slices, where all dependences between the

computations performed by a program are explicitly indicated. So, it is easy to determine whether the

computation performed on a variablex is relevant to the computation on another variabley by querying

this lattice.
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One core task of abstraction refinement is to automatically learn whether a program variable is relevant

or irrelevant to the verification of the specified property. We hope that the concept lattice built on

program decomposition slices [108] can help improve the effectiveness of refining the abstraction with

the low computational cost at the same time, as well as reducing the complexity of the abstract model.

Here, we use the proof-based abstraction refinement approach with under- and over- approximation as

the basis for the following discussion. For example, we can use the concept lattice to guide building

the under-approximate model with certain expectations that depend on the specific problem, such as

including the program segments shared by a large number of program decomposition slices, which may

increase the chances of finding a counterexample violating the property at the early refinement iterations.

For another example, we can first use the UNSAT proof to precisely identify a set of variables relevant

to the verification with respect to a simple under-approximate model. Then we use the concept lattice to

select the variables that need to be restored to refine the abstract model. For some existing variables on

which the program constraints will not be used for the verification in future iterations, we could remove

them from the model as well. As a result, the complexity of theabstract model can be reduced, without

incurring the verification cost increase during the refinement. We expect that such a code analysis based

method can also be applied to enhance other abstraction refinement techniques.

An invariant at certain linel is defined as an assertionδ over program variables, such thatδ always

holds on all the execution traces that reach at linel . Inductive program invariant plays a critical role for

both proving program correctness and finding bugs. Some techniques have been established to dynam-

ically detect the potential invariants by learning the simulation profiling, as in [29, 45]. The validity of

these invariants needs to be checked using some static verification methods [94]. The constraint-based

invariant generation [100] was also proposed to find true invariants directly.

In order to accomplish trimming the abstract model, we hope apply the potential program invariants

identified by the dynamic program analysis technique in addition to applying the concept analysis. Due

to the conservative property of abstraction, an invariant is a true invariant in the more precise abstraction

if it holds in the coarse abstract model. If we can validate aninvariant in the abstract model in the earlier

iteration with low computational cost, we can use it in the later refined abstract model to compact the

state space, so as to trim the verification model.
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7.1.3 Verification of Concurrent Programs

Concurrency is a model of computation that allows many unitsof execution to coexist. With the emer-

gence of multi-core systems for ever increasing the processing power, more and more vicious bugs occur

in concurrent software systems with multiple threads that communicate via shared memory or message

passing. Traditional verification techniques like testingfail in the presence of concurrency due to the

difficulties of reproducing erroneous behavior. We expect that the bit-precise verification of concurrent

programs is one of future research directions.



Bibliography

[1] A.V. Aho, R. Sethi, and J.D. Ullman.Compilers: Principles, Techniques, and Tools. Addison-

Wesley Press, 1986.

[2] N. Amla and K.L. McMillan. A hybrid of counterexample-based and proof-based abstraction. In

Proc. of Formal Methods in Computer-Aided Design (FMCAD), 2004.

[3] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional symbolic execution. In

Proc. of Tools and Algorithms for Construction and Analysisof Systems (TACAS), 2008.

[4] F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge University Press, 1999.

[5] D. Babic and A.J. Hu. Structural abstaction of software verification conditions. InProc. of Intl.

Conf. on Computer Aided Verification (CAV), 2007.

[6] D. Babic and M. Musuvathi. Modular arithmetic decision procedure. InTechnical report, Mi-

crosoft Research, Redmond, 2005.

[7] Domagoj Babi’c.Exploiting Structure for Scalable Software Verification. PhD thesis, University

of British Columbia, Vancouver, Canada, 2008.

[8] T. Ball and S.K. Rajamani. Behop: A symbolic model checker for boolean programs. InProc. of

SPIN, 2000.

[9] T. Ball and S.K. Rajamani. Automatically validating temporal safety properties of interfaces. In

Proc. of Model Checking Software, 8th Intl. SPIN Workshop, 2001.

[10] C.W. Barrett, D.L. Dill, and J.R. Levitt. A decision procedure for bit-vector arithmetic. InProc.

of ACM/IEEE Design Automation Conference (DAC), 1998.

112



Bibliography 113

[11] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu.Symbolic model checking using sat

procedures instead of bdds. InProc. of ACM/IEEE Design Automation Conference (DAC), pages

317–320, 1999.

[12] B. Biezer.Software Testing Techniques. International Thomson Computer Press, 1990.

[13] P. Bjesse and J. Kukula. Using counterexample guided abstraction refinement to find complex

bugs. InProc. of ACM/IEEE Design, Automation and Test in Europe (DATE), 2004.

[14] Booleforce. http://fmv.jku.at/booleforce.

[15] A.B.Y Bres, G. Berry, and E.M. Sentovich. State abstraction techniques for the verification of

reactive circuits. InProc. of Designing Correct Circuits, 2002.

[16] R. Brinkmann and R. Drechsler. Rtl-datapath verification using integer linear programming. In

Proc. of VLSI Design, 2002.

[17] R.E. Bryant. Formal verification of digital circuits using symbolic ternary system models. In

Proc. of Intl. Conf. on Computer-Aided Verification (CAV), 1990.

[18] R.E. Bryant. Symbolic simulation-techniques and applications. InProc. of ACM/IEEE Design

Automaton Conference (DAC), 1990.

[19] R.E. Bryant. Modeling data in formal verification: Bits, bit vectors, or words. In

www.cs.cmu.edu/ bryant/presentations/fmcad07-tutorial.ppt, 2007.

[20] R.E. Bryant, D. Kroening, J. Ouaknine, S.A. Seshia, O. Strichman, and B. Brady. Deciding

bit-vector arithmetic with abstraction. InProc. of Tools and Algorithms for Construction and

Analysis of Systems (TACAS), 2007.

[21] R.E. Bryant, S.K. Lahiri, and S.A. Sehia. Modeling and verifying systems using a logic of

counter arithmetic with lambda expressions and uninterpreted functions. InProc. of Intl. Conf.

on Computer Aided Verification (CAV), 2002.

[22] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitioned transition

relations. InProc. of 1991 Intl. Conf. on Very Large Scale Integration (VLSI), 1991.



Bibliography 114

[23] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Symbolic model checking for

sequential circuit verification. InIEEE Trans. on Computers-Aided Design of Integrated Circuits,

1994.

[24] J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking: 10(20) states and

beyond. InInformation and Computation, volume 98, pages 142–170, 1992.

[25] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R.Engler. Exe: Automatically generating

inputs of death. InProc. of 13th ACM Conference on Computer and CommunicationsSecurity,

2006.

[26] S. Chai, E.M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software compo-

nents in c. InProc. of Intl. Conf. on Software Engineering (ICSE), 2003.

[27] C.H. Chen and P.R. Menon. An approach to functional level testability analysis. InProc. of Intl.

Test Conf (ITC), 1989.

[28] X. Cheng and M.S. Hsiao. Ant colony optimization directed program abstraction for software

bounded model checking. InProc. of the Intl. Conf. on Computer Design (ICCD), 2008.

[29] X. Cheng and M.S. Hsiao. Simulation-directed invariant mining for software verification. In

Proc. of ACM/IEEE Design, Automation and Test in Europe (DATE), 2008.

[30] J.D. Choi and J. Ferrante. Static slicing in the presence of goto statements. InACM Trans. on

Programming Languages and Systems (TOPLAS), 1994.

[31] E.M. Clarke, M. Fujita, S.P. Rajan, T. Reps, S. Shankar,and T. Teitelbaum. Program slicing for

vhdl. In Proc. of Software Tools for Technology Transfer (STTT), volume 4(1), pages 125–137,

2002.

[32] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. InProc. of Intl. Conf. on Computer Aided Verification (CAV), 2002.

[33] E.M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 2000.

[34] E.M. Clarke, A. Gupta, H. Jain, and H. Veith. Model checking: back and forth between hardware

and software. InProc. of Verfied Software: Theories, Tools Experiments Conf. (VSTTE), 2005.



Bibliography 115

[35] E.M. Clarke and D. Kroening. A tool for checking ansi-c programs. InProc. of Tools and

Algorithms for Construction and Analysis of Systems (TACAS), pages 168–176, 2004.

[36] E.M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based predicate abstrac-

tion for ANSI-C. In Proc. of Tools and Algorithms for Construction and Analysisof Systems

(TACAS), pages 570–574, 2005.

[37] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem proving for program verifi-

cation. InProc. of Intl. Conf. on Computer Aided Verification (CAV), 2005.

[38] W. Craig. Linear reasoning: A new form of the herbrand-gentzen theorem. InJournal of Symbolc

Logic, 1957.

[39] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently computing static

single assignment form and the control dependence graph. InACM Trans. on Programming

Languages and Systems, pages 451–490, 1991.

[40] Satyaki Das. Predicate Abstraction. PhD thesis, Dept. of Electrical Engineering in Stanford

University, Stanford, CA, USA, 2003.

[41] M. Davis, G. Logemann, and D.W. Loveland. A machine program for theorem proving. In

Communications of the ACM, volume 5, pages 394–397, 1962.

[42] N. Dershowitz and D.A. Plaisted. Rewriting. InHandbook of Automated Reasoning, pages 535–

610, 2001.

[43] S. Edwards, T. Ma, and R. Damiano. Using a hardware modelchecker to verify software. In

Proc. of Intl. Conf. on ASIC, 2001.

[44] M. Ernst. Practical fine-grained static slicing of optimized code. InTechnical Report MSR-TR-

94-14, Microsoft Research, 1994.

[45] M.D. Ernst, J.H. Perkins, and etc. P.J Guo. The daikon system for dynamic detection of likely

invariants. InProc. of Science of Computer Programming, 2007.



Bibliography 116

[46] F. Fallah, S. Devadas, and K. Keutzer. Occom: efficient computation of observability-based

code coverage metrics for functional verification. InProc. of ACM/IEEE Design Automation

Conference (DAC), 1998.

[47] V. Ganesh, S. Berezin, and D.L. Dill. A decision procedure for fixed-width bit-vectors. In

Technical Report CSTR 2007-06, Standford University, Stanford, CA, USA 94305-9025, 2007.

[48] Vijay Ganesh.Decision Procedures for Bit-vectors, Arrays and Integers. PhD thesis, Dept. of

Computer Science in Stanford University, Stanford, CA, USA, 2007.

[49] B. Ganter and R. Wille.Formal Concept Analysis. Springer-Verlag, 1996.

[50] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing. InProc. of

Programming Language Design and Implementation (PLDI), 2005.

[51] L. Goldstein and E. Thigpen. Scoap: sandia controllability/observability analysis program. In

Proc. of ACM/IEEE Design Automation Conference (DAC), 1980.

[52] S.G. Govindaraju and D.L. Dill. Counterexample-guided choice of projections in approximate

symbolic model checking. InProc. of Intl. Conf. on Computer Aided Design (ICCAD), 2000.

[53] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. InProc. of Intl. Conf. on

Computer Aided Verification (CAV), 1997.

[54] A. Groce and D. Kroening. Making the most of bmc counterexamples. InWorkshop on BMC,

2004.

[55] X. Gu. Rt level testability improvement by testabilityanalysis and transormations. InPhD thesis,

Linkoping University, Sweden, 1996.

[56] N. He and M. Hsiao. Using symbolic simulation and weakening abstraction for formal verifica-

tion of embedded software. InProc. of Intl. Conf. on Software Engineering and Applications,

2006.

[57] N. He and M. Hsiao. Bounded model checking of embedded software in wireless cognitive radio

systems. InProc. of Intl. Conf. on Computer Design (ICCD), 2007.



Bibliography 117

[58] N. He and M. Hsiao. A new testability guided abstractionto solving bit-vector formula. In

ACM Intl. Conf. Proceeding Series: Proc. of the Joint Workshops of the 6th Intl. Workshop on

Satisfiability Modulo Theories and 1st Intl. Workshop on Bit-Precise Reasoning, 2008.

[59] N. He and M. Hsiao. An efficient path-oriented bit-vector encoding width computation algo-

rithm for bit-precise verification. InProc. of ACM/IEEE Design Automation and Test in Europe

Conference (DATE), 2009.

[60] T.A. Henzinger, R. Jhala, R. Majumda, and G. Sutre. Lazyabstraction. InACM Conf. on Princi-

ples of Programming Languages (POPL), pages 58–70, 2002.

[61] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. InACM

Conf. on Principles of Programming Languages (POPL), 2004.

[62] W. Hodges.Model Theory. Cambridge University Press, 1993.

[63] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. InACM

Trans. on Programming Languages and Systems (TOPLAS), volume 12(1), pages 26–60, 1990.

[64] F. Hsu and J.H. Patel. High-level variable selection for partial-scan implementation. InProc. of

Intl. Conf. on Computer Aided Design (ICCAD), 1998.

[65] F. Hsu, E.M. Rudnick, and J.H. Patel. Enhancing high-level control-flow for improved testability.

In Proc. of Intl. Conf. on Computer Aided Design (ICCAD), 1996.

[66] C.Y. Huang and K.T. Cheng. Assertion checking by combined word-level atpg and modular

arithmetic constraint-solving techniques. InProc. of ACM/IEEE Design Automation Conference

(DAC), 2000.

[67] C.Y. Huang and K.T. Cheng. Assertion checking by combined word-level atpg and modular

arithmetic constraint-solving techniques. InProc. of IEEE/ACM Design Automation Conference

(DAC), 2000.

[68] R.I.G Hughes.A Philosophical Companion to First-Order Logic. Hackett Publishing Company,

1993.

[69] Michael Huth. Abstraction. Inhttp://www.doc.ic.ac.uk/ mrh/talks.html, 2002.



Bibliography 118

[70] F. Ivancic, I. Shlyakhter, M. Ganai, and A. Gupta. Modelchecking c programs using f-soft. In

Proc. of Intl. Conf. on Computer Design (ICCD), 2005.

[71] J. Ivers and N. Sharygina. Overview of comfort: A model checking reasoning framework. In

Technical Report, CMU/SEI-2004-TN-018, 2004.

[72] et al J.L. Carter. Restricted symbolic evaluation is fast and useful. InProc. of Intl. Conf. on

Computer Aided Design (ICCAD), 1998.

[73] P. Johannsen and R. Drechsler. Formal verification on the rt level computing one-to-one design

abstractions by signal width reduction. InProc. IFIP International Conference on Very Large

Scale Integration, 2001.

[74] S. Khurshid, C.S. Pasareanu, and W. Visser. Generalized symbolic execution for model checking

and testing. InProc. of Tools and Algorithms for Construction and Analysisof Systems (TACAS),

2003.

[75] J.C. King. Symbolic execution and program testing. InCommunications of ACM, 1976.

[76] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-

Wesley, 1997.

[77] D. Kroening and O. Strichman.Decision Procedures an Algorithmic Point of View. Springer,

2008.

[78] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton University

Press, 1994.

[79] B. Li and F. Somenzi. Efficient computation of small abstraction refinements. InProc. of the Intl.

Conf. on Computer Aided Design (ICCAD), 2004.

[80] SMT lib. http://combination.cs.uiowa.edu/smtlib/.

[81] F.Y.C. Mang and P.H. Ho. Abstraction refinement by controllability and cooperativeness analysis.

In Proc. of ACM/IEEE Design Automation Conference (DAC), 2004.

[82] P. Manolios, S.K. Srinivasan, and D. Vroon. Automatic memory reductions for rtl-level verifica-

tion. In Proc. of Intl. Conf. on Computer Aided Design (ICCAD), pages 786–793, 2006.



Bibliography 119

[83] J.P. Marques-Silva and K.A. Sakallah. Grasp: A search algorithm for propositional satisfiability.

In IEEE Trans. on Computers, volume 48, pages 506–521, 1999.

[84] K.L. McMillan. www.kenmcmil.com/cav05tut.ppt.

[85] K.L. McMillan. Symbolic Model Checking: An Approach to the State ExplosionProblem. Kluwer

Academic Publishers, 1993.

[86] K.L. McMillan. Applications of craig interpolants in model checking. InProc. of Tools and

Algorithms for Construction and Analysis of Systems (TACAS), 2005.

[87] K.L. McMillan and N. Amla. Automatic abstraction without counterexample. InProc. of Tools

and Algorithms for Construction and Analysis of Systems (TACAS), 2003.

[88] A.H. Mekler and E.M. Nelson. Equational bases for if-then-else. InSIAM Journal on Computing,

volume 16(3), pages 465–485, 1987.

[89] Minisat. www.cs.chalmers.se/cs/research/formalmethods/minisat.

[90] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering and efficient

sat solver. InProc. of ACM/IEEE Design Automation Conference (DAC), 2001.

[91] M. Murciano, G. Gabodi, and P. Camurati. Automated abstraction by incremental refinement in

interpolant-based model checking. InProc. of Intl. Conf. on Computer Aided Design (ICCAD),

2008.

[92] G. Nelson and D.C. Oppen. Simplification by cooperatingdecision procedures. InACM Trans.

on Programming Languages and Systems (TOPLAS), 1979.

[93] T. Nguyen, M. Delaunay, and C. Robach. Testability analysis for software components. InProc.

of Intl. Conf. on Software Maintenance(ICSM), 2002.

[94] J.W. Nimmer and M.D. Ernst. Static verification of dynamically detected program invariants:

Integrating daikon and esc/java. InProc. of First Workshop on Runtime Verification (RV), 2001.

[95] G. Parthasarathy, M.K. Iyer, K.T. Cheng, and L.C. Wang.An efficient finite-domain constraint

solver for circuits. in: Design automation conference. InProc. of IEEE/ACM Design Automation

Conference (DAC), 2004.



Bibliography 120

[96] G. Parthasarathy, M.K. Iyer, T. Feng, L.-C. Wang, K.-T.Cheng, and M.S. Abadir. Combining

atpg and symbolic simulation for efficient validation of embedded array systems. InProc. of Intl.

Test Conf. (ITC), 2002.

[97] X. Ren, F. Shah, F. Tip, B.G. Ryder, and O. Chesley. Chianti: A tool for practical change

impact analysis of java programs. InProc. of ACM Conference on Object Oriented Programming,

Systems and Applications (OOPSLA), 2005.

[98] T. Rondeau, T. Bielawa, D. Maldonado, M.S. Hsiao, and C.W. Bostian. A methodolgy for a

verifiable software platform to secure software defined and cognitive radios. InSoftware Define

Radio (SDR), 2005.

[99] H. RueB and N. Shankar. Deconstructing shostak. InProc. of 16th IEEE Symposium on Logic in

Computer Science (LICS), 2001.

[100] S. Sankaranarayanan.Mathematical Analysis of Programs. PhD thesis, Stanford University,

Stanford, California, 2005.

[101] C.H. Seger and R.E. Bryant. Formal verification by symbolic evaluation of partially-ordered

trajectories. InJournal of Formal Methods in System Design, 1995.

[102] R. Shostak. Deciding combinations of theories. InJournal of the Association for Computing

Machinery, 1984.

[103] N. Sinha. Symbolic program analysis using term rewriting and generalization. InProc. of Formal

Methods in Computer-Aided Design (FMCAD), 2008.

[104] N. Sinha and E.M. Clarke. Abstraction in model checking. In www.cs.cmu.edu/ emc/15817-

s05/cegar.ppt, 2005.

[105] G. Snelting. Concept analysis - a new framework for program understanding. InProc. of ACM

Workshop on Program Analysis for Software Tools and Engineering (PASTE), 1998.

[106] K. Thearling and J. Abraham. An easily computed functional level testability measure. InProc.

of Intl. Test Conf. (ITC), 1989.

[107] F. Tip. A survey of program slicing techniques. InJournal on Program Languages, 1995.



Bibliography 121

[108] P. Tonella. Using a concept lattice of decomposition slices for program understanding and impact

analysis. InIEEE Trans. on Software Engineering, 2003.

[109] C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Disjunctiveimage computation for embedded

software verification. InProc. of ACM/IEEE Design, Automation and Test in Europe (DATE),

2006.

[110] C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Disjunctiveimage computation for embedded

software verification. InProc. of ACM/IEEE Design, Automation and Test in Europe (DATE),

2006.

[111] M.N. Wegman and F.K. Zadeck. Constant propagation with conditional branches. InACM Trans.

on Programming Languages and Systems (TOPLAS), 1991.

[112] D. Weise, R.F. Crew, M. Ernst, and B. Steensgaard. Value dependence graphs: Representation

without taxation. InTechnical Report MSR-TR-94-03, Microsoft Research, 1994.

[113] M. Weiser.Program Slices: Formal, Psychological, and Practical Investigations of an Automatic

Program Abstraction Method. PhD thesis, University of Michigan, Ann Arbor, Michigan, 1979.

[114] C. Wilson, D.L. Dill, and R.E. Bryant. Symbolic simulation with approximate values. InProc.

of Formal methods in computer aided design (FMCAD), 2000.

[115] Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. InACM Symposium

on Principles of Programming Languages (POPL), 2005.

[116] Yices. http://yices.csl.sri.com/tool-paper.pdf.

[117] A. Zaks, Z. Yang, I. Shlyakhter, and F. Ivancic etl. Bitwidth reduction via symbolic interval

analysis for software model checking. InTrans. on Computer Aided Design (TCAD), pages

1513–1517, 2008.

[118] L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability solver. In

Proc. of Intl. Conf. on Computer Aided Design (ICCAD), 2002.



Bibliography 122

[119] L. Zhang, M.R. Prasad, and M.S. Hsiao. Incremental deductive and inductive reasoning for sat-

based bounded model checking. InProc. of the Intl. Conf. on Computer Aided Design (ICCAD),

2004.

[120] L. Zhang, M.R. Prasad, M.S. Hsiao, and T. Sidle. Dynamic abstraction using sat-based bmc. In

Proc. of IEEE/ACM Design Automation Conference (DAC), 2005.


