Exploring Abstraction Techniques for Scalable Bit-Precig Verification of
Embedded Software

Nannan He

Dissertation submitted to the Faculty of
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Michael S. Hsiao, Chair
Amos L. Abbott
Yaling Yang
Allen B. MacKenzie
James D. Arthur

David Yang Gao

May 1, 2009
Bradley Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Keywords: SAT, Bounded Model Checking, Program Analysisstfaction and Refinement
Copyright(© 2009, Nannan He

Exploring Abstraction Techniques for Scalable Bit-Precig Verification of
Embedded Software

Nannan He

(ABSTRACT)

Conventional testing has become inadequate to satisfyotugoreliability requirements of embedded
software that is playing an increasingly important role iany safety critical applications. Automatic
formal verification is a viable avenue for ensuring the tality of such software. Recently, more
and more formal verification techniques have begun modelimpn-Boolean data variable as a bit-
vector with bounded width (i.e. a vector of multiple bitsdil82- or 64- bits) to implement bit-precise
verification. One major challenge in the scalable applicatf such bit-precise verification on real-

world embedded software is that the state space for verditaan be intractably large.

In this dissertation, several abstraction techniques xp®red to deal with this scalability challenge
in the bit-precise verification of embedded software. Fist propose a tight integration of program
slicing, which is an important static program analysis teghe, with bounded model checking (BMC).
While many software verification tools apply program slicias a separate preprocessing step, we in-
tegrate slicing operations into our model construction eettiction process and enhance them with
compilation optimization techniques to compute accurabgmam slices. We also apply a proof-based
abstraction-refinement framework to further remove thasgnam segments irrelevant to the property
being verified. Next, we present a method of using symboiiwutation for scalable formal verifica-
tion. The simulation involves distinguishing X as symbalatues to abstract concrete variables’ values.
Also, the method embeds this symbolic simulation in a caextemple-guided abstraction-refinement
framework to automatically construct and verify an abstracdel, which has a smaller state space than

that of the original concrete program.

This dissertation also presents our efforts on using twoncomtestability metrics —eontrollabil-
ity metric (CM) and observability metridOM) — as the high-level structural guidance for scalable

bit-precise verification. A new abstraction approach igppsed based on the concept of under- and

over-approximation to efficiently solve bit-vector forraslgenerated from embedded software verifica-
tion instances. These instances include both complicattuhrgetic computations and intensive control
structures. Our approach applies CM and OM to assist theaatish refinement procedure in two
ways: (1) it uses CM and OM to guide the construction of a stmpider-approximate model, which
includes only a subset of execution paths in a verificatistaimce, so that a counterexample that refutes
the instance can be obtained with reduced effort, and (2)derdo reduce the cost of using proof-based
refinement alone, it uses OM heuristics to guide the restoratf additional verification-relevant for-
mula constraints with low computational cost for refinemé&periments show a significant reduction

of the solving time compared to state-of-the-art solverstfe bit-vector arithmetic.

This dissertation finally proposes an efficient algorithndiscover non-uniform encoding widthg of
individual variables in the verification model, which maydwealler than their original modeling width
but sufficient for the verification. Our algorithm distinghis itself from existing approaches in that
it is path-oriented; it takes advantage of CM and OM valueguigle the computation of the initial,
non-uniform encoding widths, and the effective adjustmdrihese widths along different paths, until
the property is verified. It can restrict the search from ¢hpaths that are deemed less favorable or
have been searched in previous steps, thus simplifyingrtit@gm. Experiments demonstrate that our
algorithm can significantly speed up the verification esgbcin searching for a counterexample that

violates the property under verification.

To my grannies.

Acknowledgements

First and foremost, | would like to thank my advisor, Dr. Maeh S. Hsiao, for his timely guidance,
continuous inspiration and support to my research workeHmuragement and help are very important

throughout my Ph.D. study.

| would like to thank Dr. Amos Lynn Abbott, Dr. Yaling Yang, DAllen B. MacKenzie, Dr. James

D. Arthur and Dr. David Yang Gao to serve on my final defenserodtee and spend precious time on
the dissertation review and in attending the oral presiemtal am also very grateful to Dr. Sandeep
Shukla, Dr. Shawn Bohner and Dr. Layne T. Watson for theicipres suggestions during the formation

of this dissertation.

I would like to express my deep thanks to all professors, aliand current students in the Center for
Wireless Telecommunications. | feel very lucky in joiningch wonderful projects, working with such
a wonderful team and obtaining the great opportunity to dgveny Ph.D. research in the software

verification.

| would like to give my sincere gratitude to all Proactiverahi and current members for their valuable
comments on my research and dissertation. Each week, | mjohee the group meeting time and

afterwards discussions with them in the lab.

| am also very grateful to the people from Blacskburg ChinBg#e Study, International Christian
Fellowship and One Accord group for their invaluable card anpport in my both spiritual life and

worldly life, especially at the hard times that we exper&shtogether.

Last but not the least, | would like to give my special tharkaty parents for their love and support to

me during the pursuit of my graduate study.
Nannan He

April, 2009

Vi

Contents

Tableof Contents e e e Vil

Listof Figures e e Xi

Listof Tables e XV

1 Introduction 1

1.1 Software Verification e 2
111 OVerview e

1.1.2 Formal Verification e 3

1.2 Contributions of this Dissertation 5

1.2.1 Scalable BMC via Integration of Program Slicing anddPbased Localization

Abstraction Refinement Lo

1.2.2 BMCyvia Symbolic Simulation 6

1.2.3 Testability-guided Abstraction to Solving Bit-vecfrithmetic 6

1.2.4 A Reduced Bit-vector Encoding Width Computation Algom 7

1.3 Organization of the Dissertation« 8

Vii

2 Background 9

2.1 Definitions of Program Representationo 9
2.2 Satisfiability Problem e 12
2.2.1 Propositional Logic 15
2.2.2 Bit-vector Arithmetic 18
2.3 Software Model Checking e 22
2.3.1 Software Bounded Model Checking 25
2.4 Automatic Abstraction Techniques 27
2.4.1 Over-approximation based Abstraction 28
2.4.2 Under-approximation based Abstraction 33
2.4.3 Ternary Abstraction e 34
2.4.4 Two RefinementMethods 36

3 Scalable BMC via Integration of Program Slicing and Proofbased Localization Abstrac-

tion Refinement 39
3.1 Motivation and OVerview e e e e 40
3.2 Software Verification Model e 41
3.2.1 Model Structure 41
3.2.2 High Level Model Construction 43
3.2.3 High Level Model Reduction and Array Modeling a7
3.3 Software Bounded Model Checking 50

viii

3.3.1 Major Steps in Refinement Framework

3.3.2 New Encoding Width Computation «...
3.4 Experimental Results e
3.5 RelatedWork

3.6 SuMmMary e e e e e

BMC via Symbolic Simulation

4.1 Motivation and Overview e e

4.2 Preliminaries e
4.2.1 Symbolic Simulation e

4.3 Model Checking in CEGAR Framework uu....

4.4 Primary Experimental Results e

45 SUMMANY . . . o o e e e e e e e

A New Testability Guided Abstraction to Solving Bit-vecta Formulae

5.1 Motivationand Overview e e

5.2 Controllability / Observability Metric
5.2.1 Controllability and Observability Coefficient
5,22 CMand OM Computation

5.3 Testability Guided Abstraction and Refinement

5.3.1 Overall Framework

50

52

54

57

59

60

60

61

61

64

68

69

71

72

73

74

75

78

54

5.5

5.6

5.3.2 CM/OM Guided Under-approximation 80

5.3.3 OM Guided Abstraction Refinement 81
Experimental Results e 85
Related Work e 86
SUMMAIY e e e e e e e e e e e e e 87

A Reduced Bit-vector Encoding Width Computation Algorithm for Bit-precise Verification 89

6.1 Motivationand Overview e e 90
6.2 Preliminaries 92
6.2.1 Bit-vector FormulaEncoding., 92
6.2.2 Controllability/Observability Metrics 94
6.3 Our Proposed Algorithm e 96
6.3.1 OverviewoftheSteps 96
6.3.2 Guided InitiaW, Computation 00 98
6.3.3 Abstract Counterexample Generationo 100
6.3.4 NewW,with Guided Slicing 101
6.4 Experimental Results e 101
6.5 Summary . ..o 105
Conclusions 106
7.1 Recommendations for Future Research 108

7.1.1 Larger Experiments

7.1.2 Program Analysis Enhanced Abstraction Refinement

7.1.3 \Verification of Concurrent Programs

Bibliography

Xi

112

List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

Effort versus assurance capability oL 4
Anexample oG L 10
Anexample of SSAform 11
Anexample of5334 . . . L 12
Anexample of FOLformula 14
CNF translation of basicgates. iiii i 16
DPLL algorithm withlearning. e 17
An example of unsatisfiability proof by resolution 18
An example of bit-vector witv bits. Thei!" bitis denoted ab;. 18
Overview of abstraction-refinement based decisionqooe. 21
An example of model checking 24
Basic steps of software bounded model checking 25
An example of assertion e 26
An example of software bounded model. 26

Xli

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Over-approximation based abstraction 28

An example of predicate abstraction of programinC. 29
An example of interpolant. e 30
Over-approximation based abstraction without sfgaeesmapping 32
An example of localization abstraction of programinC 32
Under-approximation based abstraction 33
Two examples of under-approximation based abstractia 34
Two verification examples using ternary abstraction..... 35
Basicflowof CEGAR 36
Basic flow of proof-based refinement 37
Comparison of program slicing and abstraction refiner{@incle: program constraints

or verification complexity, circle with the darkest bordetle final abstract model) . . 41
Anexample oMy L e 42
Anexample o 5234 44
Program equatioBp andCq 46
Basic procedures of staticslicing oo 46
Array node expansion e e e e e 48
An example ofredundant branches 49
Over-approximation algorithm 51
New encoding size computation algorithm 53

Xiii

3.10 ResultsonbubbleSort e 55

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

Basic symbolic simulation procedure e 61
An example of symbolic simulation 62
Example of simple X, BDD, Distinguishing X and accuracynparison. 63
An example of UF functions simulated with distinguighd 64
CEGAR procedure with symbolic simulation 65
An example of model reduction L L e 66
Four scenarios of input space partition 67
Pseudo code of proposed simulation, 68
An example of bit-vector arithmetic formula withitsMad 76
Overview of testability guided abstraction approackdiwing Bit-vector formula . . . 78
Abstraction refinement algorithm L. 82
An example of Bit-vector formula with its graphmodel 93
Graph model of Figure 6.1 labeled with CM/OM 95
Basic flow of our algorithm e 96
Alg. of initial W computation 99
Alg. of abstract counterexample generation L. 100
Two-steps guided slicing e 101

XV

List of Tables

3.1

3.2

3.3

4.1

4.2

5.1

5.2

6.1

6.2

Results on bubbleSort program 56
Comparison of runtime and memory cost@BMC— 2.4, C2BIT with slicing and

C2BIT with slicing plus refinement (Part1). 57
Comparison of runtime and memory cost@BMC— 2.4, C2BIT with slicing and

C2BIT with slicing plus refinement (Part2). 58
Testresults 68
Comparison between C2CKT and C2CNF in verifying Tuté.c... 69
COC Values for Common Operators i v i i i i i oo 75
Results Comparison e e e 84
Results Comparison (Benchmarks from Spear, TACASO07). 102
Results Comparison (Benchmarks from Spear, TACASO7). 103

XV

Chapter 1

Introduction

Embedded software is playing an increasingly importarg molmany safety-critical or mission-critical
applications. Since an error may potentially cause disastresults or severe economic consequences
in these applications, the correctness of the software bausgorously tested before it is put into oper-
ation. Statistics show that a large fraction of resource®i®ted to guarantee the software correctness

in most software development practices.

Software verification and validation (V & V) aims to assurattthe software correctly implements alll
the requirements. Technically speaking, software vetitioachecks that the software product produced
after each development step satisfies the given designfispdons. It has two main aspects: (1) the
software does what it is supposed to do, and (2) the softwaes dot do what it is not supposed to
do. Both of these aspects are important and have becomecpmrezdrns in the software development.
Software validation checks that the design specificatioetsthe intended user requirements. Operating
under the assumption that the specification already mattteesiser requirements, we focus on the

software verification issues in this dissertation.

Chapter 1. Introduction 2

1.1 Software Verification

1.1.1 Overview

Testing and formal verification are two fundamental sofevegrification approaches. Generally speak-
ing, testing is an attempt to show the presence of bugs iroftware, while formal verification primarily
aims to prove the absence of bugs with respect to specifigebpiies. As testing and formal verification
each has its own benefits and drawbacks, the selection abaqies in practice depends on many fac-
tors, such as the required degree of correctness and tHaldeaierification resources in the software

development.

Testing is still the mainstream approach in software vetii practices to detect bugs, and demonstrate
confidence in the software quality before the product isrdedid, mainly due to its automation capability
and simplicity. Many techniques have been establishedditware testing [12]. Based on whether or
not the internal information of the software is used, they ba basically classified into two groups:
black-box testing and white-box testing. Black-box tegtonly takes the external information such
as design requirements of the software to generate test vaseut considering any internal details.
It is primarily applied in the large test scope; for exampksting the functional or non-functional
requirements of the entire software system. White-boxrtgsierives tests mainly from the internal
perspective of the software, such as the program struatutesiimplementation. It is typically used to

test small-scale program units at the early testing phaseb, as unit testing.

One of the main advantages of testing techniques is the dasgeo A test practice is done simply
to apply an input stimulus to initiate the program execuytiand compare whether the actual outputs
equal to the expected ones. If so, we say the software pdmsésst; otherwise, the errors are reported
for debugging. In addition, testing can be independent filoencomplex implementation details as in
black-box testing. This feature also makes testing the watification choice when the source code is
not available. Furthermore, when encountering verificat&source constraints such as memory or ex-
ecution time, testing can still provide some coverage, aviiiimal verification may not be successfully
conducted to report meaningful coverage numbers. Howauémmatic generation of high quality test

cases and the accuracy of coverage metrics for measuriggtesiality are still two very challenging

Chapter 1. Introduction 3

issues of software testing. Moreover, since it is rarelg ablachieve one hundred percent input cover-
age, software testing is inadequate to guarantee progrenectiess in the reliability-critical embedded

applications, even if the program passes all the availastes.t

1.1.2 Formal Verification

Formal verification conducts an exploration of all the pblesbehaviors based on the formal models
of the program and the formal specification of the intendeghlirements. The main advantage of for-
mal verification is the completeness it offers in terms of $pecific properties, which can eliminate
the notion of inadequate coverage that conventional tg$tices. This is a very attractive feature in
reliability-critical embedded applications. Furthermosome automatic formal verification methods
like model checking can be used to detect hard corner-cage nich are very difficult to be detected
by testing alone. With the significant advances in autonra&@&soning and the computing capability
of modern computers, formal verification is no longer onlyaohdemic interest. However, the limited
scalability is still the major problem of most formal metisodhen dealing with practical applications,
and so they are often used to verify the small portions of chdecannot directly handle the large scale

and complex programs in the real-world.

Several formal verification techniques have been propdssdain be basically classified into two main
categories. One is deductive verification such as theor@wvin; the other is model checking. The
basic idea of deductive verification is to use a set of axioms\ahematical rules to prove program
correctness. Although some tools have been developed theambrrect use of axioms and proof rules,
deductive verification is still hard to be automated and isxremely time-consuming process that can
be performed only by experts with considerable experiendegical reasoning and mathematics. This

makes deductive approaches less attractive in practice.

On the other hand, model checking is used to verify the speciiroperty of the finite state model
defined by the software, through an explicit or implicit eraxation of all the reachable states and
behaviors. It attempts to assure the correctness of thea@ft as it has shown the capability of finding
subtle bugs, and formally verifying the correctness of clexpardware designs, with respect to a target

reliability property. Model checking can be fully autontatiithout requiring the users to be experts.

Chapter 1. Introduction 4

Furthermore, when the design being verified fails to satisfjiven specification, counterexamples are
generated, which show the erroneous behaviors of the deBigminformation can be very valuable for
debugging. Model checking has been successfully appli¢gkdetdormal verification of the real-world

hardware designs in industry.

Figure 1.1 compares the verification efforts and assuraapalilities among several verification tech-
niques: testing, model checking, and deductive verificati&rom the aspect of verification efforts,
testing is the easiest approach, while deductive verifinas the hardest one as it can not be fully auto-
mated. Model checking lies in between, mainly because soouehtonstruction processes still need
the manual assistance, although the checking can be aitorffedm the aspect of assurance capabili-
ties, deductive verification and model checking as formahs can provide the complete guarantee
of program correctness. Figure 1.1 shows that deductivoation has the highest assurance capabili-
ties since it can deal with both finite and infinite state systewhile model checking is restricted to the
finite ones. In general, testing can only provide the paatsaiurance of program correctness, since the

application of exhaustive stimuli is often prohibitive.

Effort A

/

Assurance

»
| o

Testing Model Deductive
Checking Verification

Formal Methods

Figure 1.1: Effort versus assurance capability

Data modeling, as a very important issue in formal verifwat19], can be conducted in different
manners. One data model is the bit-level modeling where biidéd represented individually. It is the
basis of most computer aided verification. Although thisléiel modeling is precise, it may make it
hard to extract the functionality, due to the excessiveildetlaat come with individual bits. And such

modeling has very limited scalability. Another form of dat@deling is using symbolic words, where

Chapter 1. Introduction 5

each word can have an arbitrary value like unbounded indederthe past, this approach was used in
the software verification to model program variables. Big ttata modeling is not precise, as it does not
allow for the detection of arithmetic underflow and overflougb, which frequently occur in embedded
software. Moreover, the existing theorem provers basedhenogics with unbounded word can only
provide the limited reasoning for real program propertgace they mainly target on mathematical

theories.

Recently, modeling data variables laisvectorswith bounded width has shown some unique benefits.
Bounded data modeling is capable of capturing preciselysémantics of the verification instances
constrained by a physical word-size on a computer. With theaces in propositional and bit-vector
arithmetic reasoning, the formal verification with thisalatodeling has the potential to deal with large
problems. Many existing software model checking tools.(€€8MC [35], SATABS [36], Saturn [115],
F-SOFT [70]) and hardware design validation techniques,(f86, 82]) have taken the bit-vector mod-
eling of program variables. We also adopt it in our softwagdfication work. In this dissertation, we
define the ternbit-precise verificationwhich specifically represents verification techniques using such

bit-vectors based data modeling.

1.2 Contributions of this Dissertation

With the successful application of model checking to hamwdesigns, there is a growing interest in
applying automatic formal techniques to verify the embeddeftware programs, whose safety and
reliability are critical. However, the limited scalabjlits still the major problem of formal techniques,
and a lot of research has been invested in alleviating tlislem. In this dissertation, several efficient

abstraction techniques are explored for scalable bitiggacrification of embedded software.

1.2.1 Scalable BMC via Integration of Program Slicing and Poof-based Localization

Abstraction Refinement

Since the properties under verification usually depend anall ortion of a program, we propose an

approach to accurately and efficiently find this portion widtv computational cost toward the goal

Chapter 1. Introduction 6

of enhancing the scalability of software BMC. The propospgdraach tightly integrates an aggressive
static program slicing approach in the software verifigatimodel construction and reduction process.
Program slicing is an important program analysis technityaé can reduce the entire program to seg-
ments relevant to a particular computation. This allowsféactive removal of those program segments
that arecomputationally irrelevanto the property, so as to significantly reduce the model cexifyl

Moreover, our slicing operations naturally combine the pidation optimization techniques, such as

constant propagation, to compute the accurate program slic

We further explore a proof-based localization abstraetefimement strategy, using under- and over- ap-
proximation of our software verification model to abstrdiet program segments, which amrification
relevantto the property for scalable BMC. A heuristics method by pang analysis is also proposed to

effectively refine the under-approximation in each itenadi

1.2.2 BMC via Symbolic Simulation

We also explore the potential of combining symbolic sinmiolatwith localization abstraction [78] for
scalable formal verification. The proposed approach apmlistinguishing X as symbolic values to
abstract the concrete variables’ values, so that a limitedber of identified symbolic input vectors can
cover the complete input space. In order to reduce the \atitit cost and ease the identification of
symbolic input vectors, symbolic simulation is used in ardevexample-guided abstraction-refinement
framework to automatically construct an abstract modelis Tiodel includes a subset of property-
relevant program constraints, which can be more easil§i@dithan the original program. The property-
relevance of program constraints is automatically deteechiduring the iterative abstraction refinement

procedure.

1.2.3 Testability-guided Abstraction to Solving Bit-vecbr Arithmetic

We investigate two testability metrics — controllabilityetnic (CM) and observability metric (OM)
— as the high-level structural guidance for the scalablept#tise verification. To speed up solving

bit-vector formulas generated from control-dominated edugd software verification instances, A new

Chapter 1. Introduction 7

abstraction approach is proposed based on the concept ef-uamad over-approximation. We also
design a new CM and OM computation method and apply CM and Cdffimently guide the proposed
abstraction procedure. The under-approximate model i tienforcing constant constraints to a
small set of single-bit variables that control the branclec®n of If-Then-Else (ITE) nodes. This
restricts the search space to only a subset of formula @ntstr With the guidance of CM and OM,
the proposed approach can quickly find a satisfying solutiorthe easily controllable portion of the

formula if a solution exists.

Our approach computes the over-approximate abstractiothgilearning from an UNSAT proof of the

under-approximate model. It also restores additionalfication relevant constraints according to the
OM metric to reduce the refinement cost by only using the UNB®WDf. As a result, an abstract model
that is accurate enough to the verification can be built dyitdng before all partitions are enumerated.
To start a new refinement iteration, the satisfiable assigh(selution) of the current over-approximate
abstraction is used to guide the construction of a new uagpreximate model with an unvisited portion
in the formula. With the proposed approach, the verificatian be conducted incrementally due to its

partition-based feature.

1.2.4 A Reduced Bit-vector Encoding Width Computation Algaithm

We finally propose an efficient algorithm to iteratively diger non-uniform encoding widtiWg, of vari-
ables in the verification model, which may be smaller thair triginal modeling widths, but sufficient

to the verification. Different from existing approaches][28e proposed algorithm is path-oriented in
that it takes advantage of the CM and OM values to guide thepotetion of the encoding widths in
three ways: (1) it computes initial non-unifoit of variables on different paths; (2) it enlarges Whe

of the easily-controllable variables first in the encodingtivadjustment steps (if necessary); (3) it sets
W to zero for some single-bit variables that determine thb(saselection so as to concentrate search-
ing only on a subset of paths. Our approach is capable ofatsy the search from those paths that
are deemed less favorable or have been checked in earfsy gies greatly simplifying the verification

problem.

Chapter 1. Introduction 8

1.3 Organization of the Dissertation

The remainder of the dissertation is organized as follovie flext chapter describes the background of
program representation, SAT problem, software model dhgckespecially SAT-based bounded model
checking and abstraction techniques. The details behi@gtbposed verification approach of inte-
grating program slicing with the proof-based abstractiondcalable BMC are presented in Chapter
3. Chapter 4 discusses our proposed verification approadorobining symbolic simulation with
counterexample-based weakening abstraction for fornvaliifying the embedded software. Chapter 5
describes our new testability guided abstraction teclefquspeeding up solving bit-vector arithmetic
instances derived from the verification of the embeddedwsoé. Our path-oriented bit-vector encod-
ing width computation algorithm is presented in ChapteriGaly, the conclusion and future work are

presented in Chapter 7.

Chapter 2

Background

In this chapter, we provide the necessary background kmigeleelated to our work. We first give
several definitions about the program representation ¢seddhout this dissertation. Then, in Section
2.2, we introduce some basics about the satisfiability prablin Section 2.3, we review the SAT-based
bounded model checking technique, in particular, its apfibbn to software formal verification. Finally,

we introduce some automatic abstraction techniques inddez4.

2.1 Definitions of Program Representation

Definition 1. (digraph). A directed graph, or digrapl@ consists of a nonempty set of nodésand a
set of ordered pairs between distinct noleEE C N x N). Each ordered pair is called a directed edge
or an arc.

Definition2. (basic block).A Basic Block (BB) contains one or more program statementisarstraight-
line sequence with a conditional or unconditiogato statement only at the end.

Definition 3. (guard). The guard of a BB is the conjunction of a set of conditionaldprates, which
must be satisfied in order to enter this BB.

Definition4. (control-flow graph).A Control Flow GraphGcr is a digraph representation of the pro-
gram, where each node represents a BB, and each directedepdgsents the execution flow from one

BB to another.

Chapter 2. Background 10

Definition5. (branch-merge)ln a Geg, a node with more than one successor is called Branch; a node

with more than one predecessorGar is called Merge.

i BB0: x = xty; !
! if(x !I=1) goto BBI; :
| clscgoloBBy |
1. X:X+y; r'_'_"_'_'__'_‘ '''''' Z_'_i
2. if(x 1= 1) { i BBL: x =2, ;
3' X _ 7. ! if(z != 0) goto BB2; ;
4. ifz) i _ clsegotoBB3; i
5. X++; {
} BB2: x = x + I;
6. assert(x <=3); goto BB3;
, l_\“ v -
(a) Example code in C |EB3: assert(x <= 3); |

(b) G of code in (a)

Figure 2.1: An example dBcr

Figure 2.1 shows &cr example, where each node in it represents a labeled BB. Tdesrmunded by

the dot-dash border lines (e.BBy andBB;) are Branches; for those bounded by the dashed border lines
(e.g.,BBg) are Merges. All nodes are connected by the directed eddeshwepresent the control flow
relationships among the corresponding BBs. The guarB8gfBB; andBB; are respectivelg(BBy) =
TRUE, which meansBB is always executedg(BB;) = (x! = 1), which is actually the conditional
predicate in line 29(BB,) = ((xX! = 1) A (zl = 0)), which is the conjunction of conditional predicates in
line 2 and line 4.

Definition6. (SSA form)A Static Single Assignment (SSA) form [39] is an intermediegpresentation

of a program, in which every variable is replicated in diffier versions, and each variable version is
statically defined exactly once. (Ostatic definition may be in a loop resulting in the variable being

dynamically defined many times during execution.)

As an intermediate representation of the program wideld irséhe modern compiler designs, the SSA
form enhances various compiler optimizations such as dedd elimination and partial redundancy
elimination. This is mainly because the use-definition ehafieach variable becomes explicit in this

form. Figure 2.2 presents a small example code and its SSA. fon Figure 2.2(b), to find all uses

Chapter 2. Background 11

I. x=a+b; Lo xp=a;+by;
2. z=x+g¢; | 2. zp=xpteyg
i. y=i§(+)y; 3.y =xytyp
. x=1(y);
Y 4. x5 =1f(y,);
(a) Example code in C (b) SSA form of code in (a)

Figure 2.2: An example of SSA form

of the variablex defined at line 1 before it is re-defined, we simply need totiflethe occurrences of
the variable versiom;, which are in line 2 and 3. Furthermore, since the value ofi@aciable version
never changes (not considering those in loops), reasomiagt arariables in this form is significantly
simplified compared to that in the original program. Thiddea also greatly facilitates the verification

task that we will explain in later chapters.

Definition 7. (Phi function). The basic operation of Bhi function of x formulated as@(xs,...,X,), is

to select one of all reachable definition versigrs ..., x,) of x at the location of théhi function.

Before Merge nodes in an SSA form, special statements Wimdunctions are added to define new
versions of variables, for example the statement = @(xi,...,X,) defining a new versiom, 1 of a

variablex.

Definition 8. (SSA-transformed CFGAn SSA-transformed Control Flow Gragb&z”is a Ger aug-
mented withPhi function nodes in front of Merges. Each of these nodes irduwmhe or more special
statements usinghi functions, if more than one definition version of the varébtan reach the node.

In addition, all variables in each BB are in the SSA form.

In Figure 2.3, the subscripts distinguish different vagakersions in the SSA form. In Figure 2.3(a),
the versionxs is defined by &hi function parameterized with all three reachable versioris € | =
{2,3,4}) at that location, which are listed by their definition ordéhe number in the parentheses be-
side each of three versions indicates the index of the BB hithvthe version is defined. Eaghhas
a different definition condition (Def-C). Its definition igecuted only if its Def-C is satisfieds is as-
signed to the last version (k € 1) whose Def-C isT RU Eduring the actual execution. Correspondingly,

the Phi node with the dotted border line, which includes tRisi function is added before the Merge

Chapter 2. Background 12

i BB Xy =X ty;s |

|
i
1. Xy =X1 Ty : if(x2 1=1) goto BBI; :
2. if(xy 1= 1) { | ChegooBBy | i
3. X3 = 2; i Z e
4. if(z)) | BBLix3 =2, |
5. X4 = X3+ 1; : 1f(zl 1=0) goto BB2; :
) I else goto BB3; i
6. # X5 :¢< X2(0), X3(1), X4(2) > J
7. assert(x5 <=3); BB2: x4 =x3+ 1;
goto BB3;

(a) Example code in SSA form e

| R — K —
(BB asserxs <=3

(b) GCFSSA of code in (a)
Figure 2.3: An example dB&2"

nodeBB; in the G2Z*of Figure 2.3(b).

2.2 Satisfiability Problem

The satisfiability problem (SAT) is one of the most studied-Gl@mplete problems because of its sig-
nificance in theoretical computer science and practicdi@ons. In this section, we begin with some

basic definitions related to SAT, before diving into a distois of solving this problem.

Definition 9. (First-order logic). First-order logic [62, 68, 77] is defined by a formal mathenst

language, whose basic elements include:

1. Logical symbols:

e Parentheses: (,)
e Quantifiers:v (for all), 9 (there exists)

e Boolean connectives:A (and),V (or),~ (not)

Chapter 2. Background 13

e Constant Booleanstf RUE, FALSE

e Equality: =
2. Non-logic symbols:

e Functions symbols: a function symbol has an associategl ariton-negative integer that

indicates the number of arguments required by the function.
e Constants: a special case of function whose arity is zero.

e Relation symbols (Predicates);, >, <, >, etc.

3. Variables

Terms and formulas consisting of these elements can berootest by following some fixedwell-

formednessules, which are referred to [62, 68].

Definition10. (term).A term is recursively defined as

e avariable
e application of function symbol over terms

Definition11. (formula). A formula is recursively defined as

e TRUE FALSE

e equality between terms or application of relation symbdEtons
e if Bis aformula, so is-0

e if B andgare formulas, so argA @andBV ¢

Definition 12. (atomic formula).lt is a formula constructed by applying a relation symbolraeems.
The formulaT RUEandFALSEare also atomic.

Definition13. (literal). A literal is an atomic formula in either its positive or neg@tform.

Definition 14. (quantifier-free formula).t is a formula constructed by only literals and Boolean con-

nectives.

Chapter 2. Background 14

F=(11vI2)Al3
where {I1:d==(a-b),12:d>c,13:c==(a*Db)}

(a) An example of First-order Formula F'

literals as leaf nodes

a b a b
R K
L NSNS
11 |

Boolean structure of '

(b) Tree structure of F'

Figure 2.4: An example of FOL formula

The formulas used in this dissertation are the quantifes-first-order formulas. Every such formula
can be represented as a tree structure, whose leavesais liéed whose internal nodes are the Boolean
connectives. An example quantifier-free formbl# given in Figure 2.4F consists of three literals and
two Boolean connectives as shown in Figure 2.4(a). The fitezals are the leaves of the tree structure

of F as in Figure 2.4(b).

Definition 15. (assignment).For a formulaF, an assignment of from some domain D is a value

mappingF’s variables to elements in D.

Definition 16. (satisfiability). A formula is satisfiable (SAT) if there exists an assignmertear which

the formula evaluates fbRUE. If no such assignment exists, the formula is unsatisfidbMSAT).
Definition17. (validity). A formula is valid if it evaluates t@ RU Eunder all assignments.

Definition18. (decision problem)ltis a question with yes-or-no answer, which is the validity given

first-order formula of theory .

Definition 19. (decision procedure)A function for solving the decision problem with respect @y

formula of theoryT is defined as a decision procedure for the thélory

Chapter 2. Background 15

Technically speaking, several theories can be consideréics&order logic theories [77], such as propo-
sitional logic theory, equality theory, theory of bit-vect, theory of arrays, etc. In the following two
subsections, we mainly introduce the SAT problem in therthedpropositional logic and fixed-width

bit-vector arithmetic, which are mostly related in our work

2.2.1 Propositional Logic

Propositional logic is the basis of automated reasoning Widely used in various fields that include

planning problems in artificial intelligence, circuit dgsiand verification, etc.

Definition 20. (Propositional formula). The formula in propositional logic is also called the Boaolea

formula, which is defined by the following grammars:

e formula : formulan formula| formulaV formula| — formula| (formula)| atom
e atom: Boolean variableTRUE | FALSE

Definition 21. (Conjunction). Conjunction is a AND logic operation between literals (coras) that

results in a value of RUEIf and only if all the literals (or atoms) in the conjunctiored RUE.

Definition22. (Disjunction).Disjunction is a OR logic operation between literals (omasd that results

in a value ofT RUEIf and only if any literal (or atom) in the disjunction BRUE

Definition 23. (CNF). Conjunctive Normal Form (CNF) is a conjunction of clausebeve each clause

is a disjunction of literals.

Here is an example of a Boolean formula in the CNF fornfat: (aVvb) A (avbvcvd) A (bvevd). In
this simple formulaf is satisfiable. One possible satisfying assignmerd is.,TRUE b= FALSEc=
TRUE d = FALSE Various verification problems are represented as or tram&fd to the circuits that
are built up with logic gates. The circuits must be transldatethe CNF formula first, in order to utilize
SAT solvers for verification. SAT solvers are the tools fovisa the SAT problem in the propositional

logic.

Figure 2.5 gives the CNF translation of four common logiegat

Chapter 2. Background 16

T AND)}— - xO—Z
y—

(z+x)(~z+y)z+~X+~y) (z+x)(~2+~x)
y y
(~ztxty)~z+~x+-~y) (z+~x)(z+~y)(~z+tx+tYy)

(z+~x+y)z+x+~y)

Figure 2.5: CNF translation of basic gates.

One popular approach to systematically solve a SAT prohtgondpositional logic is based on a branch-
and-bound search algorithm called the Davis Putnam Logenhaweland (DPLL) algorithm [41].
DPLL is the basis for most state-of-the-art SAT solvers. slaicomplete, backtracking-based algo-
rithm, whose memory cost is linear to the number of Booleaialibes in the formula, but the solving

time can still be exponential. The basic DPLL algorithm isnpmsed of three major steps:

1. Decide the branching variable and assign a value (€ltRkf Eor FALSE) to it.

2. Propagate the impact of the decision variable being msdidpy invoking more implied assign-
ments. For instance, in the previous example formiylafter a is decided to bél RUE, b is

implied FALSEDby the first clause.

3. If a conflict occurs in which at least one clause has alitigsdls assigne#ALSE, backtrack to

undo the decisions made so far to resolve the conflict.

This algorithm was augmented with the conflict-driven-téag proposed in [83] to prune the search
space. The basic idea of the conflict-driven learning is tone the variable value combination in the
decision history, which is responsible for the conflictcénflict clausds added to the formula to avoid
the unnecessary value assignments that will definitelyecausimilar conflict in the future. Figure 2.6

gives the pseudo code of the DPLL algorithm with the conflicten learning.

In the following, we briefly introduce some basic conceptsutthe unsatisfiable core extraction from

an unsatisfiable formula, since we use this core in our vatifin work.

Chapter 2. Background 17

1. while(True) do

/* choose a branching variable */
2. if (Decide Next Branch Variable()) then

/* propagate the constraints of the chosen branching variable™/
3. while (Deduce() == Conflict) do
/* learn conflict reason and return a backtracking level to resolve conflict™/

4. level = Conflict_Analysis();
5. if (level == 0) then /* show conflict exists even without any branching®/
6. return UNSATISFIABLE;
7. else
8. Back Track(level); /* Backtrack to resolve conflict */
9. end if
10. end while

/* no branching variable that all variables got assigned */
I1. else
12. return SATISFIABLE;
13. endif
14. end while

Figure 2.6: DPLL algorithm with learning.

Definition 24. (resolution rule).The resolution rule in the Boolean logic takes two clausegaining
complementary literals (i.ex andx), and produces a new clause with all literals from both eké&ap
the complementary one. The clause produced by the resolutle is called the resolvent of the two

clauses.
Definition 25. (unsat proof). A proof of unsatisfiabilityP for a set of clause€ is a directed acyclic
graph(Vp,Ep), where each node < Vp represents a clause. Each nod@ioan be classified into one
of the following three categories:

1. The Root nodes (without predecessors), which are cldeenging to the set;

2. The unique Leaf node, which is the empty clause;

3. The internal node, which has exactly two predecesseisandv, such thaw is the resolvent of

vi andvs.

A simple example of deriving an empty clause is given in FegRr7. Many DPLL-style SAT solvers

have been extended to provide this proof, such as [89, 90].

Given an unsatisfiable CNF formufa=C; ACy A ... ACy, there exists a subset of clauges {C; | i =

Chapter 2. Background 18

(@] [carn] [card] [@ D] poornodes

Leaf Node

Figure 2.7: An example of unsatisfiability proof by resabuti

1...n} such that a formul&. formed by the conjunction of the clausesihns also unsatisfiable. We
call F; anunsatisfiable coref the original formula.F; may contain a much smaller number of clauses
than the original formula but it may not be unique. All rootdes used in the proof of unsatisfiability
actually form an unsatisfiable core. A number of efficientgedures have been proposed to extract a

small unsatisfiable core from the unsatisfiability proofyided by a SAT-solver [14,118].

2.2.2 Bit-vector Arithmetic

In the last few years, the solvers for Satisfiability Moduleebries (SMT) [80] have experienced the
amazingly fast applications in formal verification, congpibptimization and scheduling, program anal-
ysis, etc. SMT solvers are constructed to determine thsfigddility of first-order formulas with respect
to decidable background theories, using a combination df $4ving and theory-specific decision pro-
cedures. Here, we only discuss the SAT problem related tthéwry of fixed-width bit vectors. The
SAT problem for the theory of arbitrary-width bit vectorsuisdecidable and is beyond the scope of this

dissertation.

bw-1 | bw-2 b2 b1 bo

< w bits —»

Figure 2.8: An example of bit-vector with bits. Theit" bit is denoted as;.

Definition26. (bit vector).A bit vectorB as shown in Figure 2.8 is a vector of bits with a given modeling

width w;

Chapter 2. Background 19

B:{bo,...bi,...bw_1} where0<i<w, b €{0,1}
Thetypeassociated with a bit vect@&in the bit-vector arithmetic formula depends on two maindex

1. Modeling widthw of B;
2. WhethemB is signed or not.

Definition 27. (binary encoding).Let x be an unsigned integer, amlbe a bit vector with modeling

width w. We say thaB is the binary encoding of (0 < x < 2%) if and only if
x= 3"t x 2

Bit by is theleast significanbit, and bitb,,_1 is themost significanbit.

Definition 28. (two’s complement encodind)et x be a natural number (signed integer) dbe a bit
vector with modeling widthv. We say thaB is the two’s complement encodingxof—2%—1 < x < 2%-1)

if and only if
Xx=—-2%1xby 1+3"Zb x 2

Bit by,_1 is thesignbit.

Definition 29. (bit-vector arithmetic formula).The bit-vector arithmetic formula is one kind of first-
order logic formula [77] which is defined based on the follogvelements:

1. Constants: e.g(Pb0001110}s;

2. Bit vector variables with fixed width: implicit restrictn to finite domain.

3. Function symbols:

e Type cast operators: Concatenation, Extraction, Extansio
e Arithmetic operatorsi+, —, x; +, % (signed or unsigned)

e Bitwise operatorsA (and),V (or),~(not), ®(xor)

Chapter 2. Background 20

e Shifting operators< <, >> a (arithmetic shift right),>> | (logic shift right),
4. Predicate symbols=, #; <, >, <, > (signed or unsigned)

5. If-then-else operatoite

Here, we introduce four general categories of decisiongutoes (DP) for solving the SAT problem in

the bit-vector arithmetic, which are widely used in the waite formal verification [48]:

1. SAT translation-based decision procedures (Bit-big}tand its variants
Through the SAT translation or bit-blasting, a quantifierefformula in the theory of fixed-width
bit vectors can be equivalently transformed into a quandifeee formula over Boolean variables.
Many existing DPs (E.g., Cogent [37], CVC-Lite [47], STP [2%ices [116]), share this basic
idea to reduce the input SAT problem over bit-vectors to tA€ froblem over Boolean variables,
then apply a SAT solver to solve the resultant Boolean SATaimse. This method is popular
mainly due to the ever-increasing efficiency of SAT solvdrawever, the naive translation of
all bit-vector operators to SAT usually can not make use efittherent structural information
of the input formula. So, most DP tools in this category apbly pre-processing step before
bit-blasting to SAT to improve the performance. Some eiffecpre-processing methods use
solvers for linear arithmetic, algebraic transformati@msl simplifications, etc. For example,
CVC-Lite [47] includes a normalization step followed by atjty rewriting to pre-process the
input formula; STP [25] pre-processes the bit-vector fdamwsing several array optimizations,

as well as arithmetic and Boolean simplifications.

2. Shostak-style based procedures
The DP for a particular theory T using the Shostak-style @agin needs to have a canonizer and
solver for T, so as to be soundly and completely combined @ttier DPs also using this Shostak-
style [99]. More information about canonizer and solver barfound in [102]. Stanford Validity
Checker or SVC [10] belongs to this category. But so far, tRes Developed with this method are
restricted to a subset of bit-vector arithmetic with coroation, extraction and bitwise Boolean
operations. They also have not shown as competitive as dnslation to SAT based DPs or

abstraction-refinement based methods.

Chapter 2. Background 21

3. Procedures for modular or bounded arithmetic
A large amount of work has been done for modular arithmetatetide both linear and non-linear
bit-vector arithmetic. Since the methods developed in #&sibn procedures in this category
vary a great deal, we refer the reader to [6, 16, 67, 95] faaiolitg more details about individual

methods.

Original formula

Build initial
Fu and Fo

I
. SAT |
B [R > Verty P = SO

UNSAT
\4

? Iteration stops until
Refine Fu Fu or Fo is refined
as same as F.

Refine Fo

A sar
Verify Fo |«
Note:
¢ UNSAT Fu : under-approximation of F
Stop! Fo : over-approximation of F'
Fis UNSAT Initial Fo is TRUE.

Figure 2.9: Overview of abstraction-refinement based @®cigrocedure.

4. Abstraction-refinement based procedures.

Recently, the abstraction-refinement paradigm was apfdiedlve the SAT problem of bit-vector
arithmetic [20, 58, 59]. The basic idea is to alternativedynpute an over- and under- approxi-
mation of the formula, until the SAT problem is solved, agstrated in Figure 2.9. The over-
approximationF, owns asupersetof behaviors of those in the original formukg, while the
under-approximatioify, has asubsef behaviors compared to the original one. At the start, we
build the initial Fy andF,, whereF, can be initialized a3 RUE. The iterative refinement proce-
dure has four main operations. It first verifigs If F, is SAT, it can conclude thd is also SAT,
and it can stop. Otherwis&, is refined via learning the UNSAT proof &,. Then, it verifies

Fo. If Fo is UNSAT, it can conclude thd is also UNSAT and stop. Otherwisk, is refined via

Chapter 2. Background 22

learning the counterexample Bf. Then, it goes back the first operation of verifying the refine
F.. The iteration definitely terminates when eittigror F, is refined as the same &s A more

detailed discussion of over-approximation and under@ppration will be presented in Section
2.4. It has shown efficiency when the approximations areseasibe solved than the original

formula, and the number of iterations to compute the apatgpapproximations is small.

Our techniques, which are proposed in Chapter 5 and 6 foingpthe bit-vector arithmetic formula

instances derived from the bit-precise verification of eddasl software, are in the fourth category.

2.3 Software Model Checking

Model checking is a formal technique for automatically fyénig the properties of finite state sys-
tems [33]. Given a specification and a model with finite stalefined by the design, model checking
systematically traverses the entire state space to coehphetrify whether the specification holds or
not. If so, model checking proves the correctness of thegdesith respect to the specification; other-
wise, it returns a counterexample to show an erroneous thateiolates the specification. Modeling,
specification and verification are three major componentsddel checking. We will briefly introduce

them in the following.

Generally speaking, the design is modeled dsnite State MachindFSM) that can be graphically
represented as the State Transition Graph (STG).

Definition30. A FSM is a six tupleg(l,S 8, S,0,A), where

| : asetofinputs.

S: a finite set of states.

0:Sx | — S(the next state functign

S : a set of initial states.

O: a set of outputs.

Chapter 2. Background 23

e A : the output function.

1. Sx | — O: Mealy machine that is widely used to represent sequeritialits.

2. S— O: Moore machine.

The specification is usually expressed in temporal logidckvis a formalism for describing sequences
of transitions between states. Here, we introduce one Kimmbwerful temporal logic called Compu-
tation Tree Logic (CTL), which consists of two path quantiieA (“for all computation paths”) an&

(“for some computation path”), and five basic temporal ofesa

1. X ¢ ("next time"): Propertyp must hold in the second state of the path.
2. F ¢ ("in the future” or “eventually*): Propertyp must hold at some time on the path.
3. G ¢: (“always" or "globally”): Property¢ must hold at every state on the path.

4. ¢ U g (“until*): Property g holds at the current or a future state, and propéngust hold until
that state. the path.

5. ¢ G (“release"): Property is true until the first state in which is true.

With CTL or its variants, we can assert how the behavior ofdesign evolves over time. Safety is a
class of properties widely used in the specification, whaysssome errof will never happen at any

(time) instanceAG —f in CTL). It is also the class of properties that we mainly f@cun in our work.

A model checking example from the wireless connection systegiven in Figure 2.10. The FSM
of this example system has 5 states derived from three atprojpositions: scanned, classified and
connected. In order to verify whether a propegtydescribed in the temporal logic holds or not, a
model checker explores the FSM to check if all states sadisfifor instance, a property = AG(p =
(connected=> classified) claims that, all states in the design satisfy that if a cotioeds set up,
the connection must use a classified waveform. The simplifoation process ofy with 4 steps is
given in the block under the circle of "model checker” in Fig2.10. SincéAG(p) = -EF(—p), the
verification problem is first transformed to check the FSMée & there exists a path where a state

satisfying f = —p = (connected\ —classified can eventually be reached. After traversing every state

Chapter 2. Background 24

I
|
| Property specification in temporal logic | | A counterexample |
: E.g. AG(p=(connected =>classified)) |
|

\ : to show error trace :
.- - __ 4

Model Checker

—_——— e

sl: |
- scanned /

- clear - connected
classify

2. S(connected A ~(classified)) = o;

s3: connect s5:

- classified | jm——————————————— I roperty! |
) - connected | | property:
s+2. . sean classify 4 : E.g. AG(p) ==~EF(~p) L 1
scanne : = ~ i
ol \ -scanned | EF(connected A ~(classified))
clear + classified | _
- connected | L. S(connected) = {s5};
|
|
|
|

|
L I
| |
| |
| |
| |
|
| S(~classified) = {s1, s2}; :
| |
| |
| |
| |
| |
| |

+ scanned + scanned 3. S(EF(connected A ~(c1assiﬁed))) =g;
+ classified disconnect + classified ! 14. S(~EF(connected A.~(class1ﬁed))) =
- connected + connected| {s1, 52,3, s4,s5};

___________________________ All states satisfy the property!
FSM of a wireless connection example

Figure 2.10: An example of model checking

in the FSM, the model checker finds that the set of statedygatissuch query is empty, which means
all states satisfyp. So, it can conclude that this FSM satisfies the propérty=or other verification
instances of obtaining a non-empty set of states that @sthe property, i.e., satisfy the negation of
the property, the model checker can automatically analyeset states and the traversal history to return

a counterexample that shows the error trace for debugging.

Due to the state explosion problem, i.e., the number of staft@ design is exponential in size of the
design description (i.e., the number of state variables)ekplicit model checking that directly traverses
every state in the STG of the design, is unable to handle lagjances in practice. With the discovery
of the concise representation of transition relations iMRing Ordered Binary Decision Diagrams
(OBDDs) the capability of model checking was dramatically enhdniog symbolic model checking
(SMC) [24, 85] based on this representation. Instead ofi@ipltraversing the STG, SMC implicitly
traverses the FSM via OBDDs, where the number of nodes natomgpends on the actual number
of states in FSM. With this breakthrough, some real-worldigies with more than ¥8 states have
been successfully verified [22, 23]. However, for large giesystems, SMC is still costly in terms
of memory since the OBDDs built for model checking can stdlvery large. Selection of the right

ordering of BDD variables is very important, but the genieratf a variable ordering with small BDD

Chapter 2. Background

size is a time consuming procedure, and may need manualéntén.

25

With the recent dramatic advances in SAT-solver, Boundeddi€hecking (BMC) is becoming in-

creasingly popular [11,119]. The basic idea is to use a $Ales to check the states within a bounded

length ofK transitions from a given initial state(s). Wh&nreaches the diameter of FSM, BMC can

prove the property completely. BMC has two main advantagest, BMC can find the counterexample

with the shortest path very fast. Second, it uses much leseghan OBDD based SMC, and does not

need manual variable ordering.

Properties
specified as
asserts

\/

verification

Program P

Model bounded
variables, loops(in
bound K)

model M

Symbolic

| simulate M

Formula

P holds property

Verify F with
SMT/SAT
solver

¥ in bound &!

™™ Counterexample

with bound &

Figure 2.11: Basic steps of software bounded model checking

2.3.1 Software Bounded Model Checking

A typical SAT-based bounded model checking (BMC) formualatfor software programs has the steps

as shown in Figure 2.11.

1. Given a progran® (assuming that all function calls have been inlined), amddtoperties speci-

fied as assertions iR, we build the bounded verification moddlby unrolling the loop structures

or recursions in bounld and modeling the data variables as bit-vectors with fixediwi@ihe as-

sertion is a special program statement where the value @fgberted expression must always be

true; otherwise, the execution aborts. Figure 2.12 givesxample assertion, which claims the

array indexx must fall within the lower and upper bounds of the araay.

Figure 2.13 gives a simple example of bounded modeling tkewgion sequence of loop struc-

tures and program variables. In Figure 2.13(a), the codekbtoincludes all statements in the

loop. The maximum number of iterations of tfoe loop is five. In the bounded modeling shown

in Figure 2.13(b), code blocK is repeated five times, and every program variable is modeded

void foo() {
int x;
char arr[4];

Chapter 2. Background

assert((x+1) >= 0& &(x+1)<4);

arr[x+1] ="k";

}

Figure 2.12: An example of assertion

26

a vector of 32 bits. Any constant is given in its binary repreation; for example, the constant

integer 0 is modeled as a bit-vector [0..0000] with 32 bits.

z=y+b;
size = 3;

oy

For(x = 0; x <size; x++) {

(a) Example code in C

2[31,0] = y[31,0] + b[31,0];
size[31,0] = [0..0011]; // 3

x[31,01{0..0000]; // value 0

(b) Software bound model by
unrolling For loop in (a)

Figure 2.13: An example of software bounded model.

Modeling program variables as bounded bit-vectors ratiem tinbounded variables with infinite

ranges (as in the pure mathematical sense) conforms to tilnel aomputation; for example, the

integer data type is set to 32 bits wide in most existing erdbddomputers.

. All bounded program constraints, including the assepiegerty, are encoded as a first-order

bit-vector arithmetic formuld.

. The satisfiability of the formul&, which corresponds to the discovery of a counter-examle th

can violate the property, is then decided by a SMT/SAT solMef is UNSAT, we can conclude

that the property assertion can never fail within a bounH off the depth of un-winding reaches

Chapter 2. Background 27

the finite upper bound of the loop iterations, we are abledggthe program property completely.
On the other hand, iF is satisfiable, a satisfying solution is produced that cambpped to the

word-level to construct an error trace in the program.

2.4 Automatic Abstraction Techniques

Generally speaking, software verification models have lanye numbers of states, which make the
state-explosion problem of model checking much worse thamardware design systems. Property-
based automatic abstraction becomes necessary in thélschadware design and software formal
verification [28, 40,53, 78, 84, 120]. Abstraction redudes terification effort by building a small ab-

stract model only with the information relative to the prdpen the design and removing the irrelevant
information. Furthermore, an abstract model sometimekneil keep all the relevant portions of the

design, thereby aggressively pruning away much of the staee. In contrast with such a model, we
call the original design under verification the concrete eloW/e also name the counterexample found
in the abstract model and concrete model asattstract counterexampl@ndconcrete counterexample

respectively. To automate the abstraction process, a nefineprocess is usually conducted iteratively.
Refinement is used to learn and restore any relevant infmtitat was removed in a previous abstrac-

tion step, until the model is precise enough for the verifcatask.

According to the verification capability that the abstractd®el can render, we distinguish three impor-

tant abstraction approaches for model checking, espgsialéty properties [69, 104]:
e Over-approximation based abstraction (Existential Adugion): render the correct verification of
provingthe property. It may produdalse negativerrors, but nofalse positiveerrors.

e Under-approximation based abstraction (Universal Abtitra): render the correct verification of

refutingthe property. It may produdalse positiveerrors, but nofalse negativesrrors.

e Ternary abstraction: render the sound verification of botivipg and refuting the property, de-

pending on the usage.

A false negative erroff, is an error of rejecting a design while it is actually corretfalse positive

Chapter 2. Background 28

error fy is an error of failing to reject a design while it is actualbide. In the case of conducting
verification based on the abstractiofy, occurs when the property holds in the concrete design, but a
spurious counterexample violating the property can bedaunthe abstract modelf, occurs when

the property is violated in the concrete design, but no absitounterexample can be found. In the
following subsections, we will introduce several reatistiechniques belonging to these three kinds
of abstraction approaches and two systematic refinemeftogetcounterexample guided and proof-

based refinement).

]
: | | | |
| Existential E Sat Saz | i Sa Sa2
| abstraction ! | i ————— > i
I . I
mapping 1 | |
i | i i |
' | | | :
| : ® : |
: WS S LA S Sas_|
]
- (b) An over-approximation (c) An over-approximation based
(a) A concrete model based abstract model (Exact) Abstract model (Relaxed)

Figure 2.14: Over-approximation based abstraction

2.4.1 Over-approximation based Abstraction

In an exact over-approximation based abstract model, a@nagbs$ransition is made from an abstract
state if there exists a transition froat leastone corresponding concrete state. So, this abstraction
is also called thexistentialabstraction. The example in Figure 2.14 illustrates cowsityg such an
abstract model from a concrete one. All concrete statesah ki circle of Figure 2.14(a) are mapped
to a new abstract state in Figure 2.14(b). In the abstracemtte error stat&,, is reachable from the
initial stateS,; through the abstract transitiof§Sa, Si3), (Sis, Sua) }- But the error state in the concrete
design is actually not reachable, so this trace of abstraositions is spurious and incurs the false
negative error. Since the precise computation of abstrasitions is expensive, most realistic abstract
techniques relax the condition of making an abstract ttamsto reduce the computation cost, and, as
a result, may add extra transitions, as in Figure 2.14(c)e dtstract transitiod (S, S2)} is made,
although there does not exist a transition from the cormedipg concrete states. Predicate abstraction

is an important example of such techniques.

Chapter 2. Background 29

Weakening abstraction represents a special class of ppeoxdmation based abstraction techniques.
The model with such abstraction can generate more behawittrsespect to the concrete one, either by
directly removing the input computation constraints of saroncrete variables, or by simply replacing
the concrete transitions of the original model with the vwersdd ones in the same data domain. The
distinguishing point is that no state space mapping is imalduring this kind of abstraction. In a
word, the over-approximation based abstraction techsiqude additional behaviors (or transitions)
into the abstract model that the concrete model does not Ivatiee following, we present the predicate

abstraction technique and weakening abstraction with metails.

assume (a = 0);
assume (b = 0);
while(a>=0){
if(a<10) {
a=a+tl1;
b=b+1;
H
else a=-1;

}

assert(b>=0);

(a) Example C code

d1: 0<=a<10

:
! l

|
d2: b>=0 ! @ |
d3: terminates? @ ! i
! l

|
(b) Predicates ! |
(Boolean variables) @ : :

(c) Abstract model in FSM

unreachable states

Figure 2.15: An example of predicate abstraction of progira@.

Predicate Abstraction

Predicate abstraction [40, 53] is a powerful abstractiahn@&ue that can transform an infinite state
system design to a finite state model. This makes model angakiplicable to some infinite state

concurrent system designs. Its basic idea is to constrecaltistraction by tracking only a small set

Chapter 2. Background 30

of predicates over the variables in the original concretsigie Each predicate is represented by a
Boolean variable. In this way, a very large or even infinietestspace of the concrete design can be
mapped to a new, small state space, but all behaviors of tieete design are still preserved. Predicate
abstraction has been widely used in software model che¢gi26,36,60]. Figure 2.15 gives a predicate
abstraction example of a simple C code. Three predicatesl¢Bo variables){ @1, @, @3} as given in
Figure 2.15(b), are used to track the computation on tw@erttgariables in the code, whose number
of states can be®2 (assume that each integer has 32 bits). The abstract maggrssented as a FSM,
as in Figure 2.15(c). The initial abstract state correspantb the first line of the code i§110}; it is
true until thewhile loop execution finishes. The next abstract s{@&0} is mapped from the concrete
state when the code execution jumps out of the loop, sincedlue ofa becomes-1 and the predicate
@ becomesfalse Then the abstract state moves{fil1}, as the predicatesz becomesl RUE when
the execution terminates at the assertion statement. Thaltstract statef101, 001} filled with color
represent the erroneous states with respect to the aspeoggetty in the code. Since, all the reachable

states, beginning with the initial state, are not errongthesassertion can be verified as valid.

SO

Xy =ctry; S0->S1: A= (xy ==ctr|) A (y; ==x; + 1)
yi=x1th
S1 <+ i Interpolant: A' = (y; ==ctr; +1) |
___________________________ I

assume (ctrlzzil);

) S1->"error state": B = (ctry == i) A (yy != i} + 1)
assume (y!=i; + 1);

©)

"error state"

Figure 2.16: An example of interpolant.

The number and the quality of predicates closely impact tmeptexity and precision of the abstract
model. The method of extracting predicates from interpslg®6], has been widely used in the pred-
icates discovery/selection for the abstraction refinemehich is a critical step in the predicate ab-
straction. Given a pair of formulas (A, B) such than B is UNSAT, an interpolant [38] for (A, B)
is a formulaA’ with three properties: (1) A implied/, (2) A’ AB is UNSAT, and (3)A’ refers only to

Chapter 2. Background 31

the common symbols of A and B. Figure 2.16 gives an examplenahi@rpolant. Assume the exe-
cution trace from stat&0 to “error staté presented on the left is obtained by analyzing the spurious
abstract counterexample. The twasSumé statements placed at st to stateS2, and state2

to “error staté respectively, mean that each transition between the statiss satisfy the condition
claimed in the correspondingadsumé statement. Formul& represents the constraints between state
0 to stateSl; formulaB corresponds the constraints between sftéo “error staté’. SinceAABis
UNSAT, the trace leading to the error state in Figure 2.1&ftsally not feasible. We could obtain an
interpolantA’ at the stateS1, such that’ A B is still UNSAT. In the counterexample guided abstraction
refinement which we will introduce later, such interpolaate usually used as new predicates for re-
fining the abstract model, so as to avoid generating suchiogpuabstract counterexamples again. This
interpolation based predicate selection approach has ajw advantage: at each program location, it
uses only predicates that are relevant to that locations G&in achieve a reduction in the number of
abstract states, so as to increase the verification perfaen@l1]. However, the operations of predi-
cate discovery and abstract states mapping generallyreegujreat deal of computation resources. So,

although it is powerful, predicate abstraction is an exjpenabstraction technique.

Weakening Abstraction

Weakening abstraction [84] represents a class of ovemappation based abstraction techniques,
which weakens the transitions of the concrete model witloapping to a new data domain so that
both the abstraction and the concrete designs are in the dama&in. This is different from predicate
abstraction, which involves the state space mapping betdierent domains; for instance, in predi-
cate abstraction, variables in the Integer domain may bepathmto variables in the Boolean domain

via a set of predicates.

Localization abstraction [78] is a weakening abstracterhhique that weakens the transition relation
by completely removing the input constraints of a set of mput variables, and considers these vari-
ables as pseudo primary inputs. In other words, all varabdenoved arexistentiallyquantified as
inputs. This is shown in Figure 2.17: the removed variahbfeguding their connections (drawn in pale
black), are invisible in the abstract model; the variablepresented by the squares filled with color)

at the boundary between visible and invisible variableoberpseudo inputs. As a result, the abstract

Chapter 2. Background 32
ﬁ\— -~ Invisible
- variables

R

9)\‘ E Visible
) @) variables
(a) Data Dependency Graph (b) Localization Abstraction

Figure 2.17: Over-approximation based abstraction witlstate space mapping

model contains only a subset of computation constraintsarconcrete model represented by the visible

variables.

Figure 2.18 gives a simple localization abstraction exanopla small C code segment. Figure 2.18(b)
gives a weakening abstractiomof the code in Figure 2.18(a) by removing the program comggan
Line 1 and 2. The asserted propergsserfz >=y)” fails in w sincew removes the concrete constraint
betweeny andz and causes the false negative error. After restoring theteints in Line 2, we get

a refined abstractiony in Figure 2.18(c). The property holds w, so it also holds in the original

program.
:';"jf'j”?' z=y
£ 4~ | . ———=— -
. - 1. if(x>y) { 2. if(x>vy) {
3. 1f(xiy){ 2 - 5 g
4. z=x; |
} . N
5. assert(z >=y); 3. assert(z>=y); 4. assert(z >=y);
(a) Original program (b) Initial abstraction (c) Abstraction after
refinement

Figure 2.18: An example of localization abstraction of peog in C

Un-interpreted function (UF) abstraction [21] is anotheakening abstraction technique widely used in
the high-level hardware design and software verificatibis mainly applied to abstract the arithmetic
computations in the data-path. UF operator removes thetreams between the output and inputs of

the individual arithmetic operator. But the constraint vfdtional consistency is enforced, which is

Chapter 2. Background 33

symbolically defined as follows:

(1 =Y1)&...&(% =Yn) — f(Xa,.... %) = F(Y1,...,¥n)

In practice, more arithmetic constraints between the mpnd outputs of the specific UF computation
can be partially interpreted, as in [20]. For example, assge and y are integery,= xx* 2 is defined
in the original code. We could use the UF operator to weakeratiturate multiplication computation

constraint betweer andy with a relational function ag > yr) X.

| 5 | |
1
| i Universal ' Sai Sa2 X
: _ 1 abstraction | O '
| ! mapping | |
1 1 ! | 1
: | I=>I |
]]
; i L O ® !
: : : Sa3 Sa4 :
] |
1

error state

(b) An under-approximation

() A concrete model based Abstract model

Figure 2.19: Under-approximation based abstraction

2.4.2 Under-approximation based Abstraction

In an under-approximation based abstract model, an abstaasition is made from an abstract state if
there exists a tradition fromll corresponding concrete state. This abstraction is aléedcthleuniversal
abstraction. Figure 2.19 gives an example of such an absti@ael construction. In the abstract model
of Figure 2.19(b), the error staf, is not reachable from the initial staBg;. However, the error state
in the concrete design is actually reachable along theitiams drawn with the dash line in Figure
2.19(a). So this abstract model causes the false positive €2ompared with the over-approximation
based abstraction, the under-approximation based atistractuallyremovessome behaviors of the

concrete model.

Here we briefly introduce two realistic under-approximatlmased abstraction techniques for software

verification, which are also used in our work. First, an agttmodel can be built by constraining the

Chapter 2. Background 34

S

()

a4

(b) Under-approximation based
Abstraction with constrained
control flow

(Modeling)

Width of bit-
p vectors W ;)\5)
o ,?
(a) Data Dependency Graph Q

Q}D?p We<=W

(c¢) Under-approximation based
Abstraction with constrained data
value ranges

(Encoding) Width
of bit-vectors

Figure 2.20: Two examples of under-approximation basettatison

program execution on a certain subset of paths in the cananedel. For example, enforcing some
control predicates in the program to some constant valugkatoonly one branch is taken for each
enforced predicate. This is shown in Figure 2.20(b). Secandther kind of abstract model can be
built by constraining the value of variables to a smallegeanompared with the original variable value
ranges in the concrete model. This can be realized by sdtimgncoding width\; of bit-vector

variables smaller than their individual modeling withas illustrated in Figure 2.20(c). Both of these

abstract models do not need the state space mapping.

2.4.3 Ternary Abstraction

Ternary abstraction [15,91] is based on the three-valugid,levhich enhances the two-valued Boolean
logic with a third valueX denoting the unknown value. The traditional symbolic satioh [17,101],
which uses these three valugd 1, X} as symbolic inputs to abstract the inputs space, is coresider

an application of ternary abstraction. It can cover mudtipystem executions using concrete value

Chapter 2. Background 35

Primary inputs

XXX XXXX

YYVVYYY

X —p S > 1 s >
X —p) Comblna‘ponal _» 0 _of Comblngtlonal =
X —» circuit e 0 — logic |~
1 —» —p» p=1 1 = —> next state
0 > N 1 & >
x > > 0 >
0 — > 1 —> >
Primary Primary Flip-flops * * + + * * *\
inputs outputs Primary outputs p=0
(a) Case 1: p==07? (refuted) (b) Case 2: p==0? (proved)

Figure 2.21: Two verification examples using ternary altiva

inputs in a single symbolic run, thus it has the potential ifagly reducing the size of verification
problems. Through dual rail encoding, such three-value@btes and operators have a propositional
representation, which can be processed by a Boolean SA@rsdlgrnary abstraction uses the vakie
to abstract the computation in the design that does nottdfieqproperty being checked. It is capable
of both proving and refuting the correctness of the desigpedding on the concrete applications. As
in Figure 2.21(a), we aim to verify the property that the eabf one outputp in the combinational
circuit always be 0. We could find a counterexample which ¥e¢x10XO0 at the primary inputs (PI)
makesp to 1, thus refuting the property. The computations relatethé Pls set byX are abstracted
away. For another example in Figure 2.21(b), the propertetoerified is that some internal ggtés
always 0 starting from the state 1001101 in the sequentialiti If pis O while setting 1001101 to the

corresponding flip-flop, and setting all PIsXowe could conclude the property holds.

However, it is a challenging task to decide which variablesutd be enforced with valu¥, so as to
construct a precise but simple abstraction that does ndupeothe inconclusivi¥ at the property under

verification.

Chapter 2. Background 36

abstract
model No
Choose initial .| Verify model.

abstraction o SAT? —> Property holds!

counterexample
refined abstract
\

Refine abstraction Validate Yes Property fails!
(viareasoning | counterexample. ——— (return true concrete

No
counterexample) spurious concrete valid? counterexample)
counterexample

Figure 2.22: Basic flow of CEGAR

2.4.4 Two Refinement Methods

Counterexample guided abstraction refinement (CEGAR) amoffbased refinement are the two most
widely used abstraction refinement methods. CEGAR wasllyitproposed to automate the local-
ization abstraction [78] and has been extended with sevaraltions [32,52,81]. The combination of
CEGAR with predicate abstraction has been applied in skseftavare model checking tools [9,26,60].
The overall iteration of CEGAR with four stages is shown iglte 2.22. Given a design to be verified
and the specified property, this method begins with an lratiatraction chosen by the user (It can be as
coarse as & RUEstate). In the second stage, it applies some verificatidmtque, like model check-
ing, to check the property in the abstraction. If the propédilds in the abstraction, the verification is
done; otherwise, an abstract counterexamyls found. In the third stage, the feasibility &fin the
original design is validated. If the answer is yes, the prigpfails and the corresponding true counterex-
ample in the original design is returned; otherwise, thestraimts along the spurious counterexample
in the original design are reasoned in the fourth stage dfirgfithe abstraction to produce a refined
abstract model. The iteration continues until the properggroved to be valid, or a counterexample in

the original design is found and returned for debugging.

Proof-based refinement [87] is an alternative abstracgfinement method, which was proposed based
on the BMC and SAT/SMT solver. The basic work-flow of this nathalso with four stages, is shown

in Figure 2.23. (1) Given an initial bouri{, it first verifies the satisfiability of theegationof the given

Chapter 2. Background 37

property in the design unrolled with bound&d similar to a BMC run. If the instance is SAT, a true
counterexample with bounid can be obtained to show the violation of the property; if th&tdnce is
UNSAT, it means that there is no counterexample within bokind?2) It then builds an abstractiam
with the set of design constraints, used in the UNSAT prookgated from a SAT solver. (3) It verifies
o without any bound constraints. If the property holdsoinit means that the property holds in the
original design as well; otherwise, an abstract countengt@A that violates the property in abstract
modela can be obtained. (4) Finally, the bound Xfinstead of the values assignedAinis used to

determine a larger bourl for starting a new loop iteration.

initial bound K

Y

Verify design in Yes Property fails!
bound (like BMC). —— (return concrete
SAT? counterexample)
- \
v Decide new bound K'> K
) . (via learning the bound of
Bul%?h?g[it;actlonf abstract counterexample,
via proo not actual assignment)
A4 Yes

Verify szs]:tgac'ﬂon- abstract
! counterexample
l No

Property holds!

Figure 2.23: Basic flow of proof-based refinement

Comparatively speaking, with the proof-based abstraate@dimement approach, all counterexamples
within the boundK are ruled out at once, whereas CEGAR may require many refinteiteeations to
achieve this. Moreover, using a single abstract countenplea— as in CEGAR for the refinement—
is risky because there may be many ways to remove one speamifiterexample. It is highly possible
that the restored constraints actually are not relevartdgtoperty being proved. However, the proof-
based approach has one main drawback. It may be much moreutatiopally intensive to extract

the refutation proof that there are no counterexamples ahtdk, than to refute a single abstract

Chapter 2. Background 38

counterexample [79]. Thus, the refinement step could beednoitleneck in the verification process. In

practice, itis hard to find the pure CEGAR process or the pbaskd refinement process. For example,
some CEGAR processes use interpolants to obtain new ptesliaghere interpolants are the results of
the UNSAT proof extraction. Several approaches have bemroped to combine these two refinement

methods, which take advantages of both, and at the same ltem@te their disadvantages [2, 13].

Chapter 3

Scalable BMC via Integration of Program
Slicing and Proof-based Localization

Abstraction Refinement

As explained in the previous chapter, due to the state eplggoblem, scalability is one of the major
obstacles in the application of model checking to largevgae designs. In this chapter, we present
a new verification approach to combine aggressive prograimglwith a proof-based localization
abstraction-refinement strategy toward the scalabilitypecement of bounded model checking embed-
ded software. While many software model-checking toolspuegram slicing as a separate or optional
step [26, 35], our program slicing is tightly integrated lie tmodel construction and reduction process.
Furthermore, it incorporates the compilation optimizatiechniques, so as to compute a more accurate
slice. In exploring the application of a proof-based lazatiion abstraction-refinement strategy based on
the under/over-approximation of our proposed softwareehade propose a heuristic method of decid-
ing new encoding size of bit vector variables to effectivefine the under-approximation. Experiments
on C programs from wireless cognitive radio systems shoty thes approach can greatly reduce the

model size, and shorten the solving time by the SAT-solver.

39

Chapter 3. 40

3.1 Motivation and Overview

Since the verified properties usually depend only on a smalign of the program, our proposed

approach aims to accurately and efficiently find this portidgth low cost and complexity.

Program slicing [31, 113] and localization abstractiontar@ important techniques to enhance the ver-
ification scalability. Program (static) slicing [30, 63,7JGautomatically extracts a subset of program
segments called slice(s), which involves only the varigéferred to in the slicing criteria. Here, the

slicing criteria can simply be the target property asserstatement. The slice(s) is an accurate ab-
straction without incurring spurious errors, since it uds all the program constraints, which have the
computation relevanct the variables referred to in the assertion. In this regardgram slicing is

conservative. In other words, the sliced program is sufiidie prove the target property.

Localization abstraction is another important abstractechnique, which could further enhance scal-
ability. It can identify a small set of program constraimhich haveverification relevanceo the
asserted property. A proof-based refinement method usidgruand over-approximation is applied
to iteratively automate this abstraction process. FigutdlRistrates the differences between program
slicing and abstraction refinement in the model reductidicirg removes the irrelevant constraints step
by step, so the complexity of the abstraction is also redstep by step. On the other hand, abstrac-
tion starts with a small representation of the original gesind gradually learns verification relevant
constraints during refinement. So the complexity or the myuof the abstraction increases step by
step. To accomplish our goal of identifying the small setraigpam constraints relevant to the verifica-
tion for scalable BMC, we explore the combination of these techniques, considering their different

behaviors in the reduction of model complexity.

The rest of the chapter is organized as follows. In Secti@) ®e present our proposed software
verification model, model construction and the programirglidoased model reduction. In Section
3.3, we introduce our bounded model checking with the plasfed abstraction-refinement strategy to
construct the localization abstraction. Experiment tssalle reported in 3.4 followed by related work

and summary in Section 3.5 and 3.6.

Chapter 3. 41

sliced
program

Slice

| —
<

original program

Figure 3.1: Comparison of program slicing and abstractemement (Circle: program constraints or

verification complexity, circle with the darkest bordertig ffinal abstract model)

3.2 Software Verification Model

In this section, we first introduce the structure of our psgabsoftware verification model, followed by

its construction and reduction.

3.2.1 Model Structure

Our proposed structural verification modélis a Digraph. InM, each node represents a computation,
which operates on variable values from its input edges andiyzes the result to the output edges. Each
directed edge represents a data flow, which carries theblan@lue computed by its source node to
its target nodes. Our verification moddl has three derivativedly, Mgy andMg. In the high-level
modelMy, the nodes represent the computation of the program vasat@fined in the code, and the
edges represent the computation result in the first-ordéhia domain. Every node belongs to one of

the following three categories:

1. Input or constant nodes;
2. Arithmetic or relational operations;

3. Ternary conditional operatia?T : F.

As a data-flow-like representation of the progravly is similar to the value dependence graptbG)

[112], which was proposed for simplifying the compiler opization and supporting the program slic-

Chapter 3. 42

ing [44] in fine granularity. However, oMy is built on the pre-processed programs, in which all loops’
iterations have been unwound to a certain bound, and altitmcalls have been inlined; moreover,
the SSA-transformation has been performed to the codd,$oan be structurally simpler thAnDG,
which is constructed from the raw programs with full prograimg language featuredy has one im-
portant feature that the edges from theard nodes only connect with the c?T:F nodes. This is because

only these nodes’ outputs are conditional, which need todterchined by the guards at verification

time.
Xl yl
1. ?<2=x1+y1; i X2 X3=2
2. if(xy 1=1) { 1 :
3. X3 = 2; \ |
4. ifiz)) clt CFED : x,=3
5. X4=x3+ 1; 0 2] |
¥ :
} CFo—> X
6. # x5 =< x,(0), x5(1), x4(2) > c2# | > 3
]
7. assert(xs <= 3); ! &
assert(xs) Control Part |
X False?
(a) Example code in SSA form (b) My; of code in (a)

Figure 3.2: An example dly

Figure 3.2 gives an example of an SSA-transformed code anchadelMy. In Figure 3.2(a), the
subscripts distinguish different variable versions in 8&#A form. For example, the variable version
xs is defined by ap function parameterized with three variable versign§ € | = {2,3,4}) reachable
to xs, listed by their definition order. To use the definition of sornduring execution, its Definition
Condition (Def-C) must be satisfied. Def-C is actually theamgluof the BB, in which this variable
version is statically definedxs is defined by the variable versioq (kel), whose Def-C is true at the
actual execution, and whose order in the parameter lipi®the biggest (latest defined in the program).
In Figure 3.2 (b), all node names ending with the symbol #asg@nt new intermediate variables inserted
in My. Two “c?T:F” nodes together represent théunction. For example, node; has three inputs:
g2# is a conditionxy is True branch and a new variabdg # is False branchg2# modeled as the guard
of BB2 (x2! = 1) A (z! = 0)) is the Def-C ofx,. Similarly, g1# modeled as the guard of BB% (= 1)

is the Def-C ofxs connected to the node:#. If g2# is true xs is assigned byu; otherwise it is assigned

Chapter 3. 43

by xp1#, whose value is decided in a similar way dii##. So the two “c?T:F” nodes correctly model the
¢ function. The relational node in red represents the prgmessertion. Thus, the property verification

problem is converted to checking if the value of the outputenof the model can be False.

After the high-level model reduction (details to be presdnin the following subsection 3.2.2), we
compute another model derivatidvigy, by modeling every program variable as a bit-vector variable
with a fixed width, but leaving all program operations as befoThe main purpose of this step is to
model the data in bound, instead of considering them as waigish can have the arbitrary or infinite

values like integer numbers ashfy.

To compute the model derivatidvig, we convert each program operatorNisy, to the corresponding
Boolean logic operators through circuit translation. Dgrthe conversion frorVigy to Mg, some new
nodes may be added to complete this translation, like inrthreskation of arithmetic addition operation
with Boolean logic gates. IMg, each node represents a logic operator and each edge répradast.

By converting the logic gate to its representative CNF @a(¢his can be done in a single pass through
the logic circuit), we could use one of the state-of-theST solvers, to decide the satisfiability of the

monitor output node set equal to a certain value, for our geef formal assertion checking.

All model derivatives are implemented as doubly linked witretlists. Every element in the netlist

stores the properties of a model node and its connectionotligr nodes.

3.2.2 High Level Model Construction

Given a SSA-transformed progralfand its propertyQ which is specified as an assertion statement

S(Q) in P, the high-level modeMy is constructed in the following four steps:

1. Perform program slicing to slice BBs with respectS{@) via the reachability analysis @(S:EA
of P.
Result: A setB of BBs {BBJ[1],..., BB[N]} is obtained, which are reachable $Q); a set
PHI_SET of Phi functions{@[1],...,@[M]} , each of which can be found in the front of some
Merge node BB in the sa&.

Chapter 3. 44

2. Computgguard of every BB in the seB, which must be satisfied in order to enter this BB.
Let b andg denote the current BB and its guard, respectively, antd lahdg’ denote the target
BB thatb jumps to and the corresponding guard expressionl cbmputed by the path froro.
First, g of every BB is initialized toT RUE The computation off proceeds by a case split on
the last statemerg of b. Figure 3.3 gives the SSA transformed control flow grﬁgﬁAof the

example code in Figure 3.2(a). We use it for illustrating ¢cbenputation.

| |
' !
LoXy=x; Ty ! if(x, != 1) goto BB1; :
2. iftxy 1= 1) { | ClsegowoBBy | E
3. X3 = 2; . A{__,
4. ifiz) | BBLxg =2 |
5 Xq=X3+ 1; : 1f(z1 1=0) goto BB2; :
) ! else goto BB3; i
6. # XS :¢< Xz(o)’ X3(1), X4(2) > J
7. assert(xg <=3); BB2: x4 =x3+ 1;
goto BB3;
(a) Example code in SSA form pranneeee ;
%5709 50 4@
M RR2- accar i PPN
BB assertxs <731
(b) Gp>SA of code in (a)

Figure 3.3: An example dB&2"

e Case 1sbe a conditionafjoto statement asif(c) goto b’ else goto b .
Analysis: b’ is entering the control range of Sog’' = gAc.
For example of thégoto BB,;" statement ilBBy of Figure 3.3, we could compute the guard
of BBy asg(BB;1) = g(BBy) A Cgg, = (X! =1).

e Case 2:sbe a conditionafjoto statement a4f(c) goto b” else goto b .
Analysis: b’ is entering the control range of Sog’ = gAcC.
For example of thégoto BB3"* statement ilBBy of Figure 3.3, the guard @&Bs is computed
asg(BBg) = g(BBoy) Acgg, = ~ (%! = 1).

e Case 3sbe an unconditionajotostatementgoto b’ .

Chapter 3. 45

Analysis: b’ is in the same control range as b. &&= g.
Considering thégoto BB3" statement iBB, of Figure 3.3, we could compute the guard of

BBs asg(BBg) = g(BBy) = ((x2! =1) A (z! =0)).

For a merge node which has multiple incoming paths, the finatdis the disjunction of all guard
expressions computed from these paths. For exampBBefin Figure 3.3, its guard is finally
computed ag(BBz) = (%! =1) V(X! =1)A=(z1! =0)) V((x! =1) A (zn! =0)) = TRUE
Different from computing thguardfor every statement as in [35], we build one guard for every

BB, so that all statements inside the BB can share the garael
3. Compute program constrair@s and the target property constrai@s as program equations.

(a) Cp consists of two partdCg, which is the conjunction of constraints from all BBs in 8t
andCg, which is the conjunction of constraints from glfunctions in sePHI_SET. Since
every assignmeri(i, j) in setB is deterministic, we can easily deri@g as:

Cs = A1 (AT_4AL)
whereN is the size of seB, andL is the number of assignments&[i](i € [O,N —1]).
The variable version on the Left-Hand-Side (LHS) ap unction may be assigned by any
variable version in the parameter list, which is decided H®y definition order and Def-C
of each parameter. As discussed before, during the actealigan, LHS is assigned by
the last variable version (according to the definition oyaenose Def-C is true. Since we
assume that the variable versions in the parameter list dlagady been ordered by their

definition sequence, we could simply comp@gii] (i € [0,M — 1]) for the it ¢ function

(LHSi] = @(v[1,i],...,V[K,i])) in the setPHI|_SETas:
Coli] = ((tV[1,i] == V[L,i])
A (tvk+1,i] == (G(V[K+ 1,i]) ?v[K+1,i] s tvlki]))

A (LHS]i] == (G(V[K,i]) ?V[K,i] : tv[K = 1,i])))
whereK is the size of parameter list gfi], tvk,i] is thek!" newly conjuncted variable of
@[i], vik,i] is thek!" RHS parameter afli], G is a function that returns thguardof the given
parameter.
And Cy = AM Cyli], whereM is the size of the se?HI_SET.
Finally Cp = Cg A Cy.

Chapter 3. 46

(b) To computeCq, let a andg denote the specified assertion and glvard of the BB wherea
is defined respectively.

Po=gVa

Cp = (X=X 1y) A (X3==2) A (x4==%X3T1)
A (Xpl = (x2!=1) ? X3! X2)
A (x5=((xy!=1)&&(z11=1))? x4 Xpl)
Co=x5<=3

Figure 3.4: Program equati@p andCq

Figure 3.4 shows the program equati@isandCq of the SSA-transformed program in Figure
3.2(a). For instance, the first statema&pnt= x; + y; is transformed to the first literal i@p. The
assignment witfPhi function at line 6 are transformed to th& 4nd %" literals of C. The

assertion statement at line 7 becores

. Construct the high-level modsly .
This step is straightforward ady is essentially the graphic representation of the congsamn

theCp andCq equations. Théy for our running example is illustrated in Figure 3.2(b).

1. Reachability

analysis of BBs
SSA

on Gep

After model construction

4 .Redundant
branches
reduction

3. Array
modeling &
reduction

2. Constant
propagation

5.COI

reduction

Figure 3.5: Basic procedures of static slicing

Chapter 3. 47

3.2.3 High Level Model Reduction and Array Modeling

We perform static program slicing through reduction steppstewn in Figure 3.5. The slicing criterion
is set as the target property assertion statement. Sli¢arts oy the backward reachability analysis
of Basic Blocks (BBs) during the model construction. All BBereachable to the target assertion
statement are immediately sliced away. But the obtaineg &i considered to be very coarse because
not all computations inside the reachable BBs are necéseelgvant. At this model reduction stage, the
slicing process can go to either procedure 2 or 4, dependinghether the current slice has operations
over constants and array variables or not. COI (Cone-oftdnite) reduction, as a separate procedure
can be invoked after any procedure 2, 3 and 4. Its purposeaésiove the nodes identified as irrelevant

by any invoking procedure. Finally the model reduction stapprocedure 5.

Constant Propagation

It is a popular compiler optimization technique [1] whose&lgis to discover and propagate constants
through the program [111]. Any node My whose inputs are all constant values can also be evaluated
as a constant node and propagated further. We use a simsilaitar to a logic simulator to implement
the constant propagation on modé};. But, the value evaluation here is conducted in the Integer o
Floating Point domain, instead of being restricted in th®@lBan domain. After the propagation, we
could remove the redundant constant nodes, which have ntectons to other non-constant nodes.
This removal reduces thdpgy size, and further reduces the computation cost of logicizapbn with
constant value cost at the level of bit vectors. In the caaethie constant True (False) is propagated to
the conditional input of the “c?T : F” node, the connection of the False (True) input branch coeld b

removed, as the branch can be determined as never taken.

Array Modeling and Reduction

We first assume all array variables have fixed sizes, whickneiglly true in the embedded programs
being verified. We also assume that there are only two progemations on array variables. L&be

an array variable, anglandx are scalar variables; these two operations are: “A[x] = eTrfgplementing

Chapter 3. 48

Store access; and “e = A[X]” foSelectaccess. Actually, all other array operations can be tramsfd

as a series of steps involving only these two simple operatio

A 01 i

€ I

X I

O\ e/ |

0 A0] E
(a) Aylx]=e; i (b) e=A[x];

Figure 3.6: Array node expansion

An array nodeA is first expanded to a set of nodes, each of which represengdearent ofA. For
“Alx] = e,” only the X" element ofA receives the new value while all other elements oA retain
their previous values. Figure 3.6(a) models the followingstraint, using the SSA representationg\of

imposed by this operation, whefg_; is the latest version of array variabAeat this operation location:
Vi e [O,N—1],A(fi] = ((i ==x) ?e: Ac1]i])
Figure 3.6(b) models the following constraints imposed bie& access:
ANGH(i ==x) ? (e = A([i]) : True)

The modeling of array in Figure 3.6 is for the general casesrevithe index is not known. After all
loop structures are fully unwounded and constant propagaipplied, the valug can almost always be
computed. Then the complexity of modeling array accessatipas can be greatly reduced. FRtore
accesses, all “c?T:F” nodes are simply substituted by nadihs“=" operator (as the conditiow is
deterministic): the node representing #feelementA[X] is connected witke, while any other element
nodeAy[x|(i # X) is connected with nodéy_1]i] correspondingly. FoBelectaccesses, only the array
element, whose index equalsis connected with the node representing variablieaving the rest of

the array element nodes unconnected from rexde

For the nodes with the assignment (“=") operator, which adgundant in logic reasoning, we perform

the transitive equality reduction to slice away these nddeduce the model size. For the nodes

Chapter 3. 49

with no output connection, they can be easily identified armdaved during COI reduction. Through
this reduction, the model size can be independent from ttas aize, but on the number &tore and
Selectaccesses on the array. In a word, this reduction exploitdeterministic array accesses after the

unwinding of loops operating on arrays, as the referredyai@ment index becomes constant.

L. if(Pl - ql) {
2 Xy =18 *Xl;
3. }else {
4. x3=17
H

- Hxy =< Xy X33
if(pl =q)) {

Y1~ Xy
} else {

YQ:2;
¥
10. #yz =< Y1,¥27

RPN N

(a) Example code in SSA form (b) Model My of code in (a)

Figure 3.7: An example of redundant branches

Redundant Branch Reduction

A motivational example is given in Figure 3.7. In Figure &)7(ine 2 is redundant to the computation of
yinline 10, due to the constant negation between two comditipredicates. This kind of redundancy
is reported as undetectable, by most traditional sliciegri@ues without compiler optimization [107].

But it can be identified and removed in the two steps perforareModelMy:

1. Identify the pairs of conditional predicate nodes, wHielve the constant equality or inequality

correlation.

2. Determine the redundant computations according to catserp recognition. Currently, we only
consider a limited number of redundant case patterns. Foerample of Figure 3.7(b): as two
condition predicates are constantly negated and mgde connected with True branch of node

y3, the constraints on True branchxafare identified as redundant shown in the dash line.

Chapter 3. 50

3.3 Software Bounded Model Checking

A proof-based abstraction-refinement strategy proposedbifevector arithmetic reasoning [20] is ex-

plored on the bounded model checking to enhance scalability

3.3.1 Major Steps in Refinement Framework

1. Under-approximation construction
Every free variable nodein the modeMgy, has an encoding six&; used for under-approximation.
For bit-vector variables whose modeling widthis greater than\;, we enforce additional con-
straints on its most significant bits by setting them to a tammtsvalue. For the example of unsigned
free variables with their most significant bits set to “0”githvalue that is originally arbitrary in
range [0, ¥ — 1] is now restricted in range [0,"2— 1]. In our implementation, we simply use
single-literal clauses to restrict these most significaistin the CNF formula. If the SAT solver
returns satisfiable for this constrained CNF formula, we camclude that the target assertion
fails, and the SAT solution can easily be converted to a @erample in the program to show
the error trace of violating the assertion. This countemgla is definitely feasible in the pro-
gram, since the state space of an under-approximation ni®éesubset of that in the original
model. If the SAT solver returns UNSAT, it is inconclusiveoab the assertion. But we could

extract the UNSAT core as a proof to guide the following aagton construction.

It is important to maintain consistency among the addedteobsonstraints to avoid the UNSAT
case caused by these inconsistent constraints. This isidmdche SAT solver may return an
arbitrary UNSAT core, which is not useful for identifyingetrelevant program constraints to
build the abstraction. For instance, consider the examplgram statement “y==x+1". We
set the same encoding si2ék for all node variables, which involve translating this wdedel
statement in the modéllgy, and set the most significant bits of these variables to bedhee
kind of constant constraint: either all “1” (TRUE) or all “@FALSE). Assume that, we enforce
the sign bit(the most significant bit) afto 1, which means is a negative number, but enforce
the sign bit ofy to 0, which representgas a positive number. We could find that these enforced

constant values conflict with each other, which causes thst@ned instance UNSAT. But this

Chapter 3. 51

information is not considered as directly relevant to thei@overification problem.

. Abstraction construction and verification

Constructing the abstraction moddls is an over-approximation procedure, which extracts a
subset of nodes from modklg. The main idea of Algorithm in Figure 3.8 is to group the set of
nodes inMg, according to the translation relationship with the nodesiodelMy. So, if any bit

of node variables in this set is used in the UNSAT core, aleothits of the node variables are
also included ifMps, Otherwise, they don't contribute s This is to simplify the abstraction
and reduce the non-determinism of the over-approximat®eme popular SAT-solvers provide
an UNSAT core if a formula is UNSAT. The cofusually has two parts: a set of bit variablés
used inC, and a set of clausd3L involved inC. Since all clauses in the original CNF formula,
which use variables in the s&t, are a superset of the g6t it is safe to usé&/ to build the

abstraction.

Over_appr (Model M, Abstract Model M ubs. SCt V)

1: for each node i in high-level model M,

2: Map to a set N of nodes in M B that translate node i;

3. Geta set V2 of bit variables from all nodes in set N,
/* Intersection set of V2 and V; */

4: Compute set V3=V2AV;

5: if V3 not Empty

6 Add all nodes in set N to Mabs;

7 Remove all bit variables in V3 from V;
/*stops if V has been included in M ubs*/

8. if set V empty

9: break;

10: end for

Figure 3.8: Over-approximation algorithm

Theoreml. Mgpsis an abstraction dflg.

Proof. SinceMgps has a subset of nodes Mg, the set of CNF clauses,ps of Maps is also a
subset of CNF clausdés of Mg. Leta be a satisfying assignment Bfs. Under this assignment,
since all clauses iig are true, any subset of clauses must also be tikiggs must be satisfied,

and soMgpsis also SAT. Conversely, iKapsis UNSAT, Kg must be UNSAT as all clauses s

Chapter 3. 52

referred to prove UNSAT are also included in the Kgt So, we could conclude th&l,ps is

UNSAT implies thatMg is also UNSAT. O

Theoren?. Mgps encoded with\ is UNSAT.

Proof. First, Mg encoded with\, was UNSAT with a UNSAT Coré€; Second,Mgaps includes
all the bit variables used in the sétof C. Third, after constrainind/laps with the encoding size
W, all clauses that contribute © also exist in the constraindd,ps. So the constraineMps is

UNSAT. O

Based on Theorem 2, all counterexamples within bit-wMghfor variablev can be ruled out
from Mgaps If there is a counterexample Mgps, Variablev must have a width larger thang.
Since at least one variable needs to increase its encodiagrsevery iteration, this refinement
procedure is ensured to terminate Mfpsis UNSAT, the assertion proves to be true. Otherwise,
a counterexample (potentially spurious) is returned, tvliscused to direct refining the under-

approximation in next iteration.

3. Computation of encoding sizé/, for refining under-approximation
Given a counterexample, each variabl®/ig,sis assigned a valu®. One direct way to determine
an updated valu®\, for each variable Mgy, is to letW; be big enough to coved. For the
variables not ifMaps, We derive theif\; by data dependency to keep the consistency among new
constraints added by the updated encoding size. In a wordyake use of the width of assigned
bits in the counterexample instead of the assigned valudseobits to direct the next refinement
iteration, as the counterexample-based refinement doege tNat after this process, different

variables may be assigned different updatéd

3.3.2 New Encoding Width Computation

Due to the decision heuristics of the SAT solver, a countargde may assign large values on variables
[54]. So the updated encoding width based on the values @hblas given in the counterexample may

be unnecessarily large. Since extracting UNSAT cores besontreasingly difficult with an increasing

Chapter 3. 53

/* Given 1) a counterexample Cex

2) a set N of Boolean variable nodes corresponding to conditional
predicates in program and its value implied in the under-
approximation without decision. */
Procedure New Encode (Cex, set N)

1: for each Boolean variable node i assigned in Cex
2: if (node i in set N) && (value of i in Cex != value of i in N)
3: Mark node i;

end for

4: if (any node marked)
5 for each marked node i
6: Compute forward & backward slice of node i;
7 Decide larger S;” that i be free value in under-approx;

/*via data dependence analysis */

8: Compute updated S’ to all nodes v in slice;
9: end for
11: else

12: Follow old encoding size computation;

Figure 3.9: New encoding size computation algorithm

encoding size, the whole refinement may suffer the perfocamdoss. We propose a heuristic method
to improve the accuracy of the updated encoding size usiogr@am analysis. In the algorithm shown
in Figure 3.9, when a counterexampleis produced, we first identify all node variables My that
correspond to the control predicates in the program. Thefindeout those whose valuk implied by
the enforce constraints in the under-approximation arfergifit from the value assigned 1 These
nodes that decide which program paths to be taken are inmpdddnelp find the SAT solution in the
under-approximation. We then compute their enlafdédo allow the non-fixed values in the refined
under-approximation, and we use the data dependency torde&\, of other nodes. For example:
(x> 100) with old W, = 4 is constantly falsé)} of x is then set 7 to avoid the constant value in new
under-approximation. Since many control predicates haxaatant RHS in our verification problems,

it is easy to compute the new.

Chapter 3. 54

3.4 Experimental Results

We implemented the proposed approach in C++, which is c&lRBIT and used it to verify the safety

properties in C programs from a wireless cognitive radidesys[98]. Our benchmark programs are
extracted from two safety-critical components in this egst One is the policy engine that enforces
regulatory restrictions on the waveform. Another is thenitaige controller. These programs have two

important features:

1. Most loop structures have an upper bound so the executi@ysterminates. For example, there
are 10 C programs in the controller with 23 for loops whoseendgund is explicit, and there
are 15 while loops, 12 of which the maximum bound is statjckfiown. The other 3 loops are
while(true) for monitoring sockets with very simple operations, whick aot our verification

targets.

2. Most Array variables have constant size.

With all loops unrolled to a certain bound, all function safilined and properties specified as assertions,
we use open source GCC 4.0 compiler to generate the SSA fortine@re-processing. The maximum
boundK of the unrolling can be statically identified for formallygwing the program correctness. Then
C2BIT uses this form as input for BMC. During model checkinighwthe proof-based abstraction re-
finement, C2BIT uses zChaff to check the under-approximatmd extract UNSAT core as the proof
for the UNSAT instance, and uses MINISAT to check the sabdfig of the over-approximate abstrac-
tion. This is because zChaff provides a more user friend\SlANcore compared with MINISAT. All

experiments run on Intel Xeon 2.8GHz processor with 2 GB RAM.

In Figure 3.10, we first show the effectiveness of our sliaimgthod using a simple BubbleSort code
[76], compared to CBMG2.4 with “—slice” option. The property we checkedasserfAN — 2] <=
AN —1]) whereA is an array variablelN is the size ofA. All loops are maximally unwound. The left
plot shows the CNF formula size generated by CBMC grows vasy. While the growth of C2BIT is
almost proportional tdN. The results also confirm our claim that the CNF formula sizeegated from

C2BIT depends on the number of array accesses, not on thesiwea (Otherwise the CNF size should

Chapter 3. 55

o
o

4000
+— CBMC-2-slice
335001 g coBIT !

—+— CBMC-2-slice
—&— C2BIT

N >®
o o

3000

o
o
°

2500

w
o

2000 ¥

S
o

1500 >

w
o

1000 ® £

~N
o

%
o
o

Size of CNF Formula (kb)
=

Solving Time by Minisat (s)

B

P - - =
M T - = _‘_.__._.,. L
1o == = s — B o= o == i e

1 3 S 7 S 11 13 15 1 3 5 7 9 11 13 15
array size array size

(=]

o

Figure 3.10: Results on bubbleSort

be proportional tdN2.) The right plot shows that the solving time by MINISAT setvis basically
consistent with CNF size for both CBMC and C2BIT. The dethifiata is given in Table 3.1.

Table 3.2 shows the results on 10 selected property veitficaroblems orC programs. TO” means
exceeding 3600s. The max bitvector willthis 32 for every property. P3 to P9 are different properties
on the same unrolled program. The rest are different priggeohn different programs. Col (Column)
2 and 3 show the number of lines of code after loop unrolling e satisfiability of properties being
checked. The memory usage and solving time by MINISAT for GBahd C2BIT+S are given in Col 4-

5 and Col 6-7 respectively. Col 4 to 8 of Table 3.3 give reduitsy C2BIT+S+R, including total runtime
(encoding+solving), number of refinement iterations orafisizeMaps)/sizeMg) and runtime speedup
over the setup without abstraction. C2BIT+S shows greatatioh on the memory usage and runtime
compared to CBMC on both SAT and UNSAT properties. One maasar is due to our efficient
modeling of array variables and aggressive slicing. C2EB¥R shows speedup compared to C2BIT+S
on all SAT properties, because their satisfying solutiarsize obtained in the under-approximate model

with small encoding width.

For P2-P4 whose UNSAT cores are all small, C2BIT+S+R shoaterfahan C2BIT+S. For P1 whose
UNSAT core is very bigMapsis similar toMg in both size and solving time, while C2BIT+S+R needs
extra time of constructing the abstraction. For P5, althoiing size oiMg is 13 times bigger than that
of Maps, their solving time is similar, because MINISAT itself idiefent enough in searching relevant
constraints among redundant ones in this case. For P6, G&3iR is slower than C2BIT+S, although

the abstract model size is rather small. Since some conistrzot in the UNSAT core may still be useful

Chapter 3. 56

Table 3.1: Results on bubbleSort program

CBMC-slice| C2BIT | CBMC-slice C2BIT
Array Size| CNF Size | CNF Size| Solving Time| Solving Time
4 128 64 0.37 0.14
5 208 84 1.05 0.26
6 308 108 1.11 0.36
7 428 128 2.72 0.87
8 580 152 3.00 0.97
9 768 172 5.01 1.62
10 976 196 9.30 1.53
11 1204 220 7.64 2.90
12 1468 240 26.00 291
13 1744 264 16.55 4.75
14 2048 284 22.87 3.71
15 2372 308 36.29 5.10
16 2724 328 40.15 6.10
17 3116 352 60.88 7.27
18 3516 372 80.98 8.28

to assist the SAT solver to find conflicts quickly, the absteecmay increase the non-determinism by
removing these constraints. Therefore, there is a tradeebdffeen removing constraints to reduce model
size and reducing solving time when the UNSAT core is not gengll. Note that for P9, the values in

the braces indicate the results without the proposed ingonewt in computing updated encoding width
that is even worse than without refinement. In summary, tleingl can greatly reduce the memory

usage and runtime, and the refinement is efficient to furth@ncee the solving time in two cases. One
is that the satisfying solution for SAT properties can beifibin the small encoding range of the under-

approximation. Another is that the UNSAT core is small for 8N properties.

Chapter 3. 57

Table 3.2: Comparison of runtime and memory cos€C8MC— 2.4, C2BIT with slicing and C2BIT

with slicing plus refinement (Part 1).

LOC | Property CBMC C2BIT with slicing C2BIT+S
Mem(kb) | T(s) | Mem(kb) T(s)
P1 | 2411 | UNSAT 2560 TO 1536 356
P2 | 4255 | UNSAT 22928 | 1075 5764 411
P3 | 4255 | UNSAT 22928 570 6508 151
P4 | 4255 | UNSAT 22928 767 7236 44.3
P5 | 4255 | UNSAT 22928 252 8496 14.7
P6 | 4255 | UNSAT 22928 TO 2860 172
P7 | 4255| SAT 22928 TO 5012 119.9
P8 | 4255| SAT 22928 TO 9280 664.8
P9 | 260 SAT 941 45 561 7.5
P10| 4565 SAT 23540 TO 11616 1233

3.5 Related Work

The application of model checking for software verificati@ms been investigated in [8,26,35,43,70,109,
115]. Some apply symbolic model checking with predicatdgrabson [8, 26, 70] or without abstraction
[43,109]. Others apply SAT-based bounded model checkingtify asserted safety properties of the
program [35, 70, 115]. Our approach belongs in the secordjont

Both Edwards’s work [43] and the recent work of Wang [109] laggbsymbolic model checking ap-

proaches to verify the asserted property of the embeddégasef by building a finite states transition
verification model. In [109], the authors exploited a unideature of the software that program vari-
ables have a high degree of locality. They reported being takdlirectly handle software models having
thousands of state variables without predicate abstraclille major advantage of modeling software
program as a states transition system is that, it is conatptsound for proving the absence of bugs,
even in programs with unbounded loops and recursions. Hemvdue to the limited scalability, sym-

bolic model checking is mostly combined with predicate edwiton, which transforms the program

Chapter 3. 58

Table 3.3: Comparison of runtime and memory cos€C8MC— 2.4, C2BIT with slicing and C2BIT

with slicing plus refinement (Part 2).

LOC | Property C2BIT with slicing + Refinement (C2BIT+S+R)
Total T(s) | Iteration | Max S| Max (MapdMg) | Speedup
P1 | 2411 | UNSAT | 343 +152 1 4 1532/1536 0.72
P2 | 4255| UNSAT | 355+ 7.6 1 4 1196/5764 >9
P3 | 4255| UNSAT | 41+8.5 1 4 908/6508 >3
P4 | 4255 | UNSAT | 15.3+9.6 1 4 1088/7236 >15
P5 | 4255 | UNSAT | 10.8+9.2 1 4 612/8496 0.73
P6 | 4255 | UNSAT | 388 +5.1 1 4 968/2860 0.44
P7 | 4255 SAT 5.14 1 4 — > 23
P8 | 4255 SAT 45.79 1 4 — > 14
P9 | 260 | SAT | 5.4(155)| 2(2) 7 - >1
P10 | 4565 SAT 29.5 1 4 — > 40

written in the high-level programming language to a simpt@Ban program [8, 26, 70].

CBMC [35] is the first SAT-based bounded model checker for eshdled software in C, to the best
of our knowledge. It has been used for assertion checkingyedisas equivalence checking to other
hardware description language like Verilog. It does nottioent the scalability enhancement method,
although the tool supports limited program slicing and $fating the C program into the Satisfiability
Modulo Theories (SMT) [80] format, which can facilitate mgia SMT solver for verification. Saturn
[115] applies BMC to detect hard errors, and uses functionnsaries, which are represented as finite
state systems, to be scalable enough to handle inter-pradechlls. This kind of function summary
targets on verification properties involving with few sgteuch as having only locked and unlocked
two states in the lock management problem. F-Soft [70] suppmth SAT-based BMC and BDD based
unbounded MC. The translation from program to the Booleadahdoes not require the unwinding of
loops, as their model is sequential instead of combinatidbanakes use of predicate abstraction and

counterexample-guided abstraction refinement technimeehance the scalability of model checking.

Chapter 3. 59

3.6 Summary

In this chapter, we have presented a new approach that apipiie@ggressive program slicing combined
with compiler optimization to compute an accurate slice. i¢® explored a proof-based abstraction-
refinement technique on our software model to build a loatibn abstraction for further enhancing

the scalability of software bounded model checking. Experits show that our technique can achieve

significant speedups compared to the conventional BMC tool.

Chapter 4

BMC via Symbolic Simulation

In this chapter, we explore symbolic simulation on the veaifion model used in Chapter 3 to achieve
complete input coverage. As in previous chapters, abgirais also used. We used a counterexample-
guided abstraction-refinement procedure to automatieakgract the property-relevant constraints. Ex-
perimental results suggest that this approach is promisirfgrmally verify some safety properties,

using a small number of simulation runs with symbolic values

4.1 Motivation and Overview

We aim to investigate the applicability of some approachehé hardware formal verification to ver-
ify the embedded software. There has been a great deal @rchseonducted in this manner in re-
cent years. For example, Counterexample-Guided-Abgtra&efinement (CEGAR), first proposed
for model checking hardware designs, has been increasirgglg in software verification. Actually,
software and hardware model checking have reinforced ghehn im recent years [34]. In addition, our
research was also motivated by the experiences acquinedusong CBMC (Bounded Model Checking
of ANSI-C) [35]. CBMC was originally developed at Carnegi@ldn University with the aim of model
checking embedded software. The basic idea is to transfogmrogram under verification to a Boolean
formula so that the property checking problem is reduce@#oching for a satisfying assignment to the

Boolean formula by a SAT-solver. However, the flattened Banlformula loses the explicit data de-

60

Chapter 4. 61

pendency and the structural information in the programgctvican be used to aid the search process. In
addition, the complete transformation to the Boolean fdanneduces the chance of applying abstraction
techniques to improve the scalability of model checking] asing word-level decision procedures like
SMT-solvers to enhance the searching ability of SAT-solwvesoftware verification. (The latest version

of CBMC supports dumping program constraints in the SMT fattin

The rest of the chapter is organized as follows. In Sectignwle present some preliminaries about sym-
bolic simulation. In Section 4.3, we introduce our proposgaibolic simulation-based model checking.

Experiment results are reported in 4.4, followed by the samynn Section 4.5.

Simulate with
Program P . —
symbolic inputs

Figure 4.1: Basic symbolic simulation procedure

Decide the SAT
— problem of O with
reasoning engine

Symbolic
output O

Property
hold or fail

4.2 Preliminaries

4.2.1 Symbolic Simulation

Symbolic simulation is a rather broad concept and has bedooneasingly popular in the system ver-
ification [18, 114] and software testing and verificationgG, 74, 75]. The basic idea is that the pro-
gram execution is conducted by assigning each input unkreymmbolic values, instead of specific
concrete values as the conventional software testing. Tdia advantage of symbolic simulation is
that one symbolic simulation run can replace multiple cotiemal simulation runs. Formal verification
requires proving that the software satisfies the specidicdtr all combinations of input values. Sym-
bolic simulation holds promise for this purpose, since glgisymbolic simulation can capture multiple
scenarios. For example, when verifying a 3-ingiN D function, one symbolic run with input vector
0X X, where the logic value of symb®l is unspecified, is equivalent to four fully specified testings
{011,000 001 010}, as long as the output values obtained from simulatikgX @o not contain any
unknowns. In this particular example, the output of the ANdegis O for all four vectors. Figure 4.1

shows the flow of a general symbolic simulation procedurevef®ia progranP, we apply symbolic

Chapter 4. 62

inputs to perform symbolic simulation, and we obtain the lsght resultO. We then use some decision
procedure to reason the SAT problem@fso as to conclude that the property being verified holds or

fails in P.

Broadly speaking, our model construction process intredu Chapter 3 is a kind of symbolic simula-
tion. As in Figure 4.2, the symbolic values enforced on progimputs have symbolic names, which are
the same as the corresponding program variable names icatbes After symbolic execution, we can
obtain the symbolic output value as a first-order formulagsiestedT Es. This symbolic simulation
approach is precise; however, as the program becomes, l#rgarumber of paths may increase expo-
nentially. As a result, the terms representing the symb@loe may easily blow up [103]. Although
some research has been conducted to alleviate this proBlech, as term rewriting [4, 42] and E

simplification [88, 92], it is still one of the obstacles irethcalable applications.

symbolic inputs symbolic output
l . x=x+Yy; l
D |
{x,y,z} —» 4 iz _ 0) — : ((x=x+y) 1= 1), (ite(z==0, 2+1, 2)), x+y
5. x++;
}

Figure 4.2: An example of symbolic simulation

In this work, we apply another kind of symbolic simulatior6]5 We assume only a small number of
bits in the input variables’ bit-vectors need to be specifitederify program invariants in the verification
problems. Therefore, rather than using OBDD-based symbtiulation, which describes the accurate
program functionality with all input bits, we use distinghing Xs introduced in [72] as symbolic vari-
ables for simulation. It distinguishes every don't-carg Wth a unique ID. EveryX; has a correlated
X;. In particular, an odd idl has a correlated idd — 1), and an even ig has a correlated iflj + 1). The
cost of simulating distinguishing Xs is almost the same agriditional 3-value simulation, and it has a
strong reasoning ability among correlated Xs. Figure A&8gexamples to show the difference between
simple X, distinguishing X and BDD. Consider the NOT gate igufe 4.3(a) and (b), a distinguishing
X uses an even id 0 and its incremented id 1 to record the megedlation of the two Xs (if input X

with odd id, the output id is its decrement.), but simple Xeloshis correlation. For the example cases

Chapter 4. 63

of AND gate, simple Xs cannot differentiate two related XsaanAND gate. For distinguishing Xs,
it can derive the output value 0 if two inputs have negatidati@n, and the output equals one input if
another input has non-dominant value (i.e., 1 in this cade)if two inputs have no correlation, distin-
guishing X uses a new id to label the output. Finally, BDDs lbamised to capture the full functionality
of AND logic. However, they may require excessive memorycsp@r complex functions. In terms
of the accuracy of symbolically representing the functlitpaBDD is the most accurate, while 3-value

logic values is the least accurate, distinguishing X liekétween.

X 1
X X P X 1 X
AND AND
X X

(a) Simple X

[o]
| anp (o] [b]

b | a&b
[0]

(b) BDD
x[0] 1 x[0]

1] el
X[O] | anp 0 AND — x[1] AND | x[4]
x[1] x[1]] x[2] |

(c) Distinguishing X

_— >
Accuracy
3-value Dist X BDD

(d) Accuracy comparison of three
symbolic simulation techniques

Figure 4.3: Example of simple X, BDD, Distinguishing X anctaracy comparison.

In our approach, we enhance distinguishing Xs by enablitggritéason the consistency among the same
type of the un-interpreted functions (UFs) [21]. Recalltttiee UF operator loses all semantics of the
underlying functions, except the functional consistentypag different instances of the same function.

So the computational constraints between inputs and oofpréch individual UF are abstracted away.

Chapter 4. 64

Figure 4.4 gives an example of how the correlation amongtiXsuare propagated through UF oper-
ators. The two UF operators are abstracted from the samatapetype (e.g., +”), their input pairs

are both(X[m], X[n]) although the exact values ®fm] andX[n] are unknown, so their outputs are both
X[k]. We can easily conclude that the output of the conneetedoperation is always 1. In this case,

we can only get the inconclusive at the output with the simpl&s simulation.

Figure 4.4: An example of UF functions simulated with digtirshing X

4.3 Model Checking in CEGAR Framework

The model construction is similar to that in Chapter 3. So e on the model checking procedure.
Given the program modeMy andMg, we first choose an initial abstractidf,. Then, we model check
My with the symbolic simulation. I, holds the property, the concrete program also holds thespiypp
sinceMy is anover-approximation based abstractioBtherwise, we could get a counterexample, which
violates the property. The counterexamplés a set of value assignments on some internal and input
edges. We validate the counterexample by justifying thedeevassignments in the low-level model
Mg. If E is valid in Mg, we can conclude that the program violates the propertyeratise, we restore
the constraints along the internal edgeg&ito remove the invalid counterexample for refinikig, and
jump to the step of model checking for the next CEGAR loop. TE&GAR procedure with these four

steps is illustrated in Figure 4.5. We describe the first ttepswith more details in the following.

e Choose an initial abstract modelM,
The selection oMy involves a trade-off between the model checking cost andribael refine-
ment cost. IfMy is too coarse, the cost of removing false negatives throbghefinement steps

can be very high. On the other hand, if it has a similar compe® the original program, the

Chapter 4. 65

Choose initial Symbolic simulate My | Prove P ~ hold
. > — Property ho
abstraction My for model checkin: pery

Disprove with
a counterexample
\4

Validate .| Restore constraints
counterexample on Mp | N to My for refinement

Yes

Property violated with
returned counterexample

Figure 4.5: CEGAR procedure with symbolic simulation

model checking operation would be costly. In order to findghitable initial abstract model, we

take the following steps.

1. We make use of the equality assumptions in the progranctease the chance of reducing
the redundant variables. These assumptions claim thetammlihat must be satisfied for
the execution to reach the property assertion being verifieor example, if a property
assertion is located within the control range of an equalitydition (a == b) as shown in
Figure 4.6 (a), we could replace all the usage of either b after the last definition with
the other. If one variable is the primary input without newvfimiéon in the program, we
could safely remove it to reduce the number of variables aablab in Figure 4.6 (b). This
transformation can reduce the model complexity withoubking false negative errors; it

can be easily implemented in the modi&),.

2. Following the last step, some variables that have the $gpecof operation may share the
same inputs. So the nodes corresponding to these variabilies model can be merged as

the variabley in Figure 4.6(c).

3. We remove the variables with complex arithmetic openatitike multiplication and divi-
sion, replace other arithmetic operations like additiothwin-interpreted function (UF),
and keep the variables with predicate operations. For eanloved node, we also remove
its data dependencies with its input nodes and its data depeies with its output nodes.

In some cases, the model at this step contains only the progoastraints defined in the

Chapter 4. 66

1
1
inta,b,...; b m a k ' a m a K
|
1
|
I

. NANSINY - NANYINY
e e | Eﬁ = F) ﬁf

A
]
=]
=2

<
e
w
(3
a
=2
=1
=
=3
2
=

defined.

y=b+m;

z=a+m;

if(a = b) { <«—— Assume a==b here.

assert(p);

}

(a) Original program (b) M of code in (a) by replacing b with a (c) My of code in (a) by replacing z with y

Figure 4.6: An example of model reduction

property assertion. In order to avoid the abstract mitigbeing too coarse, we restore the
variables that have the data dependency with the assetéitamsent at the distan& where

Sis usually set to 3. Finally, the model we get is the initiadiahct modeM,,.

e Model checking by symbolic simulation with DistinguishingXs
We symbolically simulate the abstract modi) to verify whether its output node is an invariant
under all possible input values. Our goal is to implementci@plete coverage through a small
number of symbolic input vectors. There are three genersgscén which the properties are

formally verified with symbolic inputs.

1. One is using distinguishing Xs without specifying anyunhpit value to constant “1” or “0”,

so that the size of is 1. This is easy to conduct.

2. Another is constructiny by the enumeration of all specified logic values on only a smal
subset of input bits and leaving rest bitsXasfor example{XX1X,XX0X}. This could

abstract away the variables which are not relevant to théoagron.

3. A third option is the identification of a set of limited inppatterns to build/, for example
{0001 XX X0}. This relaxes the restriction of the previous case on enatingrthe value of

only certain input bits, but still with a small number of irtpugctors.

We use the value justification to realize cases 2) and 3) [B&.basic idea is that the input values

Chapter 4. 67

node at level i+1
o(1 1(0) 0(1) 1(0)
node at level 1

node at level i+1
1 1

node at level i

Inputs Inputs Inputs Inputs

(a) (b) () (d)

Figure 4.7: Four scenarios of input space partition

of a node can be justified by the specified output value aaogridi the operator type, so that the
whole input space can be partitioned. Figure 4.7 shows fmemaxrios. In scenarios (a) and (b), in
order to verify the node at the leviel 1 who has aAN D operator as “4, both edges connected
with the nodes at the levélmust be justified as “1 In parts (c) and (d) of the figure, since the
node at the leval+ 1 has aORrelation with the input nodes at leviglonly one edge connecting
with nodes at the levelneeds to be justified as*1The subset of input bits, on which each node
output at the levell depends, may be correlated as in scenario (a) and (c), or emagdorrelated

as in scenario (b) and (d).

For scenario (a), we give the correlated input bits higherity for specifying their values or
searching their patterns. For scenario (b), we could sep#éna symbolic simulation into two
independent tasks, and each with a smaller input space.cEnaso (c) and (d), the manner in
which the pattern is searched, depends on the justificatiber @among the optional edges. Using
the value justification to partition input space into snraebspaces, we can have the better
chances of obtaining the symbolic input patterns, which @ma&yid the don't-care value at the

monitor output, so as to relieve the conservativeness obslimsimulation.

We set the threshold of the size Vfas 32. So the number of value-specified input bits is 5 for
case 2). In fact, the case 3) is a complement of case 2). WithdiV, we symbolically simulate
the abstract modé¥l, for model checking. The pseudo code of our simulation isrgiveFigure

4.8.

Chapter 4.

2
3.
4
5

6.
7.
8
9

1. Procedure SymSim (Abstraction M”)

/*levelizing nodes*/
level(Input Nodes) = 0;
for each node n
level(n) = max(level (n’s predecessor))+1;
end for
/*symbolic inputs with 0, 1 and distinguishing X[id]*/
for each input vector V'
for level 1 = 0 to max level
for each node n with level(n)==
evaluate(n);
end for
end for
end for

end

Figure 4.8: Pseudo code of proposed simulation

4.4 Primary Experimental Results

68

Currently, we implemented our approach in the prototype ICR@ith C++. For the comparison pur-

pose, we also implemented in the prototype C2CNF, the wamsition from the program to CNF for-

mula for bounded model checking by the SAT solver, which wap@sed in CBMC [35]. The programs

that we experimented with have only integer type variabbhld 4.1 gives the basic analysis of the test

results on the five C experimented programs.

Table 4.1: Test results

BB# in SSA| SSby case 1| SSby case 2,3 CEGAR Loop#| #input patterns>*32)
Tutd.c 4 Y 0 N
Tut6.c 5 Y 1 N
Lock.c 12 Y 0 N
Ineq.c 5 0 Y
Date06.c 3 Y N

In Table 4.1 SSmeans the symbolic simulation for short. The 2nd column riless the property of the

C benchmark program, the 3rd and the 4th columns record $etyae, by which the programs are

Chapter 4. 69

verified. The 5th column is the number of CEGAR loops beingtakl he 6th column records whether
the program is completely verified with the small threshdl@2symbolic input patterns. For example,
consider the benchmark program Tut6.c. There are 5 BBssrctide, and its verification falls in case
2,3) with one CEGAR refinement iteration. The required inpatterns to cover the complete input
space are smaller than 32 (actually 5 patterns in this c&sdy. one benchmark program Ineq.c is not

verified under this threshold.

Table 4.2 shows that the size\wloes not change with the width of the bit-vector for datagspntation,
but the size of CNF increases as the width of the bit-vectoreimses. This reason is that our approach
aims to find input patterns that can cover whole search spdoesize of these patterns is not directly
dependent on the integer representation, like the size dF €lBuses in the C2CNF approach. For
example, with the modeling width of bit-vector increaseazhir4 to 16, the number of patterns in the set

V is still 5, but the number of clauses in CNF is increased t3114

Table 4.2: Comparison between C2CKT and C2CNF in verifyinthc
Size of bit-vector| Size ofV | # of clauses in CNH

4 5 763
16 5 1143
32 5 2383

4.5 Summary

We investigate the potential of combining symbolic simiolatwith localization abstraction [78] for

scalable formal verification. Our approach uses distingng X as symbolic values to replace the
concrete variables’ values, so that a limited number oftilied symbolic input vectors can cover the
complete input space. In order to reduce the verificatior timd ease the identification of symbolic
input vectors, we apply the symbolic simulation to check abstract model, which is automatically
constructed in the counterexample-guided abstractiinerment framework. This abstract model is
a localization abstraction of the program, which includesubset of property-relevant program con-

straints, and so it is more easily verified than the origimabpam. The property-relevance of program

Chapter 4.

constraints is automatically determined during the iteeadibstraction refinement procedure.

70

Chapter 5

A New Testability Guided Abstraction to

Solving Bit-vector Formulae

In this chapter, we present a new abstraction approach lbasbé concept of under- and over-approximation,
to efficiently solve bit-vector formulae generated fromta@ire verification instances, which include in-
tensive control structures. Our proposed approach applisommon testability metrics — controlla-
bility metric (CM) and observability metric (OM) — for guidg the abstraction refinement procedure.
We construct the under-approximation by enforcing constanstraints on a small set of single-bit
variables, which control the branch selection of sdifié variable nodes. Subsequently, each con-
structed under-approximate model includes only a subgeatbfs in the formula. We use CM and OM
to guide building such models so that a counterexample cabtaéned with little effort. If the under-
approximate model is unsatisfiable, an over-approximastradtion is obtained by refining along the
paths included in the model. This is conducted by using th&RNproof to learn the relevant formula
constraints. We also use OM as a guide to heuristically aficiezftly restore additional verification-
relevant constraints in the iteration. The experimentsliits show a significant reduction of the solving

time compared to state-of-the-art solvers for bit-vectihmetic.

71

Chapter 5. 72

5.1 Motivation and Overview

Many existing software verification techniques [5,35,3D0,115], model the bounded data-types as bit-
vectors with fixed bit-widths, and the verification consttaiare modeled as the bit-vector arithmetic
formula. For example, in the embedded software model chgadkiol called CBMC [35], the program
verification instances derived from the bounded model dhgaf ANSI-C programs are formulated as
bit-vector equations. Another example of an applicatiom loa found in an automatic theorem prover
called Cogent [37]. It has been applied to precisely reasersatisfiability of the queries produced in
the predicate abstraction refinement procedure for symboftware model checking, like in SLAM [9]
and ComFoRT [71]. This bounded modeling allows the bit-jgeceasoning to be applicable to almost
all programming language constructs. However, due to tbgram complexity, the existing decision
procedures are still not scalable to directly reason thigitsalbof the bit-vector formulas, obtained from

the practical software verification without aggressivetia@usion.

Compared with other abstraction techniques like prediabstraction, weakening abstraction is simple
and easy to apply since it weakens the transition relatiagtiowut mapping the state space of the design
to another state space domain. Several existing absmatiithods, such as those proposed in [5, 20],
are considered to be weakening abstraction. In order to ridkase of the ease and simplicity of

weakening abstraction, it is critical to develop a refinetpeacedure that can efficiently and accurately

identify the verification-relevant variables to constrtiat precise abstract model.

The goal of our work is to apply a weakening abstraction tegher— localization abstraction to quicken
the decision procedure of bit-vector formulas, especthlbge generated from the verification of control-

dominated software properties. Our contributions are bne:

1. We propose a hew localization abstraction procedureyiikaconcept of under- and over-approximation.
The under-approximate model is built by enforcing constanistraints to a small set of single-bit
variables that control the branch selection of ITE nodess Téstricts the search space to only a
subset of paths in the formula. The over-approximate atigirais obtained basically via learning
the relevant variables from the UNSAT proof of the underragjmate model. To start a new re-

finement iteration, we use the satisfiable assignment ofuhermt over-approximate abstraction,

Chapter 5. 73

to guide the construction of a new under-approximate maudéh, an unvisited subset of paths in

the formula.

. We present a new CM and OM computation and apply them tdesfflg guide the proposed
abstraction refinement procedure. CM estimates the easedirfidia SAT solution by the SAT
solver on the paths reaching the target varigblé is different from traditional CM metric, which
evaluates the testability of a structure to guide shmulation-based testingOur proposed OM
approximates the influence of the variatiorvobn the outputs. Our approach can quickly find a
satisfying solution on the easily controllable subset ghpan the formula, as long as a solution
exists on them. It also restores additional verificatioevaht constraints, according to the OM
heuristics in the iteration, to significantly reduce therrefment cost by only using the UNSAT
proof. As a result, an abstract model that is precise enoagthé verification can be quickly

built, long before all paths have been enumerated.

The experimental results show that a significant amount lefreptime can be reduced for the bench-

marks generated from the bit-precise software verificadigplications.

The rest of the chapter is organized as follows. In Secti@n\we present the controllability and ob-

servability computation. Our proposed abstraction apgras presented in Section 5.3. We report our

experimental results in Section 5.4. A discussion of relaterk is given in Section 5.5, followed by

some conclusions in Section 5.6.

5.2 Controllability / Observability Metric

In order to quantifiably estimate the amount of influence ¢aah bit-vector variable has on the property

under verification, we propose a new method to compute CM avicdoeach variable in the formula.

CM and OM respectively approximate the difficulty of finding@ution on the paths leading up to the

variable, and the amount of impact that the variable has emattyet property at the output.

One informal definition of the testability of a variable inesiyn is: the degree to which the variation on

that variable can be controlled from the inputs or obsentembae observation point. CM and OM are

Chapter 5. 74

two popular metrics widely used to evaluate the testabilftihardware designs at either the RTL level
or the logic-level. Examples include the test case qualigluation [46], identification of hard-to-test
regions in a design, where faults can hide from /easily behed by testing [27,51,55, 64,65, 106], and

testability analysis of software components [93].

One way to view formal verification is “testing with compldatgut-coverage”. Thus, CM is useful
to provide some high-level structural information to guttle search of a SAT solution with different
expectations. For example, we can focus on the easy-toetqaths if we want to test those common
cases; or focus on the hard-to-control paths if we aim at thieer cases where the random/directed
testing have difficulty with. Furthermore, the hard-to-eh® variables are less likely to be relevant
to the verification property, as variations of their valueséthe limited impact on the property. In
this regard, OM provides a guidance to estimate whether engirariable should be involved in the

abstraction or not.

Our proposed CM and OM computation is performed on the hkiterevariables directly, instead of
the individual bits. It also makes use of the pre-calculateatrollability and observability coefficients
(COC) of basic operators, to efficiently compute the CM and @ildach individual variable computed
by that operator. These coefficients approximately refleetdifferent amounts of influence that the
basic operators have on the CM and OM computation. We applygtaph-based model of the bit-

vector formula to facilitate the computation.

5.2.1 Controllability and Observability Coefficient

We first present how we estima@mntrollability and Observability Coefficief@OC) of basic operators.
Since we make use of the SAT-solver to finally determine thisfsbility of the bit-vector formula being
solved, the number of clauses encoded from the bit-vectibmaegtic operator is a good indicator of its
complexity in searching for a solution. The adder is thedbakiment of almost all predicate operators
and arithmetic operators in our encoding, and 32-bit is tbstwidely used width to represent program

variables. Therefore, we use the 32-bit adder as the stduadhalr set its COC value as 10.

The COC values for other operatof3Ks) are computed, based on the number of encoded CNF clauses

Chapter 5. 75

and bit-vector width. It is formulated as the following (Fadt non-predicate operatork; is the output

bit vector width ofOP; for predicate operator is the maximum of inputs bit vector width &@P):

o # of CNF clausefOPsy) K
COC(OP) = [# of CNF cIauseSADDEZ;%Z) x 10 3_21

Table 5.1 lists the COC values for some commonly used bitevexperators.

Table 5.1: COC Values for Common Operators

Bitwise OPs
OR,AND | 2
XOR 2.5
Predicate OPs
= 4=| 3
>, < 9
Arithmetic OPs
+ 10
- 11
Others
>,< 12
ITE 2.5

5.2.2 CM and OM Computation

The CMs of all primary inputs (PIs) are first initialized torae Then, since the CM of an internal
variable depends on the CM of its inputs and the type of theadpeby which the variable is computed,
we formulate the relationship between the CM of any variablath the operatoop and the CMs of all

its inputsIN as the following (wherd is the number of inputs of):

CM(v) = maxCM(IN;)} + COC(op), (0 <i < N)

Chapter 5. 76

After computing the CM values of all variables in the graséd model of the formula, we begin to
calculate the OM value of each variable backwards from PO® OMs of the one or more POs that
correspond to the properties under verification, are firtstosseero. As the observability of an input of
any variablev depends on both the observability wand the controllability of any other inputs 1o
we compute the OM of the input variabll; as the sum of the COC value @6 operatorop, and the

maximum value among the CM of all side inputswadnd the OM ofv as:

OM(v)
max{CM(IN;i) }

OM(IN;) = COC(op) + max

| S2: if(z0 <bl) { z1=b1; } else{ z1=20; }
3: assert(z1 >=al);

I'S
L

|m
| F=(c0=(b0<a0)) A (cl =(z0<bl)) A (bl ite cO a0 b0) A
al ite c0 b0 a0) A (z1 ite c1 bl z0) A—(z1>=al)

A
I

I(
L

<35,0>O
<20.5, 26>
cl z1
O <23,23.5>
7
| <11.5,35>
<9,37.5> al

c0

_—— —

1

b0 a0 b0

(c) Graph-based model of F labeled with <CM, OM>

Figure 5.1: An example of bit-vector arithmetic formula kvits Model

Chapter 5. 77

In Figure 5.1, we use a bit-vector formula generated from allspnogram verification instance as an
example of the CM and OM computation on its graph-based médglire 5.1(a) gives a simple sorting
code with two statements in the Single Static AssignmenAJS8rm and one property assertion at

statemen83. In S3, b0 < a0 andz0 < bl are two control predicates determining the execution.path

In the corresponding generated bit-vector formilgiven in Figure 5.1(b), the program control flow
information is decomposed by a set of ITE operators, eachhafiwhas a selection inpielto control
which of the two inputs to propagate to the output of the djperéSel represents the conjunction of all
control predicates, which must be satisfied to take the neiabla definition on the true branch input.
All variable definitions in the same control range sharei@at For instance, asl andal are all under
the control of predicaté0 < a0 in Figure 5.1(a)c0 defined a0 < a0 is theiSel of two ITEsal and
bl shown inF. Thus, enforcing constant constraints iGels of F can be regarded as restricting the

execution on a subset of control-flow paths in the program.

In the graph-based mod®# of the formulaF shown in Figure 5.1(c), we label the computed CM and

OM in the pairs next to each variable node. As an example, M@fthe outputO is computed as

CM(0) = max{CM(z1),CM(a1)} + COC(O) = 23+ 12 =35

Computation of OM begins after the CM values for all varial@ve been computed. The OMaffis

calculated as

OM(al) = maxOM(0O),maxCM(z1)}} + COC(O) = 23+ 12=35

For the fanout structure in the graph, where one variablart@e than one output connection, the OM
of this variable may be computed several times. We choosmthé@mum one as the final OM of this
variable. For the example @0, which has two fanoutsl andzl, OM(z0) computed frontl andzl is
35 and 26. S®OM(20) is set to 35.

In summary, the CM/OM has three important properties:

e Larger values of the CM/OM indicate harder controllabilityservability.

Chapter 5. 78

e On any path from Pls to a PGM(v1) < CM(vz) andOM(v1) > OM(v;) always hold ifv; is the

predecessor ob.

e For fan-out free inputéNo, . .., INN—_1 of v, OM(IN;) > OM(IN;) if CM(IN;) < CM(INj)(i # j).

5.3 Testability Guided Abstraction and Refinement

In this section, we present our new testability guided alotibn and refinement approach to efficiently
solve the bit-vector formulae. We first give an overall framek of our approach. Details regarding the
steps of choosingselvariables, deciding enforced constant constraints taltibi under-approximate

model and constructing the over-approximate abstracimdescribed in later subsections.

5.3.1 Overall Framework

Given a bit-vector formula, our proposed approach has four steps as illustrated ind-g@. Steps

2— 4 are iterative steps during the refinement.

o Decide cqnstraints Build & check under- | ¢, b SAT with
Initialize » on chosen ite-selects »> approximation du w returned
by CM and OM PP counterexample
4 Refinement ¢u UNSAT
; Iterations
Bit-vector
counterexample UNSAT core
Formula ¢ L_/p_
o SAT
Refine & check abstraction b
do guidedby OMand |———= ¢ UNSAT
Proof UNSAT

Figure 5.2: Overview of testability guided abstraction myagh to solving Bit-vector formula

1. Initialize: We first build the graph-based moddlof @, and calculate the CM and OM of every
variable node inVl, according to our proposed computation method discusséigeiprevious

section. We also define some data sets baseab fon the abstraction:

e |: a collection of all the ITE variables.

Chapter 5. 79

e |IS: a collection of all theSelvariables, each of which controls the branch-taking of astle

one ITE variable.

e |1Ss(C 19): acollection of choseiSels to which the constant constraints (0 or 1) are enforced

to build the under-approximate model.

Enforcing all enumerated combinations of constant comggr@n theiSels in the setSg, is actu-
ally the act of partitioning of all control-flow paths df into a number of subsets of paths, each of
which is an under-approximation. This is because the sespabe is limited to only one branch
of all ITEs controlled by the constraing8els. In order to minimize the similarities among the
enumerated partitions and the complexity of each partiticm set two basic criteria of choosing
iSels into the setSs. Recall that multiple ITE operators may be controlled byshmeiSel vari-
able. So first, we prefer choosing thaSels with the largest number of connected ITEs. Second,
considering the different degrees of verification releeant variables, we prefer selecting the

iSels whose connected ITEs are most relevant to the propertyr wedécation.

. Decide 0 or 1 for each iSel constrainEor eachiSelin 1Ss, we decide which value (0 or 1) to
enforce for building ab,. First, we must ensure that the enforced constant contstraave not
been applied before, to avoid building the sa@hgagain. Second, we give the priority to the
ones that can restrict the search on the branches of theoltedtiTEs with smaller CM values.
Thus,dys consisting of a set of easy paths according to CM are cantsttearly. This facilitates
the finding of a SAT solution with less effort. Furthermoriece thesab,s usually involve either
fewer variables or simpler formula constraints among théabées in®, it may also ease the

UNSAT proof extraction for refining the abstraction.

. Build and check under-approximatiah,: The chosen constant constraints onifels in1Ss are
added to the formula& to build ®,. Since the variables on the unselected branch of each ITE
are irrelevant to reasoning the validity &f,, we can safely slice them away. After encodibg
into a Boolean formul#,, we check the satisfiability g3, with a SAT-solver. If it is SAT, we
can conclude thab is also SAT, because the constant constraints added on tilablea inlSg
are also achievable i®. On the other hand, iB, is unsatisfiable, we use the UNSAT cdze
generated fronf3,, as a proof to help us obtain an over-approximate abstradtpin the next

step.

Chapter 5. 80

4. Refine and check abstractiaby: In the case tha®, is unsatisfiable from the previous step, we
restore the verification relevant variables to refingin two ways. First, we identifyll bit-vector
variablesvy involved in the given UNSAT cor€ and add them int@,. Note that the constant
constraints enforced on thi®el variables ind, are not carried over, so that we can make sure that
@, only contains the original formula constraints ®f Second, considering that the variables
with similar OM values have similar impact on the propertg wan heuristically restore more
verification relevant variables, guided by the OM values ariables that are already learned as
being relevant. Thus, after computing the maximQiv,o of the variables iV, we useOMmax
as a threshold to restore more variables, whose OMs are &goasmaller thar©OMpax into P
Thirdly, we check the satisfiability of the Boolean formilgencoded fron®,. If B, is UNSAT,
we could conclude thab is also UNSAT; otherwise, we use the SAT assignments onSals

from the setlSsto guide enforcing new constant constraints in step 2 itexigt

Due to the finite search space, the refinement procedure sit@ayinates. In the worst case, the number
of iterations can be exponential to the sizel8§ as the explicit enumerations of enforced constant
constraints are exponential. However, earlier enumearsit@an actually be sufficient to refute a large
number of paths that need not be enumerated in subsequetions. According to the experimental
results, many properties can be verified, with only a verylkmanber of iterations assisted by the

proposed CM and OM guidance.

5.3.2 CM/OM Guided Under-approximation

As discussed earlier, we prefer choosing thi&sd variables that control a large number of verification-
relevant ITEs. Thus, we define a parameaReiority for eachiSel to quantify this preference. In order
to differentiate the verification relevance of ITEs, we slfsall ITEs intoK subsetd = {l1,...,Ik}
depending on their OM values. L&tMpyax and OMp,in be theMaximumandMinimumOM of all ITE

nodes. The OM value of every ITE classified in the sulhsét < i < K) must fall into the interval

[OMpyjn+ (Mmac O¥min (1) Qg 4 (OMmec OVminly Eviery ITE in the subsdk has OM in the range

[OMmin + (O'V'max—O'}\(/lminH(K‘l),OMma)J. A weight with the value of(K —i) is assigned to all ITEs in

each subself (1 <i < K) to approximately quantify their verification relevance.eTédomputation of

Chapter 5. 81

Priority is formulated as the following (where<l j < Siz€1S) andIT E_count(j,i) returns the number

of ITEs in the subsel controlled byiSel,):
Priority (iSel) = S11 ((K — i)weight* | T E_count(iSe};, i))

We then define a tupl€ = (ID, Priority, < CMr, CMg >, L) to describe aiSel. EachiSelhas a unique
ID. The third element records ttererageCM of the True and False branches among all controlled
ITEs. Due to the existence of embedded control structukesflic1){..;if (c2){..}}, someiSelk may

be the conjunction of othéBels in the formula generated from such instances. (We assucheceatrol
predicate in the program has only one predicate operatorder to express this dependency among

iSels, we usd. to record the list ofSels that include thisSelin their conjunctive form.

With the defined tupl@ and a given thresholfl, we choose aliSels each of which has the Priori§y
aboved, and store them in the decreasing orde? afto the setSg, i.e., (P(iSel) >= P(iSel;)) where(1 <
i < j < Siz€lSs)). The order of enforcing constant constraints onigess in|Sg follows the two basic

principles:

1. To build the initial®d,, we prefer the constant 0 to 10Vt of theiSelis greater thaMg (False
input branch is more controllable); otherwise, 1 is prefa In the special cases that theof
theiSelis not empty, we prefer enforcing the constant 0, which méaaisthe enforced constant
constraints on all othaBels inL have to be 0 as well. As a result, the initial model includes th

easily controllable paths with a low computation comphexit

2. To build a newd,, during the refinement iteration, we only modify the enforcedstant values
for theiSelvariables involved in the current UNSAT proof. We prefertttiee enforced constant
constraints can produce a naby, with the least similarity to the curren®,. These enforced

constraints must be valid in the abstractiog

5.3.3 OM Guided Abstraction Refinement

If @, yields no solution, the SAT solver (like [14]) extracts an AT coreC from 3, and returns a set

of bit variablesV present irC. With V, we learn those verification-relevant variables guided bW t0

Chapter 5. 82

Over_appr (set V of UNSAT core C)
/*1. Learn new constraints from V */

1: for each bit-vector variable i in formula ¢
2: Map to a set V2 of bits in f that encode i;
3: /¥ the intersection set of V2 and V */
4: Compute set V3=V2 NV;
5: if V3 not Empty
6 Add variable i to ¢ ;
7 Remove all bits in V3 from V;
8 Mark the variable i;
[*stop if all bits in V have been included in d)o*/
9: if Vempty break;
10: end for

/*2. Learn more constraints guided by OM */
11: OMmax = maximum OM of all marked variables in ¢;
12: for each bit-vector variable i in ¢

13: if i marked continue;
14: if OM(i) <= OMmax Add variableito ¢ .
15: end for

Figure 5.3: Abstraction refinement algorithm

obtain a refined abstractiah, in two steps. The algorithm for the refinement is given in Feégb.3.

First, to facilitate learning those relevant variablesring, a bit-vector variable and the original formula
constraints with all its input variables @ are added i, if any bit of this variable is included in
V. Therefore, thisp, only contains a subset of formula constraintshofvithout the enforced constant
constraints included i®,. For the example shown in Figure 5.1, the under-approximaidel built

by constrainingcO = 0 andcl = 0 involves the same set of variables as the original formidavs in
the dark color of Figure 5.1(c) except that there is lessrobdependency among them. The abstrac-
tion built by the proof of such an under-approximation hdssefification-relevant constraints (same
constraints as the original formula), so we only eseout of all four possible combinations of added
constraints to learn enough relevant variables for therattsin in one iteration. This example illus-
trates that the proof-based refinement iterations needmoherate all combinations of the enforced

constant constraints to reach a conclusion.

Second, in order to reduce the burden of proof-based ahstiaave also apply OM as a guide to

heuristically restore more verification-relevant varebin each refinement iteration. If a variabe

Chapter 5. 83

with OM equalA is identified relevant by the proof, other variables whose i®Mo bigger (i.e., equal
or more observable) thanare also considered relevant by the observability hearigtiis is reasonable
becauser is considered to have equal or greater impact on the targptiouOne explanation of why
these variables were not in the proof of the current undpreegimate modelp, is that they may not
have been needed in the restricted path(s) ofqhi8ut they may be referred to in the proof @fs that
have not been enumerated. Furthermore, this OM-guideaagpiprcan identify these relevant variables
with very little effort. It can be very efficient in the casést we use the UNSAT proof to learn relevant
constraints from the easy under-approximate model (fmarsiy of ¢, and apply the guidance of OM to
learn additional constraints in the other portiongpahat are complex and have not been involved in
the previous enumerated partitions. So, it can increasékigléhood that the verification task is done
without actually building the under-approximate modeldtorse complex partitions. The third property
of our CM/OM computation helps to increase the probabilitysuch cases. It means that the branch
with the smaller CM has the bigger OM value. So, if the vaeabbn the easy-to-control branch are
found to be included in the UNSAT core, the variables on agraihanch are also considered as relevant

according to our OM heuristics, which is true for most proiesrbeing verified.

Chapter 5.

Table 5.2: Results Comparison

84

Benchmark| Vars# | iSels#| Spear(s) Our CM/OM-Guided Abstraction-Refinement
Vars# | iSels#| % CNF(% SF)| Iter. | MINISAT (Spear)
vc331256 | 27248| 3110 | 314.42 | 9259 | 1019 | 55.3(48.50) | 1 58.05 61.46
vc331257 | 27369 | 3149 | 437.13 || 9160 | 994 | 55.2(48.15) | 1 52.30(79.22)
vc331185 | 21990 | 2468 | 545.28 || 7466 | 831 | 55.4(48.46) | 2 35.85(44.17)
vc331190 | 23188 | 2656 | 632.33 7713 852 545 (48.18) | 2 26.83(101.77)
vc331211 | 23554 | 2681 || 449.62 7959 877 56.2 (48.20) 2 42.46(60.98)
vc331179 | 21918| 2553 | 44.31 7206 | 787 | 52.5(48.06) | 1 25.80(40.72)
vc331180 | 21094 | 2398 | 90.64 7036 | 771 | 52.3(48.39) | 1 41.11(56.37)
vc331228 | 21918 | 2920 || 175.01 8504 948 52.1 (48.18) 2 48.64 @8.22
vc331218 | 25413 | 2920 || 140.99 8504 948 52.4 (48.00) 1 28.67(38.11)
vc1225825| 17628 | 1985 | 41.39 5016 | 594 | 52.8(34.9) | 1 21.85 8.43
vcl225314| 17481 | 1991 || 28.54 5847 | 604 | 54.0(34.3) | 1 22.51 (13.5)
vcl225832| 19867 | 2273 64.80 7360 665 53.3(43.1) 2 41.56 @3.97
bs10-3-6* | 488 45 N/A 195(132)| 45 45.1 1 165.41/411.14
bs39-1-5* | 21997 | 252 N/A 107(76) | 252 0.5 1 23.65/80.04

* represents UNSAT property.

Chapter 5. 85

5.4 Experimental Results

To validate the effectiveness of our approach, we impleatethe proposed method in C++, which
is called C2BIT-2, and applied it to reason the quantifieefbit-vector logic benchmarks [7] in (1)
Spearsambav2.3.35log suite, (2) Speasambav2.3.35client suite; (3) Some other software bounded
model-checking instances. The selected benchmarks froamd.) all consist of a large number of
ITE nodes, and their satisfiability decisions required lergcution times by Spear v2.3 (which reports
best results for the bit-vector logic section in SMT comipati 2007). C2BIT-2 uses Booleforce [14]
to extract the UNSAT core, and MINISAT [89] to check the #isility of both the under-approximate
model and the over-approximate abstraction. The numbeulifets of the ITE variables in the det
classified by OM values is set as 7, and the sizkSgis set as 20. All experiments are conducted on an

Intel Xeon 2.8GHz processor with 2 GB RAM.

The results are reported in Table 5.2. First, for every berark, the attributes of the original bit-vector
formula are given: Vars# reports the number of all bit-veegariables including constantSel reports
the number ofSels. The runtime of Spear v2.3 is then reported. Then, for oprageh, the number of
all variablesjSels and the ratio of CNF file size of the verification model after $licing and abstraction
of the original one is given. The corresponding percentddgepot SF (Spear Format) file size for Spear
is also given in parentheses. In the final column, the totatime of our approach (including slicing,
encoding, UNSAT core extraction and solving time on MINISAS reported. In parenthesis, we also

report the run time of Spear on the final reduced model for @ispn.

All benchmarks in Table 5.2, with the exception of the lasb,tivave SAT properties. We first discuss
the results from the SAT benchmarks. Compared with Speahawe achieved significant speedup for
all SAT instances. For vc331185 and vc331190, more than giieedup was observed using C2BIT-
2. The SAT solution found in each benchmark has been vatidatth the provision of the CNF file
and the variable mapping file generated by Spear. Aftemgjiaway redundant variables of the given
formula, we found that only about one-third iels are unique as shown in th& &olumn, which
implies that multiple ITE variables share the sa®el. Furthermore, thes&els have little dependency
on each other, and their inputs are mostly close to Pls that tree high controllability. As shown in

the 8" column, we observed that the verification model (under@pration) usually has only about

Chapter 5. 86

33% of all variables in the original formula and the genatd@F file size is about 50% of that from
the original formula. For the benchmarks that require mldtiterations to verify, th&ars# shown is

in the largest under-approximate model. For the benchnthekscould be verified in just one iteration,
the non SAT-solving time is less than 5 seconds; for the riegteobenchmarks, this time is around 10

seconds, mainly due to the cost of handling the UNSAT coredfining the abstraction.

We also applied C2BIT-2 to two UNSAT properties of softwatd® instances. We currently could not
apply Spear to them for comparison because their formatisasily convertible to the input format that
Spear requires due to the presence of array variables. Whiesjaluate the effectiveness of our approach
by comparing the approach with and without the proposedradigin refinement framework. The
primary results are shown in the last two rows. The numbehénparenthesis of thé"scolumn is the
number of variables restored by OM heuristics out of allalalieés in the over-approximate abstraction.
The two numbers given in the last column show the total ruativith and without the abstraction. The

speedup reaches 3 times.

5.5 Related Work

Recently, Bryant et al. [20] proposed a proof-based alstracefinement framework based on the
under- and over-approximation to decide bit-vector arglimm The under-approximate modg) is
built through enforcing constraints on the encoding vargge of variables. With the UNSAT proof of
Fu, the over-approximate abstractip includes only the subset of variables referred to the probis
approach has shown effectiveness in two scenarios: (1) asBliion exists with a small number of
bits encoded iryy, and (2) only a small number of variables included-iparticipate in the UNSAT

proof of the original formula.

Our approach is similar in that the over-approximate abstna is also built based on the UNSAT proof

of the under-approximate model. However, our model cangitt subset of paths obtained from the
added constraints on the bit-vector variables that cottbranch selection. Since we do not enforce
constraints on the encoding size, the SAT solution doesewd to be limited to a reduced value range.

Furthermore, through the path(s)-based patrtition, wedcpatform the verification task incrementally

Chapter 5. 87

in the sense that the abstraction refined in the iteration neéds to be accurate enough to prove the
part of the problem instance. It is different from [20] thiaé abstraction of the entire instance is created

in every refinement iteration.

The symbolic software model-checking tool BLAST [60] usesdicate abstraction and counterexample
driven refinement to lazily construct the abstraction dypath enumeration. The new predicates are
inferred to be interpolants found from the infeasibilitppf of the path being traced. Our approach also
uses the counterexample-guided refinement strategy andiNBAT proof of the path-based partitions
to gradually identify the verification-relevant variabfes refining the abstraction. However, besides the
basic difference that BLAST applies predicate abstractibile we use WA, our approach is different
from BLAST in two additional aspects. First, BLAST consigi¢ghe data-type as infinite integers, while
we model the program data as bounded bit-vectors, so ownieasis bit-precise. Second, we use the
controllability and observability to guide the order of emerating the set of paths, but BLAST uses the

predicates for path enumeration.

In [5], the authors proposed a structural abstraction tditi@e the checking of software verification
conditions by exploiting the natural function-level abstion boundaries like function calls defined
in the program. Multiple low-cost counter-example drivefimement steps are used to decide which
function calls’ constraints need to be included in the auasion without requiring of the unsatisfiability
proofs. We also aim to exploit the structural informatiorpafgrams to develop a low-cost and accurate

abstraction. However, we use the control structures taldind-conquer the problem.

5.6 Summary

We have presented a new abstraction refinement approachveolstvector arithmetic formulas. It
speeds up the search for a SAT solution by first building alsumaler-approximate model that includes
a subset of paths in the formula. This is performed by imgpsionstant constraints on a small set
of branching control variables in the formula, guided byteoliability and observability metrics, to-
gether with slicing away those irrelevant portions. If thelar-approximate model is unsatisfiable, it

uses the UNSAT proof to obtain an over-approximate abstraécrementally. In order to reduce the

Chapter 5. 88

computational cost of the proof-based refinement and avaignerating all possible paths in the pro-
gram, we use the observability heuristics to guide resforariables, such that the verification-relevant
variables outside the UNSAT core are also brought into tletratt model. Our approach has shown

both effectiveness and efficiency in solving the formulasegated from the verification instances of the
embedded software with intensive control structures.

Chapter 6

A Reduced Bit-vector Encoding Width
Computation Algorithm for Bit-precise

Verification

Bit-precise verification with variables modeled as bittees has recently drawn much interest. How-
ever, a huge search space usually results after bit-bdasiio accelerate the verification of bit-vector
formulae, we propose an efficient algorithm to discover ooifierm bit-vectors’ encoding widthés
which may be smaller than their original modeling widths suwfficient to find a counterexample. Dif-
ferent from existing approaches, our algorithm is patlesdgd, in that it takes advantage of the control-
lability and observability values in the structure of thedabto guide the computation of the paths, their
encoding widths, and the effective adjustment of thesehsidt subsequent steps. For path selection,
a subset of single-bit path-controlling variables is setdastant values. This can restrict the search
from those paths that have been deemed less favorable oibkavechecked in previous steps, thus
simplifying the problem. Experiments show that our aldoritcan significantly speed up the search by
focusing first on those promising, easy paths for verifyingse path-intensive models with reduced,

non-uniform bit width encoding.

89

Chapter 6. 90

6.1 Motivation and Overview

In formal verification, modeling data variables kis-vectorswith a bounded width has shown some
unique benefits. Bounded modeling is capable of accurasgyucng the true semantics of the veri-
fication instances constrained by a physical word-size aonapater. Furthermore, with the advances
in Boolean and bit-vector arithmetic reasoning, SAT (or SMased formal verification has the po-
tential to deal with large problems. Many existing softwaredel checking tools (e.g., CBMC [35],
SATABS [36], Saturn [115], F-SOFT [70]) and hardware desigiidation techniques (e.g., [66, 82])

have taken bit-vector modeling.

However, with bit-vectors, the search space can be hugehitftelasting, especially when dealing with
large hardware designs and/or software programs. For deanmpa large instance, it is extremely
challenging to find a satisfying assignment (counterexaingith a full-size encoding. One way to
handle this problem is to reduce the encoded bit-vectorhnidithe variables, thereby restricting the
searching space. Then, the verification is conducted onesigiated model instead of the original
one. Several approaches have been proposed to computeticedebit-vector width for enhancing the

verification scalability.

In [73], an abstraction approach was introduced to scalendbe data path for formal RTL property
checking. Based on the static data dependency analysisandlarity analysis of bit-vector equations,

it computes an abstract model in which the bit-vector widthasiables is reduced with respect to the
property. To alleviate the state explosion in software rhotlecking, the authors of [117] reduce the
bit-vector width of variables according to their lower argpar bounds determined by a symbolic value
range analysis technique. Both approaches are applie@popessing steps that directly decrease the
modeling widthW of each variable and still preserve the verification propeowever, they do not

consider the dynamic information during verification.

Recently, a new approach was proposed in an under- and ppesdmation based abstraction-refinement
framework to iteratively learn the sufficient encoding witlt; of variables for verification, which is
smaller than their individual modeling widths [20]. Stadgiwith a smalW, for every free variable, their

approach enlarg@ai of some variables in each refinement step by analyzing thesgbsounterexam-

Chapter 6. 91

ple of the over-approximate abstraction. For refutableerties (where a counterexample exists), the
refinement process continues until a SAT assignment is fgwith a smalleM\;) or when thew; of

all variables have reached their origivdl This approach dynamically computes small values/ipr
during verification instead of scaling down the width befaed using static analysis as in [73, 117].
Although it is flexible, its claimed efficiency is limited irtenarios where the SAT assignment can be
represented with a smaller encoding width. Moreover, theegassigned in the abstract counterexam-

ple may be unnecessarily large derived from a lak§eand thus increases the verification difficulty.

In this chapter, we present an efficient path-oriented éitar encoding width computation algorithm to
alleviate the above limitations. Similar to [20], our alijlom embeds theynamiccomputation of\ in

the abstraction-refinement framework. However, it is dgished by its path-oriented analysis with the
guidance oftaticcontrollability metric (CM) and observability metric (ONY three major ways. First,

it computes the initiahon-uniform W of variables on different paths. By setting a bigger in¥lfor

the variables on the easy-to-control paths while settingaller\\;, for the other paths, our approach can
greatly increase the chance of finding a SAT assignment inetteicted search space directly, without
the need to adjuste multiple times. Second, in tha&; adjustment steps (if necessary), our approach
gives priority to enlarging th&\; of the easily-controllable variables first through the rpafating of
the abstract counterexample generation guided by CM andTid.helps to systematically search for
the concrete counterexample with a reduced effort. ThigkteW; to zero for some single-bit variables
that determine the path(s) selection, thereby enforcimgtemt values on them to restrict choosing only
a subset of paths. This can avoid searching those partiti@ishave been checked in previous steps,

especially the ones on which the variablég’ experienced no increase, thus simplifying the problem.

The remainder of the Chapter is organized as follows. Ini@e&.2, we will give some preliminaries
related to our work. Our proposed encoding algorithm is gmeed in Section 6.3. We report our

experimental results in Section 6.4 followed by the coriolugn Section 6.5.

Chapter 6. 92

6.2 Preliminaries

6.2.1 Bit-vector Formula Encoding

The bit-vector arithmetic formula we focus on is a conjumactof terms, where each term is in the
format (Identifier == Identifier [op Identifier]). Every Idéfier represents a bit-vector variable which
is interpreted as a humeric value represented in two’s cemmght form. According to whether the
operator accepts single-bit inputs and whether the ougpatsingle bit, we group operators into three

categories:

e Bitwise operators: &and), | (or), ® (xor), ~ (not);
e Predicate operators:=, #, >, <, >, <;

e Non-Boolean operators+, —, x, /, %, shift, type cast (Concatenation, Extraction and Exten-

sion),ITE (if —then—else, etc;

The resulting formula can be represented as a directediagyelph model. An example is shown in

Figure 6.1, where three possible paths (highlighted by tlask) are possible to reaghfrom the inputs.

Definition31. Starting from the least significant bit, the encoding widitv) for a bit-vector variabler
is the number of consecutive bits in the vector whose valags hot been assigned<OWe(v) <W(v).

For each of the remaining/(v) —W(V) bits, the value is set to be constant O (or 1).

If the W, of individual variables is smaller than th&if, the search space can be restricted. For example,
a variablev with W = 32 W, = 6, the original value range is-23',23! — 1] and the constrained value
range is reduced tf®, 63 by enforcing the 22 most significant bits to 0. Wha&fkis set equal to 0, the
variable simply becomes a constant. We observe that thetseleput of an ITE (if-then-else) variable
(callediSel) has a special property. (In Figure 6, is aniSel) When constant 0 (1) is enforced to
aniSel (setting its\W; to zero), the false (true) branch is always taken, and somables on the true
(false) branch may become dangling variables. Thus, iféstseslice away these dangling variables, as

they do not feed other portions of the code.

Chapter 6.

|F = (b]=al {(2)A(CI=d0==b)A(C2=(z0>1)) |
I A(b2=C2 ite b0 b1)A(C3=(d1!=b2)) |
| A(G=(CL][C3)Ap |

i_Boolean Part
p==0?

(b) Graph representation of (a)

Figure 6.1: An example of Bit-vector formula with its graplodel

93

Chapter 6. 94

Definition32. A variable is a Boolean Frontier Variable (BFV) if it is thetput of a predicate operator

and all its fanouts are variables with Bitwise operators.

In Figure 6.1,C; andCz are BFVs. We consider them as pseudo inputs of the Boolediopaf the

formula where every variable h¥é = 1.

6.2.2 Controllability/Observability Metrics

CM and OM are two generic metrics widely used to evaluate déiséability of a hardware design (
[64,106]) or software components [93]. In [58], CM and OM édeen used to estimate the amount of
influence that each bit-vector variable has on the propetifieation. Specifically, the CM of a variable
approximates thdifficulty of setting a value along the paths reaching a target varfatne the inputs.
Thedifficulty is defined by two main factors: the lengths of the paths anaddn@putation complexity
along these paths. The OM approximates the amount of impatatvalue-change on a variable has on

the output. It is used to estimate the verification relevari@variable to the target property of interest.

The CM/OM computation defined in [58] is adopted here. It ysescalculated controllability and
observability coefficients (COC) of basic bit-vector opera to represent the operators’ computational
efficiency. The COC approximates the different amounts fidémce the operators have on the CM and
OM. The details of COC values and the formulas of the CM and @& putation are omitted due to

the space limit. We introduce two properties of our CM/OM gartation relevant to this work:

e Larger values of the CM/OM indicate harder controllablsvable.
e On any path from primary inputs (PIs) to a primary output (FREM (v1) < CM(v2) andOM(vy) >

OM(v,) always hold ifv; is the predecessor @$.

However, in [58], the 1- and O-state CM of the variables inBloelean portion of the instance were not
differentiated. Here, we first estimate the 0-staM° and 1-stat€M?* of every BFVvar according to

four cases below:

1. op(var) € {>,<,<,>} :CM°=CM! = 05.

Chapter 6. 95

2. op(var) € {==,#} and at least one argument\ar is fully controllable like PICM® = CM! =
0.5.

3. op(var) € {==} and no arguments ofar is fully controllable:CM° = 1—2"W CM! = 2-W,

4. op(var) € {#} and no arguments ofar is fully controllable:CM°? = 2-W CMt =1 -2V,

<13, 0>
’ <15.5, 0>
{05,054 ¢l © 05.05)
<0,13>d0" | d1 <0, 15.5>
|
\ S
bl <9, 12.5>
<10, 11.5> b\
/4 b\ b0 1
' <0,12.5> 20
2 al <0,21.5>
<0,21.5>

Figure 6.2: Graph model of Figure 6.1 labeled with CM/OM

We propagate thEM® andCM* of BFVs to all other variables in the Boolean portion accogdio the

1 and 0 probability measure of the corresponding bitwiseaipe In Figure 6.2, it shows CM and OM
labeled as ac CM,OM > pair next to each variable outside or at the boundary of tha@dam portion.

It also gives thaCM! andCM©° next to each variable in the Boolean portion (enclosed bybthee).
For exampleCM° andCM? of variableC; are both 0.5 based on Case(2) sid6es a PI. To verify the
propertyp == 0, C; andCs have the sam€M?. But sinceCM of C; is smaller than that o3 which
meansgC; is more easily controllable, the path following the dasle li; considered the easy-to-control

path.

Chapter 6. 96

| Preprocess |

| Guided Initial We I
| Computation I
¢ Under-approximate Model with We

———>| Model Verification

v
<SATZ>—I= SAT Done!

no

| UNSAT Analysis |
* Abstract Model

UNSAT!

—_— e — e — — — — — — =

New|Under- i_ New We' Computation
approximate | with Guided Slicing |
Model T T T T T T T T T T T

Figure 6.3: Basic flow of our algorithm

6.3 Our Proposed Algorithm

6.3.1 Overview of the Steps

To enhance the scalability of bit-precise verification, wepose an efficient path-oriented algorithm
to compute a small but verification-sufficient encoding Widt of individual variables in the instance.
The algorithm exploits not only the dynamic informationrteed in the abstraction-refinement itera-
tions, but also the high-level static structural inforroatthrough the guidance of the controllability and
observability metrics. We assume a verification instancefitated as a bit-vector arithmetic formula
whose satisfiability corresponds to the negation of a givepgrty (i.e., SAT means the property is
refuted). We also assume many paths exist in the instandehvisicommon in practical problems.

Finally, our current work focuses on refuting properties.

The basic flow of our algorithm is illustrated in Figure 6.3.e\¢fve an overview of each step below.
Three important steps enclosed with dash line borders wilptesented in more detail in following

subsections.

Chapter 6. 97

1. Preprocessing Given a bit-vector formula, our algorithm first builds itsagh modelM, then
computeBFVs CM, and OM. Next, it selects soniSels to build the setS. TheseSelk stored
in IS will be used to conduct the path(s) oriented abstract coexaenple generation in Step 5
and slicing in Step 6. We prefer selecting isels with a larger number of connections to the
verification-relevantTEs because they have a greater impact on reducing the padide. The

work proposed in [73,117] can also be applied here to recheenbdeling width.

2. Guided initial W computation Our algorithm computes a small initisl and determines the
constant value to be placed for the bits outside of the engodidths. The main idea is to give
preference (larger initidhg) to variables on easy-to-control paths so as to increasehidugces of
finding a SAT assignment fast. Moreover, it keeps the engpsiire of a variable consistent with
the input/output variables and the given operator type. dlgerithm also considers the effect
of constants in the encoding computation. It then appliesctimputed initial\; of variables to

build an initial under-approximate model,.

3. Model verification Through bit-blastingM, is transformed to a Boolean modg)]. If B, is SAT,
we can conclud®/ is also SAT as the values enforced M are achievable iM; otherwise, go

to Step 4.

4. UNSAT analysisOur algorithm adopts the method used in [57] to conduct tN&SHAT analysis
for refining the abstractioM,. The basic idea is to identifgll variables involved in the UNSAT
proof of M and add them intél,. Note that the constant values used outside the encodirtgsvid
and constant values for tli@el variables inV, are not carried over. Thus, all variables\ig have
the original modeling widthV. The refinedM, can refute all spurious counterexamples where the
assignment of the variable is within the encoded value rafnge W, so that it prevents repeated
generation of the same spurious counterexample. A theorethi® can be found in [57]. This
method is simpler than the technique in [20], whose progkedaabstraction also considers the

special usage of Boolean nodes.

5. Guided abstract counterexample generatiddince M, is small, it is easy to handle and find
an abstract counterexampjewith certain expectations. This is done by enforcing sonteaex
constraints orM, guided by CM and OM to steer the search. To avoid generatingwaM,

that is similar to the previoubl, in which no SAT assignment was found, we prefer generating

Chapter 6. 98

y on M, that can help enlarge those least frequently enlavfedAs some variables have values
assigned iry falling beyond the value ranges of their previdisvalues, it is also preferred that

they are the easy-to-control ones.

6. New W computation with guided slicingGiven the abstract counterexamplewe enlarge the
W, of some variables in the previol4, so that the new value ranges can adequately cover their
values assigned ig. We update th&\; of all other data dependent variablesNhand apply
the newW; on variables to building the new under-approximate mM/g_\I To avoid repeatedly
searching the same space among the iterations, our algoeittiorces certain constant values
on somdSels and applies model slicing to remove from the new undereaqqmiate model those
variables whos®\; were not enlarged and have thus become dangling variabhesprocess goes

back to Step 3 to start a new iteration.

Due to the finite search space, the algorithm always teredndn the worst case, th of individual
variables may need to be enlarged to their origivalHowever, experiments show that a SAT assign-

ment with small value ranges or on the path with the small remobvariables exists in most instances.

6.3.2 Guided Initial We Computation

The initial W, of variables including the constant valdgchosen on bits outside @, are very important

to the efficiency of our algorithm. We enforce the same camstalueC, to all bits beyond\, starting
from the most significant one of bit-vector variables. Thgoathm of the initialWs computation with
two phases is shown in Figure 6.4. In phase 1, it identifieteen the easy-to-control paths and sets
a large'W; to them; the other Pls are given a smalldy. Guided by CM and OM, our algorithm first
backtraces from the target property along the easy patheiBdoolean portion of the instance to a set
of BFVs. Then it extracts all non-Boolean part variables in theeaofitheseBFV's and place them in

a new sefS. It removes fromS any variable on the hard-to-control branched ©Es connected with
theiSek in thelS. We empirically seCe as 0, choose 6 as the initlL for the Pls inSand 2 for the

remaining Pls.

In phase 2, our algorithm adjusts the compuédandC, considering the effects of constantsih

Chapter 6. 99

Initial encoding width (M, P, IS)

phase 1. CM/OM guided We computation/

1. Backtrace from P to BFVs on easy-to-control paths;

2. Extract variables on traced paths to set S;

3. for each ise/ in IS

4. Remove hard-to-control branches from S guided by CM;
5. end for

6. Set We=min{max{celling(W/6), 6},W}&(Ce=0) for all PIs in
S;

7. Set We=min{2,W }&(Ce=0) for all other PIs in M;

8. Propagate We for all other variables in M;

/* phase 2. We adjustment */

9. for each constant O connected with predicate OP
10. if (O >0)

I1. Set W_T=ceiling(log2(0), C_T=0;

12. else

13. Set W_T=ceiling(log2(-0), C_T=I;

14. endif

15. for each V related to O with predicate OP

16. if(Weof V<W _T)|(Ce!l=C._T))

17. Adjust We=W_T and (Ce=C T) for V;

18. Adjust We for PIs that Vs depends;

19. endif

20. end for

21. end for

22. Propagate adjusted We for all other variables in M;
23. end

Figure 6.4: Alg. of initialM\,; computation

We observe from experiments that it is preferable to givestirae negative or positive polarity for the
variables with which the constant is computed. We seWhef variables that allow their encoded value
range to cover the absolute value of the constant, espetilpredicate operations. This is to avoid
fixing the output value of such predicate operations. Fomgta, consider the constraiat> —4; its
value is not fixed only when setting bigger than 2 an@. = 1 for a. Finally, the adjusting of\; and
Ce on PlIs are also propagated to all internal variables, whilesiclering computation consistency on

the operators along the paths.

Chapter 6. 100

/IChoose K path selection variables from first Mo model to set Sp
Cex_gen (Mo, Sp)

1. while (1)

2. {Cl,..,CK} = pathsSelGen(Sp);

3. Enforce {C1,..,CK} assignment on Mo to get Mo*;

4. if(Mo* is SAT) break;

5. endwhile

6. Sort all pseudo PIs of Mo w.r.t. CM in increasing order;
7. Divide all sorted pseudo PIs into L groups;

8. Enforce current We for all pseudo Pls to get M**;

9. fori=1toL

10. Refine M** by enlarging We for pseudo PIs in group i;
11. if (Refined M** is SAT)

12. CEXRET = SAT-SOL;

13. break;

14. endif

15. endfor

16. end

Figure 6.5: Alg. of abstract counterexample generation

6.3.3 Abstract Counterexample Generation

In this step, our algorithm sequentially enforces two kiofisonstant values oM, to steer the search for
an abstract counterexample as shown in Figure 6.5. TH& setich consists of somBFVs andiSels
included in thaVi,, is constructed beforehand. A combination of constantesls first imposed on the
variables in the se$, so as to restrict searching on a subset of paths. The fungtiicsSel Gegrnwhich
returns such constant assignmef{i@, ..,Cx }, starts enumerating variables 8 at the first iteration
and stops until the verification is finished. Since no SATgssient was found iM,, we assume a low
chance that a SAT one exists on the partition of the instaimgitas to M, and we expect that the new
My bears the least similarity to the previolyk, in the search space. So, our goal is to return a value
combination with the least similarity to the last one andlmeihg found as infeasible so as to constrain
the search in a different subset of paths. Once a value &ssigs is found satisfyini/l,, we apply

it to Mg, to restrict the search space to ease the generation task, $¥exil encoding widthg\is are
applied to some pseudo PlsNdf, to further constrain the search. A greedy search starts finermost
easily controllable Pls, so that the value assignments@hdihder-to-control pseudo Pls in the returned

counterexample can still be covered by their pregeént

Theorem 1. An infeasible assignment ongNé also infeasible in M.

Chapter 6. 101

no change
enlarged sliced

(a) Step 1 (b) Step 2

Figure 6.6: Two-steps guided slicing

Proof. Since the set of clausd of Mg is a subset of CNF claus@sof M, if an assignmenty, ..,V
cannot satisfy3y, this same assignment also cannot satfstyecause at least a subspt)(cannot be

satisfied in. O

With this theorem, we can safely check the invalidity of samsignments in thisl, with a low cost. It

is especially efficient to identify a subset of infeasibl¢hsausingM,.

6.3.4 NewW, with Guided Slicing

We focus on introducing the guided slicing process as itist in Figure 6.6. First, we apply the
assignmentgCy,..,Cx } (that were obtained fronM}) to the newM, and slice away any dangling
variables. In Figure 6.6(a), th8elwhose value is enforced controls tHeEs of M both insideM, and
outside ofMy. So, more branches can be sliced away from the Kgwompared tdvl,. Next, the
branches of the ITEs controlled li§els in IS on which variables had no enlargéd are removed. In
Figure 6.6(b), the variables who¥& need to be changed are in the center cone. The path branches

shown in the bottom are outside of this cone and are remoweead tihe newM,,.

6.4 Experimental Results

To validate the effectiveness of our approach, we impleatkettie proposed method in C++, which is
called C2BIT-2, and applied it to the bit-vector arithmdt@anchmarks [7] in the following suiteSpear

andTACA®?7. There are two main reasons that 14 benchmarks were cheifieer 1) a benchmark is

Chapter 6.

Table 6.1: Results Comparison (Benchmarks from Spear, T8@A

Benchmark | Vars# iSels# Spear Proof-Based CM/OM Guided

(s) W | lIter. | T(S) We | lter. | T(s)
log-331256 | 27773 | 3110/1019| 314.42| 4/12| 2 | 11771 | 4/6 2 43.67
log_ 331257 | 27369 | 3149/994 || 437.13| 4/18 | 2 7659 || 4/12| 2 4727
log-331190 | 23188| 2656/852 || 632.33| 4/18 | 2 4696 | 4/12| 2 34.36
log 331211 | 23554 | 2681/877 || 515.31| 4/12 | 2 9120 || 4/12| 2 3332
innd 33359 | 1368 77133 49.66 || 8/32 | 2 4128 | 8/12| 2 37.90
innd_33725 | 1025 52/22 55.26 || 8/32 | 2 4332 || 8/12| 2 37.16
nnrpd 21453| 1330 76/32 2094 | 8/18 | 2 4721 | 8/18| 3 50.76
wget17909 | 1042 37/32 380.74| 8/18 | 2 5203 || 8/18| 2 | 14897
wget 18506 | 1062 38/30 39.86 || 8/18 | 2 30.26 || 8/18| 2 2914
cli_1225314 | 17481 | 1991/604 || 40.45 || 4/12 | 2 3352 || 4/12| 2 27.70
cli_1225757 | 18171 | 2090/616 || 25.02 || 4/12 | 2 36.79 || 4/12| 2 2584
cli_1225783 | 18766| 2159/637 || 51.06 || 4/6 2 57.80 || 4/6 2 2819
cli_1225832 | 19867 | 2273/665 || 65.25 || 4/12 | 2 7528 || 4/12| 2 29.67
S-40-50 1321 | 0(156)/0 | 14.36 || 4/32 | 4 9847 || 4/16| 2 30.29

102

Table 6.2: Results Comparison (Benchmarks from Spear, T8@A

Chapter 6.

Benchmark | Vars# iSels# C2BIT-2
We <, > Iter. | T(s)
log_-331256 | 27773 | 3110/1019 <6,2> 1 |10.21
log_-331257 | 27369 | 3149/994 <6,2> 1 | 9.38
log-331190 | 23188 | 2656/852 <6,2> 1 | 534
log_-331211 | 23554 | 2681/877 <6,2> 1 | 6.47
innd_33359 | 1368 77133 <122> /12| 2 | 30.29
innd_33725 | 1025 52/22 <122>/12| 2 |33.71
nnrpd 21453 | 1330 76/32 <122> /12| 2 | 34.39
wget17909 | 1042 37132 <122>/12| 2 | 50.38
wget 18506 | 1062 38/30 <122 > 1 |15.34
cli_1225314 | 17481 | 1991/604 <6,2> 1 5.2
cli_1225757 | 18171| 2090/616 <6,2> 1 6.21
cli_1225783 | 18766 | 2159/637 <6,2> 1 4.53
cli_1225832 | 19867 | 2273/665 <6,2> 1 | 631
S-40-50 | 1321 | 0(156)/0 <82> 1 |12.31

103

Chapter 6. 104

path intensive that has a large amouniS#ls orBFVs, or 2) verification takes a long time with existing
tools. They are all refutable properties (a satisfiabletsmiexists). C2BIT-2 uses Booleforce v1.0 to
extract UNSAT core in the UNSAT case, and uses MINISAT vlddgdnerate abstract counterexamples
and verify the satisfiability of the under-approximate nlodehe experiments were conducted on an

Intel Xeon 2.8GHz processor with 2 GB RAM.

The results are reported in Table 6.1, 6.2. First, for everychmark, the characteristics of the original
bit-vector formula are given: Vars# reports the number tf/bttor variables including constaniSgl#
reports the number d8els both before and after pruning. After pruning the formuktance, we found
that only about one-third afSels are unique. For example, in log331256, only 1019 out of 3110
iSels are unique which corresponds to 311019 in the table. This implies that multiple ITE variables
may share the samgel. Furthermore, thesiSels have no dependency to each other, and their inputs
are close to Pls, thus they are very controllable. For theblischmarkjSel# is zero, which means no
ITE variables, but the number 8FVs is big, as shown in parentheses. Next, the runtime of S{2eér v

is reported. We apply three methods on the benchmarks:

1. uniform initial W, with the proof-based refinement as in [20];
2. uniform initial W; with CM/OM guided refinement;

3. non-uniform initiaMe < max min > with CM/OM guided refinement (C2BIT-2).

For each benchmark, the initial/finedodalvalue of encoding widths after refinement are reported as
4/12 given in the table, followed by the number of refinementaiiens and total runtime (including
pruning, encoding, UNSAT core extraction and solving timg)hese three methods. For instance, in
innd_33359, the initial uniform\\% is 8 and the finamodeof W, after two iterations is 32 for method

1 and 12 for method 2. With method 3) the non-uniform initMlis < 12,2 > (variables on easy-to-
control paths have width of 12 and the rest have widths of i), the finalmodeof W is still 12, as
only few variables have the enlarg@d after refinement. All methods need 2 iterations to find the SAT

solution for this particular instance but C2BIT-2 is thetéass.

Compared with Spear, C2BIT-2 has achieved significant spgedSome were even greater tharx10

Note that the assignment found for each benchmark was tadidesing the CNF file and the variable

Chapter 6. 105

mapping file generated by Spear. We also observe that themaoex¥V. computed by two refinement
methods are the same or similar for many benchmarks. Onerréathat modern SAT solvers typically
return a ‘maximally-false’ solution that contains as maalgé bits as possible that can produce small
value assignments. However, with the CM/OM guidance, ttergement of variables’ encoding widths
focuses on the subset of paths so that the slicing can be ciauiio reduce the model size and solving
time. With C2BIT-2, the SAT assignment for 10 out of 14 benehks can be obtained in just one iter-
ation with our initial non-uniform bit width encoding. It stvs that this encoding effectively increases
the chances of finding a SAT solution on the easy paths andresgminimal effort for searching on

hard-to-control paths.

6.5 Summary

We have presented an efficient algorithm of computing snralbding widths for bit-vectors by uti-
lizing a path-oriented abstraction-refinement framewaorkis algorithm exploits both the high-level
structure and dynamic verification knowledge to effectivatieer the search. It takes advantage of the
controllability and observability metrics to guide threajor steps: initial encoding width computation,
abstract counterexample generation, and under-appréximadel slicing. Experiments show that our
proposed algorithm can reduce the solving time signifigaegpecially in verifying the paths-intensive

designs.

Chapter 7

Conclusions

In this dissertation, we mainly address the limited scétghproblem of automatic formal verification
techniques like model checking, in the application of eimguthe correctness of embedded software
programs with respect to the critical safety properties.ivf@duce performing the bit-precise verifica-
tion for the bounded verification model of software, in whalhthe data variables are modeled as the
fixed-width bit vectors, all the loops or recursions are Uacbin certain bound. In order to promote the
scalable application of such bit-precise verification ® tthal-world embedded software in practice, we
proposed several efficient property-based automaticadigin refinement techniques with the assist of

static program analysis, symbolic simulation, and teBtalguidance.

Firstly, based on the observation that the properties wel#fication usually depend on a small portion
of the program, we proposed an approach to accurately amikeaffy find this portion, by incorpo-
rating the program slicing and the proof-based abstracg@inement. Our proposed approach tightly
integrates an aggressive static program slicing approablth can reduce programs to the segments
relevant for a particular computation into the softwarefigation model construction and reduction pro-
cess. This allows for effectively removing the program segts that have no computational relevance
to the property under verification, so as to greatly redueentlodel size. Our slicing operations also
naturally combine the compilation optimization technigjuguch as constant propagation, to effectively

compute the accurate program slice.
After the slicing, we explored a proof-based abstractigfimement strategy using under and over-

106

Chapter 7. 107

approximation of the verification model to construct a ltzion abstraction, which further removes
the program segments having no verification relevance tpribygerty. A heuristics method by program
analysis was also proposed to more effectively refine theeagdproximation in each iteration. Ex-
periments conducted on the programs from wireless cognitidio software systems have shown the

effectiveness of the proposed approach.

Second, we investigated the potential of combining synsbsilinulation for the scalable formal ver-
ification. Our approach uses distinguishing X as symbolices to abstract the concrete variables’
values, so that a small number of identified symbolic inputaes can cover the complete input space.
In order to reduce the verification time and ease computiegsyfmbolic input vectors, we apply the
symbolic simulation to check the abstract model insteachefdriginal program, which is automati-
cally constructed in the counterexample-guided abstmaggfinement framework. This abstract model
is a localization abstraction of the program, which inckidesubset of property-relevant program con-
straints. So it may be more easily verified than the originagpam. The property-relevance of program

constraints is automatically determined during the iteeabstraction refinement procedure.

In the next two proposed abstraction techniques, we explbieecommon testability metrics — control-
lability metric (CM) and observability metric (OM) — as th&gh-level structural guidance to construct
the accurate abstract model with fewer control paths andlanvariable value ranges for the scalable

bit-precise verification.

Third, we have presented a new abstraction refinement agprbased on the concept of the under-
and over-approximation for solving bit-vector arithmefiicmulae, generated from control-dominated
embedded software verification instances. We also desigmeiv CM and OM computation method
and applied them to efficiently guide the proposed abstragbrocedure. Our approach builds the
under-approximate model by enforcing constant consgama small set of single-bit variables, which
control the branch selection of ITE nodes. This restricesdbarch space to only a subset of formula
constraints. With the guidance of CM and OM, our approachaeackly find a satisfying solution on

the easily controllable portion of the formula if a solutiexists on it.

Our approach computes the over-approximate abstracteofearning the UNSAT proof of the under-

approximate model. It also restores additional verificatielevant constraints according to the OM

Chapter 7. 108

heuristics to reduce the high computational cost of refimgrbg only using the UNSAT proof. As a

result, a sufficiently accurate abstract model for the \@&ifon can be built quickly, long before all

partitions have been enumerated. To start the new refineiteeation, we use the satisfiable assign-
ment of the current over-approximate abstraction to guiéeconstruction of a new under-approximate
model with an unvisited portion in the formula. With our apach, the verification can be conducted
incrementally due to the partition-based feature of ouraggh. The experimental results show that a
significant amount of solving time can be reduced for the berarks generated from the bit-precise

verification of embedded software compared to state-ohthsolvers for bit-vector arithmetic.

Finally, we propose an efficient algorithm to iterativehsahver non-uniform encoding width&, of
variables in the verification model, which may be smallenttieeir original modeling widths but suffi-
cient to the verification. This algorithm exploits both tHghtlevel structure and dynamic verification
knowledge to effectively steer the search. Different fraxisting approaches, our algorithm is path-
oriented in that it takes advantage of the CM and OM valuesiidegthe computation of the encoding
widths in three major operations: (1) computation of théahnon-uniformW; of variables on different
paths, (2) generation of an abstract counterexample, waffelots the computation of the enlargéd

of variables in the new under-approximate model, and (3ewagproximate model slicing to avoid
searching the paths that have been checked. Our approaaeisle of restricting the search from those
paths that are deemed less favorable or have been checkedién steps, thus simplifying the verifi-
cation problem. Experiments demonstrate that our algoritan significantly speed up the verification,

especially in searching for the counterexample violatheyroperty.

7.1 Recommendations for Future Research

Our research presented in this dissertation shows the peoafibit-precise verification of embedded
software programs in scalable applications. It can senthe@$oundation for promoting the scalable
bit-precise verification of software programs in generaé Mcommend several avenues for the future

research based on our current vision.

Chapter 7. 109

7.1.1 Larger Experiments

Due to the variety of software programs, the standard or evieely accepted benchmarks still do
not exist. It is always a challenge to conduct the researlztect to the software. The benchmarks
used in our current research are from the SMT competitioh [8st of them are derived from the
verification of NULL pointers in real-world embedded softea In the future, we expect to produce
more benchmarks for checking complex properties from laggde software systems in the embedded

applications, such as software defined radio, automotideasionic control systems, etc.

7.1.2 Program Analysis Enhanced Abstraction Refinement

As we know, the automatic abstraction refinement becomesesgary technique in practical software
formal or semi-formal verification. However, many absti@ttrefinement procedures used in software
verification follow the general strategies of their apgiicas in hardware design verification, without

considering the uniqueness of software programs. Moreavéne most abstraction practices that we
observed, the verification performance decreases, onceutinder of refinement iterations becomes
large. Therefore, one potential direction of the futureeegsh is to make use of the knowledge specific
to programs, which can be exploited by the code analysisiigobs, thereby enhancing the accuracy

and efficiency of abstraction refinement.

Concept analysis [49] separates group®loectsthat have commonttributesbased on the concept
lattice. As a static code analysis technique, it has beelieapim support of program understanding,
change impact analysis [97,108] and modularization ofdggade [105]. Concept analysis can provide
a decomposition of program with the cohesive grouping otfimms or program statements. It is related
to, but different from another popular code analysis temiai— program slicing that decomposes the
program by focusing on the subcomputations performed oritfit k@spect to some slicing criterion.
In [108], they have taken advantage of both concept anadysisprogram slicing by proposing a pro-
gram representation callencept lattice of decomposition sliceghere all dependences between the
computations performed by a program are explicitly indidatSo, it is easy to determine whether the
computation performed on a variablés relevant to the computation on another variablby querying

this lattice.

Chapter 7. 110

One core task of abstraction refinement is to automatica#iynl whether a program variable is relevant
or irrelevant to the verification of the specified property.e Wope that the concept lattice built on
program decomposition slices [108] can help improve thectiffeness of refining the abstraction with
the low computational cost at the same time, as well as radubie complexity of the abstract model.
Here, we use the proof-based abstraction refinement agpwigtt under- and over- approximation as
the basis for the following discussion. For example, we csthe concept lattice to guide building
the under-approximate model with certain expectations depend on the specific problem, such as
including the program segments shared by a large numbepgfgm decomposition slices, which may
increase the chances of finding a counterexample violdtimgroperty at the early refinement iterations.
For another example, we can first use the UNSAT proof to pebcidentify a set of variables relevant
to the verification with respect to a simple under-approxe@maodel. Then we use the concept lattice to
select the variables that need to be restored to refine thimabsiodel. For some existing variables on
which the program constraints will not be used for the veatfan in future iterations, we could remove
them from the model as well. As a result, the complexity ofdhstract model can be reduced, without
incurring the verification cost increase during the refinetné/e expect that such a code analysis based

method can also be applied to enhance other abstractioemedint techniques.

An invariant at certain liné is defined as an asserti@nover program variables, such thaglways
holds on all the execution traces that reach atllineductive program invariant plays a critical role for
both proving program correctness and finding bugs. Someaigabs have been established to dynam-
ically detect the potential invariants by learning the dettion profiling, as in [29, 45]. The validity of
these invariants needs to be checked using some staticaédfi methods [94]. The constraint-based

invariant generation [100] was also proposed to find truariants directly.

In order to accomplish trimming the abstract model, we hgmelyathe potential program invariants

identified by the dynamic program analysis technique intaafdto applying the concept analysis. Due
to the conservative property of abstraction, an invarig@ttrue invariant in the more precise abstraction
if it holds in the coarse abstract model. If we can validateaariant in the abstract model in the earlier
iteration with low computational cost, we can use it in thiedaefined abstract model to compact the

state space, so as to trim the verification model.

Chapter 7. 111

7.1.3 \Verification of Concurrent Programs

Concurrency is a model of computation that allows many wfiexecution to coexist. With the emer-
gence of multi-core systems for ever increasing the praoggewer, more and more vicious bugs occur
in concurrent software systems with multiple threads tbatmunicate via shared memory or message
passing. Traditional verification techniques like testiailjin the presence of concurrency due to the
difficulties of reproducing erroneous behavior. We exphkat the bit-precise verification of concurrent

programs is one of future research directions.

Bibliography

[1] A.V. Aho, R. Sethi, and J.D. UllmanCompilers: Principles, Techniques, and Tookddison-

[2]

[3]

[4]
[5]

[6]

[7]

Wesley Press, 1986.

N. Amla and K.L. McMillan. A hybrid of counterexample-bad and proof-based abstraction. In

Proc. of Formal Methods in Computer-Aided Design (FMCAZDOA4.

S. Anand, P. Godefroid, and N. Tillmann. Demand-drivemgpositional symbolic execution. In

Proc. of Tools and Algorithms for Construction and Analyai§Systems (TACAS)008.
F. Baader and T. NipkowTerm Rewriting and All ThatCambridge University Press, 1999.

D. Babic and A.J. Hu. Structural abstaction of softwaegification conditions. IfProc. of Intl.

Conf. on Computer Aided Verification (CA2D07.

D. Babic and M. Musuvathi. Modular arithmetic decisioropedure. InTechnical report, Mi-

crosoft Research, RedmqrizD05.

Domagoj Babi’'c.Exploiting Structure for Scalable Software Verificatid?hD thesis, University

of British Columbia, Vancouver, Canada, 2008.

[8] T.Ball and S.K. Rajamani. Behop: A symbolic model chadike boolean programs. IRroc. of

SPIN 2000.

[9] T. Ball and S.K. Rajamani. Automatically validating tporal safety properties of interfaces. In

[10]

Proc. of Model Checking Software, 8th Intl. SPIN Worksi2{D1.

C.W. Barrett, D.L. Dill, and J.R. Levitt. A decision predure for bit-vector arithmetic. IRroc.
of ACM/IEEE Design Automation Conference (DAT998.

112

Bibliography 113

[11] A. Biere, A. Cimatti, E.M. Clarke, M. Fuijita, and Y. ZhuSymbolic model checking using sat
procedures instead of bdds. Pmoc. of ACM/IEEE Design Automation Conference (DAt&ges
317-320, 1999.

[12] B. Biezer. Software Testing Techniqudsternational Thomson Computer Press, 1990.

[13] P. Bjesse and J. Kukula. Using counterexample guidetradtion refinement to find complex

bugs. InProc. of ACM/IEEE Design, Automation and Test in Europe (EA2004.
[14] Booleforce. http://fmv.jku.at/booleforce.

[15] A.B.Y Bres, G. Berry, and E.M. Sentovich. State abdteerctechniques for the verification of

reactive circuits. IrProc. of Designing Correct Circuit2002.

[16] R. Brinkmann and R. Drechsler. Rtl-datapath verifiwatusing integer linear programming. In
Proc. of VLSI Design2002.

[17] R.E. Bryant. Formal verification of digital circuits ing symbolic ternary system models. In

Proc. of Intl. Conf. on Computer-Aided Verification (CAY990.

[18] R.E. Bryant. Symbolic simulation-techniques and agpions. InProc. of ACM/IEEE Design
Automaton Conference (DAC)990.

[19] R.E. Bryant. Modeling data in formal verification: Bitdit vectors, or words. In

www.cs.cmu.edu/ bryant/presentations/fmcad07-tutppg 2007.

[20] R.E. Bryant, D. Kroening, J. Ouaknine, S.A. Seshia, ®icBman, and B. Brady. Deciding
bit-vector arithmetic with abstraction. IRroc. of Tools and Algorithms for Construction and

Analysis of Systems (TACA3D07.

[21] R.E. Bryant, S.K. Lahiri, and S.A. Sehia. Modeling angrifying systems using a logic of
counter arithmetic with lambda expressions and unintéggréunctions. InProc. of Intl. Conf.

on Computer Aided Verification (CA)002.

[22] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic modetcking with partitioned transition
relations. InProc. of 1991 Intl. Conf. on Very Large Scale Integration $¥)-1991.

Bibliography 114

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D Dill. Symbolic model checking for
sequential circuit verification. IEEEE Trans. on Computers-Aided Design of Integrated Ciscui

1994.

J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic mel checking: 10(20) states and
beyond. Ininformation and Computatigrvolume 98, pages 142-170, 1992.

C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and DERgler. Exe: Automatically generating
inputs of death. IProc. of 13th ACM Conference on Computer and Communicaatsirity
2006.

S. Chai, E.M. Clarke, A. Groce, S. Jha, and H. Veith. Madwerification of software compo-
nents in c. InProc. of Intl. Conf. on Software Engineering (ICSEDO03.

C.H. Chen and P.R. Menon. An approach to functionallleagability analysis. IiProc. of Intl.
Test Conf (ITC)1989.

X. Cheng and M.S. Hsiao. Ant colony optimization diegttprogram abstraction for software

bounded model checking. Froc. of the Intl. Conf. on Computer Design (ICCR2DO08.

X. Cheng and M.S. Hsiao. Simulation-directed invariamining for software verification. In

Proc. of ACM/IEEE Design, Automation and Test in Europe (EA2008.

J.D. Choi and J. Ferrante. Static slicing in the presesfcgoto statements. IACM Trans. on
Programming Languages and Systems (TOP|.AS94.

E.M. Clarke, M. Fuijita, S.P. Rajan, T. Reps, S. Shan&ad T. Teitelbaum. Program slicing for
vhdl. In Proc. of Software Tools for Technology Transfer (ST¥d)Jume 4(1), pages 125-137,
2002.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. @Gmuexample-guided abstraction
refinement. IrProc. of Intl. Conf. on Computer Aided Verification (CA2002.

E.M. Clarke, O. Grumberg, and D. A. Pelddodel CheckingMIT Press, 2000.

E.M. Clarke, A. Gupta, H. Jain, and H. Veith. Model chimck back and forth between hardware
and software. IProc. of Verfied Software: Theories, Tools Experiments GM8TTE) 2005.

Bibliography 115

[35] E.M. Clarke and D. Kroening. A tool for checking ansi-oograms. InProc. of Tools and

Algorithms for Construction and Analysis of Systems (TACp&des 168—-176, 2004.

[36] E.M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. TBS: SAT-based predicate abstrac-
tion for ANSI-C. In Proc. of Tools and Algorithms for Construction and AnalysisSystems

(TACAS) pages 570-574, 2005.

[37] B. Cook, D. Kroening, and N. Sharygina. Cogent: Acceréieorem proving for program verifi-
cation. InProc. of Intl. Conf. on Computer Aided Verification (CAZ)D05.

[38] W. Craig. Linear reasoning: A new form of the herbrarahigzen theorem. ldournal of Symbolc

Logic, 1957.

[39] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and Eadeck. Efficiently computing static
single assignment form and the control dependence graphACM Trans. on Programming

Languages and Systenmages 451-490, 1991.

[40] Satyaki Das. Predicate Abstraction PhD thesis, Dept. of Electrical Engineering in Stanford
University, Stanford, CA, USA, 2003.

[41] M. Davis, G. Logemann, and D.W. Loveland. A machine pamg for theorem proving. In

Communications of the ACMolume 5, pages 394-397, 1962.

[42] N. Dershowitz and D.A. Plaisted. Rewriting. Handbook of Automated Reasonipgges 535—
610, 2001.

[43] S. Edwards, T. Ma, and R. Damiano. Using a hardware mddetker to verify software. In

Proc. of Intl. Conf. on ASIC2001.

[44] M. Ernst. Practical fine-grained static slicing of opized code. InTechnical Report MSR-TR-
94-14, Microsoft Researcii994.

[45] M.D. Ernst, J.H. Perkins, and etc. P.J Guo. The daikatesy for dynamic detection of likely

invariants. InProc. of Science of Computer Programmi2§07.

Bibliography 116

[46] F. Fallah, S. Devadas, and K. Keutzer. Occom: effici@mjgutation of observability-based
code coverage metrics for functional verification. Rroc. of ACM/IEEE Design Automation

Conference (DAG)1998.

[47] V. Ganesh, S. Berezin, and D.L. Dill. A decision procesldior fixed-width bit-vectors. In
Technical Report CSTR 2007-06, Standford University, fStdnCA, USA 94305-9022007.

[48] Vijay Ganesh.Decision Procedures for Bit-vectors, Arrays and IntegeihD thesis, Dept. of
Computer Science in Stanford University, Stanford, CA, U30807.

[49] B. Ganter and R. WilleFormal Concept AnalysisSpringer-Verlag, 1996.

[50] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directedamated random testing. IRroc. of

Programming Language Design and Implementation (PLROD5.

[51] L. Goldstein and E. Thigpen. Scoap: sandia contrditgfobservability analysis program. In
Proc. of ACM/IEEE Design Automation Conference (DAI80.

[52] S.G. Govindaraju and D.L. Dill. Counterexample-gudehoice of projections in approximate

symbolic model checking. IRroc. of Intl. Conf. on Computer Aided Design (ICCARDOO.

[63] S. Graf and H. Saidi. Construction of abstract statelgsavith pvs. InProc. of Intl. Conf. on
Computer Aided Verification (CAV)997.

[54] A. Groce and D. Kroening. Making the most of bmc countaraples. InWorkshop on BMC
2004.

[55] X. Gu. Rtlevel testability improvement by testabild@ypalysis and transormations. D thesis,

Linkoping University, Swedet996.

[56] N. He and M. Hsiao. Using symbolic simulation and weakgrabstraction for formal verifica-
tion of embedded software. IRroc. of Intl. Conf. on Software Engineering and Applicato

2006.

[57] N. He and M. Hsiao. Bounded model checking of embeddésvace in wireless cognitive radio

systems. IrProc. of Intl. Conf. on Computer Design (ICC[2007.

Bibliography 117

[58] N. He and M. Hsiao. A new testability guided abstractionsolving bit-vector formula. In
ACM Intl. Conf. Proceeding Series: Proc. of the Joint Wodgshof the 6th Intl. Workshop on
Satisfiability Modulo Theories and 1st Intl. Workshop onfBiécise Reasonin@008.

[59] N. He and M. Hsiao. An efficient path-oriented bit-vacemcoding width computation algo-
rithm for bit-precise verification. IfProc. of ACM/IEEE Design Automation and Test in Europe

Conference (DATER009.

[60] T.A. Henzinger, R. Jhala, R. Majumda, and G. Sutre. Latzstraction. IIACM Conf. on Princi-
ples of Programming Languages (POPphages 58—70, 2002.

[61] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillaAbstractions from proofs. IACM
Conf. on Principles of Programming Languages (POFR004.

[62] W. Hodges.Model Theory Cambridge University Press, 1993.

[63] S. Horwitz, T. Reps, and D. Binkley. Interproceduratisig using dependence graphs. AGM
Trans. on Programming Languages and Systems (TORMAB)me 12(1), pages 26—60, 1990.

[64] F. Hsu and J.H. Patel. High-level variable selectiondartial-scan implementation. Broc. of

Intl. Conf. on Computer Aided Design (ICCALLP98.

[65] F. Hsu, E.M. Rudnick, and J.H. Patel. Enhancing higleleontrol-flow for improved testability.
In Proc. of Intl. Conf. on Computer Aided Design (ICCADY96.

[66] C.Y. Huang and K.T. Cheng. Assertion checking by corafinvord-level atpg and modular
arithmetic constraint-solving techniques. Rroc. of ACM/IEEE Design Automation Conference
(DAC), 2000.

[67] C.Y. Huang and K.T. Cheng. Assertion checking by corafinvord-level atpg and modular
arithmetic constraint-solving techniques. Rroc. of IEEE/ACM Design Automation Conference
(DAC), 2000.

[68] R.I.G HughesA Philosophical Companion to First-Order Logitlackett Publishing Company,
1993.

[69] Michael Huth. Abstraction. Ittp://www.doc.ic.ac.uk/ mrh/talks.htn@2002.

Bibliography 118

[70] F. lvancic, I. Shlyakhter, M. Ganai, and A. Gupta. ModkEcking ¢ programs using f-soft. In
Proc. of Intl. Conf. on Computer Design (ICC[2005.

[71] J. Ivers and N. Sharygina. Overview of comfort: A modbeecking reasoning framework. In

Technical Report, CMU/SEI-2004-TN-Q1804.

[72] et al J.L. Carter. Restricted symbolic evaluation istfand useful. IrProc. of Intl. Conf. on

Computer Aided Design (ICCADP)998.

[73] P. Johannsen and R. Drechsler. Formal verification errttkevel computing one-to-one design
abstractions by signal width reduction. Rroc. IFIP International Conference on Very Large

Scale Integration2001.

[74] S. Khurshid, C.S. Pasareanu, and W. Visser. Genedasigmbolic execution for model checking
and testing. IrProc. of Tools and Algorithms for Construction and AnalydiSystems (TACAS)
2003.

[75] J.C. King. Symbolic execution and program testingClsmmunications of ACML976.

[76] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Seag: Addison-
Wesley, 1997.

[77] D. Kroening and O. StrichmanDecision Procedures an Algorithmic Point of VieBpringer,

2008.

[78] R.P. Kurshan. Computer Aided Verification of Coordinating Processd&inceton University

Press, 1994.

[79] B. Liand F. Somenzi. Efficient computation of small abstion refinements. IRroc. of the Intl.

Conf. on Computer Aided Design (ICCARpPO4.
[80] SMT lib. http://combination.cs.uiowa.edu/smtlib/.

[81] F.Y.C. Mang and P.H. Ho. Abstraction refinement by coltability and cooperativeness analysis.

In Proc. of ACM/IEEE Design Automation Conference (DAZD0A4.

[82] P. Manolios, S.K. Srinivasan, and D. Vroon. Automatiemory reductions for rtl-level verifica-

tion. In Proc. of Intl. Conf. on Computer Aided Design (ICCAPages 786—793, 2006.

Bibliography 119

[83] J.P. Marques-Silva and K.A. Sakallah. Grasp: A sealgbrdahm for propositional satisfiability.
In IEEE Trans. on Computersolume 48, pages 506-521, 1999.

[84] K.L. McMillan. www.kenmcmil.com/cav05tut.ppt.

[85] K.L.McMillan. Symbolic Model Checking: An Approach to the State Expld3ioblem Kluwer
Academic Publishers, 1993.

[86] K.L. McMillan. Applications of craig interpolants in adel checking. InProc. of Tools and
Algorithms for Construction and Analysis of Systems (TACZ®5.

[87] K.L. McMillan and N. Amla. Automatic abstraction witkib counterexample. IRroc. of Tools

and Algorithms for Construction and Analysis of System&@3) 2003.

[88] A.H. Mekler and E.M. Nelson. Equational bases for iétikelse. IrSIAM Journal on Computing
volume 16(3), pages 465-485, 1987.

[89] Minisat. www.cs.chalmers.se/cs/research/formétmes/minisat.

[90] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. MalRhaff: Engineering and efficient
sat solver. IrProc. of ACM/IEEE Design Automation Conference (DAZD0L1.

[91] M. Murciano, G. Gabodi, and P. Camurati. Automated i&usion by incremental refinement in
interpolant-based model checking. Pmoc. of Intl. Conf. on Computer Aided Design (ICCAD)
2008.

[92] G. Nelson and D.C. Oppen. Simplification by cooperatilegision procedures. IACM Trans.
on Programming Languages and Systems (TOPL2&)9.

[93] T. Nguyen, M. Delaunay, and C. Robach. Testability gsialfor software components. Rroc.
of Intl. Conf. on Software Maintenance(ICS\2P02.

[94] J.W. Nimmer and M.D. Ernst. Static verification of dynaaily detected program invariants:

Integrating daikon and esc/java. Broc. of First Workshop on Runtime Verification (RR)01.

[95] G. Parthasarathy, M.K. lyer, K.T. Cheng, and L.C. Warq efficient finite-domain constraint
solver for circuits. in: Design automation conferencePtoc. of IEEE/ACM Design Automation

Conference (DAG)2004.

Bibliography 120

[96] G. Parthasarathy, M.K. lyer, T. Feng, L.-C. Wang, K.€heng, and M.S. Abadir. Combining
atpg and symbolic simulation for efficient validation of ezdlded array systems. Rroc. of Intl.

Test Conf. (ITC)2002.

[97] X. Ren, F. Shah, F. Tip, B.G. Ryder, and O. Chesley. Chiaf tool for practical change
impact analysis of java programs. Pmoc. of ACM Conference on Object Oriented Programming,

Systems and Applications (OOPS|2005.

[98] T. Rondeau, T. Bielawa, D. Maldonado, M.S. Hsiao, anvCBostian. A methodolgy for a
verifiable software platform to secure software defined aghitive radios. InSoftware Define

Radio (SDR)2005.

[99] H. RueB and N. Shankar. Deconstructing shostalerbt. of 16th IEEE Symposium on Logic in
Computer Science (LICS001.

[100] S. SankaranarayanarMathematical Analysis of ProgramsPhD thesis, Stanford University,

Stanford, California, 2005.

[101] C.H. Seger and R.E. Bryant. Formal verification by sglitbevaluation of partially-ordered
trajectories. InJournal of Formal Methods in System Desid995.

[102] R. Shostak. Deciding combinations of theories.Jtmrnal of the Association for Computing

Machinery 1984.

[103] N. Sinha. Symbolic program analysis using term remgiaand generalization. IRroc. of Formal

Methods in Computer-Aided Design (FMCARDOS.

[104] N. Sinha and E.M. Clarke. Abstraction in model chegkinin www.cs.cmu.edu/ emc/15817-
s05/cegar.ppt2005.

[105] G. Snelting. Concept analysis - a new framework fogpam understanding. IRroc. of ACM

Workshop on Program Analysis for Software Tools and Enging¢PASTE) 1998.

[106] K. Thearling and J. Abraham. An easily computed funrzai level testability measure. Rroc.
of Intl. Test Conf. (ITC)1989.

[107] F. Tip. A survey of program slicing techniques.Journal on Program Language4995.

Bibliography 121

[108] P. Tonella. Using a concept lattice of decompositiliees for program understanding and impact

analysis. INEEE Trans. on Software Engineering003.

[109] C. Wang, Z. Yang, F. lvancic, and A. Gupta. Disjunctineage computation for embedded
software verification. IProc. of ACM/IEEE Design, Automation and Test in Europe (BAT
2006.

[110] C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Disjunctiveage computation for embedded
software verification. IrProc. of ACM/IEEE Design, Automation and Test in Europe (BAT

2006.

[111] M.N. Wegman and F.K. Zadeck. Constant propagatioh wainditional branches. IKCM Trans.
on Programming Languages and Systems (TOPL2g9)1.

[112] D. Weise, R.F. Crew, M. Ernst, and B. Steensgaard. e/diependence graphs: Representation
without taxation. InTechnical Report MSR-TR-94-03, Microsoft Reseat&194.

[113] M. Weiser.Program Slices: Formal, Psychological, and Practical Istigations of an Automatic

Program Abstraction MethadPhD thesis, University of Michigan, Ann Arbor, Michigarf79.

[114] C. Wilson, D.L. Dill, and R.E. Bryant. Symbolic simtilen with approximate values. IRroc.
of Formal methods in computer aided design (FMCAZDOO.

[115] Y. Xie and A. Aiken. Scalable error detection using leam satisfiability. INnACM Symposium
on Principles of Programming Languages (POP2005.

[116] Yices. http:/lyices.csl.sri.com/tool-paper.pdf.

[117] A. Zaks, Z. Yang, |. Shlyakhter, and F. Ivancic etl. \@idth reduction via symbolic interval
analysis for software model checking. Tmans. on Computer Aided Design (TCARRges

1513-1517, 2008.

[118] L. Zzhang and S. Malik. Conflict driven learning in a qtiied boolean satisfiability solver. In

Proc. of Intl. Conf. on Computer Aided Design (ICCAR)O2.

Bibliography 122

[119] L. Zhang, M.R. Prasad, and M.S. Hsiao. Incrementalidie and inductive reasoning for sat-
based bounded model checking.Rroc. of the Intl. Conf. on Computer Aided Design (ICCAD)
2004.

[120] L. Zhang, M.R. Prasad, M.S. Hsiao, and T. Sidle. Dyr@atistraction using sat-based bmc. In
Proc. of IEEE/ACM Design Automation Conference (DAZDOS.

