

Outline

- 1. Wake modeling
- Modeling of tradeoffs: Wake power loss vs Wind farm size costs
- 3. Results
 - MIN Cost
 - MAX Profit, if limited land
 - Effect of turbulence-influenced O&M
 - Effect of alignment

JOHNS HOPKINS Wake effects in large wind-farms SUSTAINABILITY & HEALTH INSTITUTE

Depending on wind direction, loss of power 30 /

Barthelmie, et al. J. Physics Conf. Series 75 (2007), 012049

Coupled wake boundary layer model

Combines strength of two models:

- Wake model approach (e.g., Jensen 1983)
 - Works well in entrance regime
 - Doesn't in fully developed regime

- 'Top-down' approach (Frandsen, 2006; Calaf, Meneveau, Meyers, 2010)
 - No info on turbine positions
 - Captures interaction with atmospheric boundary layer

JOHNS HOPKINS Coupled wake boundary layer model

- Turbine velocity (fully developed regime) depends on s_{ve} (topdown), k_w (wake); iterate until get same velocity in both models
- Two way coupling leads to improved results!

Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015)

Model comparison: Generic Farm (Neutral stability, Region II operation)

Symbols: LES results; Lines: model results

Colors: $s_v = 3.49$ $s_v = 5.23$ $s_v = 7.85$

CWBL model captures effects in both aligned and staggered wind-farms; "Top-down" or wake models don't.

JOHNS HOPKINS ENVIRONMENT, ENERGY, SUSTAINABILITY & HEALTH INSTITUTE

Outline

1. Wake modeling

2. Modeling of tradeoffs: Wake power loss vs Wind farm size costs

- 3. Results
 - MIN Cost
 - MAX Profit, if limited land
 - Effect of turbulence-influenced O&M
 - Effect of alignment

Objective:

Develop better understanding of optimal wind turbine spacing in large wind-farms

Industry approach:

Site-specific optimization for turbine placement with Jensen-type models.

Typical: $S_{opt} \sim 6 - 10D$

Surprisingly "large" spacing from simple(st) model (Meyers & Meneveau, Wind Energy, 2012):

Optimal spacing $S_{opt} \sim 12-15D$ for very large wind farms (top-down model)

Accounted for land & turbine costs, but not cable/road costs

Questions:

- 1. What is the effect of including **linear costs** (cables, roads, losses)?
- 2. How robust are results to optimization criteria?
 - i. Min cost/MWh (unlimited land)
 - ii. Max profit/km² (limited land)
- 3. How do results depend on wind farm layout (staggered vs. aligned)?

Parameters considered

Normalized w.r.t. turbine costs

Area (land) cost

$$\theta = \frac{\text{Cost}_{\text{land}}}{\text{Cost}_{\text{turbine}}/D^2}$$

Linear (cable, road, loss) costs

$$\beta = \frac{\text{Cost}_{\text{cable}}}{\text{Cost}_{\text{turbine}}/D}$$

Revenue

$$\gamma = \frac{\text{Revenue over lifetime}}{\text{Cost}_{\text{turbine}}}$$

Maintenance cost

$$\epsilon = \frac{\text{Maintenance costs over lifetime}}{\text{Cost}_{\text{turbine}}}$$

Outline

- 1. Wake modeling
- 2. Modeling of tradeoffs:
 Wake power loss vs Wind farm size costs
- 3. Results
 - MIN Cost
 - MAX Profit, if limited land
 - Effect of turbulence-influenced O&M
 - Effect of alignment

Power Loss—Distance Cost Tradeoffs

Normalized Turbine Cost 0.5 0.45 0.4 0.35 Total Cost 0.3 0.25 0.2 0.15 Area+Lindar Power Loss 0.1 Cost 0.05 0 0 5 10

Land:

- Land cost θ = 0.001 (Royalties ~\$5000/ha)
- Length cost β = 0.004
 (Cables ~ \$60/m; Roads ~\$80/m;
 60 W/m/turbine loss)

Off-Shore:

- Land cost θ < 0.0001 (Lease cost ~\$100/ha)
- Length cost β = 0.01 (Cables ~\$1000/m, 70 W/m/turbine loss)

Optimize normalized costs

Define costs as

$$Cost = Cost_{turb} + (sD)Cost_{cable} + (sD)^2Cost_{land}.$$

This gives the following normalized power per unit cost

$$\begin{split} P^* &= \frac{P_{\infty}(s_{\mathbf{x}}, s_{\mathbf{y}}, \text{layout}, \ldots)}{\text{Cost}} = \frac{P_{\infty}(s_{\mathbf{x}}, s_{\mathbf{y}}, \text{layout}, \ldots)}{\text{Cost}_{\text{turb}} + (\text{sD})\text{cost}_{\text{cable}} + (\text{sD})^2\text{Cost}_{\text{land}}} \\ &= \frac{P_{\infty}(s_{\mathbf{x}}, s_{\mathbf{y}}, \text{layout}, \ldots)}{\text{Cost}_{\text{turb}}} \frac{1}{1 + \beta s + \theta s^2} \end{split}$$

Effect of linear & area costs

Optimize profit in fixed area

If (1) land limited and (2) wind highly profitable → want to squeeze in more turbines! Define *profit per unit area*:

Profit =
$$\{P_{\infty}(s_x, s_y, \text{layout}, ...)\}$$
 Revenue over lifetime
- $[\text{Cost}_{\text{turb}} + \text{Cost}_{\text{cable}}(sD) + \text{Cost}_{\text{land}}(sD)^2]\} / (sD)^2$

This gives the following normalized profit:

Profit =
$$\{P_{\infty}(s_x, s_y, \text{layout}, ...)\gamma - [1 + \beta s + \theta s^2]\} / s^2$$

Optimize profit in fixed area

- Wind unprofitable in white areas (unfavorable area & linear costs)
- Higher revenues (more profit per turbine) → closer spacing than MIN cost
 - ✓ E.g., S_{opt} ~10D (vs. 15D if MIN cost)
 ✓ Why? Profit per turbine more than makes up for wake energy losses
- · Higher linear costs can imply greater spacing
 - ✓ Effect of lower profit/turbine (→spread out) counteracts effect of higher costs (→ closer spacing)

Optimize profit, with O&M costs as function of turbulence

Define profit as

Profit = $\{P_{\infty}(s_x, s_y, \text{layout}, ...)\}$ Revenue over lifetime $-[\text{Cost}_{\text{turb}} + \epsilon' \text{TI}(s_x, s_y, \text{layout}, ...) + \text{Cost}_{\text{cable}} sD + \text{Cost}_{\text{land}} (sD)^2]\} / (sD)^2$

This gives the following normalized expression for profit:

Profit =
$$\{P_{\infty}(s_x, s_y, \text{layout}, ...)\gamma - [1 + \beta s + \theta s^2 + \epsilon \text{TI}(s_x, s_y, \text{layout}, ...)]\}/(sD)^2$$

Maintenance costs:

$$\epsilon = \frac{\text{Maintenance costs}}{\text{Cost}_{\text{turbine}}}$$

Optimize profit with O&M cost as function of turbulence

(turbulence-influenced O&M ~10% of levelized capital cost)

- Turbulence-sensitive O&M → wider optimal spacing
 - ✓ As reduced maintenance costs compensate in part for reduced revenues from having fewer turbines

Conclusions

Contribution: Optimum spacing for large farm with:

- CWBL model
- Area & linear costs

Under our parameters:

- Min cost in infinite farm $\rightarrow S_{opt} \sim 10-15D$
- Max profit in limited area → closer (depending on profit/turbine)
- Considering turbulence-sensitive O&M → spread out

S_{opt} sensitive to:

- Length costs (especially off-shore farms)
- Area costs (especially on-shore)

