Center for Energy Harvesting Materials and Systems (CEHMS)
Permanent URI for this community
Browse
Browsing Center for Energy Harvesting Materials and Systems (CEHMS) by Author "Apo, Daniel J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Dual-phase self-biased magnetoelectric energy harvesterZhou, Yuan; Apo, Daniel J.; Priya, Shashank (AIP Publishing, 2013-11-01)We report a magnetoelectric energy harvester structure that can simultaneously scavenge magnetic and vibration energy in the absence of DC magnetic field. The structure consisted of a piezoelectric macro-fiber composite bonded to a Ni cantilever. Large magnetoelectric coefficient similar to 50 V/cm Oe and power density similar to 4.5 mW/cm(3) (1 g acceleration) were observed at the resonance frequency. An additive effect was realized when the harvester operated under dual-phase mode. The increase in voltage output at the first three resonance frequencies under dual-phase mode was found to be 2.4%, 35.5%, and 360.7%. These results present significant advancement toward high energy density multimode energy harvesting system. (C) 2013 AIP Publishing LLC.
- Tunable self-biased magnetoelectric response in homogenous laminatesZhou, Yuan; Yang, Su-Chul; Apo, Daniel J.; Maurya, Deepam; Priya, Shashank (AIP Publishing, 2012-12-01)In this study, we demonstrate self-biased magnetoelectric effect in homogenous two-phase magnetostrictive-piezoelectric laminates. Our results illustrate the method for tuning the magnitude of self-bias effect and provide understanding behind the hysteretic changes. We model this phenomenon by considering the magnetization hysteresis with shape-induced demagnetization effect. The self-biased response was found to be directly related to the nature of magnetization and can be tuned by variation in demagnetization state and the resultant differential magnetic flux distribution. These results present significant advancement toward development of AC magnetic field sensor and magnetoelectric composite based on-chip devices by eliminating the need for DC bias. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769365]