Browsing by Author "Aberle, Ezra"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnershipLee, Do Kyoung; Aberle, Ezra; Anderson, Eric K.; Anderson, William; Baldwin, Brian S.; Baltensperger, David; Barrett, Michael; Blumenthal, Jurg; Bonos, Stacy; Bouton, Joe; Bransby, David I.; Brummer, Charlie; Burks, Pane S.; Chen, Chengci; Daly, Christopher; Egenolf, Josh; Farris, Rodney L.; Fike, John H.; Gaussoin, Roch; Gill, John R.; Gravois, Kenneth; Halbleib, Michael D.; Hale, Anna; Hanna, Wayne; Harmoney, Keith; Heaton, Emily A.; Heiniger, Ron W.; Hoffman, Lindsey; Hong, Chang O.; Kakani, Gopal; Kallenbach, Robert; Macoon, Bisoondat; Medley, James C.; Missaoui, Ali; Mitchell, Robert; Moore, Ken J.; Morrison, Jesse I.; Odvody, Gary N.; Richwine, Jonathan D.; Ogoshi, Richard; Parrish, Jimmy Ray; Quinn, Lauren; Richard, Ed; Rooney, William L.; Rushing, J. Brett; Schnell, Ronnie; Sousek, Matt; Staggenborg, Scott A.; Tew, Thomas; Uehara, Goro; Viands, Donald R.; Voigt, Thomas; Williams, David G.; Williams, Linda; Wilson, Lloyd Ted; Wycislo, Andrew; Yang, Yubin; Owens, Vance (2018-10)Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country.
- Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillageRieke, Elizabeth L.; Cappellazzi, Shannon B.; Cope, Michael; Liptzin, Daniel; Mac Bean, G.; Greub, Kelsey L. H.; Norris, Charlotte E.; Tracy, Paul W.; Aberle, Ezra; Ashworth, Amanda; Banuelos Tavarez, Oscar; Bary, Andy, I; Baumhardt, R. L.; Borbon Gracia, Alberto; Brainard, Daniel C.; Brennan, Jameson R.; Briones Reyes, Dolores; Bruhjell, Darren; Carlyle, Cameron N.; Crawford, James J. W.; Creech, Cody F.; Culman, Steve W.; Deen, Bill; Dell, Curtis J.; Derner, Justin D.; Ducey, Thomas F.; Duiker, Sjoerd W.; Dyck, Miles F.; Ellert, Benjamin H.; Espinosa Solorio, Avelino; Fonte, Steven J.; Fonteyne, Simon; Fortuna, Ann-Marie; Foster, Jamie L.; Fultz, Lisa M.; Gamble, Audrey, V; Geddes, Charles M.; Griffin-LaHue, Deirdre; Grove, John H.; Hamilton, Stephen K.; Hao, Xiying; Hayden, Zachary D.; Honsdorf, Nora; Howe, Julie A.; Ippolito, James A.; Johnson, Gregg A.; Kautz, Mark A.; Kitchen, Newell R.; Kumar, Sandeep; Kurtz, Kirsten S. M.; Larney, Francis J.; Lewis, Katie L.; Liebman, Matt; Lopez Ramirez, Antonio; Machado, Stephen; Maharjan, Bijesh; Martinez Gamino, Miguel Angel; May, William E.; McClaran, Mitchel P.; McDaniel, Marshall D.; Millar, Neville; Mitchell, Jeffrey P.; Moore, Amber D.; Moore, Philip A.; Mora Gutierrez, Manuel; Nelson, Kelly A.; Omondi, Emmanuel C.; Osborne, Shannon L.; Osorio Alcala, Leodegario; Owens, Philip; Pena-Yewtukhiw, Eugenia M.; Poffenbarger, Hanna J.; Ponce Lira, Brenda; Reeve, Jennifer R.; Reinbott, Timothy M.; Reiter, Mark S.; Ritchey, Edwin L.; Roozeboom, Kraig L.; Rui, Yichao; Sadeghpour, Amir; Sainju, Upendra M.; Sanford, Gregg R.; Schillinger, William F.; Schindelbeck, Robert R.; Schipanski, Meagan E.; Schlegel, Alan J.; Scow, Kate M.; Sherrod, Lucretia A.; Shober, Amy L.; Sidhu, Sudeep S.; Solis Moya, Ernesto; St Luce, Mervin; Strock, Jeffrey S.; Suyker, Andrew E.; Sykes, Virginia R.; Tao, Haiying; Trujillo Campos, Alberto; Van Eerd, Laura L.; Verhulst, Nele; Vyn, Tony J.; Wang, Yutao; Watts, Dexter B.; William, Bryan B.; Wright, David L.; Zhang, Tiequan; Morgan, Cristine L. S.; Honeycutt, C. Wayne (Pergamon-Elsevier, 2022-05)Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity.