Browsing by Author "Bahamonde, Javiera"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Bovine fetal mesenchymal stem cells exert antiproliferative effect against mastitis causing pathogen Staphylococcus aureusCahuascanco, Berly; Bahamonde, Javiera; Huaman, Olger; Jervis, Miguel; Cortez, Jahaira; Palomino, Jaime; Escobar, Alejandro; Retamal, Patricio; Torres, Cristian G.; Peralta, Oscar A. (2019-04-11)Staphylococcus aureus is the most commonly isolated pathogen from clinical bovine mastitis samples and a difficult pathogen to combat. Mesenchymal stem cells (MSC) are multipotent progenitor cells equipped with a variety of factors that inhibit bacterial growth. The aim of the present study was to evaluate the in vitro antibacterial potential against S. aureus of conditioned medium (CM) from MSC derived from fetal bovine bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC, AT-MSC and fetal fibroblasts (FB) cultures were activated by infection with S. aureus. Bacterial growth was evaluated in presence of CM, concentrated CM (CCM), activated CM (ACM) and concentrated ACM (CACM) from BM-MSC, AT-MSC and FB. Gene expression of β-defensin 4A (bBD-4A), NK-lysine 1 (NK1), cathelicidin 2 (CATHL2), hepcidin (HEP) and indoleamine 2,3 dioxygenase (IDO) and protein expression of bBD-4A were determined in activated and non-activated cells. The majority of BM-MSC and AT-MSC expressed CD73, Oct4 and Nanog, and were negative for CD34. Growth of S. aureus decreased when it was exposed to CM from BM-MSC, AT-MSC and FB. Moreover, growth of S. aureus in CCM, ACM and CACM was lower compared to controls of CM from BM-MSC and AT-MSC. Activated AT-MSC increased mRNA levels of bBD4A and NK1, and protein levels of bBD4A in CM. Thus, CM from fetal bovine BM-MSC and AT-MSC has the capacity to reduce in average ~30% of S. aureus relative growth under in vitro conditions. The in vitro antibacterial effect of fetal bovine MSC may be mediated by bBD4A and NK1 activity.
- Bovine Fetal Mesenchymal Stem Cells Obtained From Omental Adipose Tissue and Placenta Are More Resistant to Cryoprotectant Exposure Than Those From Bone MarrowOyarzo, Rudy; Valderrama, Ximena; Valenzuela, Francisca; Bahamonde, Javiera (2021-10-04)Recent studies have shown promise for the development of cellular therapies with mesenchymal stem cells (MSCs) in livestock species, specifically bovines, and cryopreservation is highly relevant for the advancement of these applications. The use of permeable and/or non-permeable cryoprotectant solutions is necessary to reduce cell damage during freezing and thawing, but these same compounds can also cause negative effects on MSCs and their therapeutic properties. Another important factor to consider is the tissue source of MSCs, since it is now known that MSCs from different tissues of the same individual do not behave the same way, so optimizing the type and concentration of cryoprotectants for each cell type is essential to achieve a large and healthy population of MSCs after cryopreservation. Furthermore, sources of MSCs that could provide great quantities, non-invasively and without ethical concerns, such as placental tissue, have great potential for the development of regenerative medicine in livestock species, and have not been thoroughly evaluated. The objective of this study was to compare the viability of bovine fetal MSCs extracted from bone marrow (BM), adipose tissue (AT), and placenta (PT), following their exposure (15 and 30 min) to several solutions of permeable (dimethyl sulfoxide and ethylene glycol) and non-permeable (trehalose) cryoprotectants. Viability assays were performed with Trypan Blue to assess post-exposure plasma membrane integrity. The apoptotic potential was estimated analyzing the mRNA abundance of BAX and BCL-2 genes using quantitative rt-PCR. Based on the results of the study, BM-MSC exhibited significantly lower viability compared to AT-MSC and PT-MSC, at both 15 and 30 min of exposure to cryoprotectant solutions. Nevertheless, viability did not differ among treatments for any of the cell types or timepoints studied. BCL-2 expression was higher in BM-MSC compared to AT-MSC, however, BAX/BCL-2 ratio did not differ. In conclusion, AT-MSC and PT-MSC were more resistant that BM-MSC, which showed higher sensitivity to experimental conditions, regardless of the exposure times, and cryoprotectant solutions used in the study.
- Current Thoughts on Maternal Nutrition and Fetal Programming of the Metabolic SyndromeBrenseke, Bonnie; Prater, Mary R.; Bahamonde, Javiera; Gutierrez, J. Claudio (Hindawi, 2013-02-14)Chronic diseases such as type 2 diabetes and cardiovascular disease are the leading cause of death and disability worldwide. Although the metabolic syndrome has been defined in various ways, the ultimate importance of recognizing this combination of disorders is that it helps identify individuals at high risk for both type 2 diabetes and cardiovascular disease. Evidence from observational and experimental studies links adverse exposures in early life, particularly relating to nutrition, to chronic disease susceptibility in adulthood. Such studies provide the foundation and framework for the relatively new field of developmental origins of health and disease (DOHaD). Although great strides have been made in identifying the putative concepts and mechanisms relating specific exposures in early life to the risk of developing chronic diseases in adulthood, a complete picture remains obscure. To date, the main focus of the field has been on perinatal undernutrition and specific nutrient deficiencies; however, the current global health crisis of overweight and obesity demands that perinatal overnutrition and specific nutrient excesses be examined. This paper assembles current thoughts on the concepts and mechanisms behind the DOHaD as they relate to maternal nutrition, and highlights specific contributions made by macro- and micronutrients.