Browsing by Author "Chen, Jie"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Adaptive Scheduling and Tool Flow Control in Automated Manufacturing SystemsChen, Jie (Virginia Tech, 2003-04-02)The recent manufacturing environment is characterized as having diverse products due to mass customization, short production lead-time, and unstable customer demand. Today, the need for flexibility, quick responsiveness, and robustness to system uncertainties in production scheduling decisions has increased significantly. In traditional job shops, tooling is usually assumed as a fixed resource. However, when tooling resource is shared among different machines, a greater product variety, routing flexibility with a smaller tool inventory can be realized. Such a strategy is usually enabled by an automatic tool changing mechanism and tool delivery system to reduce the time for tooling setup, hence allows parts to be processed in small batches. In this research, a dynamic scheduling problem under flexible tooling resource constraints is studied. An integrated approach is proposed to allow two levels of hierarchical, dynamic decision making for job scheduling and tool flow control in Automated Manufacturing Systems. It decomposes the overall problem into a series of static sub-problems for each scheduling window, handles random disruptions by updating job ready time, completion time, and machine status on a rolling horizon basis, and considers the machine availability explicitly in generating schedules. Two types of manufacturing system models are used in simulation studies to test the effectiveness of the proposed dynamic scheduling approach. First, hypothetical models are generated using some generic shop flow structures (e.g. flexible flow shops, job shops, and single-stage systems) and configurations. They are tested to provide the empirical evidence about how well the proposed approach performs for the general automated manufacturing systems where parts have alternative routings. Second, a model based on a real industrial flexible manufacturing system was used to test the effectiveness of the proposed approach when machine types, part routing, tooling, and other production parameters closely mimic to the real flexible manufacturing operations. The study results show that the proposed scheduling approach significantly outperforms other dispatching heuristics, including Cost Over Time (COVERT), Apparent Tardiness Cost (ATC), and Bottleneck Dynamics (BD), on due-date related performance measures under both types of manufacturing systems models. It is also found that the performance difference between the proposed scheduling approach and other heuristics tend to become more significant when the number of machines is increased. The more operation steps a system has, the better the proposed method performs, relative to the other heuristics. This research also investigates in what conditions (e.g. the number of machines, the number of operation steps, and shop load conditions) the proposed approach works the best, and how the performance of this proposed approach changes when these conditions change. When tooling resource is shared, parts can be routed to machines that do not have all the required tools. This may result in higher routing flexibility. However, research work to date in sharing of tooling resources often places more emphasis on the real-time control and manipulation of tools, and pays less attention to the loading of machines and initial tool allocation at the planning stage. In this research, a machine-loading model with shared tools is proposed to maximize routing flexibility while maintaining minimum resident tools. The performance of the proposed loading heuristic is compared to that of a random loading method using hypothetically generated single stage system models. The study result indicates that better system performances can be obtained by taking into account the resident tooling ratio in assigning part types and allocating tools to machines at the initial planning stage.
- Design and analysis of a thermoelectric energy harvesting system for powering sensing nodes in nuclear power plantChen, Jie (Virginia Tech, 2016-02-08)In this work, a thermoelectric energy harvester system aimed at harvesting energy for locally powering sensor nodes in nuclear power plant coolant loops has been designed, fabricated and tested. Different mathematical modeling methods have been validated by comparing with experimental results. The model developed by this work has the best accuracy in low temperature range and can be adapted and used with any heat sink, heat pipe, or thermoelectric system, and have proven to provide results closely matching experimental data. Using the models, an optimization of the thermoelectric energy harvesting system has been performed which is applicable to any energy harvester of this variety. With experimental validation, the system is capable of generating sufficient energy to power all the sensors and electronical circuits designed for this application. The effect of gamma radiation on this thermoelectric harvester has also been proved to be small enough through radiation experiment.
- Thermoelectric properties of DC-sputtered filled skutterudite thin filmFu, Gaosheng; Zuo, Lei; Chen, Jie; Lu, Ming; Yu, Liangyao (American Institute of Physics, 2015-03-28)The Yb filled CoSb3 skutterudite thermoelectric thin films were prepared by DC magnetron sputtering. The electrical conductivity, Seebeck coefficient, thermal conductivity, and figure of merit ZT of the samples are characterized in a temperature range of 300K to 700 K. X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy are obtained to assess the phase composition and crystallinity of thin film samples at different heat treatment temperatures. Carrier concentrations and Hall mobilities are obtained from Hall Effect measurements, which provide further insight into the electrical conductivity and Seebeck coefficient mechanisms. The thermal conductivity of thin film filled skutterudite was found to be much less compared with bulk Yb filled CoSb3 skutterudite. In this work, the 1020K heat treatment was adopted for thin film post process due to the high degree of crystallinity as well as avoiding reverse heating effect. Thin film samples of different thicknesses were prepared with the same sputtering deposition rate and maximum ZT of 0.48 was achieved at 700K for the 130 nm thick sample. This value was between half and one third of the bulk figure of merit which was due to the lower Hall mobility. (C) 2015 AIP Publishing LLC.
- Topological Chaos and Mixing in Lid-Driven Cavities and Rectangular ChannelsChen, Jie (Virginia Tech, 2008-11-17)Fluid mixing is a challenging problem in laminar flow systems. Even in microfluidic systems, diffusion is often negligible compared to advection in the flow. The idea of chaotic advection can be applied in these systems to enhance mixing efficiency. Topological chaos can also lead to efficient and rapid mixing. In this dissertation, an approach to enhance fluid mixing in laminar flows without internal rods is demonstrated by using the idea of topological chaos. Periodic motion of three stirrers in a two-dimensional flow can lead to chaotic transport of the surrounding fluid. For certain stirrer motions, the generation of chaos is guaranteed solely by the topology of that motion and continuity of the fluid. This approach is in contrast to standard techniques. Appropriate stirrer motions are determined using the Thurston-Nielsen classification theorem, which also predicts a lower bound on the complexity of the dynamics in the flow. Work in this area has focused largely on using physical rods as stirrers, but the theorem also applies when the ``stirrers'' are passive fluid particles. In this thesis, topological chaos is theoretically and numerically investigated in lid-driven cavities and rectangular channels without internal rods. When a two-dimensional incompressible Newtonian flow is in the Stokes flow regime, the stream function satisfies the two-dimensional biharmonic equation. When the flow occurs in a lid-driven cavity with solid side walls, this equation can be solved using a method that is similar to the traditional Fourier expansion but uses an asymptotic approximation for the sum of high order terms. When the flow occurs between two infinite plates with spatially periodic boundary conditions, an exact solution in a rectangle with finite width, which represents the flow in this infinitely-wide cavity, can be obtained by using the principle of superposition. A fully developed, three-dimensional flow in a rectangular channel can be decomposed into an unperturbed Poiseuille flow in the axial direction and a lid-driven cavity secondary flow in the cross section. This model can be applied to numerically simulate either pressure-driven flow in a rectangular channel with surface grooves or electro-osmotic flow in a rectangular channel with variations in surface potential. In this dissertation, the occurrence of topological chaos in unsteady two-dimensional flows as well as steady three-dimensional flows without internal rods is demonstrated. For appropriate choices of boundary velocity on the top and/or bottom walls, there exist three periodic points in the flows that produce a chaos-generating motion. In steady flow through a three-dimensional rectangular channel, the axial direction plays the role of time and the periodic points lie on streamtubes that "braid" the surrounding fluid as it moves through the duct. When appropriate motion is applied on the boundary of the wide cavity or channel, topological chaos can also be generated in the flow. The stretching rate of non-trivial material lines in all these flows agrees with the prediction of the lower bound of topological entropy provided by the Thurston-Nielsen theorem. Ghost rod structures are found and analyzed in the lid-driven cavity and rectangular channel flows with solid side walls. The results suggest that the no-slip boundary condition on the stationary internal surfaces is one of the reasons for poor mixing in steady laminar three-dimensional flows considered previously with solid braided internal rods.