Browsing by Author "Cimini, Daniela"
Now showing 1 - 20 of 47
Results Per Page
Sort Options
- Abstracts from the 3rd Conference on Aneuploidy and Cancer: Clinical and Experimental AspectsCornish-Bowden, Athel; Rasnick, David; Heng, Henry H.; Horne, Steven; Abdallah, Batoul; Liu, Guo; Ye, Christine J.; Bloomfield, Mathew; Vincent, Mark D.; Aldaz, C. M.; Karlsson, Jenny; Valind, Anders; Jansson, Caroline; Gisselsson, David; Graves, Jennifer A. M.; Stepanenko, Aleksei A.; Andreieva, Svitlana V.; Korets, Kateryna V.; Mykytenko, Dmytro O.; Huleyuk, Nataliya L.; Baklaushev, Vladimir P.; Kovaleva, Oksana A.; Chekhonin, Vladimir P.; Vassetzky, Yegor S.; Avdieiev, Stanislav S.; Bakker, Bjorn; Taudt, Aaron S.; Belderbos, Mirjam E.; Porubsky, David; Spierings, Diana C. J.; de Jong, Tristan V.; Halsema, Nancy; Kazemier, Hinke G.; Hoekstra-Wakker, Karina; Bradley, Allan; de Bont, Eveline S. J. M.; van den Berg, Anke; Guryev, Victor; Lansdorp, Peter M.; Tatché, Maria C.; Foijer, Floris; Liehr, Thomas; Baudoin, Nicolaas C.; Nicholson, Joshua M.; Soto, Kimberly; Quintanilla, Isabel; Camps, Jordi; Cimini, Daniela; Dürrbaum, M.; Donnelly, N.; Passerini, V.; Kruse, C.; Habermann, B.; Storchová, Z.; Mandrioli, Daniele; Belpoggi, Fiorella; Silbergeld, Ellen K.; Perry, Melissa J.; Skotheim, Rolf I.; Løvf, Marthe; Johannessen, Bjarne; Hoff, Andreas M.; Zhao, Sen; SveeStrømme, Jonas M.; Sveen, Anita; Lothe, Ragnhild A.; Hehlmann, R.; Voskanyan, A.; Fabarius, A.; Böcking, Alfred; Biesterfeld, Stefan; Berynskyy, Leonid; Börgermann, Christof; Engers, Rainer; Dietz, Josef; Fritz, A.; Sehgal, N.; Vecerova, J.; Stojkovicz, B.; Ding, H.; Page, N.; Tye, C.; Bhattacharya, S.; Xu, J.; Stein, G.; Stein, J.; Berezney, R.; Gong, Xue; Grasedieck, Sarah; Swoboda, Julian; Rücker, Frank G.; Bullinger, Lars; Pollack, Jonathan R.; Roumelioti, Fani-Marlen; Chiourea, Maria; Raftopoulou, Christina; Gagos, Sarantis; Duesberg, Peter; Bloomfield, Mathew; Hwang, Sunyoung; Gustafsson, Hans T.; O’Sullivan, Ciara; Acevedo-Colina, Aracelli; Huang, Xinhe; Klose, Christian; Schevchenko, Andrej; Dickson, Robert C.; Cavaliere, Paola; Dephoure, Noah; Torres, Eduardo M.; Stampfer, Martha R.; Vrba, Lukas; LaBarge, Mark A.; Futscher, Bernard; Garbe, James C.; Trinh, Andrew L.; Zhou, Yi-Hong; Digman, Michelle (2017-06-22)
- ASCB statement of commitment to diversity, equity, and inclusionMurray, Sandra A.; Holzbaur, Erika L. F.; Munson, Mary; Cimini, Daniela; Lane, Timothy F.; Alvania, Rebecca; Applewhite, Derek A.; Chang, Fred; Chen, Elizabeth H.; Earnshaw, William C.; Evans, Chantell S.; Li, Rong; Mierzwa, Beata E.; Oliver, Tiffany; Segarra, Veronica A.; Skop, Ahna R.; Weaver, Lesley N.; Asai, David J.; Boyce, Michael; Zavala, Maria Elena; Hammonds-Odie, Latanya; Vigoreaux, Jim (American Society for Cell Biology, 2024-07-22)
- Asymmetric clustering of centrosomes defines the early evolution of tetraploid cellsBaudoin, Nicolaas C.; Nicholson, Joshua M.; Soto, Kimberly; Martin, Olga; Chen, Jing; Cimini, Daniela (eLife Sciences Publications, 2020-04-29)Tetraploidy has long been of interest to both cell and cancer biologists, partly because of its documented role in tumorigenesis. A common model proposes that the extra centrosomes that are typically acquired during tetraploidization are responsible for driving tumorigenesis. However, tetraploid cells evolved in culture have been shown to lack extra centrosomes. This observation raises questions about how tetraploid cells evolve and more specifically about the mechanisms(s) underlying centrosome loss. Here, using a combination of fixed cell analysis, live cell imaging, and mathematical modeling, we show that populations of newly formed tetraploid cells rapidly evolve in vitro to retain a near-tetraploid chromosome number while losing the extra centrosomes gained at the time of tetraploidization. This appears to happen through a process of natural selection in which tetraploid cells that inherit a single centrosome during a bipolar division with asymmetric centrosome clustering are favored for long-term survival.
- Aurora B inhibition induces hyper-polyploidy and loss of long-term proliferative potential in RB and p53 defective cellsVora, Shivam; Chatterjee, Saptarshi; Andrew, Ariel; Kumar, Ramyashree Prasanna; Proctor, Martina; Zeng, Zhen; Bhatt, Rituparna; Nazareth, Deborah; Fernando, Madushan; Jones, Mathew J. K.; He, Yaowu; Hooper, John D.; McMillan, Nigel A. J.; Urosevic, Jelena; Saeh, Jamal; Travers, Jon; Cimini, Daniela; Chen, Jing; Gabrielli, Brian (Springer Nature, 2025-01-08)Polyploidy is a common outcome of chemotherapies, but there is conflicting evidence as to whether polyploidy is an adverse, benign or even favourable outcome. We show Aurora B kinase inhibitors efficiently promote polyploidy in many cell types, resulting in the cell cycle exit in RB and p53 functional cells, but hyper-polyploidy in cells with loss of RB and p53 function. These hyper-polyploid cells (>8n DNA content) are viable but have lost long-term proliferative potential in vitro and fail to form tumours in vivo. Investigation of mitosis in these cells revealed high numbers of centrosomes that were capable of supporting functional mitotic spindle poles, but these failed to progress to anaphase/telophase structures even when AURKB inhibitor was removed after 2–3 days. However, when AURKB inhibitor was removed after 1 day and cells had failed a single cytokinesis to become tetraploid, they retained colony forming ability and long-term proliferative potential. Mathematical modelling of the potential for polyploid cells to produce viable daughter cells demonstrated that cells with >8n DNA and >4 functional spindle poles approach zero probability of a viable daughter, supporting our experimental observations. These findings demonstrate that tetraploidy is tolerated by tumour cells, but higher ploidy states are incompatible with long-term proliferative potential.
- Cancer karyotypes: survival of the fittestNicholson, Joshua M.; Cimini, Daniela (Frontiers, 2013)Cancer cells are typically characterized by complex karyotypes including both structural and numerical changes, with aneuploidy being a ubiquitous feature. It is becoming increasingly evident that aneuploidy per se can cause chromosome mis-segregation, which explains the higher rates of chromosome gain/loss observed in aneuploid cancer cells compared to normal diploid cells, a phenotype termed chromosomal instability (CIN). CIN can be caused by various mechanisms and results in extensive karyotypic heterogeneity within a cancer cell population. However, despite such karyotypic heterogeneity, cancer cells also display predominant karyotypic patterns. In this review we discuss the mechanisms of CIN, with particular emphasis on the role of aneuploidy on CIN. Further, we discuss the potential functional role of karyotypic patterns in cancer.
- Cell Death Characterization In Tumor Constructs Using Irreversible ElectroporationProkop, Katherine Jane (Virginia Tech, 2013-10-04)Pancreatic and prostate cancer are both prevalent cancers in the United States with pancreatic being one of the most aggressive of all cancers and prostate cancer being one of the most common, ranking as the number one cancer in men. Treatment of both cancers can be quite challenging as the anatomy of the pancreas and prostate, as well as the development and diagnosis of the disease can greatly limit treatment options. Therefore, it is necessary to develop new cancer treatments to help manage and prevent these cancers. Irreversible electroporation is a new non-thermal focal ablation therapy utilizing short, pulsed electric fields to damage cell membranes leading to cell death. The therapy is minimally invasive, involving the insertion of needle electrodes into the region of interest and lasts less than two minutes. Heat sink effects that thermal therapies experience near large blood vessels do not affect irreversible electroporation. This allows the treatment to be used on tumors near vasculature as well as critical structures without harming these vital regions. While irreversible electroporation is a promising new cancer therapy, further developments are necessary to improve treatment planning models. This work aims to further understand the electric field thresholds necessary to kill different types of cancer cells with a focus on pancreatic and prostate cancer. The work is done using an in vitro tumor (hydrogel) model as this model is better than traditional cell suspension studies, with added benefits over the immediate use of tissue and animal models.
- Cell-Fiber Interactions: A New Route to Mechano-Biological Investigations in Developmental and Disease BiologySheets, Kevin Tyler (Virginia Tech, 2014-11-03)Cells in the body interact with a predominantly fibrous microenvironment and constantly adapt to changes in their neighboring physiochemical environment, which has implications in developmental and disease biology. A myriad of in vitro platforms including 2D flat and 3D gel substrates with and without anisotropy have demonstrated cellular alterations to subtle changes in topography. Recently, our work using suspended fibers as a new in vitro biological assay has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to cytoskeleton arrangement, including focal adhesion cluster lengths and nucleus shape indices, leading to altered migration speeds. It is hypothesized that these behaviors occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Thus, in this study, we investigate the role of fiber curvature and structural stiffness in force modulation of single cells attached to suspended fibers. Using our previously reported non-electrospinning Spinneret based Tunable Engineered Parameters (STEP) fiber manufacturing platform, we present our findings on single cell inside-out and outside-in forces using fibers of three diameters (250 nm, 400 nm and 800 nm) representing a wide range of structural stiffness (3-45 nN/μm). To investigate cellular adaptability to external perturbation, we present the development of a first-of-its-kind force measurement 'nanonet' platform capable of investigating cell adhesion forces in response to symmetric and non-symmetric (injury model) loading. Our combined findings are multi-fold: (i) Cells on suspended fibers are able to form focal adhesion clusters approximately four times longer than those on flat substrates, which gives them potential to double their migration speeds, (ii) Nanonets as force probes show that the contractility-based inside-out forces are nearly equally distributed on both sides of the cell body, and that overall force magnitudes are dependent on fiber structural stiffness, and (iii) External perturbation can evenly (symmetric) or unevenly (non-symmetric) distribute forces within the cell, and the resulting bias causes diameter-dependent outside-in adhesion force response. Finally, we demonstrate the power of the developed force measurement platform by extending our studies to cell-cell junctional forces as well as single-cell disease models including cancer and aortic aneurysm.
- Changes in Gene Expression and Cellular Architecture in an Ovarian Cancer Progression ModelCreekmore, Amy L.; Silkworth, William T.; Cimini, Daniela; Jensen, Roderick V.; Roberts, Paul C.; Schmelz, Eva M. (PLOS, 2011-03-03)Background Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. Methodology/Principal Findings Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, α-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCβII. Conclusions/Significance Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression.
- Changes in Kinetochore Structure and Molecular Composition in Response to Mis-attachmentShen, Muyao (Virginia Tech, 2011-05-27)Each mitotic chromosome is constituted by two sister chromatids whose correct segregation to the daughter cells is ensured by amphitelic attachment, in which the two sister kinetochores (KTs) are attached to microtubules (MTs) from opposite mitotic spindle poles. KT mis-attachments can occur in early mitosis and cause chromosome mis-segregation and aneuploidy if not corrected. These mis-attachments include monotelic (one attached and one unattached sister KT), syntelic (both sister KTs attached to the same spindle pole), and merotelic (a single KT attached to MTs from opposite spindle poles) attachments. A biochemical pathway named the Spindle Assembly Checkpoint (SAC) is responsible for delaying anaphase onset to allow correction of KT mis-attachments. SAC activation is believed to occur due to KT localization of certain SAC proteins and/or lack of tension, but only monotelic attachment has been proven to activate the SAC. To determine if and how other KT mis-attachments may activate the SAC, we studied how molecular composition and structure of the KT changes in response to different types of attachments. Our data suggest that monotelic attachment is the only type of attachment that can induce a SAC response thanks to the accumulation of the SAC protein Mad2 at the KT. Our data also indicate that structural changes of the KT, measured as intra- or inter-KT stretching, do not directly induce a SAC response. Instead, our findings suggest decreased KT stretching, especially in inter-KT stretching of syntelic chromosomes, may play a key role in bringing MCAK and other KT substrates closer to Aurora B kinase for rapid and efficient correction of KT mis-attachments.
- Characterization of Conventional One-Step Sodium Thiosulfate Facilitated Gold Nanoparticle SynthesisSaverot, Scott-Eugene; Reese, Laura M.; Cimini, Daniela; Vikesland, Peter J.; Bickford, Lissett R. (SpringerOpen, 2015-05-28)Gold-gold sulfide nanoparticles are of interest for drug delivery, biomedical imaging, and photothermal therapy applications due to a facile synthesis method resulting in small particles with high near-infrared (NIR) absorption efficiency. Previous studies suggest that the NIR sensitivity of these nanoparticles was due to hexagonally shaped metal-coated dielectric nanoparticles that consist of a gold sulfide core and gold shell. Here, we illustrate that the conventional synthesis procedure results in the formation of polydisperse samples of icosahedral gold particles, gold nanoplates, and small gold spheres. Importantly, through compositional analysis, via UV/vis absorption spectrophotometry, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS), we show that all of the nanoparticles exhibit identical face center cubic (FCC) gold crystalline structures, thus suggesting that sulfide is not present in the final fabricated nanoparticles. We show that icosahedrally shaped nanoparticles result in a blue-shifted absorbance, with a peak in the visible range. Alternatively, the nanoplate nanoparticles result in the characteristic NIR absorbance peak. Thus, we report that the NIR-contributing species in conventional gold-gold sulfide formulations are nanoplates that are comprised entirely of gold. Furthermore, polydisperse gold nanoparticle samples produced by the traditional one-step reduction of HAuCl4 by sodium thiosulfate show increased in vitro toxicity, compared to isolated and more homogeneous constituent samples. This result exemplifies the importance of developing monodisperse nanoparticle formulations that are well characterized in order to expedite the development of clinically beneficial nanomaterials.
- Characterization of Transcriptional and Post-transcriptional Regulation of lin-42/Period During Post-embryonic Development of C. elegansJames, Tracy (Virginia Tech, 2012-09-11)Period, which is broadly conserved in metazoans, regulates circadian timing of neurophysiology as well as cell fate specification. Studies in mouse and humans indicate that period functions as a tumor suppressor and controls adult stem cell differentiation. However, regulation of period function in developmental pathways has not been characterized and appears to be different from its regulation and function in circadian pathways. lin-42 is the Caenorhabditis elegans ortholog of period and has both circadian and developmental timing functions. During post-embryonic larval development, cyclic expression and function of lin-42 controls stage-specific and reiterative cell fate choices of a subset of epidermal stem cells called seam cells. We are studying lin-42 regulation of seam cell fate during C. elegans larval development as a model for understanding the mechanisms of period regulation of adult stem cell fate in mammals. This dissertation describes the research undertaken to characterize the cis-regulatory elements and the trans-regulatory factors that control lin-42 expression. We used direct molecular interaction assays (Electrophoretic Mobility Shift Assay, EMSA) (Chapter 2) followed by an RNA interference (RNAi)-based genetic screen (Chapter 3) to identify lin-42 transcriptional regulators. Using the EMSA, we identified three 50 to 100 base pair regions (binding regions, BR1-3) in the lin-42 5â noncoding sequences that were bound with specificity by C. elegans nuclear proteins. These binding regions represent putative cis-regulatory elements that may serve as transcription factor binding sites (TFBSs). We attempted to identify by mass spectrometry the proteins that bind to the BR sequences. We also used Phylogenetic Footprinting and bioinformatics screens to identify candidate C. elegans transcription factors (TFs) that may bind to putative TFBSs within the BR sequences. Using an RNAi-based screen, we tested the candidate TF genes for potential genetic interactions with lin-42. We identified ZTF-16, a member of the Hunchback/Ikaros zinc-finger transcription factor family, as a potential lin-42 activator and, using quantitative real-time PCR, confirmed that ztf-16 mutation results in down-regulation and loss of cycling expression of lin-42. We further determined that loss of ztf-16 results in seam cell development defects that phenocopy lin-42 loss-of-function, thus validating ZTF-16 as a transcriptional activator of lin-42.
- Chromosomal evolution in mosquitoes - vectors of diseasesNaumenko, Anastasia Nikolayevna (Virginia Tech, 2017-06-23)The World Health Organization estimates that vector-borne diseases account for 17% of the global burden of all infectious diseases and has identified the mosquito as the most dangerous of all disease-transmitting insects, being responsible for several million deaths and hundreds of millions of cases each year. The study of mosquito genomics provides a deeper understanding of the molecular mechanisms involved in every aspect of vector biology, such as sex determination, host-parasite interaction, ecology, feeding behavior, immunity and evolutionary trends and can be used for the development of new strategies for vector control. We developed the first map of the mitotic chromosomes of the major vector for West Nile fever and lymphatic filariasis, Culex quinquefasciatus. The map was then successfully utilized for mapping of approximately 90% of available genetic markers to their precise positions on the chromosomes. Idiograms were integrated with 140 genetic supercontigs representing 26.5% of the genome. A linear regression analysis demonstrated good overall correlation between the positioning of markers on physical and genetic linkage maps. This will improve gene annotation and help in distinguishing potential haplotype scaffolds and regions of segmental duplications. It will also facilitate identification of epidemiologically important genes that can be used as targets for the vector control and provide a better framework for comparative genomics that will help understanding of the evolution of epidemiologically important traits. In another study, we confirmed the presence of the newly described species, Anopheles daciae, in regions of Russia using molecular data. Although sympatric with its sibling species, Anopheles messeae, five nucleotide substitutions in the internal transcribed spacer 2 of ribosomal DNA can be used to distinguish the morphologically similar species. Chromosome rearrangements have a significant impact on mosquito adaptation and speciation. Using sequencing data in combination with karyotyping, we demonstrated that significant differences in inversion frequencies distinguish An. messeae from An. daciae, suggesting that these inversions are actively involved in adaptation and speciation. It is essential to have reliable toolbox for correct identification of these species and to know their range for future possible malaria outbreaks prevention.
- Chromosome and Genome Evolution in Culicinae MosquitoesMasri, Reem Abed (Virginia Tech, 2021-07-14)The Culicinae is the most extensive subfamily among the Culicidae family of mosquitoes. Two genera, Culex and Aedes, from this subfamily have world-wide distribution and are responsible for transmitting of several deadly diseases including Zika, West Nile fevers, chikungunya, dengue, and Rift Valley fevers. Developing high-quality genome assembly for mosquitoes, studying their population structure, and evolution can help to facilitate the development of new strategies for vector control. Studies on Aedes albopitcus as well as on species from the Culex pipiens complex, which are widely spread in the United States, provide excellent models on these topics. Ae. albopictus is one of the most dangerous invasive mosquito species in the world that transmits more than 20 arboviruses. This species has highly repetitive genome that is the largest among mosquito genomes sequenced so far. Thus, sequencing and assembling of such genome is extremally challenging. As a result, the lack of high-quality Ae. albopictus genome assembly has delayed the progress in understanding its biology. To produce a high-quality genome assembly, it was important to anchor genomic scaffolds to the cytogenetic map creating a physical map of the genome assembly. We first developed a new gene-based approach for the physical mapping of repeat-rich mosquito genomes. The approach utilized PCR amplification of the DNA probes based on complementary DNA (cDNA) that does not include repetitive DNA sequences. This method was then used for the development of a physical map for Ae. albopictus based on the in situ hybridization of fifty cDNA fragments or gene exons from twenty-four scaffolds to the mitotic chromosomes from imaginal discs. This study resulted in the construction of a first physical map of the Ae. albopictus genome as well as mapping viral integration and polyphenol oxidase genes. Moreover, comparing our present Ae. albopictus physical map to the current Ae. aegypti assembly indicated the presence of multiple chromosomal inversions between them. To better understand population structure and chromosome evolution in Culicinae mosquitoes, especially in the Culex pipiens complex, we studied genomic and chromosomal differentiation between two subspecies Cx. pipiens pipiens and Cx. pipiens molestus. For the species responsible for the spread of human diseases, understanding the population dynamics and processes of taxa diversification is important for an effective mosquito control . Two vectors of West Nile virus, Cx. p. pipiens and Cx. p. molestus, exhibit epidemiologically important behavioral and physiological differences, but the whole-genome divergence between them was unexplored. The first goal of this study was to better understand the level of genomic differentiation and population structures of Cx. p. pipiens and Cx. p. molestus from different continents. We sequenced and compared whole genomes of 40 individual mosquitoes from two locations in Eurasia and two in North America. Principal Component, ADMIXTURE, and neighbor joining analyses of the nuclear genomes identified two major intercontinental, monophyletic clusters of Cx. p. pipiens and Cx. p. molestus. The level of genomic differentiation between the subspecies was uniform along chromosomes. The ADMIXTURE analysis determined signatures of admixture in Cx. p. pipens populations, but not in Cx. p. molestus populations. Thus, our study identified that Cx. p. molestus and Cx. p. pipiens represent different evolutionary units with monophyletic origin that have undergone incipient ecological speciation. The second goal was to study differences at the chromosome level between these two organisms. We first measured whole chromosome and chromosome arm length differences between Cx. p. molestus and Cx. p. pipiens as a basic cytogenetic approach. In addition, we used the novel Hi-C approach to detect chromosomal rearrangements between them since Hi-C was successful in detecting a known inversion in Cx. quinquefasciatus. Cx. p. molestus and Cx. p. pipiens embryos were used to perform the Hi-C technique. Analysis of the Hi-C data showed the presence of two different inversions in Cx. p. pipiens and Cx. p. molestus heatmap, which could explain their different physiology and adaptation in nature. Developing modern genomic and cytogenetic tools is important to enhance the quality of genome assemblies, improve gene annotation, and provide a better framework for comparative and population genomics of mosquitoes; also it is the foundation for the development of novel genome-based approaches for vector control.
- Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during AnaphasePampalona, Judit; Roscioli, Emanuele; Silkworth, William T.; Bowden, Brent; Genesca, Anna; Tusell, Laura; Cimini, Daniela (PLOS, 2016-01-19)Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the microtubules bound to the kinetochores of normally segregating chromosomes shorten substantially during anaphase, the k-fibers bound to bridge kinetochores shorten only slightly, and may even lengthen, during anaphase. This causes some of the bridge kinetochores/chromosomes to lag behind in a position that is proximal to the cell/spindle equator and may cause the bridged chromosomes to be segregated into the same daughter nucleus or to form a micronucleus.
- Chromosome mis-segregation and cytokinesis failure in trisomic human cellsNicholson, Joshua M.; Macedo, Joana C.; Mattingly, Aaron J.; Wangsa, Darawalee; Camps, Jordi; Lima, Vera; Gomes, Ana M.; Doria, Sofia; Ried, Thomas; Logarinho, Elsa; Cimini, Daniela (eLife, 2015-05-05)Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer cell line DLD1 (2n = 46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher rates of chromosome mis-segregation compared to their euploid counterparts. Furthermore, cells with trisomy 13 displayed a distinctive cytokinesis failure phenotype. We showed that up-regulation of SPG20 expression, brought about by trisomy 13 in DLD1+13 and AF+13 cells, is sufficient for the cytokinesis failure phenotype. Overall, our study shows that aneuploidy can induce chromosome mis-segregation. Moreover, we identified a trisomy 13-specific mitotic phenotype that is driven by up-regulation of a gene encoded on the aneuploid chromosome.
- Control of sex myoblast migration in C. elegansZhang, Sihui (Virginia Tech, 2013-08-01)Cell migration is critical in generating complex animal forms during development; misregulation of migration contributes to pathological conditions such as cancer metastasis. Thanks to its easily traceable cell lineages in a transparent body and a compact genome accessible to a wealth of genetic manipulations, the use of the nematode C. elegans as a model system has greatly advanced our understanding of mechanisms governing cell migration conserved through higher organisms. Among several migration processes in C. elegans, sex myoblast (SM) migration is an attractive system that has a simple and well-defined migratory route along the ventral side from the posterior to the precise center of the gonad. A multitude of guidance mechanisms control SM migration, many of which are likely to be conserved in other migratory processes. Similar to vertebrate systems, C. elegans uses Rho family small GTPases to regulate the engine of cell motility, the actin cytoskeleton, in response to guidance cues. The differential utilizations of Rho GTPases in distinct processes in vivo remain a central question in the study of Rho GTPases. I investigated how Rho GTPases regulate different aspects of SM migration, and found that Cdc-42/CDC42 functions in the anteroposterior migration, whereas MIG-2/RhoG and CED-10/Rac1 control ventral restriction independently of FGF and SLIT/Robo signaling. The relative difficulty in perturbing SM migration using constitutively active Rho GTPases compared to other migration processes illustrates the robustness of the mechanisms that control SM migration. On a technical aspect, I established a nematode larval cell culture system that allows access to postembryonic cells. Compared to the flourishing genetic researches in C. elegans, there are few studies of molecules that also extend to the subcellular level in postembryonic development, mainly due to the lack of a larval cell culture system. I developed a novel method combining SDS-DTT presensitization of larval cuticles and subsequent pronase E digestion. My method efficiently isolates both low- and high-abundance cell types from all larval stages. This technical advance will not only facilitate studies such as regulation of actin dynamics with high-resolution microscopy, but is beginning to be used by researchers to tackle cell-type specific questions through profiling methods as gene expression analysis.
- Development of a Dielectrophoresis-Based Cancer-Cell Analysis ToolDouglas, Temple Anne (Virginia Tech, 2018-10-04)One significant obstacle in cancer treatment is tumor heterogeneity. Different subpopulations within a tumor can respond differently to chemotherapy, resulting in resistance and recurrence. Addressing these differences while choosing a treatment modality could significantly improve chemotherapy outcomes. This work focuses on the development of a new modular device that leverages the unique advantages of a contactless dielectrophoresis, a method that uses applied electric fields in a microfluidic device to separate cells by biophysical phenotype. By optimizing force balancing between the dielectrophoretic force and the drag force on cells in the device, and by using cell-size pillars to maximize electric field gradients per volt applied while reducing cell-cell interactions,we demonstrate that it is possible to separate mouse ovarian surface epithelial (MOSE) cells at different stages while maintaining high viability. We also show other cell types to be separable with this device and develop an algorithm to rapidly analyze cell response to a variety of frequency/voltage/flow rate combinations. We also propose a microfluidic device downstream of the DEP chip that can be used to provide an integrated system for studying the subpopulations separated using dielectrophoresis by moving them into a culture chamber with hydrogel where they can be grown in 3D and characterized for a variety of parameters such as biophysical structure, metastatic capacity, and chemotherapy resistance.
- The effect of spindle geometry on the establishment of merotelic kinetochore attachment and chromosome mis-segregationSilkworth, William Thomas (Virginia Tech, 2012-06-26)At any given time there are on the order of one hundred million cells undergoing mitosis in the human body. To accurately segregate chromosomes, the cell forms the bipolar mitotic spindle, a molecular machine that distributes chromosomes equally to the daughter cells. To this end, microtubules of the mitotic spindle must appropriately attach the kinetochores: protein structures that form on each chromatid of each mitotic chromosome. The majority of the time correct kinetochore microtubule attachments are formed. However, mis-attachments can and do form. Mis-attachments that are not corrected before chromosome segregation can give rise to aneuploidy, an incorrect number of chromosomes. Aneuploidy occurring in the germ line can cause both miscarriage and genetic diseases. Furthermore, aneuploidy is a major characteristic of cancer cells, and aneuploid cancer cells frequently mis-segregate chromosomes at high rates, a phenotype termed chromosomal instability (CIN). CIN has been correlated with both advanced tumorigenesis and poor patient prognosis and over the years there have been many hypotheses for what causes CIN. In this study, we identified two distinct mechanisms that are responsible for CIN. Both of these mechanisms cause a transient, abnormal geometric arrangement of the mitotic spindle. Specifically, cancer cells possess supernumerary centrosomes, which lead to the assembly of multipolar spindles during early mitosis when attachments between kinetochores and microtubules are forming. Supernumerary centrosomes facilitate the formation of merotelic attachments, in which a single kinetochore binds microtubules from more than one centrosome. As mitosis progresses the supernumerary centrosomes cluster, giving rise to a bipolar spindle by the time of chromosome segregation. However, the high rates of merotelic attachments formed during the transient multipolar stage result in high rates of chromosome mis-segregation. The second geometric defect characterized is caused by failure of centrosomes to separate before kinetochore-microtubule attachments begin to form. This mechanism, too, leads to high rates of kinetochore mis-attachment formation and high rates of chromosome mis-segregation. Finally, this study shows that the mechanisms characterized here are prevalent in human cancer cells from multiple organ sites, thus revealing that both mechanisms are a common cause of CIN.
- The effects of chromosome number changes on mitotic fidelity and karyotype stabilityNicholson, Joshua Miles (Virginia Tech, 2015-06-17)The correct number of chromosomes is important for the maintenance of healthy cells and organisms. Maintenance of a correct chromosome number depends on the accurate distribution of chromosomes to the daughter cells during cell division, and errors in chromosome segregation result in abnormal chromosome numbers, or aneuploidy. Aneuploidy is typically associated with deleterious effects on organismal and cellular fitness; however, aneuploidy has also been associated with enhanced cellular growth in certain contexts, such as cancer. Another type of deviation from the normal chromosome number can occur when entire sets of chromosomes are added to the normal (diploid) chromosome number, resulting in polyploidy. Whereas polyploidy is found in certain normal tissues and organisms, tetraploidy (four sets of chromosomes) is associated with a number of precancerous lesions and is believed to promote aneuploidy and tumorigenesis. While it is clear that chromosome mis-segregation causes aneuploidy, the effect of aneuploidy on chromosome segregation is less clear. Similarly, it is unclear whether and how tetraploidy may affect chromosome segregation. The work described here shows that aneuploidy can cause chromosome mis-segregation and induces chromosome-specific phenotypic effects. In contrast, tetraploidy does not per se induce chromosome mis-segregation, but enables the accumulation of aneuploidy thanks to a "genetic buffer" effect that allows tetraploid cells to tolerate aneuploidy better than diploid cells.
- Environmental stresses induce karyotypic instability in colorectal cancer cellsTan, Zhihao; Chan, Yong Jie Andrew; Chua, Ying Jie Karen; Rutledge, Samuel D.; Pavelka, Norman; Cimini, Daniela; Rancati, Giulia (2019-01)Understanding how cells acquire genetic mutations is a fundamental biological question with implications for many different areas of biomedical research, ranging from tumor evolution to drug resistance. While karyotypic heterogeneity is a hallmark of cancer cells, few mutations causing chromosome instability have been identified in cancer genomes, suggesting a nongenetic origin of this phenomenon. We found that in vitro exposure of karyotypically stable human colorectal cancer cell lines to environmental stress conditions triggered a wide variety of chromosomal changes and karyotypic heterogeneity. At the molecular level, hyperthermia induced polyploidization by perturbing centrosome function, preventing chromosome segregation, and attenuating the spindle assembly checkpoint. The combination of these effects resulted in mitotic exit without chromosome segregation. Finally, heat- induced tetraploid cells were on the average more resistant to chemotherapeutic agents. Our studies suggest that environmental perturbations promote karyotypic heterogeneity and could contribute to the emergence of drug resistance.
- «
- 1 (current)
- 2
- 3
- »