Browsing by Author "Conselice, C. J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Evolution of cosmic star formation in the SCUBA-2 Cosmology Legacy SurveyBourne, N.; Dunlop, J. S.; Merlin, E.; Parsa, S.; Schreiber, C.; Castellano, M.; Conselice, C. J.; Coppin, K. E. K.; Farrah, D.; Fontana, A.; Geach, J. E.; Halpern, M.; Knudsen, K. K.; Michalowski, M. J.; Mortlock, A.; Santini, P.; Scott, D.; Shu, X. W.; Simpson, C.; Simpson, J. M.; Smith, D. J. B.; Werf, P. V. D. (2017-01)We present a new exploration of the cosmic star-formation history and dust obscuration in massive galaxies at redshifts $0.5< z<6$. We utilize the deepest 450 and 850$\mu$m imaging from SCUBA-2 CLS, covering 230arcmin$^2$ in the AEGIS, COSMOS and UDS fields, together with 100-250$\mu$m imaging from Herschel. We demonstrate the capability of the T-PHOT deconfusion code to reach below the confusion limit, using multi-wavelength prior catalogues from CANDELS/3D-HST. By combining IR and UV data, we measure the relationship between total star-formation rate (SFR) and stellar mass up to $z\sim5$, indicating that UV-derived dust corrections underestimate the SFR in massive galaxies. We investigate the relationship between obscuration and the UV slope (the IRX-$\beta$ relation) in our sample, which is similar to that of low-redshift starburst galaxies, although it deviates at high stellar masses. Our data provide new measurements of the total SFR density (SFRD) in $M_\ast>10^{10}M_\odot$ galaxies at $0.510$. One third of this is accounted for by 450$\mu$m-detected sources, while one fifth is attributed to UV-luminous sources (brighter than $L^\ast_{UV}$), although even these are largely obscured. By extrapolating our results to include all stellar masses, we estimate a total SFRD that is in good agreement with previous results from IR and UV data at $z\lesssim3$, and from UV-only data at $z\sim5$. The cosmic star-formation history undergoes a transition at $z\sim3-4$, as predominantly unobscured growth in the early Universe is overtaken by obscured star formation, driven by the build-up of the most massive galaxies during the peak of cosmic assembly.
- A Population of z > 2 Far-Infrared Herschel-Spire-Selected StarburstsCasey, C. M.; Berta, S.; Bethermin, M.; Bock, J.; Bridge, C. R.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Cooray, A.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; Le Floc'h, E.; Lutz, D.; Magdis, G. E.; Magnelli, B.; Oliver, S. J.; Page, M. J.; Pozzi, F.; Rigopoulou, D.; Riguccini, L.; Roseboom, I. G.; Sanders, D. B.; Scott, D.; Seymour, N.; Valtchanov, I.; Vieira, J. D.; Viero, M.; Wardlow, J. (IOP Publishing Ltd., 2012-12)We present spectroscopic observations for a sample of 36 Herschel-Spire 250-500 mu m selected galaxies (HSGs) at 2 < z < 5 from the Herschel Multi-tiered Extragalactic Survey. Redshifts are confirmed as part of a large redshift survey of Herschel-Spire-selected sources covering similar to 0.93 deg(2) in six extragalactic legacy fields. Observations were taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. Precise astrometry, needed for spectroscopic follow-up, is determined by identification of counterparts at 24 mu m or 1.4 GHz using a cross-identification likelihood matching method. Individual source luminosities range from log(L-IR/L-circle dot) = 12.5-13.6 (corresponding to star formation rates (SFRs) 500-9000M(circle dot) yr(-1), assuming a Salpeter initial mass function), constituting some of the most intrinsically luminous, distant infrared galaxies discovered thus far. We present both individual and composite rest-frame ultraviolet spectra and infrared spectral energy distributions. The selection of these HSGs is reproducible and well characterized across large areas of the sky in contrast to most z > 2 HyLIRGs in the literature, which are detected serendipitously or via tailored surveys searching only for high-z HyLIRGs; therefore, we can place lower limits on the contribution of HSGs to the cosmic star formation rate density (SFRD) at (7 +/- 2) x 10(-3) M-circle dot yr(-1) h(3) Mpc(-3) at z similar to 2.5, which is > 10% of the estimated total SFRD of the universe from optical surveys. The contribution at z similar to 4 has a lower limit of 3 x 10(-3) M-circle dot yr(-1) h(3) Mpc(-3), greater than or similar to 20% of the estimated total SFRD. This highlights the importance of extremely infrared-luminous galaxies with high SFRs to the buildup of stellar mass, even at the earliest epochs.
- A redshift survey of Herschel far-infrared selected starbursts and implications for obscured star formationCasey, C. M.; Berta, S.; Bethermin, M.; Bock, J.; Bridge, C. R.; Budynkiewicz, J.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Cooray, A.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; Le Floc'h, E.; Lutz, D.; Magdis, G. E.; Magnelli, B.; Oliver, S. J.; Page, M. J.; Pozzi, F.; Rigopoulou, D.; Riguccini, L.; Roseboom, I. G.; Sanders, D. B.; Scott, D.; Seymour, N.; Valtchanov, I.; Vieira, J. D.; Viero, M.; Wardlow, J. (IOP Publishing Ltd., 2012-12)We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 mu m, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z similar to 5. We measure more significant disagreement between photometric and spectroscopic redshifts ( = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 mu m flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q(IR) proportional to (1 + z)(-0.30 +/- 0.02) at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 mu m extrapolations of the LIRG, ULIRG, and total infrared contributions. This work significantly increased the number of spectroscopically confirmed infrared-luminous galaxies at z >> 0 and demonstrates the growing importance of dusty starbursts for galaxy evolution studies and the build-up of stellar mass throughout cosmic time.