Browsing by Author "Coster, A. J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced densityThomas, E. G.; Baker, Joseph B. H.; Ruohoniemi, J. Michael; Clausen, Lasse B. N.; Coster, A. J.; Foster, J. C.; Erickson, P. J. (American Geophysical Union, 2013-03-01)We examine the relationship of convection electric fields to the formation of a polar cap tongue of ionization (TOI) from midlatitude plumes of storm enhanced density (SED). Observations from the geomagnetic storm on 26-27 September 2011 are presented for two distinct SED events. During an hour-long period of geomagnetic activity driven by a coronal mass ejection, a channel of high-density F region plasma was transported from the dayside subauroral ionosphere and into the polar cap by enhanced convection electric fields extending to middle latitudes. This TOI feature was associated with enhanced HF backscatter, indicating that it was the seat of active formation of small-scale irregularities. After the solar wind interplanetary magnetic field conditions quieted and the dayside convection electric fields retreated to higher latitudes, an SED plume was observed extending to, but not entering, the dayside cusp region. This prominent feature in the distribution of total electron content (TEC) persisted for several hours and elongated in magnetic local time with the rotation of the Earth. No ionospheric scatter from SuperDARN radars was observed within this SED region. The source mechanism (enhanced electric fields) previously drawing the plasma from midlatitudes and into the polar cap as a TOI was no longer active, resulting in a fossil feature. We thus demonstrate the controlling role exercised by the convection electric field in generating a TOI from midlatitude SED.
- GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic stormPrikryl, P.; Ghoddousi-Fard, R.; Kunduri, B. S. R.; Thomas, E. G.; Coster, A. J.; Jayachandran, P. T.; Spanswick, E.; Danskin, D. W. (Copernicus Publications, 2013)The amplitude and phase scintillation indices are customarily obtained by specialised GPS Ionospheric Scintillation and TEC Monitors (GISTMs) from L1 signal recorded at the rate of 50 Hz. The scintillation indices S-4 and sigma(Phi) are stored in real time from an array of high-rate scintillation receivers of the Canadian High Arctic Ionospheric Network (CHAIN). Ionospheric phase scintillation was observed at high latitudes during a moderate geomagnetic storm (Dst = -61 nT) that was caused by a moderate solar wind plasma stream compounded with the impact of two coronal mass ejections. The most intense phase scintillation (sigma(Phi) similar to 1 rad) occurred in the cusp and the polar cap where it was co-located with a strong ionospheric convection, an extended tongue of ionisation and dense polar cap patches that were observed with ionosondes and HF radars. At sub-auroral latitudes, a sub-auroral polarisation stream that was observed by mid-latitude radars was associated with weak scintillation (defined arbitrarily as sigma(Phi) < 0.5 rad). In the auroral zone, moderate scintillation coincided with auroral breakups observed by an all-sky imager, a riometer and a magnetometer in Yellowknife. To overcome the limited geographic coverage by GISTMs other GNSS data sampled at 1 Hz can be used to obtain scintillation proxy indices. In this study, a phase scintillation proxy index (delta phase rate, DPR) is obtained from 1-Hz data from CHAIN and other GPS receivers. The 50-Hz and 1-Hz phase scintillation indices are correlated. The percentage occurrences of sigma(Phi) > 0.1 rad and DPR > 2mm s(-1), both mapped as a function of magnetic latitude and magnetic local time, are very similar.