Browsing by Author "Cousins, Thomas E."
Now showing 1 - 20 of 140
Results Per Page
Sort Options
- Analytical and Experimental Investigation of Improving Seismic Performance of Steel Moment Frames Using Synthetic Fiber RopesRyan, John C. (Virginia Tech, 2006-09-22)The presented research investigated the viability of a double-braided synthetic fiber rope for providing improved performance of steel moment frames subjected to earthquake-induced ground motions. A series of experimental tests, including a 1:3-scale dynamic test and 1:6-scale shaking table tests, was conducted using Northridge ground-motion input. A series of nonlinear dynamic analytical studies, using DRAIN-2DX, was conducted to develop the experimental tests. Throughout experimental testing, the ropes exhibited a hyper-elastic loading response and a reduced-stiffness unloading response. A conditioning cycle was defined as a loading cycle induced in the rope above the highest load expected to be experienced by the rope, and was determined to be requisite for ropes intended to be used for the stated objectives of the research program. After experiencing a conditioning cycle, the rope response returned to initial conditions without permanent deformation, demonstrating repeatability of response through several loading cycles below the conditioning load. In the 1:6-scale shaking-table experiments, the ropes drastically improved the performance of the steel moment frames. Maximum and residual drift were reduced significantly, with a corresponding minimal increase to the maximum base shear. Base shear was reduced at several peaks subsequent to the initial pulse of the Northridge ground-motion input. The analytical model developed was excellent for predicting elastic response of the 1:6-scale shaking table experiments and adequate for the purpose of planning shaking table studies. Correlation of peak rope forces between the analytical model and experimental results was poor, and was attributed to limitations of the pre-defined elements used to represent the rope devices in the software program. The inability of the elements to capture the complex unloading response of the rope was specifically noted.
- Analytical Modeling of the Repair Impact-Damaged Prestressed Concrete Bridge GirdersGangi, Michael Joseph (Virginia Tech, 2015-08-19)Highway bridges in the United States are frequently damaged by overheight vehicle collisions. The increasing number of prestressed concrete bridges indicates that the probability of such bridges being impacted by overheight vehicles has increased. This thesis, sponsored by the Virginia Center for Transportation Innovation and Research (VCTIR), investigated three repair techniques for impact damaged prestressed bridge girders: strand splices, fiber reinforced polymer (FRP) overlays, and fabric reinforced cementitious matrix (FRCM) overlays. The flexural strength of four AASHTO Type III girders, three of which were intentionally damaged and repaired, was evaluated. Six experimental tests were performed on these girders: one undamaged girder test and five repair method tests. Nonlinear beam models and three-dimensional finite element (FE) models were created to predict the behavior of the beams under flexural testing, and subsequently validated and calibrated to experimental test data. The very good accuracy of the beam models indicated that they can be used alone for the performance assessment of damaged and repaired girders. Of course, the analyst must always be aware of the fact that a beam model cannot explicitly account for potentially crucial effects such as diagonal cracking. A direct comparison between repair methods was made by creating analytical models of a prototype girder setup. FRP overlays were seen to restore the most strength, while strand splices were seen to restore the most ductility. From observation, combining repair methods resulted in an additive effect on strength, but the deformation at onset of failure will be governed by the less ductile method.
- Anchorage Zone Design for Pretensioned Bulb-Tee Bridge Girders in VirginiaCrispino, Eric Daniel (Virginia Tech, 2007-03-01)Precast/Prestressed concrete girders are commonly used in bridge construction in the United States. The application and diffusion of the prestress force in a pretensioned girder causes a vertical tension force to develop near the end of the beam. Field surveys of the beam ends of pretensioned bridge girders indicate that many of the PCBT beams used in the Commonwealth of Virginia develop cracks within the anchorage zone region. The lengths and widths of these cracks range from acceptable to poor and in need of repair. Field observations also indicate deeper cross sections, very heavily prestressed sections, and girders with lightweight concrete tend to be most susceptible to crack formation. This research examined a new strut-and-tie based design approach to the anchorage zone design of the PCBT bridge girders used in Virginia. Case study girders surveyed during site visits are discussed and used to illustrate the nature of the problem and support the calibration of the strut-and-tie based model. A parametric study was conducted using this proposed design model and the results of this study were consolidated into anchorage zone design tables. The results of the parametric study were compared to the results obtained using existing anchorage zone design models, international bridge codes, and standard anchorage zone details used by other states. A set of new standard details was developed for the PCBT girders which incorporates elements of the new design approach and is compatible with the anchorage zone design aids. A 65 ft PCBT-53 girder was fabricated to verify the new strut-and-tie based design model. This girder contained anchorage zone details designed with the new model. The new anchorage zone details were successful at controlling the development of anchorage zone cracks. The new design approach is recommended for implementation by the Virginia Department of Transportation.
- Anchorage Zone Design for Pretensioned Precast Bulb-T Bridge Girders in VirginiaE.D. Crispino; Cousins, Thomas E.; Roberts-Wollmann, Carin L. (Virginia Center for Transportation Innovation and Research, 2009-06-01)Precast/prestressed concrete girders are commonly used in bridge construction in the United States. The application and diffusion of the prestress force in a pretensioned girder cause a vertical tension force to develop near the end of the beam. Field surveys of the beam ends of pretensioned bridge girders indicate that many of the precast bulb-T (PCBT) beams used in Virginia develop cracks within the anchorage zone region. The lengths and widths of these cracks range from acceptable to poor and in need of repair. Field observations also indicate deeper cross sections, very heavily prestressed sections, and girders with lightweight concrete tend to be most susceptible to crack formation. This research examined a new strut-and-tie based design approach to the anchorage zone design of the PCBT bridge girders used in Virginia. Case study girders surveyed during site visits were used to illustrate the nature of the problem and support the calibration of the strut-and-tie-based model. A parametric study was conducted using this proposed design model, and the results of this study were consolidated into anchorage zone design tables. The results of the parametric study were compared to the results obtained using existing anchorage zone design models, international bridge codes, and standard anchorage zone details used by other states. A set of new standard details was developed for the PCBT girders that incorporates elements of the new design approach and is compatible with the anchorage zone design aids. A 65-ft PCBT-53 girder was fabricated offsite and tested at the Virginia Tech Structures Lab to verify the new strut-and-tie-based design model. This girder contained anchorage zone details designed with the new model. The new anchorage zone details were successful at controlling the development of anchorage zone cracks. The new design approach is recommended for implementation by the Virginia Department of Transportation.
- Assessment of Commercial Corrosion Inhibiting Admixtures for Reinforced ConcreteBrown, Michael Carey (Virginia Tech, 1999-11-11)Corrosion of reinforcing steel in concrete exposed to chloride-laden environments is a well-known and documented phenomenon. The need for cost effective systems for protection against corrosion has become increasingly clear since the first observations of severe corrosion damage to interstate bridges in the 1960's. As one potential solution to the mounting problem of corrosion deterioration of structures, corrosion-inhibiting admixtures have been researched and introduced into service. This report conveys the results of a three-part laboratory study of corrosion inhibiting admixtures in concrete. The commercial corrosion inhibiting admixtures for concrete have been analyzed by three evaluation methods, including: • Conventional concrete corrosion cell prisms under ponding, • Black steel reinforcing bars immersed in simulated concrete pore solutions, • Electrochemical screening tests of special carbon steel specimens in electrochemical corrosion cells containing filtered cement slurry solution. The purposes of the study include: • Determining the influence of a series of commercially available corrosion inhibiting admixtures on general concrete handling, performance and durability properties not related to corrosion. • Determining the effectiveness of corrosion inhibiting admixtures for reduction or prevention of corrosion of reinforcing steel in concrete, relative to untreated systems, under laboratory conditions. • Conducting a short-term pore solution immersion test for inhibitor performance and relating the results to those of the more conventional long-term corrosion monitoring techniques that employ admixtures in reinforced concrete prisms. • Determining whether instantaneous electrochemical techniques can be applied in screening potential inhibitor admixtures. Concrete properties under test included air content, slump, heat of hydration, compressive strength, and electrical indication of chloride permeability. Monitoring of concrete prism specimens included macro-cell corrosion current, mixed-cell corrosion activity as indicated by linear polarization, and ancillary temperature, relative humidity, and chloride concentration documentation. Simulated pore solution specimens were analyzed on the basis of weight loss and surface area corroded as a function of chloride exposure. Electrochemical screening involved polarization resistance of steel in solution. Results include corrosion potential, polarization resistance and corrosion current density.
- Behavior and Strength of Welded Stud Shear ConnectorsRambo-Roddenberry, Michelle (Virginia Tech, 2002-04-08)The behavior and strength of welded shear studs are subjects of ongoing study. In recent years, research has shown that the American Institute of Steel Construction (AISC) specification equations for shear stud strength are unconservative for studs placed in deck with ribs transverse to the steel beam. Twenty-four solid slab push-out tests, 93 composite slab push-out tests, and bare stud tests were performed to study the effects on stud strength of friction, normal load, position of studs in the ribs of steel deck, concrete strength, and stud properties. Stud diameters ranged from 3/8 in. to 7/8 in., deck heights ranged from 2 in. to 6 in., and both single and pairs of studs were tested. The push-out test results from this study were combined with other studies to propose a new stud strength prediction model. Three new beam tests were performed to study the effect of the stud position in the ribs of the steel deck. The results of these tests, along with 61 other beam tests, were used to verify the new stud strength prediction model. A reliability study was performed to determine resistance factors for stud strength and beam strength.
- Biaxial Behavior of Ultra-High Performance Concrete and Untreated UHPC Waffle Slab Bridge Deck Design and TestingD'Alessandro, Kacie Caple (Virginia Tech, 2013-08-28)Ultra-high performance concrete (UHPC) was evaluated as a potential material for future bridge deck designs. Material characterization tests took place to identify potential challenges in mixing, placing, and curing UHPC. Biaxial testing was performed to evaluate behavior of UHPC in combined tension and compression stress states. A UHPC bridge deck was designed to perform similarly to a conventional concrete bridge deck, and a single unit bridge deck section was tested to evaluate the design methods used for untreated UHPC. Material tests identified challenges with placing UHPC. A specified compressive strength was determined for structural design using untreated UHPC, which was identified as a cost-effective alternative to steam treated UHPC. UHPC was tested in biaxial tension-compression stress states. A biaxial test method was developed for UHPC to directly apply tension and compression. The influence of both curing method and fiber orientation were evaluated. The failure envelope developed for untreated UHPC with random fiber orientation was suggested as a conservative estimate for future analysis of UHPC. Digital image correlation was also evaluated as a means to estimate surface strains of UHPC, and recommendations are provided to improve consistency in future tests using DIC methods. A preliminary bridge deck design was completed for untreated UHPC and using established material models. Prestressing steel was used as primary reinforcement in the transverse direction. Preliminary testing was used to evaluate three different placement scenarios, and results showed that fiber settling was a potential placement problem resulting in reduced tensile strength. The UHPC bridge deck was redesigned to incorporate preliminary test results, and two single unit bridge deck sections were tested to evaluate the incorporated design methods for both upside down and right-side up placement techniques. Test results showed that the applied design methods would be conservative for either placement method.
- Bond and Material Properties of Grade 270 and Grade 300 Prestressing StrandsLoflin, Bryan (Virginia Tech, 2008-06-10)The first objective of this thesis was to determine the material properties of grade 270 and grade 300 prestressing strand of various sizes. Tension tests were performed on each type of strand. The data from these tests was used to determine modulus of elasticity, yield stress, ultimate stress, and ultimate elongation for each strand. The yield stresses and ultimate stresses for many of the strands did not meet the requirements found in ASTM A416. The ultimate elongation results far exceeded the requirements and the measured elastic moduli were near the modulus recommended by AASHTO LRFD. A secondary objective from the tension tests was to evaluate a gripping method which used aluminum tubing to cushion the strands against notching. The grips performed very well. Most of the strand breaks did not occur in the grips and when a strand did break in the grips, the failure occurred after significant post-yield elongation. The second objective was to evaluate the bond properties of grade 270 and grade 300 prestressing strands. The North American Strand Producers (NASP) Bond Test and Large Block Pullout Test (LBPT) were performed on six different strand grade and strand size combinations. Both of the tests are simple pullout tests on untensioned strand. The results for each strand type were compared to one another as well as to measured transfer and development lengths from beams using the strand from the same reel. All of the strands showed sufficient bond in the beams, but one strand type did fail both the NASP Test and the LBPT. Both pullout tests were acceptable methods to evaluate strand surface condition and the benchmarks set for 0.5 in. diameter regular strand were conservative for the strands used in this thesis. Little difference was evident in the bond performance of grade 270 and grade 300 prestressing strand.
- C-Grid as Shear Reinforcement in Concrete Bridge GirdersWard, John Charlton III (Virginia Tech, 2016-03-28)Corrosion of reinforcing steel causes shorter life spans in bridges throughout the United States. The use of carbon fiber reinforced polymer (CFRP) materials as the flexural reinforcement in bridge girders has been extensively studied. However, CFRP transverse reinforcement has not been as rigorously investigated, and many studies have focused on CFCC stirrups. The use of C-Grid as an option for transverse reinforcing has not been previously investigated. This thesis concludes that C-Grid is a viable shear design option and presents the initial recommendations for design methods. These methods provide a basis for the design of C-Grid shear reinforcing that could be used as a starting point for future testing of full scale specimens. This testing program first determined the mechanical properties of C-Grid and its development length. Four 18 ft long 19 in. deep beams, modeled after prestressed Bulb-T beams, were created to test the C-Grid, as well as steel and CFCC stirrups. The beams were loaded with a single point load closer to one end to create a larger shear load for a given flexural moment. Overall beam displacement was measured to determine when flexural reinforcement yielding was reached, and beams were fitted with rosettes and instrumentation to capture initiation of shear cracking. Shear capacity calculations following four methods were compared to test results. The design method should follow the AASHTO modified compression field theory with equations for β and θ. The manufacturer's guaranteed strength should be used for design as long as that strength is the average reduced by three standard deviations. Shear crack widths are controlled to a similar size as steel stirrups when using at least two layers of grid.
- Capacity Resistance and Performance of Single-Shear Bolted and Nailed Connections: An Experimental InvestigationSmart, Jason Vincent (Virginia Tech, 2002-07-01)The experimental study reported upon in this thesis focused on the development of physical data characterizing the behavior of single-shear, laterally-loaded connections when loaded up to and beyond capacity (i.e., maximum resistance). Specimens included a wide array of connection configurations common in wood construction. All connections were tested monotonically in tension under displacement-controlled loading, parallel to the grain. Results of these tests are presented and discussed. Test variables of nailed connections included nail diameter, side member material type, and side member thickness. Test variables of bolted connections included bolt diameter, commercial species grouping of the main and side members, and main member thickness. Conclusions drawn from this research include mechanics-based explanations of numerous connection response trends observed with respect to test variables. Additionally, observed factors of safety and over-strengths of current design values are quantified on a capacity-basis.
- Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge BeamsWard, John; Magee, Mitch; Roberts-Wollmann, Carin L.; Cousins, Thomas E. (Virginia Transportation Research Council, 2018-01)Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural reinforcement in bridge girders has been extensively studied. However, CFRP transverse reinforcement has not been investigated as rigorously, and many of those studies have focused on carbon fiber composite cable (CFCC) stirrups. The use of C-Grid or NEFMAC grid as options for transverse reinforcing has not been previously investigated. This testing program first determined the mechanical properties of C-Grid and NEFMAC grid and their respective development lengths. Five 18-ft long, 19-in deep beams were fabricated to test the C-Grid and NEFMAC, as well as conventional steel and CFCC stirrups. The beams were loaded with a single point load closer to one end of the beam to create a larger shear load for a given moment. Overall beam displacement was measured, and beams were fitted with rosettes and instrumentation to capture initiation of shear cracking. Test results were compared to theoretical shear capacities calculated using four different methods. The design method which provided the best prediction of shear strength was the AASHTO modified compression field theory, using equations for β and θ. The manufacturer’s guaranteed tensile strength should be used for design, as long as that strength is the average strength, as determined by at least five tests, reduced by three standard deviations. Shear cracks were controlled to a similar width as in beams with steel stirrups when at least two layers of grid were in place. An additional study was undertaken to determine if CFRP grids, either alone or in combination with traditional steel stirrups, could be used to control cracking in the end zones of pretensioned I-beams. Unfortunately, it was determined that, due to its low modulus, the amount of CFRP grid required to control cracking in the end zones was not economically feasible. Nevertheless, this study concluded that C-Grid and NEFMAC grid are both viable shear reinforcement options outside of the end regions. This report presents the initial recommendations for design.
- CFRP as Shear and End-Zone Reinforcement for Concrete Bridge GirdersMagee, Mitchell Drake (Virginia Tech, 2016-06-29)Corrosion of reinforcing steel is a major cause of damage to bridges in the United States. A possible solution to the corrosion issue is carbon fiber reinforced polymer (CFRP) material. CFRP material has been implemented as flexural reinforcement in many cases, but not as transverse reinforcing. The CFRP material studied in this thesis was NEFMAC grid, which consists of vertical and horizontal CFRP tows that form an 8 in. by 10 in. grid. The use of NEFMAC grid as transverse reinforcing has not been previously investigated. First, the development length of NEFMAC grid was determined. Next, an 18 ft long 19 in. deep beam, modeled after prestressed Bulb-T beams, was created with NEFMAC grid reinforcement. The beam was loaded with a single point load near the support to induce shear failure. Beams were fitted with instrumentation to capture shear cracking data. Shear capacity calculations following four methods were compared to test results. Lastly, a parametric study with strut-and-tie modeling was performed on Precast Bulb-T (PCBT) girders to determine the amount of CFRP grid needed for reinforcement in the anchorage zone. This thesis concludes that NEFMAC grid is a viable shear design option and presents the initial recommendations for design methods. These methods provide a basis for the design of NEFMAC grid shear reinforcing that could be used as a starting point for future testing of full scale specimens. When designing with NEFMAC grid, the full manufacturer's guaranteed strength should be used as it is the average reduced by three standard deviations. AASHTO modified compression field theory provides the best prediction of shear capacity. For anchorage zone design, working stress limits for CFRP grids need to be increased to allow more of the strength to be implemented in design.
- Characterization of Punching Shear Capacity of Thin Uhpc PlatesHarris, Devin K. (Virginia Tech, 2004-12-15)UHPC (ultra-high performance concrete) is a relatively new type of concrete that exhibits mechanical properties that are far superior to those of conventional concrete and in some cases rival those of steel. The main characteristics that distinguish UHPC from conventional reinforced concrete are the improved compressive strength, the tensile strength, the addition of steel fibers, and the resistance to corrosion and degradation. The mechanical properties of UHPC allow for smaller, thinner, lighter sections to be designed while strength is maintained or improved. The use of UHPC has been limited to a few structural applications due to the high cost of the materials and the lack of established design guidelines. A proposed material model based on material and finite element models has served as the foundation of this research effort. The model was used to minimize the dimension of an optimum section in order to limit the material usage and maximize the performance. In the model, the top flange served as the riding surface and contained no reinforcing steel to resist shear. The lack of steel reinforcement allowed for the possibility of a punching shear failure to occur from the application of a point load such as a wheel tire patch load. The model and optimized section served as the foundation for this research, the characterization of punching shear capacity of thin UHPC plates. A total of 12 UHPC slabs were tested to failure to determine the boundary between a flexural failure and a punching shear failure. The variables considered were the slab thickness and loading plate dimensions. The results of the testing were compared to existing models for punching shears and other failure modes, with varying success. The test results aided in the development of a design equation for the prediction of punching shear in UHPC slabs. After evaluation of the test results, recommendations are made as to which model predicts the punching shear capacity of UHPC slabs and the minimum slab thickness required to prevent a punching shear failure.
- Classification of longitudinal welds in an aluminum bridge deckCousins, Thomas E.; Richard F. Hezel II; Jose P. Gomez (Virginia Center for Transportation Innovation and Research, 2002-02-01)An aluminum bridge deck (called ALUMADECK) has been developed by Reynolds Metal Company and is made of extruded aluminum sections welded together at the sides to form a bridge deck. The longitudinal welds used to connect the extrusions do not match any of the fatigue category details in the AASHTO LRFD Bridge Specifications. In order to classify these welds, two fatigue tests were performed on a two-span ALUMADECK section fabricated over "simulated" bridge girders. Certain locations on the longitudinal welds were tested at a constant amplitude fatigue stress of at least 13.8 MPa (equivalent to the 1994 AASHTO LRFD Bridge Specification Category C Detail) to determine if the welds could be conservatively classified as a detail category C. The ALUMADECK was subjected to 10,000,000 cycles of fatigue loading. There was no sign of fatigue crack initiation during this loading. Once the fatigue loading was complete a residual strength test was performed. The residual strength of the ALUMADECK after fatigue loading was 33% greater than the ultimate strength of an earlier generation of the ALUMADECK. From the data collected and observations made during the fatigue loading the longitudinal welds in the ALUMADECK can be conservatively classified as an AASHTO detail category C.
- Composite action in a steel girder span with precast deck panels :the I-81 bridge over the New River in Radford, VirginiaCousins, Thomas E. (Virginia Center for Transportation Innovation and Research, 2003-10-01)Two parallel bridges carry I-81 north and south over the New River in southwest Virginia, near the city of Radford. The bridges are identical in design and have been in place since 1985. In recent years, a number of maintenance issues have been reported, primarily related to cracking of the cast-in-place topping over partial-depth precast deck panels. A study was undertaken to determine the influence of the observed deterioration on the structural capacity of the affected bridge spans. The analysis indicated that the full potential of the composite slab-girder system is no longer being realized. Continued deterioration of the deck is likely, especially given the frequency of heavy truck traffic on this structure and the inherent vibration. It appears that the presence of precast cast-in-place deck sections has reduced the overall stiffness of the deck as compared to the original design. The movement, in conjunction with a poor deck panel support detail, is likely to cause a continual maintenance problem, as additional precast panels begin to move and fracture of the cast-in-place topping occurs. As a potential mitigation option, replacement of the fiber bolster material between the top flange of the girders and the precast panels with more rigid steel shims and/or concrete is recommended to increase the bearing surface of the panels, reduce vertical displacement of panel edges, and minimize dynamic impact at the joints.
- Compressive Creep of a Lightweight, High Strength Concrete MixtureVincent, Edward Creed (Virginia Tech, 2003-01-10)Concrete undergoes volumetric changes throughout its service life. These changes are a result of applied loads and shrinkage. Applied loads result in an instantaneous recoverable elastic deformation and a slow, time dependent, inelastic deformation called creep. Creep without moisture loss is referred to as basic creep and with moisture loss is referred to as drying creep. Shrinkage is the combination of autogeneous, drying, and carbonation shrinkage. The combination of creep, shrinkage, and elastic deformation is referred to as total strain. The prestressed concrete beams in the Chickahominy River Bridge have been fabricated with a lightweight, high strength concrete mixture (LTHSC). Laboratory test specimens have been cast using the concrete materials and mixture proportions used in the fabrication of the bridge beams. Two standard cure and two match cure batches have been loaded for 329 and 251 days, respectively. Prestress losses are generally calculated with the total strain predicted by the American Concrete Institute Committee 209 recommendations, ACI 209, or the European design code, CEB Model Code 90. Two additional models that have been proposed are the B3 model by Bazant and Baweja, and the GL2000 model proposed by Gardner and Lockman. The four models are analyzed to determine the most precise model for the LTHSC mixture. Only ACI 209 considered lightweight aggregates during model development. GL2000 considers aggregate stiffness in the model. ACI 209 was the best predictor of total strain and individual time dependent deformations for the accelerated cure specimens. CEB Mode Code 90 was the best predictor of total strain for the standard cure specimens. The best overall predictor of time dependent deformations was the GL2000 model for the standard cure specimens.
- Compressive Creep of Prestressed Concrete Mixtures With and Without Mineral AdmixturesMeyerson, Richard (Virginia Tech, 2001-02-16)Concrete experiences volume changes throughout its service life. When loaded, concrete experiences an instantaneous recoverable elastic deformation and a slow inelastic deformation called creep. Creep of concrete is composed of two components, basic creep, or deformation under load without moisture loss and drying creep, or deformation under drying conditions only. Deformation of concrete in the absence of applied load is often called shrinkage. The deformation due to creep is attributed to the movement of water between the different phases of the concrete. When an external load is applied, it changes the attraction forces between the cement gel particles. This change in the forces causes an imbalance in the attractive and disjoining forces. However, the imbalance is gradually eliminated by the transfer of moisture into the pores in cases of compression, and away from the pores in cases of tension. Designs typically use one of the two code models to estimate creep and shrinkage strain in concrete, ACI 209 model recommended by the American Concrete Institute or the CEB 90 Eurocode 2 model recommended by the Euro-International Committee. The ASSHTO LRFD is based on the ACI 209 model. Three other models are the B3 model, developed by Bazant; the GZ model, developed by Gardner; and the SAK model developed by Sakata. The development of concrete performance specifications that limit the amount of compressive creep of concrete mixtures used by the Virginia Department of Transportation, specifically concrete mixtures used for prestressed members (A-5 Concrete) were assessed, along with determining the accuracy and precision of the creep models presented in the literature. The CEB 90 Eurocode 2 model for creep and shrinkage is the most precise and accurate predictor. The total strain for the VDOT portland cement concrete mixtures discussed in this study were found to be between 1200 ± 110 microstrain at 28 days, and 1600 ± 110 microstrain at 97 days, at a five percent significant level.
- Construction and Behavior of Precast Bridge Deck Panel SystemsSullivan, Sean Robert (Virginia Tech, 2007-04-27)A bridge with precast bridge deck panels was built at the Virginia Tech Structures Laboratory to examine constructability issues, creep and shrinkage behavior, and strength and fatigue performance of transverse joints, different types of shear connectors, and different shear pocket spacings. The bridge consisted of two AASHTO type II girders, 40 ft long and simply supported, and five precast bridge deck panels. Two of the transverse joints were epoxied male-female joints and the other two transverse joints were grouted female-female joints. Two different pocket spacings were studied: 4 ft pocket spacing and 2 ft pocket spacing. Two different shear connector types were studied: hooked reinforcing bars and a new shear stud detail that can be used with concrete girders. The construction process was well documented. The change in strain in the girders and deck was examined and compared to a finite element model to examine the effects of differential creep and shrinkage. After the finite element model verification study, the model was used to predict the long term stresses in the deck and determine if the initial level of post-tensioning was adequate to keep the transverse joints in compression throughout the estimated service life of the bridge. Cyclic loading tests and shear and flexural strength tests were performed to examine performance of the different pocket spacings, shear connector types and transverse joint configurations. A finite element study examined the accuracy of the AASHTO LRFD shear friction equation for the design of the horizontal shear connectors. The initial level of post-tensioning in the bridge was adequate to keep the transverse joints in compression throughout the service life of the bridge. Both types of pocket spacings and shear connectors performed exceptionally well. The AASHTO LRFD shear friction equation was shown to be applicable to deck panel systems and was conservative for determining the number of shear connectors required in each pocket. A recommended design and detailing procedure was provided for the shear connectors and shear pockets.
- Construction of a Virginia Short-Span Bridge with the Strongwell 36-Inch Double-Web I-BeamCousins, Thomas E.; Lesko, John J. (Virginia Center for Transportation Innovation and Research, 2005-10-01)The Route 601 Bridge in Sugar Grove, VA, spans 39 ft over Dickey Creek. The bridge is the first to use the Strongwell 36-in-deep fiber-reinforced polymer (FRP) double-web beam (DWB) in a vehicular bridge superstructure. Construction of the new bridge was completed in October 2001, and field testing was undertaken shortly thereafter as well as in June of 2002 to assess any potential changes in structural performance. This paper details the field evaluation of the Route 601 Bridge. Using midspan deflection and strain data from the October 2001 and June 2002 field tests, AASHTO bridge design parameters were determined, namely wheel load distribution factor g, dynamic load allowance IM, and maximum deflection. The wheel load distribution factor was determined to be S/4, a dynamic load allowance was determined to be 0.50, and the maximum deflection of the bridge was L/1110. Deflection results were lower than the AASHTO L/800 limit. This discrepancy is attributed to partial composite action of the deck-to-girder connections, bearing restraint at the supports, and contribution of guardrail stiffness. It was found that diaphragm removal had a small effect on the wheel load distribution factor. An examination of the 36-in DWB capacity and failure mode indicates that the strength of the girder is controlled by compression failure in the flange and not shear failure, as originally thought. An attempt to predict the girder fatigue performance shows that small losses in bending stiffness would be expected at fatigue loads 26% of the ultimate capacity, which was confirmed through experiments. Moreover, there is no concern that fatigue alone will cause a failure during the reasonable life of the structure as presently operated.
- Continuation of Field and Laboratory Tests of a Proposed Bridge Deck Panel Fabricated from Pultruded Fiber-Reinforced Polymer ComponentsColeman, Jason Thomas (Virginia Tech, 2002-02-20)This thesis presents research completed on the experimental performance of two 6 3/4 in thick bridge deck panels fabricated by the Stongwell Corporation of Bristol, Virginia. The panels are made of off-the-shelf, pultruded glass fiber-reinforced polymer elements, bonded and mechanically fastened together. The testing involved laboratory stiffness tests performed on one deck panel which afterwards, was placed in a field test site at the I-81 Troutville Weigh Station facility. The daily truck traffic over the deck panel at this site is approximately 5400 vehicles. The second deck panel was constructed as a prototype to test benefits of steel thru-rod mechanical connectors. Further, a rubber tire loading patch was developed for the laboratory stiffness and strength tests performed on this second specimen to investigate modes of failure. Both decks made use of a hook bolt type connection to steel support beams in order to reduce damage seen in previous methods of connection.