Browsing by Author "Dodds, Walter K."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- Assessing placement bias of the global river gauge networkKrabbenhoft, Corey A.; Allen, George H.; Lin, Peirong; Godsey, Sarah E.; Allen, Daniel C.; Burrows, Ryan M.; DelVecchia, Amanda G.; Fritz, Ken M.; Shanafield, Margaret; Burgin, Amy J.; Zimmer, Margaret A.; Datry, Thibault; Dodds, Walter K.; Jones, C. Nathan; Mims, Meryl C.; Franklin, Catherin; Hammond, John C.; Zipper, Sam; Ward, Adam S.; Costigan, Katie H.; Beck, Hylke E.; Olden, Julian D. (Nature Portfolio, 2022-07)Hydrologic data collected from river gauges inform critical decisions for allocating water resources, conserving ecosystems and predicting the occurrence of droughts and floods. The current global river gauge network is biased towards large, perennial rivers, and strategic adaptations are needed to capture the full scope of rivers on Earth. Knowing where and when rivers flow is paramount to managing freshwater ecosystems. Yet stream gauging stations are distributed sparsely across rivers globally and may not capture the diversity of fluvial network properties and anthropogenic influences. Here we evaluate the placement bias of a global stream gauge dataset on its representation of socioecological, hydrologic, climatic and physiographic diversity of rivers. We find that gauges are located disproportionally in large, perennial rivers draining more human-occupied watersheds. Gauges are sparsely distributed in protected areas and rivers characterized by non-perennial flow regimes, both of which are critical to freshwater conservation and water security concerns. Disparities between the geography of the global gauging network and the broad diversity of streams and rivers weakens our ability to understand critical hydrologic processes and make informed water-management and policy decisions. Our findings underscore the need to address current gauge placement biases by investing in and prioritizing the installation of new gauging stations, embracing alternative water-monitoring strategies, advancing innovation in hydrologic modelling, and increasing accessibility of local and regional gauging data to support human responses to water challenges, both today and in the future.
- Continental-scale decrease in net primary productivity in streams due to climate warmingSong, Chao; Dodds, Walter K.; Ruegg, Janine; Argerich, Alba; Baker, Christina L.; Bowden, William B.; Douglas, Michael M.; Farrell, Kaitlin J.; Flinn, Michael B.; Garcia, Erica A.; Helton, Ashley M.; Harms, Tamara K.; Jia, Shufang; Jones, Jeremy B.; Koenig, Lauren E.; Kominoski, John S.; McDowell, William H.; McMaster, Damien; Parker, Samuel P.; Rosemond, Amy D.; Ruffing, Claire M.; Sheehan, Ken R.; Trentman, Matt T.; Whiles, Matt R.; Wollheim, Wilfred M.; Ballantyne, Ford (2018-06)Streams play a key role in the global carbon cycle. The balance between carbon intake through photosynthesis and carbon release via respiration influences carbon emissions from streams and depends on temperature. However, the lack of a comprehensive analysis of the temperature sensitivity of the metabolic balance in inland waters across latitudes and local climate conditions hinders an accurate projection of carbon emissions in a warmer future. Here, we use a model of diel dissolved oxygen dynamics, combined with high-frequency measurements of dissolved oxygen, light and temperature, to estimate the temperature sensitivities of gross primary production and ecosystem respiration in streams across six biomes, from the tropics to the arctic tundra. We find that the change in metabolic balance, that is, the ratio of gross primary production to ecosystem respiration, is a function of stream temperature and current metabolic balance. Applying this relationship to the global compilation of stream metabolism data, we find that a 1 degrees C increase in stream temperature leads to a convergence of metabolic balance and to a 23.6% overall decline in net ecosystem productivity across the streams studied. We suggest that if the relationship holds for similarly sized streams around the globe, the warming-induced shifts in metabolic balance will result in an increase of 0.0194 Pg carbon emitted from such streams every year.
- Drivers of nitrogen transfer in stream food webs across continentsNorman, Beth C.; Whiles, Matt R.; Collins, Sarah M.; Flecker, Alexander S.; Hamilton, Steve K.; Johnson, Sherri L.; Rosi, Emma J.; Ashkenas, Linda R.; Bowden, William B.; Crenshaw, Chelsea L.; Crowl, Todd; Dodds, Walter K.; Hall, Robert O.; El-Sabaawi, Rana; Griffiths, Natalie A.; Marti, Eugenia; McDowell, William H.; Peterson, Scot D.; Rantala, Heidi M.; Riis, Tenna; Simon, Kevin S.; Tank, Jennifer L.; Thomas, Steven A.; von Schiller, Daniel; Webster, Jackson R. (2017-12)Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen N-15-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean 11.5%, range <1% to 43%) than N transfer efficiencies from primary consumers to predators (mean 80%, range 5% to >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and percent canopy cover. N transfer efficiency did not respond consistently to environmental variables. Our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels.
- Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and riversShah, Jennifer J. Follstad; Kominoski, John S.; Ardon, Marcelo; Dodds, Walter K.; Gessner, Mark O.; Griffiths, Natalie A.; Hawkins, Charles P.; Johnson, Sherri L.; Lecerf, Antoine; Leroy, Carri J.; Manning, David W. P.; Rosemond, Amy D.; Sinsabaugh, Robert L.; Swan, Christopher M.; Webster, Jackson R.; Zeglin, Lydia H. (2017-08)Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (E-a, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which E-a could be calculated. Higher values of E-a were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). E-a values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the E-a was 0.34 +/- 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in E-a values for these regions (0.75 +/- 0.13 eV and 0.27 +/- 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that E-a values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.
- Gradients of Anthropogenic Nutrient Enrichment Alter N Composition and DOM Stoichiometry in Freshwater EcosystemsWymore, Adam S.; Johnes, Penny J.; Bernal, Susana; Brookshire, E. N. Jack; Fazekas, Hannah M.; Helton, Ashley M.; Argerich, Alba; Barnes, Rebecca T.; Coble, Ashley A.; Dodds, Walter K.; Haq, Shahan; Johnson, Sherri L.; Jones, Jeremy B.; Kaushal, Sujay S.; Kortelainen, Pirkko; Lopez-Lloreda, Carla; Rodriguez-Cardona, Bianca M.; Spencer, Robert G. M.; Sullivan, Pamela L.; Yates, Christopher A.; McDowell, William H. (2021-08)A comprehensive cross-biome assessment of major nitrogen (N) species that includes dissolved organic N (DON) is central to understanding interactions between inorganic nutrients and organic matter in running waters. Here, we synthesize stream water N chemistry across biomes and find that the composition of the dissolved N pool shifts from highly heterogeneous to primarily comprised of inorganic N, in tandem with dissolved organic matter (DOM) becoming more N-rich, in response to nutrient enrichment from human disturbances. We identify two critical thresholds of total dissolved N (TDN) concentrations where the proportions of organic and inorganic N shift. With low TDN concentrations (0-1.3 mg/L N), the dominant form of N is highly variable, and DON ranges from 0% to 100% of TDN. At TDN concentrations above 2.8 mg/L, inorganic N dominates the N pool and DON rarely exceeds 25% of TDN. This transition to inorganic N dominance coincides with a shift in the stoichiometry of the DOM pool, where DOM becomes progressively enriched in N and DON concentrations are less tightly associated with concentrations of dissolved organic carbon (DOC). This shift in DOM stoichiometry (defined as DOC:DON ratios) suggests that fundamental changes in the biogeochemical cycles of C and N in freshwater ecosystems are occurring across the globe as human activity alters inorganic N and DOM sources and availability. Alterations to DOM stoichiometry are likely to have important implications for both the fate of DOM and its role as a source of N as it is transported downstream to the coastal ocean.
- High rates of daytime river metabolism are an underestimated component of carbon cyclingTromboni, Flavia; Hotchkiss, Erin R.; Schechner, Anne E.; Dodds, Walter K.; Poulson, Simon R.; Chandra, Sudeep (SpringerNature, 2022-11)Diel variations in the isotopic composition of dissolved oxygen in river water reveal high rates of gross primary production and respiration rates in 14 rivers across three biomes, suggesting that the microbial loop in rivers may cycle carbon more rapidly than thought. River metabolism and, thus, carbon cycling are governed by gross primary production and ecosystem respiration. Traditionally river metabolism is derived from diel dissolved oxygen concentrations, which cannot resolve diel changes in ecosystem respiration. Here, we compare river metabolism derived from oxygen concentrations with estimates from stable oxygen isotope signatures (delta O-18(2)) from 14 sites in rivers across three biomes using Bayesian inverse modeling. We find isotopically derived ecosystem respiration was greater in the day than night for all rivers (maximum change of 113 g O-2 m(-2) d(-1), minimum of 1 g O-2 m(-2) d(-1)). Temperature (20 degrees C) normalized rates of ecosystem respiration and gross primary production were 1.1 to 87 and 1.5 to 22-fold higher when derived from oxygen isotope data compared to concentration data. Through accounting for diel variation in ecosystem respiration, our isotopically-derived rates suggest that ecosystem respiration and microbial carbon cycling in rivers is more rapid than predicted by traditional methods.
- Pervasive changes in stream intermittency across the United StatesZipper, Samuel C.; Hammond, John C.; Shanafield, Margaret; Zimmer, Margaret; Datry, Thibault; Jones, C. Nathan; Kaiser, Kendra E.; Godsey, Sarah E.; Burrows, Ryan M.; Blaszczak, Joanna R.; Busch, Michelle H.; Price, Adam N.; Boersma, Kate S.; Ward, Adam S.; Costigan, Katie; Allen, George H.; Krabbenhoft, Corey A.; Dodds, Walter K.; Mims, Meryl C.; Olden, Julian D.; Kampf, Stephanie K.; Burgin, Amy J.; Allen, Daniel C. (2021-08)Non-perennial streams are widespread, critical to ecosystems and society, and the subject of ongoing policy debate. Prior large-scale research on stream intermittency has been based on long-term averages, generally using annually aggregated data to characterize a highly variable process. As a result, it is not well understood if, how, or why the hydrology of non-perennial streams is changing. Here, we investigate trends and drivers of three intermittency signatures that describe the duration, timing, and dry-down period of stream intermittency across the continental United States (CONUS). Half of gages exhibited a significant trend through time in at least one of the three intermittency signatures, and changes in no-flow duration were most pervasive (41% of gages). Changes in intermittency were substantial for many streams, and 7% of gages exhibited changes in annual no-flow duration exceeding 100 days during the study period. Distinct regional patterns of change were evident, with widespread drying in southern CONUS and wetting in northern CONUS. These patterns are correlated with changes in aridity, though drivers of spatiotemporal variability were diverse across the three intermittency signatures. While the no-flow timing and duration were strongly related to climate, dry-down period was most strongly related to watershed land use and physiography. Our results indicate that non-perennial conditions are increasing in prevalence over much of CONUS and binary classifications of 'perennial' and 'non-perennial' are not an accurate reflection of this change. Water management and policy should reflect the changing nature and diverse drivers of changing intermittency both today and in the future.
- Shifting stoichiometry: Long-term trends in stream-dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid depositionRodriguez-Cardona, Bianca M.; Wymore, Adam S.; Argerich, Alba; Barnes, Rebecca T.; Bernal, Susana; Brookshire, E. N. Jack; Coble, Ashley A.; Dodds, Walter K.; Fazekas, Hannah M.; Helton, Ashley M.; Johnes, Penny J.; Johnson, Sherri L.; Jones, Jeremy B.; Kaushal, Sujay S.; Kortelainen, Pirkko; Lopez-Lloreda, Carla; Spencer, Robert G. M.; McDowell, William H. (2021-10-27)Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for -30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.
- Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United StatesHammond, John C.; Zimmer, Margaret A.; Shanafield, Margaret; Kaiser, Kendra E.; Godsey, Sarah E.; Mims, Meryl C.; Zipper, Samuel C.; Burrows, Ryan M.; Kampf, Stephanie K.; Dodds, Walter K.; Jones, C. Nathan; Krabbenhoft, Corey A.; Boersma, Kate S.; Datry, Thibault; Olden, Julian D.; Allen, George H.; Price, Adam N.; Costigan, Katie H.; Hale, Rebecca; Ward, Adam S.; Allen, Daniel C. (2021-01-28)Over half of global rivers and streams lack perennial flow, and understanding the distribution and drivers of their flow regimes is critical for understanding their hydrologic, biogeochemical, and ecological functions. We analyzed nonperennial flow regimes using 540 U.S. Geological Survey watersheds across the contiguous United States from 1979 to 2018. Multivariate analyses revealed regional differences in no-flow fraction, date of first no flow, and duration of the dry-down period, with further divergence between natural and human-altered watersheds. Aridity was a primary driver of no-flow metrics at the continental scale, while unique combinations of climatic, physiographic and anthropogenic drivers emerged at regional scales. Dry-down duration showed stronger associations with nonclimate drivers compared to no-flow fraction and timing. Although the sparse distribution of nonperennial gages limits our understanding of such streams, the watersheds examined here suggest the important role of aridity and land cover change in modulating future stream drying. Plain Language Summary A majority of global streams are nonperennial, flowing only part of the year, and are critical for sustaining flow downstream, providing habitat for many organisms, and regulating chemical and biological processes. Using long-term U.S. Geological Survey measurements for 540 watersheds across the contiguous United States, we mapped patterns and examined the causes of no-flow fraction, the fraction of each climate year with no flow, no-flow timing, the date of the climate year on which the first recorded no flow takes place, and length of the dry-down period, the average number of days from a local peak in daily flow to the first occurrence of no flow. We found differences in patterns of no-flow characteristics between regions, with higher no-flow fraction, earlier timing, and shorter dry-down duration in the western United States. No-flow fractions were greater and less variable in natural watersheds, while no-flow timing was earlier and dry-down duration was shorter in human-modified watersheds. Aridity had the greatest effect on intermittence across the United States, but unique combinations of climate, biophysical, and human impacts were important in different regions. The number of gages measuring streamflow in nonperennial streams is small compared to perennial streams, and increased monitoring is needed to better understand drying behavior. Key Points . Three metrics reveal regional and human-driven patterns of nonperennial flow: no-flow fraction, day of first no flow, and dry-down duration Streams with human modifications generally dry more quickly than unmodified streams, especially in California and the Southern Great Plains Climate strongly influences no-flow fraction and timing, but physiographic variables are more important for the duration of dry down
- What’s in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and StreamsBusch, Michelle H.; Costigan, Katie H.; Fritz, Ken M.; Datry, Thibault; Krabbenhoft, Corey A.; Hammond, John C.; Zimmer, Margaret A.; Olden, Julian D.; Burrows, Ryan M.; Dodds, Walter K.; Boersma, Kate S.; Shanafield, Margaret; Kampf, Stephanie K.; Mims, Meryl C.; Bogan, Michael T.; Ward, Adam S.; Perez Rocha, Mariana; Godsey, Sarah E.; Allen, George H.; Blaszczak, Joanna R.; Jones, C. Nathan; Allen, Daniel C. (MDPI, 2020-07-13)Rivers that cease to flow are globally prevalent. Although many epithets have been used for these rivers, a consensus on terminology has not yet been reached. Doing so would facilitate a marked increase in interdisciplinary interest as well as critical need for clear regulations. Here we reviewed literature from Web of Science database searches of 12 epithets to learn (Objective 1—O1) if epithet topics are consistent across Web of Science categories using latent Dirichlet allocation topic modeling. We also analyzed publication rates and topics over time to (O2) assess changes in epithet use. We compiled literature definitions to (O3) identify how epithets have been delineated and, lastly, suggest universal terms and definitions. We found a lack of consensus in epithet use between and among various fields. We also found that epithet usage has changed over time, as research focus has shifted from description to modeling. We conclude that multiple epithets are redundant. We offer specific definitions for three epithets (non-perennial, intermittent, and ephemeral) to guide consensus on epithet use. Limiting the number of epithets used in non-perennial river research can facilitate more effective communication among research fields and provide clear guidelines for writing regulatory documents.
- Zero or not? Causes and consequences of zero-flow stream gage readingsZimmer, Margaret A.; Kaiser, Kendra E.; Blaszczak, Joanna R.; Zipper, Samuel C.; Hammond, John C.; Fritz, Ken M.; Costigan, Katie H.; Hosen, Jacob; Godsey, Sarah E.; Allen, George H.; Kampf, Stephanie K.; Burrows, Ryan M.; Krabbenhoft, Corey A.; Dodds, Walter K.; Hale, Rebecca; Olden, Julian D.; Shanafield, Margaret; DelVecchia, Amanda G.; Ward, Adam S.; Mims, Meryl C.; Datry, Thibault; Bogan, Michael T.; Boersma, Kate S.; Busch, Michelle H.; Jones, C. Nathan; Burgin, Amy J.; Allen, Daniel C. (2020-05)Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed-scale processes. When stream gages read zero, this may indicate that the stream has dried at this location; however, zero-flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero-flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to inaccurate hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero-flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human-driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero-flow interpretations. We also highlight additional methods for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero-flow gage readings and implications for reach- and watershed-scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero-flows will only attain greater importance in a more variable and changing hydrologic climate. This article is categorized under: Science of Water > Methods Science of Water > Hydrological Processes Water and Life > Conservation, Management, and Awareness