Browsing by Author "Elhenawy, Mohammed Mamdouh Zakaria"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Appling Machine and Statistical Learning Techniques to Intelligent Transport Systems: Bottleneck Identification and Prediction, Dynamic Travel Time Prediction, Driver Run-Stop Behavior Modeling, and Autonomous Vehicle Control at IntersectionsElhenawy, Mohammed Mamdouh Zakaria (Virginia Tech, 2015-06-30)In this dissertation, new algorithms that address three traffic problems of major importance are developed. First automatic identification and prediction algorithms are developed to identify and predict the occurrence of traffic congestion. The identification algorithms concoct a model to identify speed thresholds by exploiting historical spatiotemporal speed matrices. We employ the speed model to define a cutoff speed separating free-flow from congested traffic. We further enhance our algorithm by utilizing weather and visibility data. To our knowledge, we are the first to include weather and visibility variables in formulating an automatic congestion identification model. We also approach the congestion prediction problem by adopting an algorithm which employs Adaptive Boosting machine learning classifiers again something novel that has not been done previously. The algorithm is promising where it resulted in a true positive rate slightly higher than 0.99 and false positive rate less than 0.001. We next address the issue of travel time modeling. We propose algorithms to model travel time using various machine learning and statistical learning techniques. We obtain travel time models by employing the historical spatiotemporal speed matrices in conjunction with our algorithms. The algorithms yield pertinent information regarding travel time reliability and prediction of travel times. Our proposed algorithms give better predictions compared to the state of practice algorithms. Finally we consider driver safety at signalized intersections and uncontrolled intersections in a connected vehicles environment. For signalized intersections, we exploit datasets collected from four controlled experiments to model the stop-run behavior of the driver at the onset of the yellow indicator for various roadway surface conditions and multiple vehicle types. We further propose a new variable (predictor) related to driver aggressiveness which we estimate by monitoring how drivers respond to yellow indications. The performance of the stop-run models shows improvements after adding the new aggressiveness predictor. The proposed models are practical and easy to implement in advanced driver assistance systems. For uncontrolled intersections, we present a game theory based algorithm that models the intersection as a chicken game to solve the conflicts between vehicles crossing the intersection. The simulation results show a 49% saving in travel time on average relative to a stop control when the vehicles obey the Nash equilibrium of the game.
- Modeling Transit Vehicle Travel Time Components for Use in Transit ApplicationsAlhadidi, Taqwa Ibrahim (Virginia Tech, 2020-06-22)Traffic congestion has continued to grow as a result of urbanization, which is associated with an increase in car ownership. As a way to improve the efficiency of the transportation system, emerging technologies including Connected Automated Vehicles (CAVs), loop detectors, Advanced Traveler Information Systems (ATISs), and Advanced Public Transportation Systems (APTSs) are being deployed. One of the successful techniques that has demonstrated benefits for system users, operators and agencies is Transit Signal Priority (TSP). TSP favors transit vehicles in the allocation of green times at traffic signals. A successful deployment of TSP depends on different factors including the prediction of various components of transit vehicle travel times to predict when a vehicle would arrive at a traffic signal. Current TSP state-of-the-art and state-of-practice disregards the impact of bus stops, transit vehicle characteristics, driver, and the prevailing traffic conditions on the predicted arrival time of transit vehicles at traffic signals. Considering these factors is important the success of TSP hinges on the ability to predict transit vehicle arrival times at traffic signals in order to provide these vehicles with priority service. The main contribution of this research effort relates to the modeling of the various components of transit vehicle travel times. This model explicitly captures the impact of passengers, drivers and vehicle characteristics on transit vehicle travel times thus providing better models for use in various transit applications, including TSP. Furthermore, the thesis presents a comprehensive understanding of the determinants of each travel time component. In essence, the determinants of each component, the stochasticity in these determinants and the correlation between them are explicitly modeled and captured. To achieve its contribution, the study starts by improving the current state-of-the-art and state-of-practice transit vehicle boarding/alighting (BA) models by explicitly accounting for the different factors that impact BA times while ensuring a relatively generalized formulation. Current formulations are specific for the localities and bus configurations that they were developed for. Alternatively, the proposed BA time model is independent of the transit vehicle capacity and transit vehicle configuration (except for the fact that it is only valid for two-door buses – a separate door for alighting and boarding the bus) and accounts for the number of on-board passengers, boarding and alighting passengers. The model also captures the stochasticity and the correlation between the model coefficients with minimum computational requirements. Next the model was extended to capture the bus driver and vehicle impacts on the transit vehicle delay in the vicinity of bus stops, using a vehicle kinematics model with maximum speed and acceleration constraints to model the acceleration/deceleration delay. The validation of the model was done using field data that cover different driving conditions. Results of this work found that the proposed formulation successfully integrated the human and vehicle characteristics component in the model and that the new formulation improves the estimation of the total delay that transit vehicles experience near bus stops. Finally, the model was extended to estimate the time required to merge into the adjacent lane and the time required to traverse a queue upstream of a traffic signal. The final part of this study models the bus arrival time at traffic signal using shockwave and prediction model in a connected environment. This section aims to model the transit vehicle arrival time at traffic signal considering the impact of signal timing and the prevailing traffic conditions. In summary, the proposed model overcomes the current state-of-the-art models in the following ways: 1) it accounts for the vehicle capacity and the number of on-board passengers on bus BA times, 2) it captures the stochasticity in the bus stop demand and the associated BA times, 3) it captures the impact of the traffic in modeling the delay at a bus stop , 4) it incorporates the driver and vehicle impact by modeling the acceleration and deceleration time, and 5) it uses shockwave analysis to estimate bus arrival times through the use of emerging technology data. Through statistical modeling and evaluation using field and simulated data, the model overcomes the current state-of practice and state-of art transit vehicle arrival time models.
- Optimizing Bike Sharing Systems: Dynamic Prediction Using Machine Learning and Statistical Techniques and RebalancingAlmannaa, Mohammed Hamad (Virginia Tech, 2019-05-07)The large increase in on-road vehicles over the years has resulted in cities facing challenges in providing high-quality transportation services. Traffic jams are a clear sign that cities are overwhelmed, and that current transportation networks and systems cannot accommodate the current demand without a change in policy, infrastructure, transportation modes, and commuter mode choice. In response to this problem, cities in a number of countries have started putting a threshold on the number of vehicles on the road by deploying a partial or complete ban on cars in the city center. For example, in Oslo, leaders have decided to completely ban privately-owned cars from its center by the end of 2019, making it the first European city to totally ban cars in the city center. Instead, public transit and cycling will be supported and encouraged in the banned-car zone, and hundreds of parking spaces in the city will be replaced by bike lanes. As a government effort to support bicycling and offer alternative transportation modes, bike-sharing systems (BSSs) have been introduced in over 50 countries. BSSs aim to encourage people to travel via bike by distributing bicycles at stations located across an area of service. Residents and visitors can borrow a bike from any station and then return it to any station near their destination. Bicycles are considered an affordable, easy-to-use, and, healthy transportation mode, and BSSs show significant transportation, environmental, and health benefits. As the use of BSSs have grown, imbalances in the system have become an issue and an obstacle for further growth. Imbalance occurs when bikers cannot drop off or pick-up a bike because the bike station is either full or empty. This problem has been investigated extensively by many researchers and policy makers, and several solutions have been proposed. There are three major ways to address the rebalancing issue: static, dynamic and incentivized. The incentivized approaches make use of the users in the balancing efforts, in which the operating company incentives them to change their destination in favor of keeping the system balanced. The other two approaches: static and dynamic, deal with the movement of bikes between stations either during or at the end of the day to overcome station imbalances. They both assume the location and number of bike stations are fixed and only the bikes can be moved. This is a realistic assumption given that current BSSs have only fixed stations. However, cities are dynamic and their geographical and economic growth affects the distribution of trips and thus constantly changing BSS user behavior. In addition, work-related bike trips cause certain stations to face a high-demand level during weekdays, while these same stations are at a low-demand level on weekends, and thus may be of little use. Moreover, fixed stations fail to accommodate big events such as football games, holidays, or sudden weather changes. This dissertation proposes a new generation of BSSs in which we assume some of the bike stations can be portable. This approach takes advantage of both types of BSSs: dock-based and dock-less. Towards this goal, a BSS optimization framework was developed at both the tactical and operational level. Specifically, the framework consists of two levels: predicting bike counts at stations using fast, online, and incremental learning approaches and then balancing the system using portable stations. The goal is to propose a framework to solve the dynamic bike sharing repositioning problem, aiming at minimizing the unmet demand, leading to increased user satisfaction and reducing repositioning/rebalancing operations. This dissertation contributes to the field in five ways. First, a multi-objective supervised clustering algorithm was developed to identify the similarity of bike-usage with respect to time events. Second, a dynamic, easy-to-interpret, rapid approach to predict bike counts at stations in a BSS was developed. Third, a univariate inventory model using a Markov chain process that provides an optimal range of bike levels at stations was created. Fourth, an investigation of the advantages of portable bike stations, using an agent-based simulation approach as a proof-of-concept was developed. Fifth, mathematical and heuristic approaches were proposed to balance bike stations.