Browsing by Author "Elliott, Katherine J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effects of Rhododendron removal on soil bacterial and fungal communities in southern Appalachian forestsOsburn, Ernest D.; Miniat, Chelcy F.; Elliott, Katherine J.; Barrett, John E. (2021-09-15)Rhododendron maximum, a native ericaceous evergreen shrub, is expanding in forests of the southern Appalachian region following eastern hemlock (Tsuga canadensis) mortality due to hemlock woolly adelgid (Adelges tsugae) infestations. The goal of our study was to examine soil microbial community responses to experimental R. maximum removal treatments. The experiment was implemented as a 2 x 2 factorial design, including two R. maximum canopy removal levels (cut vs. not cut) combined with two forest floor removal levels (burned vs. not burned). These treatments were designed as potential management strategies to facilitate hardwood tree establishment in forests that have experienced T. canadensis declines. We sampled soils after removals and characterized bacterial and fungal communities using amplicon sequencing. Shrub removal did not affect bacterial or fungal alpha diversity but did affect both bacterial and fungal community composition. Relative abundances of bacterial phyla and fungal classes exhibited no differences among R. maximum removal treatments. However, specific bacterial and fungal taxa that were responsive to R. maximum removal (i.e., differentially abundant sequences) did exhibit clear patterns at high taxonomic levels. Specifically, taxa that responded negatively to R. maximum removal were found primarily in two bacterial phyla (Proteobacteria and Bacteroidetes) and one fungal class (Archaeorhizomycetes) while positive responders were clustered in several other bacterial phyla (e.g., Actinobacteria, Planctomycetes, Cyanobacteria). Fungal functional guilds also responded to R. maximum removal, including negative responses of ericoid mycorrhizae and positive responses of arbuscular mycorrhizae and wood saprotrophs. Effects of R. maximum removal on soil microbial communities were minor overall, but clear effects on some key functional groups were evident (i.e., mycorrhizal fungi), suggesting that microbial responses to R. maximum removal may influence recovery of forests in the southern Appalachian region.
- Soil microbial response to Rhododendron understory removal in southern Appalachian forests: Effects on extracellular enzymesOsburn, Ernest D.; Elliott, Katherine J.; Knoepp, Jennifer D.; Miniat, Chelcy F.; Barrett, John E. (2018-12)Rhododendron maximum is a native evergreen shrub that has expanded in Appalachian forests following declines of american chestnut (Castanea dentata) and eastern hemlock (Tsuga canadensis). R. maximum is of concern to forest managers because it suppresses hardwood tree establishment by limiting light and soil nutrient availability. We are testing R. maximum removal as a management strategy to promote recovery of Appalachian forests. We hypothesized that R. maximum removal would increase soil nitrogen (N) availability, resulting in increased microbial C-demand (i.e. increased C-acquiring enzyme activity) and a shift towards bacterial-dominated microbial communities. R. maximum removal treatments were applied in a 2 x 2 factorial design, with two R. maximum canopy removal levels (removed vs not) combined with two O-horizon removal levels (burned vs unburned). Following removals, we sampled soils and found that dissolved organic carbon (DOC), N (TDN, NO3, NH4), and microbial biomass all increased with R. maximum canopy + O-horizon removal. Additionally, we observed increases in C-acquisition enzymes involved in degrading cellulose (beta-glucosidase) and hemicellulose (B-xylosidase) with canopy + O-horizon removal. We did not see treatment effects on bacterial dominance, though F:B ratios from all treatments increased from spring to summer. Our results show that R. maximum removal stimulates microbial activity by increasing soil C and N availability, which may influence recovery of forests in the Appalachian region.