Browsing by Author "Estell, Krista Elise"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Pharmacokinetics and pulmonary distribution of Draxxin® (tulathromycin) in healthy adult horsesLeventhal, Hannah Rani (Virginia Tech, 2021-10-13)The objective of this study was to determine the pharmacokinetics and tolerance of tulathromycin (Draxxin®; 2.5 mg/kg once) after intramuscular (IM), subcutaneous (SC), and slow intravenous (IV) administration to six adult horses. A three-phase design and 4-week washout period were used. Drug concentrations in blood and bronchoalveolar lavage (BAL) samples were determined by ultra-performance liquid chromatography tandem mass spectrometry and pharmacokinetic parameters calculated using noncompartmental analysis. Following SC and IM administration, all horses exhibited sweating, discomfort, and periods of recumbency. As signs were more severe after SC administration this route was only used in 3/6 horses. Intravenous administration of tulathromycin was well tolerated in all horses. Mean bioavailability was 99.4% IM and 115% SC. Mean maximum plasma concentration was 645 ng/ml IM and 373 ng/ ml SC. Mean half-life was 59.8 h, 54.8 h, and 57.9 h for IV, IM, and SC administration, respectively. Mean clearance was 3.25 ml/kg/min, and mean volume of distribution was 16.8 L/kg following IV administration. Drug was detectable in plasma and BAL samples for 120 h following all routes; however, adverse effects may prevent IM use and SC use is not recommended. Tulathromycin may be a practical and affordable antibacterial for use in adult equine patients.
- Single dose pharmacokinetics of pimobendan in healthy horsesJula, Catherine Antonia (Virginia Tech, 2024-08-27)Few drugs are available to treat congestive heart failure and other cardiac diseases in horses. Pimobendan is an inodilator drug approved as Vetmedin® for treatment of canine cardiac disease. Previous research shows that pimobendan increases heart rate and contractility following intravenous administration in horses. The pharmacokinetics of oral pimobendan have not been investigated in horses. The hypothesis of this study was that pimobendan would be absorbed following oral administration to healthy adult horses and reach concentrations known to be therapeutic in other species. Additional objectives were to compare the absorption of compounded pimobendan capsules (C) and suspension (S) to Vetmedin® (V) and determine the effects of sample site on plasma drug concentrations in a pilot study using two horses. These two horses received C, S, or V (0.5 mg/kg via oral syringe, once) following a minimum 10 hour fast, using a crossover design with a minimum 1-week washout period. Samples were collected simultaneously from lateral thoracic and jugular catheters before and after drug administration at predetermined time points. Differences between formulation and sample site were analyzed by one-way ANOVA. After evaluation of the data from the initial 2 horses, an additional 4 horses received pimobendan, in the form of Vetmedin tablets® (V), in a similar manner. Only jugular samples were collected at the same predetermined time points. Plasma concentrations were determined by ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) and pharmacokinetic parameters determined by noncompartmental analysis. No significant differences were noted between formulations or sample site (P < 0.05). Concentrations in compounded formulations were 88%(S) and 90%(C) of label. For V, mean (±SD) maximum plasma concentration (Cmax) was 4.96 ± 2.13 ng/mL at 2.17 ± 0.98 hours, and area under the curve (AUC0-∞) was 22.1 ± 8.8*ng/mL. Concentration of the active metabolite of pimobendan, o-desmethyl-pimobendan, was below the limit of detection (0.07ng/mL) for all samples. At 0.5mg/kg orally, pimobendan plasma concentrations were considerably lower than reported in dogs and other species. There was no evidence of oral transmucosal absorption. Pimobendan was poorly absorbed in horses, regardless of formulation, and appears unlikely to have clinical effects.