Browsing by Author "Etebari, Ali"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Development of a Virtual Scientific Visualization Environment for the Analysis of Complex FlowsEtebari, Ali (Virginia Tech, 2002-11-15)This project offers a multidisciplinary approach towards the acquisition, analysis and visualization of experimental data that pertain to cardiovascular applications. First and foremost, the capabilities of our Time-Resolved Digital Particle Image Velocimetry (TRDPIV) system were improved, allowing near-wall wall TRDPIV on compliant, dynamically moving boundaries. As a result, false flow-field vectors due to reflections from the boundary walls were eliminated, and allowing measurement of wall shear stress, wall shear rate, and oscillating shear index within as little as fifty microns of the boundary. Similar in-vitro measurements have not been reported to date by any other group. Second, an immersive, virtual environment (VE) was developed for the investigation and analysis of vortical, spatio-temporally developing flows with complex fluid-structure interactions. This VE was used to study flows in the cardiovascular system, particularly for flow through mechanical heart valves and inside the heart left ventricle (LV). The simulation provides three-dimensional (3-D) visualization of in-vitro heart flow mechanics, allowing global, volumetric flow analysis, and a useful environment for comparison with in-vivo MRI velocimetry data. 3-D glyphs (symbols representing informational parameters) are used to visually represent the flow parameters in the form of an ellipse attached to a cone, where the ellipse represents a second-order Reynolds stress tensor, and the cone represents the velocity magnitude and direction at a particular point in space, and the color corresponds to an out-of-plane vorticity. This new system has a major advantage over conventional 2-D systems in that it successfully doubles the number of visualized parameters, and allows for visualization of a time-dependent series of flow data in the Virginia Tech CAVETM immersive VE. The user controls his/her viewpoint, and can thus navigate through the simulation and view the flow field from any perspective in the immersive VE. Finally, an edge detection algorithm was developed to determine the inner and outer myocardial boundaries, and from this information calculate the local thickness distribution of the myocardium and a myocardial area approximation. This information is important in validating our in-vitro system, and is integral to the evaluation and diagnosis of congestive heart disease and its progression.
- Full Scale Investigation of Bilge Keel Effectiveness at Forward SpeedGrant, David J. (Virginia Tech, 2008-04-28)Ship motions in a seaway have long been of great importance, and today with advanced hull forms and higher speeds they are as important as ever. While one can now often adequately predict heave, pitch, sway, yaw and even surge, roll motions are much more difficult. Roll is the one motion that is very dependent upon viscous effects of the fluid. Recently, at David Taylor Model Basin, there have been model experiments where the bilge keels were instrumented in order to directly measure their damping force upon the vessel. To build upon this work and to validate it when applied to full scale vessels, a trial using the Italian naval vessel Nave Bettica was performed. The objective of this thesis is to describe the experiment, present and analyze the results, and offer some conclusions based upon these results. The process of instrumenting the port bilge keel using strain gages and correlating their output to pressures and total forces is described. Selected results for different forward speeds are presented, with full results in the appendices. Particle image velocimetry (PIV) was also performed during the test and was used to measure the flow field in a three foot by three foot area under the aft end of the same bilge keel. Selected image series are presented, as is a methodology for using these images to calculate the center of pressure and the corresponding results.
- Wall shear measurements in arterial flowsEtebari, Ali (Virginia Tech, 2006-04-20)Cardiovascular disease is responsible for the majority of morbidity and mortality in the United States. Physiologically healthy flow rarely displays turbulent behavior, thereby maintaining normal shear levels. The presence of vortical flow structures, however, alters the hemodynamical characteristics within the system, which has significant effect upon shear stress (SS) and wall shear stress (WSS) levels, as well as particle residence times. The relationship between these hemodynamic parameters and vascular injury response is of great relevance to understanding the cardiovascular disease process. In this work, new methods and algorithms are developed and presented for resolving, both globally and locally, the spatial and temporal variations of shear stress (SS) and WSS for in vitro models of the human cardiovascular system. Advancements in global measurements are based on improving the accuracy of SS and WSS estimation from time-resolved Digital Particle Image Velocimetry (DPIV) velocity measurements. A new velocity derivative method, the fourth-order noise-optimized compact-Richardson implicit scheme, has been developed, overcoming the obstacle of minimizing both the bias and random error in temporal/spatial derivative estimations. The resulting error is on the same order as the velocity measurement error for global measurements which results in an order of magnitude accuracy improvement. The method has been extended to WSS measurements, and combined with a new method of mirroring/reflecting a flow field over its boundary in order to achieve higher-order estimation. For moving boundaries an edge detection cross-correlation algorithm has been developed and characterized, yielding sub-pixel accuracy in measuring dynamic wall position prior to estimating WSS. An original microelectromechanical system (MEMS) WSS sensor capable of delivering high sensitivity, frequency response and accurate WSS measurements has been developed and characterized in this work.