Browsing by Author "Gannon, John P."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Best Management Practices for Teaching Hydrologic Coding in Physical, Hybrid, and Virtual ClassroomsKelleher, Christa A.; Gannon, John P.; Jones, C. Nathan; Aksoy, Şule (Frontiers, 2022-06-22)As the field of hydrologic sciences continues to advance, there is an increasing need to develop a workforce with tools to curate, manage, and analyze large datasets. As such, undergraduate and graduate curricula are beginning to regularly incorporate scientific programing in the classroom. However, there are several key challenges to successfully incorporating scientific programming into a hydrology course or curriculum, such as meeting disciplinary outcomes alongside teaching students to code, equity issues with access to computing power, and effective classroom management. While these challenges were exacerbated by the global pandemic, shifting to online and hybrid learning formats provided an opportunity to explore and re-evaluate the way we facilitated our hydrology courses and integrated coding exercises and learning. In this article, we reflect on these experiences in three very different hydrology courses (e.g., courses housed in geoscience/engineering, environmental science, and biology programs) with an eye toward identifying successes and opportunities for improvement. We explore this by presenting ten best management practices (BMPs), representing a series of recommendations we have for teaching a virtual, hybrid, or in-person hydrology course that incorporates coding. While all recommendations provided can be applied to many programming languages, the focus of the paper (given the expertise of the authors) is on R. Our BMPs focus on technological facilitation, managing the virtual classroom, and instructional resources, with lessons learned that are applicable to in-person instruction. We also summarize the ways that the authors of this article integrate coding into our coursework to serve as a framework for prepping new courses or those revising existing hydrologic coursework. Above all, we hope these series of recommendations will evolve as hydrology courses continue to emphasize computational skills alongside disciplinary learning.
- Comprehensive Methodology and Analysis to Determine the Environmental Flow Regime in the Temporary Stream “La Yerbabuena” in Aguascalientes, MexicoReyes-Cedeño, Isaí Gerardo; Hernández-Marín, Martín; Pacheco-Guerrero, Anuard Isaac; Gannon, John P. (MDPI, 2023-02-24)In this study, a comprehensive methodology was adapted to determine the environmental flow regime of “La Yerbabuena”, a temporary stream located in the Aguascalientes Valley, Mexico. The analysis was divided into four stages: the geomorphological watershed analysis, a hydrologic analysis, hydraulic modeling, and environmental analysis. The main geomorphological features of the study area were defined from maps in the spatial block, and with them, a synthetic series of daily and monthly discharge was determined and further used in the next stages. In the hydrological stage, the IHA (Indicators of Hydrologic Alteration) methodology and the procedures from the Mexican regulation, named NMX-159, were applied to the stream, and their results were comparatively analyzed. A similar interannual flow variation from both methodologies was found for wet and dry seasons, ranging from 0.010 to 0.108 m3/s. In the hydraulic modeling stage, a micro-basin part of the stream was modeled in the software HEC RAS, observing that the IHA methodology results had water levels that matched the baseflow of the stream, which allows understanding the hydraulic behavior of the water flow through the generation of different profiles in function of the rainy season. Finally, for the environmental stage, the hydrological health of the stream was evaluated using the software Flow Health, additionally observing that the IHA methodology was closer to the desired water level of the reference. This study demonstrates that the proposed methodology achieves the objectives defined by the NMX-159, which establishes a streamflow regime considering a natural interval of hydrologic variability in both ordinary and after-disturbance conditions. This application of the methodology for temporary streams provides an understanding of the hydrological behavior of the environmental flow throughout the year, and regarding the existing regulations, it presents a correlation with the obtained results, as well as greater precision in the dry season.
- Evaluation of Fracture Flow at the Coles Hill Uranium Deposit in Pittsylvania County, VA using Electrical Resistivity, Bore Hole Logging, Pumping Tests, and Age Dating MethodsGannon, John P. (Virginia Tech, 2009-10-07)The Coles Hill uranium deposit in Pittsylvania County, VA, is the largest un-mined uranium deposit in the United States. The deposit is located in the Virginia Piedmont in a geologic unit located immediately west of the Chatham Fault, which separates the granitic rocks of the Virginia Piedmont to the west from the metasediments of the Danville Triassic basin to the east. Groundwater at the site flows through a complex interconnected network of fractures controlled by the geology and structural history of the site. In this study groundwater is characterized in a small study area just south of the main deposit. Methods used in this investigation include electrical resistivity profiling, bore hole logging, a pumping test, and age dating and water chemistry. In this thesis groundwater flow is confirmed to occur from the Piedmont crystalline rocks across the Chatham Fault and into the Triassic basin at the study area as evidenced by pumping test data and static water-level data from observation wells. Well logs have identified fractures capable of transmitting water in the granitic rocks of the Piedmont, the Triassic basin metasediments and the Chatham Fault but the largest quantities of flow appear to occur in the Triassic basin. A definable recharge area for the groundwater present at Coles Hill can not yet be determined due to the complexity of the fracture system, but age dating confirms that groundwater is composed of both young and old (>60 years) components, indicating that at least a portion of groundwater at Coles Hill originates from a more distant area.
- Flushing of distal hillslopes as an alternative source of stream dissolved organic carbon in a headwater catchmentGannon, John P.; Bailey, Scott W.; McGuire, Kevin J.; Shanley, James B. (American Geophysical Union, 2015-10-01)We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM) at the catchment outlet and the predicted spatial extent of shallow groundwater in soils throughout the catchment. While near-stream soils are generally considered a DOC source in forested catchments, DOC concentrations in near-stream groundwater were low (mean52.4 mg/L, standard error50.6 mg/L), less than hillslope groundwater farther from the channel (mean55.7 mg/L, standard error50.4 mg/L). Furthermore, water tables in near-stream soils did not rise into the carbon-rich upper B or O horizons even during events. In contrast, soils below bedrock outcrops near channel heads where lateral soil formation processes dominate had much higher DOC concentrations. Soils immediately downslope of bedrock areas had thick eluvial horizons indicative of leaching of organic materials, Fe, and Al and had similarly high DOC concentrations in groundwater (mean514.5 mg/L, standard error50.8 mg/L). Flow from bedrock outcrops partially covered by organic soil horizons produced the highest groundwater DOC concentrations (mean520.0 mg/L, standard error54.6 mg/L) measured in the catchment. Correspondingly, stream water in channel heads sourced in part by shallow soils and bedrock outcrops had the highest stream DOC concentrations measured in the catchment. Variation in FDOM concentrations at the catchment outlet followed water table fluctuations in shallow to bedrock soils near channel heads. We show that shallow hillslope soils receiving runoff from organic matter-covered bedrock outcrops may be a major source of DOC in headwater catchments in forested mountainous regions where catchments have exposed or shallow bedrock near channel heads.
- A Hydropedological Approach to Describing Runoff Generation, Lateral Podzolization, and Spatial and Temporal Patterns of DOC in a Headwater CatchmentGannon, John P. (Virginia Tech, 2014-06-02)The variations in discharge and water chemistry among and within headwater catchments are not well understood. Developing a better understanding of the processes that control these variations is crucial to determining how headwater catchments will respond to changes in climate and land use. This dissertation explores how hydrologic processes in headwater catchments may be better understood by utilizing a hydropedological framework, where similar soils are grouped together and considered to be representative of and developed by similar hydrologic and biogeochemical processes. In the first chapter, soil groups, called hydropedological units (HPUs) are found to be indicative of distinct water table regimes characterized by the interquartile range and median of shallow groundwater levels, the percent time water table exists in the soil, and the level of catchment storage at which groundwater responds. The second chapter explores the hydrological processes that may lead to the formation of HPUs in the catchment. By examining water table records and unsaturated water potential from tensiometers we found that lateral unsaturated flow regimes may be partially responsible for the patterns of lateral translocation observed in HPUs. Finally, the third chapter identifies two HPUs in the catchment as sources of streamwater dissolved organic carbon (DOC). While near-stream areas have typically been found to be DOC sources in headwater catchments, the HPUs identified as sources occur at high elevations in the catchment, near channel heads. Overall, these findings will be useful to better explain runoff generation, soil formation, and DOC export from headwater catchments. Headwater streams source water to larger bodies of water that are valuable natural resources. Therefore, explaining these processes is critical to predicting and responding to changes in climate and land use that may affect important water supplies.
- An Interactive Web Application Helps Students Explore Water Balance ConceptsGannon, John P.; McGuire, Kevin J. (Frontiers, 2022-04-12)The concept of a water balance is a foundational topic in hydrology classrooms. While understanding and applying this concept is crucial to the introduction of more advanced topics, students often struggle to develop a thorough understanding of the relationships between components, assumptions, and limitations of a water balance. To aid students in developing a working understanding of a water balance, we developed a web application that runs a one dimensional Thornthwaite-type water balance at any of thousands of NOAA climate stations across the continental United States using the local soil-water storage capacity at the station location. Within the app, students can manipulate the soil-water storage capacity, latitude, temperature, and precipitation to better understand how it works and explore scenarios of land use, extreme weather, and climate change. The application is free and will run on any device that can open an internet browser window (laptops, chromebooks, smartphones, etc). Here we present the details of the model, functionality of the application, and link to several ready-made classroom activities. Finally, results from student surveys in two hydrology classrooms show that students may learn water balance concepts more effectively than traditional methods such as spreadsheet computations.
- Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchmentGannon, John P.; McGuire, Kevin J.; Bailey, Scott W.; Bourgault, Rebecca R.; Ross, Donald S. (2017-09-30)Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table fluctuations in response to precipitation; however, observed variations in soil morphology also occurred above the maximum height of observed saturation. Variations in unsaturated fluxes have been hypothesized to explain differences in soil horizon thickness and presence/absence of specific horizons but have not been explicitly investigated. We examined tensiometer and shallow groundwater well records to identify differences in unsaturated water fluxes among podzols that show distinct morphological and chemical differences. The lack of vertical hydraulic gradients at the study sites suggests that lateral unsaturated flow occurs in several of the soil units. We propose that the variations in soil horizon thickness and presence/absence observed at the site are due in part to slope-parallel water flux in the unsaturated portion of the solum. In addition, unsaturated flow may be involved in the translocation of spodic material that primes those areas to contribute water with distinct chemistry to the stream network and represents a potential source/sink of organometallic compounds in the landscape.
- Organizing groundwater regimes and response thresholds by soils: A framework for understanding runoff generation in a headwater catchmentGannon, John P.; Bailey, Scott W.; McGuire, Kevin J. (American Geophysical Union, 2014-11-01)A network of shallow groundwater wells in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire, U.S. was used to investigate the hydrologic behavior of five distinct soil morphological units. The soil morphological units were hypothesized to be indicative of distinct water table regimes. Water table fluctuations in the wells were characterized by their median and interquartile range of depth, proportion of time water table was present in the solum, and storage-discharge behavior of subsurface flow. Statistically significant differences in median, interquartile range, and presence of water table were detected among soil units. Threshold responses were identified in storage-discharge relationships of subsurface flow, with thresholds varying among soil units. These results suggest that soil horizonation is indicative of distinct groundwater flow regimes. The spatial distribution of water table across the catchment showed variably connected/disconnected active areas of runoff generation in the solum. The spatial distribution of water table and therefore areas contributing to stormflow is complex and changes depending on catchment storage.
- Redistribution of soil metals and organic carbon via lateral flowpaths at the catchment scale in a glaciated upland settingBourgault, Rebecca R.; Ross, Donald S.; Bailey, Scott W.; Bullen, Thomas D.; McGuire, Kevin J.; Gannon, John P. (2017-12-01)Emerging evidence shows that interactions between soils and subsurface flow paths contribute to spatial variations in stream water chemistry in headwater catchments. However, few have yet attempted to quantify chemical variations in soils at catchment and hillslope scales. Watershed 3 (WS3) at Hubbard Brook Experimental Forest, New Hampshire, USA, was studied in order to better understand pedogenesis and its relationship to subsurface water dynamics. In WS3, 99 soil profiles were described, sampled by horizon, and assigned to a hydropedologic unit (HPU), a functional classification previously developed using landscape and morphological metrics which corresponded with distinct water table regimes. Soil samples were extracted with 1) citrate-dithionite (d) and analyzed for Fe-d and Mn-d; and 2) acid ammonium oxalate (o) and analyzed for Al-o, Fe-o and the rare earth elements La-o, Ce-o, and Pr-o. Total organic C was also measured. These elements were redistributed via vertical and lateral podzolization. Typical (horizontally layered) podzols developed in the majority of the catchment due to predominantly vertical, unsaturated flow. However, lateral flow produced four other podzol types with distinct chemistry; thicker spodic horizons of laterally accumulating soils generally reflected larger pools of trace metals and subsoil organic C. The spatial distribution of positive cerium-anomalies (Ce/Ce*) in soil profiles proved to be a consistent hydropedologic indicator of lateral flow and seasonally high water table in three hillslopes. Despite occasional high water table in some of the HPUs, they were not hydric soils and were distinct from wetter podzols of coastal plains due to their high Fe content. This study suggests that vertical and lateral spatial variation in soil chemical composition, including the complexity of Ce distribution, as it relates to subsurface water dynamics should be considered when studying or predicting catchment scale functions such as stream solute export and biogeochemical processes.
- Soil water repellency after wildfires in the Blue Ridge Mountains, United StatesChen, Jingjing; Pangle, Luke A.; Gannon, John P.; Stewart, Ryan D. (CSIRO Publishing, 2020-08-12)It is not well understood if wildfires induce soil water repellency in broadleaf deciduous forests, such as those endemic to the Blue Ridge Mountains of the eastern United States. In 2016, widespread wildfires provided an opportunity to study soil water repellency in this region. We selected sites in four locations with low to moderate burn severities, along with unburned controls. We estimated soil water repellency using water drop penetration time measurements from the surface (i.e. ash or organic) layer to ∼5 cm within the underlying mineral layer. Two months after the fires, water repellency was detected in all locations and was greater in more severely burned sites. One location had the greatest water repellency in surface ash (frequency of occurrence: 68-74%), whereas the other locations showed greatest repellency at the ash-mineral interface (40-96%). Unburned soils rarely showed repellency (0-18%). Burned soils also exhibited water repellency 1 year post fire. The study results suggest that combustion of non-resinous foliage within litter layers can cause water repellency in deciduous forests, meaning that this condition is not exclusive to coniferous and dryland forests. The duration of impact depends on fire severity, and may enhance overland flow and sediment transport in affected landscapes.