Browsing by Author "Grant, Alan L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Driving an Oxidative Phenotype Protects Myh4 Null Mice From Myofiber Loss During Postnatal GrowthZeng, Caiyun; Shi, Hao; Kirkpatrick, Laila T.; Ricome, Aymeric; Park, Sungkwon; Scheffler, Jason M.; Hannon, Kevin M.; Grant, Alan L.; Gerrard, David E. (Frontiers, 2022-02-24)Postnatal muscle growth is accompanied by increases in fast fiber type compositions and hypertrophy, raising the possibility that a slow to fast transition may be partially requisite for increases in muscle mass. To test this hypothesis, we ablated the Myh4 gene, and thus myosin heavy chain IIB protein and corresponding fibers in mice, and examined its consequences on postnatal muscle growth. Wild-type and Myh4(-/-) mice had the same number of muscle fibers at 2 weeks postnatal. However, the gastrocnemius muscle lost up to 50% of its fibers between 2 and 4 weeks of age, though stabilizing thereafter. To compensate for the lack of functional IIB fibers, type I, IIA, and IIX(D) fibers increased in prevalence and size. To address whether slowing the slow-to-fast fiber transition process would rescue fiber loss in Myh4(-/-) mice, we stimulated the oxidative program in muscle of Myh4(-/-) mice either by overexpression of PGC-1 alpha, a well-established model for fast-to-slow fiber transition, or by feeding mice AICAR, a potent AMP kinase agonist. Forcing an oxidative metabolism in muscle only partially protected the gastrocnemius muscle from loss of fibers in Myh4(-/-) mice. To explore whether traditional means of stimulating muscle hypertrophy could overcome the muscling deficits in postnatal Myh4(-/-) mice, myostatin null mice were bred with Myh4(-/-) mice, or Myh4(-/-) mice were fed the growth promotant clenbuterol. Interestingly, both genetic and pharmacological stimulations had little impact on mice lacking a functional Myh4 gene suggesting that the existing muscle fibers have maximized its capacity to enlarge to compensate for the lack of its neighboring IIB fibers. Curiously, however, cell signaling events responsible for IIB fiber formation remained intact in the tissue. These findings further show disrupting the slow-to-fast transition of muscle fibers compromises muscle growth postnatally and suggest that type IIB myosin heavy chain expression and its corresponding fiber type may be necessary for fiber maintenance, transition and hypertrophy in mice. The fact that forcing muscle metabolism toward a more oxidative phenotype can partially compensates for the lack of an intact Myh4 gene provides new avenues for attenuating the loss of fast-twitch fibers in aged or diseased muscles.
- Postmortem Metabolism and Pork Quality Development Are Affected by Electrical Stimulation across Three Genetic LinesSpires, Matthew D.; Bodmer, Jocelyn S.; Beline, Mariane; Wicks, Jordan C.; Zumbaugh, Morgan D.; Shi, Tim Hao; Reichert, Brian T.; Schinckel, Allan P.; Grant, Alan L.; Gerrard, David E. (MDPI, 2023-08-11)Variations in postmortem metabolism in muscle impact pork quality development. Curiously, some genetic lines are more refractile to adverse pork quality development than others and may regulate energy metabolism differently. The aim of this study was to challenge pork carcasses from different genetic populations with electrical stimulation (ES) to determine how postmortem metabolism varies with genetic line and explore control points that reside in glycolysis in dying muscle. Three genetic populations (GP) were subjected to ES (100 V or 200 V, 13 pulses, 2 s on/2 s off) at 15- or 25-min post-exsanguination, or no stimulation (NS). Genetic population affected relative muscle relative abundance of different myosin heavy chains, glycogen, G6P, and lactate concentrations. Genetic lines responded similarly to ES, but a comparison of ES treatment groups revealed a trend for an interaction between voltage, time of ES, and time postmortem. Higher voltage accelerated pH decline at 20 min up to 60 min postmortem. Trends in color and firmness scores and L* values were consistent with pH and metabolite data. These data show that genetic populations respond differently to postmortem perturbation by altering glycolytic flux and suggest differences in postmortem glycolysis may be partially responsible for differences in meat quality between genetic populations, though not entirely.