Browsing by Author "Hensley, Dale K."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- 1 kV GaN-on-Si Quasi-Vertical Schottky RectifierQin, Yuan; Xiao, Ming; Zhang, Ruizhe; Xie, Qingyun; Palacios, Tomás; Wang, Boyan; Ma, Yunwei; Kravchenko, Ivan; Briggs, Dayrl P.; Hensley, Dale K.; Srijanto, Bernadeta R.; Zhang, Yuhao (IEEE, 2023-07)This work demonstrates quasi-vertical GaN Schottky barrier diodes (SBDs) on 6-inch Si substrate with a breakdown voltage (BV) over 1 kV, the highest BV reported in vertical GaN-on-Si SBDs to date. The deep mesa inherently in quasi-vertical devices is leveraged to form a self-aligned edge termination, and the mesa sidewall is covered by the p-type nickel oxide (NiO) as a reduced surface field (RESURF) structure. This novel termination enables a parallel-plane junction electric field of 2.8 MV/cm. The device also shows low turn-on voltage of 0.5 V, and low specific on-resistance of 1.1 m ·cm2. Moreover, the device exhibits excellent overvoltage robustness under the continuous 800 V stress in the unclamped inductive switching test. These results show the good promise of the low-cost vertical GaN-on-Si power diodes.
- 1 kV Self-Aligned Vertical GaN Superjunction DiodeMa, Yunwei; Porter, Matthew; Qin, Yuan; Spencer, Joseph; Du, Zhonghao; Xiao, Ming; Wang, Yifan; Kravchenko, Ivan; Briggs, Dayrl P.; Hensley, Dale K.; Udrea, Florin; Tadjer, Marko; Wang, Han; Zhang, Yuhao (IEEE, 2024-01)This work demonstrates vertical GaN superjunction (SJ) diodes fabricated via a novel self-aligned process. The SJ comprises n-GaN pillars wrapped by the charge-balanced p-type nickel oxide (NiO). After the NiO sputtering around GaN pillars, the self-aligned process exposes the top pillar surfaces without the need for additional lithography or a patterned NiO etching which is usually difficult. The GaN SJ diode shows a breakdown voltage (B V) of 1100 V, a specific on-resistance ( RON) of 0.4 mΩ⋅ cm2, and a SJ drift-region resistance ( Rdr) of 0.13 mΩ⋅ cm2. The device also exhibits good thermal stability with B V retained over 1 kV and RON dropped to 0.3 mΩ⋅ cm2 at 125oC . The trade-off between B V and Rdr is superior to the 1D GaN limit. These results show the promise of vertical GaN SJ power devices. The self-aligned process is applicable for fabricating the heterogeneous SJ based on various wide- and ultra-wide bandgap semiconductors.
- 2 kV, 0.7 mΩ·cm2 Vertical Ga2O3 Superjunction Schottky Rectifier with Dynamic RobustnessQin, Yuan; Porter, Matthew; Xiao, Ming; Du, Zhonghao; Zhang, Hongming; Ma, Yunwei; Spencer, Joseph; Wang, Boyan; Song, Qihao; Sasaki, Kohei; Lin, Chia-Hung; Kravchenko, Ivan; Briggs, Dayrl P.; Hensley, Dale K.; Tadjer, Marko; Wang, Han; Zhang, Yuhao (IEEE, 2023)We report the first experimental demonstration of a vertical superjunction device in ultra-wide bandgap (UWBG) Ga2O3. The device features 1.8 μm wide, 2×1017 cm-3 doped n-Ga2O3 pillars wrapped by the charge-balanced p-type nickel oxide (NiO). The sidewall NiO is sputtered through a novel self-align process. Benefitted from the high doping in Ga2O3, the superjunction Schottky barrier diode (SJ-SBD) achieves a ultra-low specific on-resistance (RON,SP) of 0.7 mΩ·cm2 with a low turn-on voltage of 1 V and high breakdown voltage (BV) of 2000 V. The RON,SP~BV trade-off is among the best in all WBG and UWBG power SBDs. The device also shows good thermal stability with BV > 1.8 kV at 175 oC. In the unclamped inductive switching tests, the device shows a dynamic BV of 2.2 kV and no degradation under 1.7 kV repetitive switching, verifying the fast acceptor depletion in NiO under dynamic switching. Such high-temperature and switching robustness are reported for the first time in a heterogeneous superjunction. These results show the great potential of UWBG superjunction power devices.
- A physical catalyst for the electrolysis of nitrogen to ammoniaSong, Yang; Johnson, Daniel; Peng, Rui; Hensley, Dale K.; Bonnesen, Peter V.; Liang, Liangbo; Huang, Jingsong; Yang, Fengchang; Zhang, Fei; Qiao, Rui; Baddorf, Arthur P.; Tschaplinski, Timothy J.; Engle, Nancy L.; Hatzell, Marta C.; Wu, Zili; Cullen, David A.; Meyer, Harry M.; Sumpter, Bobby G.; Rondinone, Adam J. (AAAS, 2018-04-01)Ammonia synthesis consumes 3 to 5% of the world’s natural gas, making it a significant contributor to greenhouse gas emissions. Strategies for synthesizing ammonia that are not dependent on the energy-intensive and methane-based Haber-Bosch process are critically important for reducing global energy consumption and minimizing climate change. Motivated by a need to investigate novel nitrogen fixation mechanisms, we herein describe a highly textured physical catalyst, composed of N-doped carbon nanospikes, that electrochemically reduces dissolved N2 gas to ammonia in an aqueous electrolyte under ambient conditions. The Faradaic efficiency (FE) achieves 11.56 ± 0.85% at −1.19 V versus the reversible hydrogen electrode, and the maximum production rate is 97.18 ± 7.13 mg hour−1 cm−2. The catalyst contains no noble or rare metals but rather has a surface composed of sharp spikes, which concentrates the electric field at the tips, thereby promoting the electroreduction of dissolved N2 molecules near the electrode. The choice of electrolyte is also critically important because the reaction rate is dependent on the counterion type, suggesting a role in enhancing the electric field at the sharp spikes and increasing N2 concentration within the Stern layer. The energy efficiency of the reaction is estimated to be 5.25% at the current FE of 11.56%.