Browsing by Author "Inagaki, Thiago M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Microscale spatial distribution and soil organic matter persistence in top and subsoilInagaki, Thiago M.; Possinger, Angela R.; Schweizer, Steffen A.; Mueller, Carsten W.; Hoeschen, Carmen; Zachman, Michael J.; Kourkoutis, Lena F.; Kogel-Knabner, Ingrid; Lehmann, Johannes (Pergamon-Elsevier Science, 2023-03)The spatial distribution of organic substrates and microscale soil heterogeneity significantly influence organic matter (OM) persistence as constraints on OM accessibility to microorganisms. However, it is unclear how changes in OM spatial heterogeneity driven by factors such as soil depth affect the relative importance of sub-strate spatial distribution on OM persistence. This work evaluated the decomposition and persistence of 13C and 15N labeled water-extractable OM inputs over 50 days as either hotspot (i.e., pelleted in 1-2 mm-size pieces) or distributed (i.e., added as OM < 0.07 mu m suspended in water) forms in topsoil (0-0.2 m) and subsoil (0.8-0.9 m) samples of an Andisol. We observed greater persistence of added C in the subsoil with distributed OM inputs relative to hotspot OM, indicated by a 17% reduction in cumulative mineralization of the added C and a 10% higher conversion to mineral-associated OM. A lower substrate availability potentially reduced mineralization due to OM dispersion throughout the soil. NanoSIMS (nanoscale secondary ion mass spectrometry) analysis identified organo-mineral associations on cross-sectioned aggregate interiors in the subsoil. On the other hand, in the topsoil, we did not observe significant differences in the persistence of OM, suggesting that the large amounts of particulate OM already present in the soil outweighed the influence of added OM spatial distribution. Here, we demonstrated under laboratory conditions that the spatial distribution of fresh OM input alone significantly affected the decomposition and persistence of OM inputs in the subsoil. On the other hand, spatial distribution seems to play a lower role in topsoils rich in particulate OM. The divergence in the influence of OM spatial distribution between the top and subsoil is likely driven by differences in soil mineralogy and OM composition.
- Organo-mineral interactions and soil carbon mineralizability with variable saturation cycle frequencyPossinger, Angela R.; Bailey, Scott W.; Inagaki, Thiago M.; Koegel-Knabner, Ingrid; Dynes, James J.; Arthur, Zachary A.; Lehmann, Johannes (2020-10-01)The response of mineral-stabilized soil organic carbon (SOC) to environmental change is a source of uncertainty in the understanding of SOC cycling. Fluctuating wet-dry cycles and associated redox changes in otherwise well-drained soils may drive mineral dissolution, organic carbon (OC) mobilization, and subsequent OC mineralization. However, the extent to which rapid fluctuations between water-saturated and unsaturated conditions (i.e., flashy conditions) result in long-term changes in mineral composition and organo-mineral interactions is not well understood. In this study, the effect of variable saturation frequency on soil mineral composition, mineral-associated OC, and OC mineralizability was tested using selective dissolution, bulk spectroscopy, microscale imaging, and aerobic-anaerobic incubation experiments. Previous water table fluctuation measurements and diagnostic profile characteristics at Hubbard Brook Experimental Forest (NH) were used to identify soils with high, medium, and low saturation frequency regimes (defined by historical water table cycling frequency; i.e., water table presence and recession in the upper B horizon). We found the amount of OC released during extractions targeting non-crystalline minerals was of similar magnitude as extracted iron (Fe) in lower saturation frequency soils. However, the magnitude of extracted OC was 2.5 times greater than Fe but more similar to extractable aluminum (Al) in higher saturation frequency soils. Bulk soil Fe was spatially more strongly correlated to soil organic matter (SOM) in lower saturation frequency soils (Spearman Rank r(s) = 0.62, p < 0.005), whereas strong correlations between Al and SOM were observed in higher saturation frequency soils (r(s) = 0.88, p < 0.005) using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging. Characterization of bulk soil Fe with X-ray absorption spectroscopy showed 1.2-fold greater Fe(II) and 1-fold lower contribution of Fe-organic bonding in soils with high saturation frequency. Fe(III) interactions with carboxylic and aromatic C were identified with C-13 nuclear magnetic resonance (NMR) spectroscopy Fe(III) interference experiments. Additionally, carboxylic acid enrichment in high saturation frequency soils quantified by C K-edge X-ray absorption spectroscopy point towards the role of carboxylic functional groups in Al-organic in addition to Fe-organic interactions. In our incubation experiments, a doubling in short-term CO2 evolution (per unit total soil C) was detected for high relative to low saturation frequency soils. Further, an order of magnitude increase in CO2 evolution (per unit water-extractable OC) following anaerobic incubation was only detected in high saturation frequency soils. The observed shift towards Al-dominated SOC interactions and higher OC mineralizability highlights the need to describe C stabilization in soils with flashy wet-dry cycling separately from soils with low saturation frequency or persistent saturation.