Browsing by Author "Irmis, Randall B."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Integrating gross morphology and bone histology to assess skeletal maturity in early dinosauromorphs: new insights from Dromomeron (Archosauria: Dinosauromorpha)Griffin, Christopher T.; Bano, Lauren S.; Turner, Alan H.; Smith, Nathan D.; Irmis, Randall B.; Nesbitt, Sterling J. (PeerJ, 2019-02-11)Understanding growth patterns is central to properly interpreting paleobiological signals in tetrapods, but assessing skeletal maturity in some extinct Glades may be difficult when growth patterns are poorly constrained by a lack of ontogenetic series. To overcome this difficulty in assessing the maturity of extinct archosaurian reptiles-crocodylians, birds and their extinct relatives-many studies employ bone histology to observe indicators of the developmental stage reached by a given individual. However, the relationship between gross morphological and histological indicators of maturity has not been examined in most archosaurian groups. In this study, we examined the gross morphology of a hypothesized growth series of Dromomeron romeri femora (96.6-144.4 mm long), the first series of a non-dinosauriform dinosauromorph available for such a study. We also histologically sampled several individuals in this growth series. Previous studies reported that D. romeri lacks well-developed rugose muscle scars that appear during ontogeny in closely related dinosauromorph taxa, so integrating gross morphology and histological signal is needed to determine reliable maturity indicators for early bird-line archosaurs. We found that, although there are small, linear scars indicating muscle attachment sites across the femur, the only rugose muscle scar that appears during ontogeny is the attachment of the M. caudofemoralis longus, and only in the largest-sampled individual. This individual is also the only femur with histological indicators that asymptotic size had been reached, although smaller individuals possess some signal of decreasing growth rates (e.g., decreasing vascular density). The overall femoral bone histology of D. romeri is similar to that of other early bird-line archosaurs (e.g., woven-bone tissue, moderately to well-vascularized, longitudinal vascular canals). All these data indicate that the lack of well-developed femoral scars is autapomorphic for this species, not simply an indication of skeletal immaturity. We found no evidence of the high intraspecific variation present in early dinosaurs and other dinosauriforms, but a limited sample size of other early bird-line archosaur growth series make this tentative. The evolutionary history and phylogenetic signal of gross morphological features must be considered when assessing maturity in extinct archosaurs and their close relatives, and in some groups corroboration with bone histology or with better-known morphological characters is necessary.
- A new rauisuchid (Archosauria, Pseudosuchia) from the Upper Triassic (Norian) of New Mexico increases the diversity and temporal range of the cladeStocker, Michelle R.; Lessner, Emily J.; Smith, Nathan D.; Turner, Alan H.; Irmis, Randall B.; Nesbitt, Sterling J. (PeerJ, 2016-09-06)Rauisuchids are large (2–6 m in length), carnivorous, and quadrupedal pseudosuchian archosaurs closely related to crocodylomorphs. Though geographically widespread, fossils of this clade are relatively rare in Late Triassic assemblages. The middle Norian (∼212 Ma) Hayden Quarry of northern New Mexico, USA, in the Petrified Forest Member of the Chinle Formation, has yielded isolated postcranial elements and associated skull elements of a new species of rauisuchid. Vivaron haydeni gen. et. sp. nov. is diagnosed by the presence of two posteriorly directed prongs at the posterior end of the maxilla for articulation with the jugal. The holotype maxilla and referred elements are similar to those of the rauisuchid Postosuchus kirkpatricki from the southwestern United States, but V. haydeni shares several maxillary apomorphies (e.g., a distinct dropoff to the antorbital fossa that is not a ridge, a straight ventral margin, and a well defined dental groove) with the rauisuchid Teratosaurus suevicus from the Norian of Germany. Despite their geographic separation, this morphological evidence implies a close phylogenetic relationship between V. haydeni and T. suevicus. The morphology preserved in the new Hayden Quarry rauisuchid V. haydeni supports previously proposed and new synapomorphies for nodes within Rauisuchidae. The discovery of Vivaron haydeni reveals an increased range of morphological disparity for rauisuchids from the low-paleolatitude Chinle Formation and a clear biogeographic connection with high paleolatitude Pangea.
- Osteology and relationships of Revueltosaurus callenderi (Archosauria: Suchia) from the Upper Triassic (Norian) Chinle Formation of Petrified Forest National Park, Arizona, United StatesParker, William G.; Nesbitt, Sterling J.; Irmis, Randall B.; Martz, Jeffrey W.; Marsh, Adam D.; Brown, Matthew A.; Stocker, Michelle R.; Werning, Sarah (2021-09-29)Once known solely from dental material and thought to represent an early ornithischian dinosaur, the early-diverging pseudosuchian Revueltosaurus callenderi is described from a minimum of 12 skeletons from a monodominant bonebed in the upper part of the Chinle Formation of Arizona. This material includes nearly the entire skeleton and possesses a combination of plesiomorphic and derived character states that help clarify ingroup relationships within Pseudosuchia. A phylogenetic analysis recovers R. callenderi in a clade with Aetosauria and Acaenasuchus geoffreyi that is named Aetosauriformes. Key autapomorphies of R. callenderi include a skull that is longer than the femur, a complete carapace of dermal armor including paramedian and lateral rows, as well as ventral osteoderms, and a tail end sheathed in bone. Histology of the femur and associated osteoderms demonstrate that R. callenderi was slow growing and that the individuals from the bonebed were not young juveniles but had not ceased growing. A review of other material assigned to Revueltosaurus concludes that the genus cannot be adequately diagnosed based on the type materials of the three assigned species and that only R. callenderi can be confidently referred to Revueltosaurus.
- Skeletal Anatomy of Acaenasuchus Geoffreyi Long and Murry, 1995 (Archosauria: Pseudosuchia) and its Implications for the Origin of the Aetosaurian CarapaceMarsh, Adam D.; Smith, Matthew E.; Parker, William G.; Irmis, Randall B.; Kligman, Ben T. (2020-07-03)Acaenasuchus geoffreyi is a diminutive armored archosaur from the Upper Triassic Chinle Formation of northern Arizona, U.S.A., with uncertain evolutionary relationships and skeletal maturity. Known only from osteoderms, the taxon has been considered a valid taxon of aetosaur, juvenile specimens synonymous with the aetosaur Desmatosuchus spurensis, or a non-aetosaurian pseudosuchian archosaur. Here, we describe new fossils of Acaenasuchus geoffreyi that represent cranial, vertebral, and appendicular elements as well as previously unknown variations in the dorsal carapace and ventral shield. The skull bones are ornamented with the same anastomosing complex of ridges and grooves found on the paramedian and lateral osteoderms, and the appendicular skeleton resembles that of Revueltosaurus callenderi, Euscolosuchus olseni, aetosaurs, and other armored archosaurs such as erpetosuchids. Histology of osteoderms from the hypodigm of Acaenasuchus geoffreyi shows multiple growth lines, laminar tissue, and low vascularity, evidence that the individuals were close to skeletal maturity and not young juveniles. A revised phylogenetic analysis of early archosaurs recovers Acaenasuchus geoffreyi and Euscolosuchus olsenias sister taxa and members of a new clade that is the sister taxon of Aetosauria. This new phylogeny depicts a broader distribution of osteoderm character states previously thought to only occur in aetosaurs, demonstrating the danger of using only armor character states in aetosaur taxonomy and phylogeny. Acaenasuchus geoffreyi is also a good example of how new fossils can stabilize 'wild card' taxa in phylogenetic analyses and contributes to our understanding of the evolution of the aetosaur carapace.