Browsing by Author "Jiang, Ying"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Evaluation of Novel Carbamate Insecticides for Neurotoxicity to Non-Target SpeciesJiang, Ying (Virginia Tech, 2011-01-17)Malaria (vector: Anopheles gambiae) is a major infectious disease that kills about 1 million people each year. For the improvement of its treatment and vector control during the past decades, several issues such as high medicine cost, insecticide resistance, and lack of an effective vaccine have prevented adequate control of malaria. Additionally, the low selectivity of malaria vector insecticides also presents a public health problem. The purpose of developing novel carbamate insecticides in our laboratory is to offer effective and selective insecticide options to achieve the ultimate goal of malaria control. First, 50% inhibition concentration (IC50) data was collected from three mammalian AChEs with eight commercial carbamate insecticides by using the Ellman assay. The IC50 values varied from 57 nM to 7358 nM. The AChE sensitivity pattern and level were shown to be similar between the recombinant mouse and ICR male mouse brain cortex homogenate (slope = 0.99, R2 = 0.96). Then eight novel carbamate insecticides that are possible malaria vector control agents were selected for further neurotoxicity testing in non-target organisms. For commercial carbamate insecticides, the IC50 varied from 9.1 nM to 2,094 nM. For the novel carbamate insecticides, it varied from 58 nM to 388,800 nM. Based on IC50 data from previous work on A. gambiae, the selectivity index (IC50 of non-target species / IC50 A. gambiae) ranged from 0.17 to 5.64 and from 0.47 to 19,587 for commercial and novel carbamate insecticides, respectively. Subsequently, the AChE protein sequence alignment comparison and cladogram were used to compare the genetic and evolutionary relationship among five different organisms. The alignment score ranged from 88 for mouse vs. human to 54 for hen vs. T. californica. The evolutionary relationships among species was obtained from the cladogram. Recombinant mouse vs. recombinant human was shown to have the most similar inhibitor potency profiles (alignment score = 88, closest taxa position on cladogram, similar AChE sensitivity pattern [R2 = 0.81] and level [P > 0.05] to the novel carbamates). Neurotoxic esterase (NTE) assay showed that the novel carbamates did not significantly inhibit NTE, inhibition of which underlies a significant hazard for anticholinesterases, especially organophosphates, in several nontarget vertebrate organisms. The NTE activity in the presence of novel carbamate insecticides ranged from 93% to 116% of the control, while in the commercial group, bendiocarb significantly inhibited NTE, leaving only 76.5% of the initial reactivity at 1 mM inhibitor concentration. Further in vivo bioassay using Daphnia magna was conducted to compare the aquatic toxicity of commercial and novel carbamates. The data showed that except for PRC331 (3-tert-butylphenylmethylcarbamate), all novel carbamates were of similar potency as bendiocarb (LC50 = 611 nM) for aquatic toxicity, and their LC50 values ranged from 172 nM (PRC331) to 1109 nM. In conclusion, the novel carbamate insecticides would appear to be an improvement over commercial carbamate insecticides because of greater selectivity, negligible NTE inhibition capacity, but in some cases with potent in vivo toxicity to Daphnia magna. However, since the envisioned usage of these compounds is in bednets or as indoor residual sprays (IRS), any environmental exposures to nontarget aquatic organisms are expected to be minimal.
- Fasting alters histone methylation in paraventricular nucleus of chick through regulating of polycomb repressive complex 2Jiang, Ying (Virginia Tech, 2013-09-19)The developing brain is highly sensitive to environmental influences. Unfavorable nutrition is one kind of stress that can cause acute metabolic disorders during the neonatal period [1,2,3] and severe diseases in later life [4,5]. These early life experiences occurring during heightened periods of brain plasticity help determine the lifelong structural and functional aspects of brain and behavior. In humans, for example, weight gain during the first week of life increased the propensity for developing obesity several decades later [5]. This susceptibility is, if not all, related to the dynamic reversible epigenetic imprints left on the histones [6,7,8], especially during the prenatal and postpartum period [9]. Histones are highly dynamic and responsive towards environmental stress [10,11]. Through covalent modification of the histone tail, histones are able to direct DNA scaffolding and regulate gene expression [10,12]. Thus far, various types of post translational modifications have been identified on various histones tails [12]. Among them, the methylation and acetylation on lysine residue (K) 27 on histone 3 (H3) has been tightly linked to gene repression [13,14] and activation [15], respectively. EZh2 (enhancer of zeste 2) in the polycomb repressive complex 2 (PRC2) is the only methyltransferase that has been linked to catalyze this methylation reaction. In addition, SUZ (suppressor of zeste) and EED (embryonic ectoderm development) are two other key proteins in PRC2 function core that help EZH2. As previous reported, increased H3K27 methylation was monitored after fasting stress during neonatal period in chicks' paraventricular nucleus (PVN). In this study, we investigated the detailed mechanism behind changes in H3K27 methylation following fasting stress. After 24 hours fasting on 3 days-of-age (D3), chicks exhibited elevated mRNA levels of PRC2 key components, including EZH2, SUZ and EED, in the PVN on D4. Western blots confirmed this finding by showing increased global methylation status at the H3K27 site in the PVN on D4. In addition, until 38 days post fasting, SUZ and EZH2 remained inhibited. A newly identified anorexigenic factor, Brain-derived neurotrophic factor (BDNF), was used as an example of multiple hormones expressed in PVN to verify this finding. Both BDNF protein and mRNA exhibited compatible changes to global changes of tri- (me3) and di-methylated (me2) H327. Furthermore, by using chromatin immunoprecipitation assays (ChIP), we were able to monitor the changes of H3K27me2/me3 deposition along the Bdnf gene. Fasting significantly increased H3K27me2/me3 as well as EZH2 at the Bdnf's promoter, transcription start site and 3'-untranslated region. These data show that fasting stress during the early life period could leave epigenetic imprinting in PVN for a long time. Next, we tried to understand the function of this epigenetic imprinting in the chicks' PVN. Thus, we compared naive chicks (never fasted) to chicks that received either a single 24 hour fast on D3 or two 24 hour fast on both D3 and 10 days-of-age (D10). We found that the D3 fasted group significantly increased the level of PRC2 key components and its product H3K27me2/me3 compared to the naive group. However, D3 fasting and D10 fasting together decreased the surges of H3K27me2/me3, SUZ and EED (not EZH2) compared to the naive group. We called this phenomenon "epigenetic memory". The Western blot, qPCR and CHIP assay results from BDNF all confirmed the existence of "epigenetic memory" for PRC2. These data suggested that fasting stress during the early period of brain development could leave long term epigenetic modifications in neurons. These changes could be beneficial to the body, which keeps homeostasis of inner environment and prevent massive response to future same stress. The EZH2 protein was knocked down and the H3K27 methylation status changes were monitored after applying the same treatment. We first confirmed that EZH2 antisense oligonucleotides (5.5 ug), but not EZH2 siRNA and artificial cerebrospinal fluid (ACSF), inhibit EZH2 protein by 86 % in the PVN. Then, on D3, chicks were subjected to a 24 hour fasting stress (D3-fasting) post either EZH2 antisense or ACSF injection. The EZH2 antisense blocked the surge of both EZH2 mRNA and H3K27 methylation after D3-fasting. At the same time, BDNF exhibited elevated expression levels and less methylated H3K27 deposition along the Bdnf gene. In addition, we were also interested in the changes of "epigenetic memory" post EZH2 antisense injection. We found that after EZH2 antisense injection, chicks' PVN no longer exhibited any "epigenetic memory" to repetitive fasting stress. While EZH2 mRNA was constantly inhibited, SUZ, EED and H3K27me2/3 levels were unpredictable. These findings suggested that neurons in the PVN utilized PRC2 as a major H3K27 methylation tool. Knockdown of EZH2 in the PRC2 impaired the proper response in PVN to fasting stress and PVN's ability to acclimate to repetitive fasting stresses. Thus, EZH2 is an important H3K27 methyltransferase inside chicken hypothalamus to maintain homeostasis. In conclusion, fasting stress during the early life period could leave epigenetic markers on chromosomes of neurons in the feeding regulation center. These epigenetic markers will be left on chromosomes for a long period of time and have a beneficial role in keeping homeostasis when individuals face future fasting stress again. H3K27 methylation is one of these epigenetic markers and inhibits expression of various genes inside neurons. EZH2 is so far the only detected methyltransferases for H3K27 that form the PRC2. Thus EZH2 plays a key function in the body's response to fasting.