Browsing by Author "Johnes, Penny J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Gradients of Anthropogenic Nutrient Enrichment Alter N Composition and DOM Stoichiometry in Freshwater EcosystemsWymore, Adam S.; Johnes, Penny J.; Bernal, Susana; Brookshire, E. N. Jack; Fazekas, Hannah M.; Helton, Ashley M.; Argerich, Alba; Barnes, Rebecca T.; Coble, Ashley A.; Dodds, Walter K.; Haq, Shahan; Johnson, Sherri L.; Jones, Jeremy B.; Kaushal, Sujay S.; Kortelainen, Pirkko; Lopez-Lloreda, Carla; Rodriguez-Cardona, Bianca M.; Spencer, Robert G. M.; Sullivan, Pamela L.; Yates, Christopher A.; McDowell, William H. (2021-08)A comprehensive cross-biome assessment of major nitrogen (N) species that includes dissolved organic N (DON) is central to understanding interactions between inorganic nutrients and organic matter in running waters. Here, we synthesize stream water N chemistry across biomes and find that the composition of the dissolved N pool shifts from highly heterogeneous to primarily comprised of inorganic N, in tandem with dissolved organic matter (DOM) becoming more N-rich, in response to nutrient enrichment from human disturbances. We identify two critical thresholds of total dissolved N (TDN) concentrations where the proportions of organic and inorganic N shift. With low TDN concentrations (0-1.3 mg/L N), the dominant form of N is highly variable, and DON ranges from 0% to 100% of TDN. At TDN concentrations above 2.8 mg/L, inorganic N dominates the N pool and DON rarely exceeds 25% of TDN. This transition to inorganic N dominance coincides with a shift in the stoichiometry of the DOM pool, where DOM becomes progressively enriched in N and DON concentrations are less tightly associated with concentrations of dissolved organic carbon (DOC). This shift in DOM stoichiometry (defined as DOC:DON ratios) suggests that fundamental changes in the biogeochemical cycles of C and N in freshwater ecosystems are occurring across the globe as human activity alters inorganic N and DOM sources and availability. Alterations to DOM stoichiometry are likely to have important implications for both the fate of DOM and its role as a source of N as it is transported downstream to the coastal ocean.
- Shifting stoichiometry: Long-term trends in stream-dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid depositionRodriguez-Cardona, Bianca M.; Wymore, Adam S.; Argerich, Alba; Barnes, Rebecca T.; Bernal, Susana; Brookshire, E. N. Jack; Coble, Ashley A.; Dodds, Walter K.; Fazekas, Hannah M.; Helton, Ashley M.; Johnes, Penny J.; Johnson, Sherri L.; Jones, Jeremy B.; Kaushal, Sujay S.; Kortelainen, Pirkko; Lopez-Lloreda, Carla; Spencer, Robert G. M.; McDowell, William H. (2021-10-27)Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for -30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.